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ABSTRACT

Objectives: Severe grey and white matter volume reductions were found in patients with ano-
rexia nervosa (AN) that were linked to neuropsychological deficits while their underlying patho-
physiology remains unclear. For the first time, we analysed the cellular basis of brain volume
changes in an animal model (activity-based anorexia, ABA).

Methods: Female rats had 24h/day running wheel access and received reduced food intake
until a 25% weight reduction was reached and maintained for 2 weeks.

Results: In ABA rats, the volumes of the cerebral cortex and corpus callosum were significantly
reduced compared to controls by 6% and 9%, respectively. The number of GFAP-positive astro-
cytes in these regions decreased by 39% and 23%, total astrocyte-covered area by 83% and
63%. In neurons no changes were observed. The findings were complemented by a 60% and
49% reduction in astrocyte (GFAP) mRNA expression.

Conclusions: Volumetric brain changes in ABA animals mirror those in human AN patients.
These alterations are associated with a reduction of GFAP-positive astrocytes as well as GFAP
expression. Reduced astrocyte functioning could help explain neuronal dysfunctions leading to
symptoms of rigidity and impaired learning. Astrocyte loss could constitute a new research tar-
get for understanding and treating semi-starvation and AN.
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Introduction of all psychiatric disorders (Fichter and Quadflieg
2016).

Striking brain volume deficits are well-documented
in patients with AN. In a recent meta-analysis includ-
ing 216 patients their grey matter showed a 4.6%
reduction in comparison to healthy controls. This

effect was even more pronounced in adolescents with

Anorexia nervosa (AN) is the third most common
chronic disease in adolescence and young adulthood
(Gonzalez et al. 2007). It is a psychiatric disorder char-
acterised by insufficient food intake, severe body
weight loss, fear of weight gain and a disturbed repre-
sentation of one’s own body (American Psychiatric

Association 2013). It has a strong genetic background
but also environmental factors like thin ideal and diet-
ing play an important role (Hinney et al. 2016; Stice
et al. 2016). The onset occurs primarily during adoles-
cence in young women and 30-80% of the patients
show a characteristic physical hyperactivity (Herpertz-
Dahlmann 2015). Effective treatments are limited
(Zipfel et al. 2015) and the mortality rate is the highest

AN (8.4%). White matter was reduced by 2.7%, also
more pronounced for adolescents (4.0%) (Seitz et al.
2016). After weight restoration, grey and white matter
alterations were largely reversed (Mainz et al. 2012;
King et al. 2015). However, it remained unclear
whether it was a ‘restitutio ad integrum’ or whether a
‘scar’ remained in the brain of former patients (Seitz
et al. 2014). Grey matter volume loss has been
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associated with a greater drive for thinness (Joos et al.
2011), reduced visuo-spatial capacities (Castro-
Fornieles et al. 2010) and impaired logical thinking
(McCormick et al. 2008). Notably, the decrease in white
matter volume in acutely ill patients with AN and fail-
ure to increase grey matter upon weight restoration
are associated with a negative prognosis and an
impaired weight recovery at 1-year follow-up
(McCormick et al. 2008; McCormick et al. 2009; Seitz
et al. 2015). Additional studies have shown alterations
in gyrification level of the brain that were associated
with clinical outcome (Favaro et al. 2015) and micro-
structural alterations of white matter, including the
corpus callosum, that were associated with the severity
of starvation and the duration of the eating disorder
(Kazlouski et al. 2011; Frieling et al. 2012; Yau et al.
2013; Nagahara et al. 2014; Vogel et al. 2016).

The underlying cellular mechanisms of this volume
reduction are largely unclear as systematic data are
lacking. Human post-mortem case studies in three
chronically ill girls with AN seemed to indicate that
neurons showed signs of cellular degeneration, long
and thin dendrites and an altered spine morphology
(Martin 1958; Neumarker et al. 1997).

