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Abstract. A generic non-minimal coupling can push any higher-order terms of the scalar
potential sufficiently far out in field space to yield observationally viable plateau inflation.
We provide analytic and numerical evidence that this generically happens for a non-minimal
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1 Introduction

The theory of cosmic inflation [1, 2] has become the leading paradigm to explain the initial
conditions of the early universe. Combined with cosmological perturbation theory [3], it
provides a mechanism for seeding structure formation that is in astonishing agreement with
recent observations [4–6].

Inflation is typically taken to arise from the potential energy of a scalar field mimicking
the behaviour and equation of state of a cosmological constant PΛ = −ρΛ. However, radiative
corrections to the inflaton mass or generically higher dimensional operators may spoil the
required flatness of the inflaton potential. Specifically, the slow-roll parameter η may receive
corrections of order one and subsequently observationally viable slow-roll inflation is no longer
possible; this is referred to as the η-problem. In order to circumvent this problem, one can
invoke an approximate continuous shift symmetry χ→ χ+ const. of the inflaton χ.

An alternative method to ensure the flattening of the scalar potential is by introducing
a non-minimal coupling of the inflaton field to gravity. Following previous works [7–9], we
consider a Jordan frame in which the non-minimal coupling has a polynomial expansion
around the minimum of the potential energy. In this case, a generic polynomial expansion
of the non-minimal coupling and the potential energy results in a shift-symmetric Einstein
frame that is protected from corrections by the non-minimal coupling strength ξ. This ansatz
ensures, at least for intermediate fields, the existence of an approximate shift symmetry which
then may serve to drive an inflationary phase.

By including the non-minimal coupling, we extend the previous approach to define
arbitrary polynomials for the potential (or, equivalently in slow roll inflation, the Hubble
function) originating from the Hubble flow code by Kinney [10]. In this minimally cou-
pled case, this approach confirmed the prediction from Hoffman and Turner in [11] that a
polynomial Hubble function results in the generic shape

3r = 16(1− ns) , or r = 0 . (1.1)

However, this generic result is defined by the polynomial hypothesis [12–14] and the as-
sumption of minimal coupling to gravity, as we will show below. Moreover, these generic
predictions are not consistent with the observations from PLANCK [5].

– 1 –
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Figure 1. Left: the ns, r predictions for gradually increased non-minimal coupling ξ at Ne = 55 of
an example with Ω = 1 + ξφ and VJ = eφ − 1− φ. Note that for lower ξ, the predictions are clearly
incompatible with observational bounds. Right: predictions of the same model for N2

e ≤ ξ . O(104)
with Ne = 55. Increasing ξ to values ξ & O(104) has all further data points precisely cluster at the
sweet spot of PLANCK.

In the current paper, we extend these investigations by including a non-minimal coupling

Ω(φ) = 1 + ξf(φ) , (1.2)

that contains an arbitrary polynomial f . The main physical parameter in our theory is
the strength of the non-minimal coupling ξ. It turns out that one can identify a number of
distinct regimes for this parameter. A number of these were outlined in [9] for the simple case
that the scalar potential and the non-minimal coupling are related by a square relation as

VJ = λf(φ)2 . (1.3)

These will be recapped in section 2.
In this paper we focus on the more general case where the scalar potential and the

non-minimal coupling are given by different and arbitrary polynomials f and g:

Ω = 1 + ξf(φ) , VJ = λ g(φ) . (1.4)

In this case the large-field plateau can be destroyed by the different field dependence of both
functions. The point where this happens depends on the non-minimal coupling strength;
we identify the following two regimes, where Ne denotes the number of e-folds at horizon
exit of the scales now observable through the CMB: at ξ ∼ N2

e there is a universal form for
the inflationary predictions which converge for ξ > N2

e to those identical to the Starobinsky
model. We will provide evidence for these two stages both from analytical expressions as well
as from numerical investigations; a first illustration can be seen in figure 1. Our study thus
lends further support to pinpoint the non-minimal coupling strength to ξ ' 104, following
the argument from the scalar amplitude normalization and the toy model discussion of [15].