The most commonly used animal model that
mimics the behavioural and physiological aspects of
AN is the activity-based anorexia (ABA) rat model.
When given access to running wheels, most food-
restricted rodents start to run voluntarily despite
utilising even more energy and exhibit other core
symptoms of AN, including amenorrhoea (Watanabe
et al. 1992; Paulukat et al. 2016), hypothermia
(Hillebrand et al. 2005) and hypoleptinemia (Pardo
et al. 2010). Previous findings in ABA rats indicate that
also glia could be affected, including decreased cell
proliferation in the dentate gyrus, the surrounding
dorsal hippocampus and the corpus callosum
(Barbarich-Marsteller et al. 2013). These effects were
not prominent in regions with known neurogenesis,
such as the subgranular zone of the dentate gyrus,
leading the authors of that paper to suspect a primary
effect on gliogenesis. Furthermore, Reyes-Haro et al.
(2015) showed that the astrocyte count was slightly
reduced in a different animal model for AN, which is
based on acute dehydration, in a subregion of the cor-
pus callosum. However, neither paper combined volu-
metric and cellular measurements.

To date, the starvation-induced effects on brain vol-
ume reduction and their cellular underpinnings have
not been systematically analysed in animal models of
AN. As a disturbed development of the brain during
adolescence with subsequent scars might be one

reason for the chronicity of AN and a high co-
morbidity with other psychiatric disorders (Mainz et al.
2012), a distinct knowledge about the effect of starva-
tion on the brain is urgently needed. This knowledge
would not only be relevant for the development of
new interventions of AN but also have important
implications for improving our understanding of the
neurobiological consequences of semi-starvation due
to undernutrition or secondary to chronic medical con-
ditions associated with severe weight loss. The first
aim of this study was to investigate whether the star-
vation-induced reduction of cerebral cortex and corpus
callosum volumes found in patients with AN could
also occur in female adolescent ABA rats. Our second
aim was to further elucidate the pathophysiological
and cellular mechanisms underlying this volume loss.
We thus analysed alterations in neuron and astrocyte
numbers, cell areas and mRNA expression in chronic-
ally starved ABA rats in comparison with normally
developing control animals.

Materials and methods
Subjects

Forty-one adolescent 4-week-old female Wistar rats
(Charles River, Sulzfeld, Germany) arrived at the labora-
tory with an average weight of 87.5g (SD 15.3). They
were individually housed in Type IV 1820cm? cages
(Polysulfone, Tecniplast GmbH, Germany) under a 12-h
light/dark cycle (lights on at 07:00h) with ad libitum
access to water and all rats had 24h/day running
wheel access. The facility is specific pathogen free
according to the FELASA Guidelines and certified
according to DIN ISO 9001/2008.

Study design

The ABA paradigm of self-starvation (Routtenberg &
Kuznesof 1967; Kas et al. 2003; Gutierrez 2013) was
altered to allow for testing of chronic starvation. A
schematic summary is shown in Paulukat et al. (2016).
In brief, the rodents were allowed a 10-day acclima-
tisation phase in their single running wheel cages with
food ad libitum. After habituation, animals were ran-
domly assigned to experimental groups. At first, 11 ani-
mals in the ABA group received 40% of their baseline
daily food intake until they lost 25% of their weight.
For 2 additional weeks they received adjusted daily
food intake to the needs of the individual animal to
hold a stable weight (ABA_chronic). This was achieved
by weighing the animals every day and adapting their
food for the next 24h to between 60% and 80% of



their baseline daily food intake, depending on the dif-
ference to the target weight. Food consumption, body
weight, running wheel activity (RWA; analysed with
tachometers, BC 5.12, Sigma, Germany) and menstrual
cycles were measured daily at 12.00 h. Twelve control
animals were housed under the same terms but fed
ad libitum and sacrificed after the same number of
days as the experimental group (Controls_chronic:
n=12). For an additional analysis of short-term starva-
tion, and to determine whether the duration of starva-
tion was an important factor, nine animals were
treated in the same way as described above, but they
were sacrificed directly after reaching their target
weight (ABA_acute) and compared with a separate
control group with nine rats sacrificed after the
respective number of days (Controls_acute).

All animal experiments were approved by the
Governmental Animal Care and Use Committee of the
Ministry for Nature, Environment and Consumer
Protection of the State of North Rhine-Westphalia and
carried out in agreement with the German Animal
Protection Law and European regulations (Guideline
86/609/EECDirective 2010/63).

Volume measurement

After anaesthesia with isoflurane (Forene, 100%, v/v,
B506, Abbott) and transcardial perfusion with a 150-
mL artificial cerebrospinal fluid solution, the brains
were rapidly removed from the skull and divided into
two hemispheres at the midsagittal line. The right
cerebral hemispheres were used for cryo-sectioning
and volume analysis, the left hemispheres were used
for a direct preparation of the somatosensory area and
the corpus callosum following mRNA isolation. The
right brain halves were post-fixed with a 3.7% parafor-
maldehyde solution (pH 7.4) for 2 days, rinsed in tap
water and then cryo-protected by immersion overnight
in 10% and 30% sucrose in phosphate-buffered saline
at 4°C. Afterwards, the hemispheres were embedded
in optimal cutting temperature medium and stored at
-80°C until further processing.

The entire right hemisphere of each animal was
cut frontally in a series of 100-um sections on a cryo-
stat (Leica CM 3050S, Nussloch, Germany) and then
thaw-mounted on gelatinised glass slides. Every
second slice was stained with haematoxylin-eosin.
Slides were dried overnight, incubated for 30min in
0.1% haematoxylin solution (Merck 517282,
Darmstadt, Germany), then flushed for 10 min with
tap water and incubated for 10min in 0.2% eosin
solution (Merck 115935, Darmstadt, Germany). In add-
ition, they were dehydrated in an ascending sequence
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with ethanol and afterwards with xylol. Finally, the
slides were cover-slipped with DePeX (Serva,
Heidelberg, Germany).

Stained slices were digitalised and the areas of
interest (cerebral cortex and corpus callosum) of every
second slice were determined manually by tracing
with Image) software (1.48v, Wayne Rasband, National
Institutes of Health, Bethesda, MD, USA), using the
Cavalieri method by an observer blinded to the experi-
mental treatment groups. The areas were multiplied
by the distance between the histological sections and
summed to yield the total volume. The volume was
analysed for the cerebral cortex from Bregma 5.20 to
-9.80 and for the corpus callosum from 3.70 to -8.00
using the rat brain atlas from Paxinos and Watson,
encompassing both compartments completely. One
brain hemisphere of an ABA rat had to be excluded
because the halves were accidently switched.

Immunohistochemistry

A series of intermittent 20 um sections were made
with a cryostat at Bregma -2.30. Two sections per ani-
mal were chosen from this Bregma location for stain-
ing. Sections were exposed overnight at 37°C, then
incubated with 5% goat or horse serum (Sigma,
Munich, Germany) for 1h and exposed overnight at
4°C to the following primary antibodies: goat anti-glial
fibrillary acid protein (GFAP) polyclonal antibody
(astroglia, 1:750; catalogue number: sc-6170, Santa
Cruz Biotechnology, Dallas, TX, USA), rabbit anti-micro-
tubule-associated protein 2 (Map2) monoclonal anti-
body (neurons, 1:1500; catalogue number: D5G1, Cell
Signalling Technology, USA). After washing, we
unmasked the sections by citrate (pH 6.0) and all sec-
tions were then treated with H,O,/methanol (0.3%
vol., Roth, Karlsruhe, Germany). Subsequently, the sec-
tions were incubated with the appropriate secondary
antibodies followed by the ABC complex (Vector
Laboratories, Burlingame, CA, USA). Afterwards, a
Vectastain-DAB Kit (Vector Laboratories, Burlingame,
CA, USA) was used and sections were counterstained
with haematoxylin, dehydrated in graded alcohol and
mounted. Slices of sufficient quality could be obtained
for ten animals of the ABA_chronic and eleven animals
of the Control_chronic group.

To show the specificity of cellular changes
for GFAP-positive astrocytes, additional mouse anti-
adenomatous polyposis coli (APC) monoclonal anti-
body (1:500; catalogue number: OP80, Calbiochem,
Germany) was used to stain and count oligodendro-
cytes in slices at Bregma 4.16 accordingly.
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Cell parameter quantification

Regions of interest were digitally recorded using the
Leica DM 6000 microscope (Leica microsystems,
Bensheim, Germany). The numbers of GFAP-, Map2-
and APC-positive cells were analysed by manual count-
ing with Image) 3 software (1.48v, Wayne Rasband,
National Institutes of Health) by two observers blinded
to the groups, and the results were averaged and
expressed as cells/mm?. Only cells with a visible
nucleus were counted. Immunoreactive areas of GFAP
and Map2 cells were determined with ImageJ software
by quantifying the GFAP and Map2 signalling as the
area in percent. For the corpus callosum analysis,
recordings from three different regions (medial, sub
cingulum and lateral) were averaged. Also three differ-
ent areas (retrosplenial granular cortex, primary motor
cortex and primary somatosensory cortex) were aver-
aged for the cerebral cortex analysis.