The rest of the paper is structured as follows. We start with a short review of the
universal attractor. We continue to generalize this set-up to arbitrary non-minimal coupling
functions and potentials and demonstrate how the coupling strength ξ may ensure a sufficient
amount of observationally viable inflation. After outlining the analytic approximate expres-
sions for the inflationary observables, we employ numerical methods to scan the landscape
of possible inflationary scenarios with arbitrary coefficients. We conclude in the discussion
and outline further analytical and numerical evidence in the appendix.
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2 Non-minimally coupled inflation

We start with a brief recollection of the universal attractor [9], which may be seen as a
generalization of Higgs inflation [7, 8]. Consider the Jordan frame Lagrangian

LJ√
−gJ

=
1

2
Ω(φ)RJ −

1

2
(∂φ)2 − VJ(φ), (2.1)

with non-minimal coupling (1.2) and scalar potential (1.3). Going to the Einstein frame via

gEµν = Ω(φ)gJµν , (2.2)

where the superscripts denote Einstein and Jordan frame respectively, the Lagrangian
becomes

LE√
−gE

=
1

2
RE −

1

2

[
1

Ω
+

3

2

(
∂ ln Ω

∂φ

)2
]

(∂φ)2 − VJ
Ω2
. (2.3)

As a function of the coupling strength ξ, the main features of this inflationary model are [9]:

• ξ = 0: the minimally coupled case with a random scalar potential yields inflationary

predictions n
(0)
s and r(0) that interpolate between small-field plateau and large-field

chaotic inflation (1.1) [12–14]. Almost all of these are ruled out by the PLANCK
results.

• Very small ξ: at weak coupling, there is a universal behavior for the inflationary pre-
dictions. Retaining only linear terms in the coupling strength ξ one finds [9]

ns = n(0)
s + 1

16ξfr
(0), r = r(0) − ξfr(0) . (2.4)

Note that the inflationary predictions therefore have the same behaviour in the (ns, r)
plane, corresponding to a downward line with a slope of −16.

• Finite ξ < O(1): the original behaviour will be flattened at large field values that are
beyond the region probed by the cosmic microwave background (CMB); horizon exit
of CMB scales takes place closer to the minimum and hence allows for a wide range
of inflationary predictions depending on the specifics of the polynomial potential. In
particular, in this regime one looses the simplicity of the linear approximation, resulting
in a wide range of different behaviours.

For Higgs inflation, this regime is a particularly simple straight line, again with a slope
of −16, that interpolates between quartic and Starobinsky inflation; for other starting
points, the results of this regime are very different and generically complicated.

• Finite ξ & O(1): increasing the non-minimal coupling to and beyond order-one values
pushes the plateau sufficiently close to the minimum of the scalar potential, yielding
predictions that are indistinguishable from Starobinsky inflation:

ns = 1− 2

Ne
+

3

2

log(Ne)

N2
e

+ . . . , r =
12

N2
e

− 18
log(Ne)

N3
e

+ . . . (2.5)

where Ne denotes the number of e-folds before the end of inflation and we have included
subleading corrections from [16] to the well known leading order result. The exact value
of ξ where this happens depends on the specific choice of scalar potential. A derivation
of expressions (2.5) (and the later given (3.4)) will be provided in appendix A.
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The simplification of the latter limit arise as the first term in the kinetic function is sufficiently
suppressed:

Ω� 3

2
Ω ′ 2 . (2.6)

In terms of a canonically normalized scalar field χ,

Ω(χ) = e
√

2/3χ, (2.7)

the scalar potential becomes

VE =
λ

ξ2

(
1− e−

√
2/3χ

)2
. (2.8)

This is conformally dual to R2-inflation [2, 17], and results in the relation

Ne ∼
3

4
(Ω− 1) , (2.9)

for the number of e-folds.

Already in the original paper [9] it was argued that taking an independent scalar poten-
tial (1.4) does not change the leading inflationary predictions as long as the function g(φ) and
the square of f(φ) share the order of their first zero while the non-minimal coupling is taken
sufficiently strong. A first quantitative investigation for a toy model of higher order correc-
tions demonstrated that the leading order behaviour of the universal attractor can indeed be
made robust once a certain value of the non-minimal coupling ξ is chosen [15]. Specifically,
the Jordan frame potential was taken to be a function of the non-minimal coupling f(φ), i.e.

VJ(φ)→ VJ(f(φ)). (2.10)

This allowed the function f(φ) to be left completely unspecified. The deviation of VJ(f) from
a quadratic function was then used to model corrections to the universal attractor behaviour.
Different types of expansions with O(1) coefficients were employed, from simple monomials
to different series. Remarkably, it was found that a coupling strength of ξ ∼ O(104) was
sufficient to maintain the leading order inflationary predictions.