Reverse transcriptase (RT) and real-time
polymerase chain reaction (rtPCR)

The mRNA of cerebral cortex and corpus callosum
samples were isolated using PeqGold RNA Trifast
(Peqglab, Germany). Afterwards, the samples were
reverse transcribed in complementary DNA with
Invitrogen M-MLV RT-kit and random hexanucleotide
primers (Invitrogen, Germany; primer sequences: CycA
sense: 5-GGC AAA TGC TGG ACC AAA CAG CycA

(A) Body weight
250

antisense: 5-TTA GAG TTG TCC ACA GTC GGG AGA
TG; GFAP sense: 5-AGA AAA CCG CAT CAC CAT T;
GFAP antisense: 5-GCA CAC CTC ACA TCA CAT CC;
Map2 sense: 5-TCG AAA TGC CCG TGG AAT CA; Map2
antisense: 5'-TGG AAG AAG ACA GGG GCA AAG). The
relative expression was measured by calculating the
ratio between the gene of interest and the reference
gene cylophilinA (cycA) by the AACt-method using the
gBase plus software (gBase Biogazelle, Belgium).
Changes in gene levels of interest were graphically
illustrated by the fold change relative to the control
group, with controls set to 100%.

Statistical analysis

The data of all continuous outcomes were described
by means and corresponding standard deviations (SD)
in each subgroup of acute or chronic starvation of
ABA and control animals. Primary outcome was the
cerebral cortex volume, while secondary outcomes
were the corpus callosum volume, the cell parameters
and the mRNA levels. Comparisons between ABA and
control animals in acute or chronic starvation were
performed by two-sided t-tests with a significance
level of 5%. Results were reported as P values with
corresponding degrees of freedom (t(df)), values of the
test statistic (t) and effect sizes (Cohen’s d). No adjust-
ments for multiple testing were carried out due to the
exploratory nature of this study. All analyses were con-
ducted using SPSS version 20 for Windows (IBM,

= Controls_chronic

= ABA_chronic

Days
(B) RWA
1400
= 1200 -
§ 1000
g so0 T F—=—
8 600 P { 1
S 400 /'**"f\ I ' O
. _ |
- R 525 = N >
0 -
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Days

Figure 1. Standardised weight (A) and normalised running wheel activity (RWA, B) in the chronic ABA model as well as in con-
trols. The RWA is normalised to the acclimatisation phase as 100%. (A and B) Two-way ANOVA. ***P <0.001. Modified from

(Paulukat et al. 2016).
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Table 1. Overview of means, standard deviation, P values, t(df), t and Cohen’s d of the brain volumes, cell count, surface and

mRNA results.

Mean_ABA SD_ABA Mean_Controls SD_Controls t(df) t Cohen’sd P values
Volume_cerebral cortex (mm?3) 219.52 13.76 232.7 14,4 19 253 0.93 0.046
Volume_corpus callosum (mm?3) 23.77 2.03 26.15 2.25 20 258 1.11 0.02
Number of GFAP-positive astrocytes, cerebral cortex (/mm?) 37.07 13.31 61.02 21.48 19 3.03 1.32 0.007
Number of GFAP-positive astrocytes, corpus callosum (/mm?) 71.95 13.83 93.31 11.29 19 3.89 1.70 0.001
GFAP-positive area, cerebral cortex (%) 1.01 0.90 58 4.25 18  3.49 1.53 0.002
GFAP-positive area, corpus callosum (%) 1.09 0.54 3.14 1.43 19 426 1.86 0.0004
Number of Map2-positive neurons, cerebral cortex (/mm?) 329.22 119.56 32753 73.27 16 0.04 0.02 0.971
Map2-positive surface area, cerebral cortex (%) 6.04 6.62 6.48 4.49 13 0.14 0.07 0.89
GFAP mRNA expression, cerebral cortex 0.40 0.12 1.00 0.35 21 539 2.25 <0.001
GFAP mRNA expression, corpus callosum 0.49 0.1 1.00 0.25 15 556 2.70 <0.001
Map2 mRNA expression, cerebral cortex 0.96 0.33 1.00 0.43 16 0.21 0.10 0.837
Map2 mRNA expression, corpus callosum 1.14 0.27 1.00 0.26 13 1.02 0.53 0.323

Chicago, IL, USA). We also analysed potential correla-
tions between standardised RWA (running wheel activ-
ity) and brain volumes using Pearson correlations.

Results

The standardised body weight and normalised RWA
of the ABA model and controls are shown in Figure 1.
The normalised RWA of ABA rats during the acute star-
vation phase was significantly higher compared
to that of controls (ABA_chronic: 456.66%;
Controls_chronic: 204.19%; P=0.004), thus showing
that the ABA model worked. In the weight-holding
phase, however, the RWA of the controls further
increased potentially due to longer continuing habitu-
ation of the control rats to the running wheel.
Interestingly, the increased RWA of the ABA animals
stabilised on the high level without further increase,
potentially preventing complete over-exertion of the
animals. Thus, the RWA of both groups approximated
during the weight-holding phase so that it was no lon-
ger significantly different between controls and ABA
animals (ABA_chronic: 442.36%; Controls_chronic:
431.46%; P=0.922). RWA did not correlate with brain
volumes (see Supplementary Table 1, available online).
In both brain areas, we observed a significant volume
reduction. Regarding the volume of the cerebral cor-
tex, there was an approximately 6% decrease in ABA_
chronic rats compared to control animals. In the cor-
pus callosum, we found an around 9% volume reduc-
tion in ABA_chronic animals (see Table 1 and Figure
2). To attribute these morphological changes to dis-
tinct cell types, we analysed the number of immunor-
eactive cells and the area covered by these cells. The
number of GFAP-positive astrocytes in the cerebral
cortex and corpus callosum of chronic ABA rats was
significantly reduced in comparison to controls (Table
1 and Figure 3). The GFAP-positive area was also sig-
nificantly decreased compared to controls in both

analysed brain regions. The number of Map2-positive
neurons in the cerebral cortex of chronically starved
rats did not change in comparison to the control
group. Similarly, the cell surface area of these neuronal
structures in the cerebral cortex of ABA animals was
not significantly modified (Table 1 and Figure 3).

To substantiate the findings of reduced astrocyte
numbers and volume, we analysed GFAP expression.
In the cerebral cortex, GFAP mRNA expression in ABA
rats was downregulated by 60% compared to controls.
Furthermore, GFAP mRNA levels in ABA_chronic rats
were diminished by approximately 51% in the corpus
callosum when compared to the control group (Table 1
and Figure 4). In both analysed brain regions, Map2
MRNA expression was unchanged.

In addition, we counted the APC-positive oligoden-
drocytes in the cerebral cortex and corpus callosum to
check for cell specificity. There was no alteration in
oligodendrocyte numbers in ABA_chronic rats com-
pared to the control group (Figure 5).

To determine, whether the observed changes were
dependent on the duration of starvation, we also ana-
lysed ABA_acute rats. In contrast to chronically starved
animals, the numbers of GFAP-positive astrocytes and
cell surface area in these animals showed no signifi-
cant alterations compared to controls (Figure 6).

Discussion

Our study shows reduced cerebral cortex and corpus
callosum volumes in the chronic ABA model that par-
allel the findings in human patients with AN. For the
first time, we demonstrate that this volume loss is
associated with a reduced number and immunoreac-
tive surface area of GFAP-positive astrocytes but not
neurons or oligodendrocytes in both brain regions.
This GFAP-positive astrocyte reduction appears to be
specific to the chronic starvation condition and was
not found after acute starvation.
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Figure 2. Effect of ABA chronic starvation on brain volume. The volumes (shaded) of (A) cerebral cortex and (B) corpus callosum
were reduced in the ABA group (n=10) compared to controls (n=12). *P < 0.05, two-sided Student’s t-test.

Grey matter and white matter volume

We previously demonstrated that the sizes of the
cerebral cortex and white matter were significantly
reduced in human patients with AN (Seitz et al. 2014,
2016). Similarly, a volume reduction of these brain areas
was observed in ABA_chronic rats. This further validates
the ABA model and underlines the importance of eluci-
dating the underlying mechanism of this widespread
volume reduction. Indeed, recent studies on large
patient groups have shown that semi-starvation in AN
seems to reduce grey and white matter volume in a
global manner affecting most areas in the brain, with
white matter deficits being especially predictive for clin-
ical prognosis (King et al. 2015; Seitz et al. 2015).