The observation that a sufficiently large ξ can, regardless of an infinite tower of higher
order corrections with order one coefficients, induce a Starobinsky-like inflationary plateau
over a finite field range derives from ξ being able to drive ∆φ < 1 when increased. Hence all
higher order terms in the Jordan frame potential are sub-leading. In other words, the effect
of higher order terms can simply be pushed far away in canonical field space by sufficiently
enlarging the non-minimal coupling strength ξ.

The above study was however not conducted with arbitrary coefficients and an expansion
of the scalar potential in terms of the non-minimal coupling might not be the most generic.
In this work, we aim to study arbitrary corrections with a more generic ansatz and hence to
find how to generically alleviate the η-problem of arbitrary potentials.

– 4 –
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3 Analytic predictions

The aim of this section is to explicitly show the robustness of the inflationary potential from
an arbitrary number of higher order terms. Consider the non-minimal coupling or frame
function as well as the potential to be arbitrary polynomials with the only requirement that
the Jordan frame potential and the square of the frame function share the order of their
first zero for φ; in particular, we require the Jordan frame potential to have a minimum and
the frame function to contain a term linear in the Jordan frame field φ. We thus make the
following ansatz

Ω(φ) = 1 + ξ

MΩ∑
n=1

anφ
n, VJ(φ) = λ

MV∑
m=2

bmφ
m , (3.1)

where

• We have kept the factor λ to be consistent with the original work and will assume it to
take a natural value of . O(1).

• We assume b2 and a1 to be positive in order to ensure a Minkowski minimum at φ = 0
and that χ and φ both decrease at the same time (dφ/dχ > 0) close to the minimum.

• We have introduced MΩ,V to denote the respective cut-off of both series. These will not
play a role in the analytic part; in principle, both polynomials may contain an infinite
number of terms.

For the general set-up (3.1), and for now assuming to be in the regime φ < 1, the expression
for the number of e-folds of (2.9) obtains corrections as

Ne ∼
3

4
Ω− b3Ω3

8 b2a1ξ
+O(2)

(
Ω2

ξ

)
, (3.2)

which may be understood as an expansion in Ω2/ξ. From the zeroth-order relation (2.9) for
the number of e-folds, we find that the lower bound on the non-minimal coupling strength
for generating a sufficient amount of inflation within ∆φ < 1 is

ξ & O(N2
e ). (3.3)

We will assume this in what follows.

To obtain a value for ξ that ensures the corrections to be sufficiently far away from
the inflaton’s minimum and to have inflation matching observations by PLANCK, it is most
useful to study the inflationary observables and their dependence on the infinite tower of
higher order terms. To leading order, the expressions for the inflationary observables ns and
r of (3.1) are given by

ns = 1− 2

Ne
+

64

27

b3
b2

(
Ne

a1ξ

)
+O(2)

(
1

Ne
,
Ne

a1ξ

)
,

r =
12

N2
e

+
128

9

b3
b2

(
1

a1ξ

)
+O(2)

(
Ne

a1ξ

)
+O(3)

(
1

Ne

)
, (3.4)

– 5 –



J
C
A
P
0
6
(
2
0
1
6
)
0
3
6

which is in line with [18].1 Expressions (3.4) are expansions in 1/Ne and Ne/(a1ξ). For
the spectral index ns, the leading order terms are the linear contributions of the 1/Ne and
the Ne/(a1ξ) expansions. For the tensor to scalar ratio r, the leading order terms are the
quadratic and bilinear expressions of both expansions (note that we only give two of these
three terms). Further subleading terms stem from higher order and cross terms in 1/(a1ξ)
and Ne/(a1ξ) and are denoted by O(n). Note that we have omitted the subleading corrections
of [16], i.e. higher order terms in log(Ne)/Ne, for clarity.

For ns and r to be dominated respectively by the linear and quadratic term in 1/Ne, i.e.
for prolonging the intermediate plateau of the Einstein frame potential, we quickly identify the
requirement (3.3), self-consistent with the derivation’s starting point. This hence marks the
onset of a convergence of the inflationary predictions towards the values measured. Moreover,
the next to leading order terms come with the same a1, b2, b3 dependence. This implies that
the ratio of the next to leading order terms has a universal form

δr

δns
=

6

Ne
. (3.5)

This predicts that in the vicinity of the Starobinsky point in an ns/r scatter plot, there will
be deviations to both the bottom left and the top right with a fixed slope that is independent
of the specific coefficients. The former of these have b3 negative (note that a1 and b2 have
to be positive to guaranty the positivity of the frame function and the potential around the
minimum); these corrections induce a hilltop-like deformation to the plateau. Similarly, the
predictions to the top right of Starobinsky arise from positive b3 corrections, corresponding
to an upward curve in the plateau.