Cellular changes in the ABA model

The cell numbers and surface area of GFAP-positive
astrocytes were decreased in the cerebral cortex and
corpus callosum of ABA rats, whereas no change in
the number or area of neurons was found. As the ratio
area/cell number was also significantly reduced (cere-
bral cortex, P=0.004; corpus callosum, P=0.001), each
astrocyte appears to contain less GFAP protein per
individual cell. Both results fit well with our finding of
strongly reduced GFAP mRNA expression in ABA ani-
mals that show more than a 50% mMRNA reduction

compared to controls. These findings suggest a strong
influence of semi-starvation on astrocyte number,
morphology and potentially function rather than
favouring primary neuronal or oligondroglial (myelin-
ation) changes after starvation. Earlier post-mortem
human studies had suggested fine-grained changes in
neuronal morphology (Martin 1958; Neumarker et al.
1997); however, they did not systematically examine
glial cells. In the only study, focussing on glial cell
numbers in AN, Reyes-Haro et al. (2015) found that
the number of GFAP-positive astrocytes in the body of
the corpus callosum (not in the splenium and genu)
was significantly reduced in acute dehydration-induced
anorexia rats but not in a food-restricted only group
without dehydration. Furthermore, the astrocyte/glial
cell ratio was lower in both starvation groups com-
pared to controls. This is in line with our results.
However, our findings are much more pronounced,
potentially due to our longer duration of starvation in
the chronic condition. Acute starvation did not suffice
to produce similar effects in our study, underscoring
the importance of illness duration, which has previ-
ously been implicated in the extent of brain volume
loss in patients with AN (Boghi et al. 2011; Fonville
et al. 2014). This astrocyte effect seems to be cell-type
specific because the other major glial cell population,
oligodendrocytes, was not affected. A potential mech-
anism for a marked reduction of astrocyte numbers
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Figure 3. Cell number and cell area of GFAP-stained astrocytes in the (A-D) cerebral cortex and the (E-H) corpus callosum of ABA
and control rats. Astrocyte cell number and cell areas were significantly reduced in both brain regions (I, K, M, N). The neuron cell
number (J) and neuron cell area (L) were quantified with Map2, which showed no significant alteration in ABA rats compared to
controls. Scale bar= 100 um. **P < 0.01, ¥***P < 0.001, two-sided Student's t-test.

could be a reduction in cell neogenesis. This was
shown by Barbarich-Marsteller et al. (2013) in an acute
ABA model, where a significantly lower proliferation
rate of new cells was found for glia in the hippocam-
pus and corpus callosum but not for neurons.

Possible role of astrocytes in the starvation
process

The brain volume reductions following starvation in
AN were associated with a significant loss of GFAP-
positive astrocyte numbers, reduction of their cell-size
and overall GFAP gene expression levels. The latter
being even more striking than the morphology, sug-
gesting a functional down (de)-regulation of astroglia.
GFAP is an intermediary filament of astrocytes thought
to be responsible for the cell shape, the mechanical
stability and communication of astrocytes with other
astrocytes and neurons (Hol & Pekny 2015). Similar

reductions in glial cell nhumber have been shown in
the fronto-limbic areas of the brain, including the
anterior cingulate and prefrontal cortices in patients
with depression, which is very often comorbid in AN
(Banasr et al. 2011; Verkhratsky et al. 2015). Their
causal role is supported by animal studies in which
rats displayed depressive symptoms after destruction
of their frontocortical astrocytes (Rial et al. 2015). In
both patient groups, a similar pathophysiological
mechanism of astrocyte reduction could be at play.
Also in major depressive disorder a reduction of GFAP
has been shown, and impaired vesicle transport in
astrocytes leads to memory deficits similar to those in
AN (Elsayed & Magistretti 2015). Recently, astrocyte
alterations were also found in other psychiatric dis-
eases like anxiety and following chronic stress, partly
linked to reduced GFAP (Elsayed & Magistretti 2015;
Bender et al. 2016). This shows that astrocytes might

play @ much greater role in psychiatric
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pathophysiology than previously thought (Stevens
2009). Astrocytes have multiple functions, such as con-
stituting the blood-brain barrier, regulating neuronal
activity, elimination of radical oxygen species and
inflammation (Molofsky et al. 2012; Rose et al. 2013;
Dringen et al. 2015; Kipp et al. 2016). One of the most
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Figure 4. mRNA expression of GFAP in the (A) cerebral cortex
and (B) corpus callosum, and mRNA expression of Map2 in the
(C) cerebral cortex and (D) corpus callosum. In both brain
regions, GFAP expression was downregulated in ABA rats com-
pared to the control group, but there was no significant reduc-
tion in Map2 expression. ***P < 0.001, two-sided Student’s t-
test.
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important roles of astrocytes is to supply energy to
neurons, as neurons have little capacity to store
energy themselves (Bélanger et al. 2011). Thus, fewer
astrocytes containing less GFAP could further aggra-
vate the energy metabolism of neurons in an already
chronically energy-deprived state, leading to impair-
ment of their proper functioning.

A growing body of literature shows that mature
GFAP-positive astrocytes are interconnected in networks
and can be indirectly and even directly involved in syn-
aptic transmission, synapse formation and even large
neural circuits, indicating a role in synaptic plasticity as
well as learning and memory (Paixao & Klein 2010;
Molofsky et al. 2012). Therefore, lower astrocyte num-
bers with fewer intermediary filaments may result in
deficits in learning and memory (Henneberger et al.
2010). This could help explain the impairments in learn-
ing processes that were found to be associated with
brain volume loss in patients with AN (Chui et al. 2008;
Castro-Fornieles et al. 2010). In our previous studies, we
could show that oestrogen deficiency in chronic ABA
rats and patients with AN was associated with impaired
memory function (Buehren et al. 2011; Paulukat et al.
2016). This association could be mediated by changed
astrocyte function as astrocytes express all types of oes-
trogen receptors and are regulated by gonadal hor-
mones (Garcia-Segura et al. 1999; Garcia-Segura &
Melcangi 2006; Karki et al. 2014).

Our findings may be important regarding the difficul-
ties of early psychotherapy treatment of patients with
AN. As all therapeutic changes require learning and the
adaption of new viewpoints, these processes could
be disturbed due to a reduced number of astrocytes
supporting synaptogenesis and long-term potentiation
(Henneberger et al. 2010; Paulukat et al. 2016).

Limitations

To allow for standardised weight loss and the possibil-
ity to study chronic starvation effects, we slightly
modified the original ABA experimental set-up

Oligodendrocytes in
corpus callosum

1 Controls_chronic
@l ABA_chronic

Figure 5. The number of APC-stained oligodendrocytes in the (A) cerebral cortex and (B) corpus callosum were not altered.
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Figure 6. Controlling for duration of starvation. The cell number and cell area of GFAP-positive astrocytes of ABA_acute rats
(n=9) in the (A, B) cerebral cortex and (C, D) corpus callosum were not significantly modified compared to Controls_acute (n=9)

rats.

including a fixed weight loss, a weight-holding phase
and omitting self-starvation (Paulukat et al. 2016). The
original ABA set-up often proved to be lethal to
the animals when continued for a longer time frame
than a few days (Routtenberg & Kuznesof 1967; Exner
et al. 2000).

GFAP is a marker for differentiated astrocytes, but it
is not an absolute marker of all non-reactive astrocytes
under healthy conditions (Olude et al. 2015), e.g., it
labels the protoplasmic astrocytes in the cortex only
poorly (Molofsky et al. 2012). Therefore, we might not
have been able to detect the total number of astrocyte
reduction in the cerebral cortex and corpus callosum in
our study. Lastly, our study does not prove a causal role
for astrocyte reduction in brain volume loss; e.g., both
could be caused by an independent third factor. Further
intervention studies including astrocyte manipulations
are required to confirm causality.

Conclusion

We showed that volume reductions of the cerebral
cortex and corpus callosum are observed in a chronic
ABA model, which is in line with clinical findings in AN
patients. The number of GFAP-positive cells and their
immunoreactive surface area was strongly reduced in
our rat model, which may explain the lower volumes
in these regions. A changed functionality of astrocytes
might thus represent an important consequence of
starvation and play an important role in the

underlying pathobiology in AN, including metabolic
processes, neuronal functioning and synapse forma-
tion. Future AN research should start to focus on
GFAP-positive astrocytes in addition to pure neuronal
functioning to establish potential links to deficits in
learning and memory, slow psychotherapeutic change
and depression in AN. Interventions targeting the
functions and regeneration of astrocytes could open
up a whole new treatment approach to address these
core deficits in patients with AN and potentially also
help patients with other causes of semi-starvation.
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