Thus we conclude that in the presence of a generic non-minimal coupling, to be con-
trasted to the simpler case satisfying square relation (1.3), we expect the approach to the
universal attractor to take place at a later stage (i.e. larger value of ξ) but also in a cleaner
manner (i.e. in a straight line). This is nicely confirmed by figure 3.

Turning to the comparison with observations, for higher order terms not to spoil the
value of ns observed by PLANCK, we consider the 2-σ bound by PLANCK of δns < 0.008
at Ne = 55 and find, given a1, b2, b3 ∼ O(1),

ξ & 104 . (3.6)

This hence sets, given order one coefficients, a lower bound on the non-minimal coupling
strength ξ to realize observationally viable slow-roll inflation. Remarkably, the value of ξ
obtained from the requirement of matching the observed spectral index ns is also similar
to the value needed to match COBE normalization2 (provided the self-coupling λ is sub-
Planckian). Thus two independent observational indications — in technical terms the spectral
index ns and the amplitude As — hint towards an otherwise ad hoc value of the theory’s
parameter. The length and the height of the inflationary plateau are correctly set by the
single parameter ξ.

The results of [15] hence nicely carry over to our more general ansatz (3.1): given a
scalar field with a minimum and polynomial non-minimal coupling with strength ξ & 104 as
required by the COBE normalization and expressions (3.4), plateau inflation with PLANCK-
like observables will be realised.

1For a more detailed derivation, please see appendix A.
2Recalling As = (24π2)−1V/ε ∼ 10−9 stemming from the CMB temperature data, it readily follows that

ξ ∼ 105
√
λ.
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4 Numerical results

We now turn to the numerical body of this work and study the behaviour of ansatz (3.1) given
arbitrary coefficients. By choosing random values for an, bm, a Monte Carlo analysis can be
performed using a procedure based on [10–12, 19]. The prior distribution for an and bm is
chosen to be between [−1/n!, 1/n!] in order to represent a Taylor series with an increasing
convergence range for large truncation order.3

Our numerical model closely follows the approach from [10, 11, 19], with some modi-
fications to incorporate the non-canonical kinetic term. Thus sampling the current model
in the Einstein frame (2.3), but without utilizing the canonical normalization (2.7). With a
non-canonical kinetic term the first two slow-roll parameters become

ε =
1

2K

(
1

VJ

∂VJ
∂φ
− 2

Ω

∂Ω

∂φ

)2

, η =
Ω2

K VJ

[
∂2

∂φ2

(
VJ
Ω2

)
− 1

2K

∂K

∂φ

∂

∂φ

(
VJ
Ω2

)]
, (4.1)

in terms of the non-canonical kinetic function

K =
1

Ω
+

3

2

(
1

Ω

∂Ω

∂φ

)2

. (4.2)

The number of e-folds then follows as

Ne =

∫
1√
2ε
dχ =

∫ √
K√
2ε
dφ , (4.3)

where χ is the canonical Einstein frame and φ the non-canonical Jordan frame inflaton. Using
these expressions for the slow-roll parameters, the rest of the procedure is similar to the ones
in [10, 19] and is summarized below

• Draw parameters an and bm from eq. (3.1) according to a uniform distribution.

• Calculate ε, η from expressions (4.1).

• Find the type of the resulting inflationary model (the types will be defined below).

• In case inflation ends with ε = 1 and contains 50 e-folds, calculate ns and r using
ns = 1 + 2η − 6ε, r = 16ε.

This procedure is iterated 106 times in all ensembles shown. Note that we are expanding
ns and r only to first order in slow roll, while the accuracy of the figures will imply that
we need higher precision. We do not add higher order terms since our goal is to see the
approach towards the general attractor, and not to obtain very precise high order predictions
for ns and r in the attractor phase. Moreover, at this moment there is no need to use higher
orders of slow roll, since the PLANCK bounds on ns and r are not precise enough. However,
the linear terms in the 1/Ne expansion of eq. (2.5) will not be enough in comparison with
the numerical data, and in principle higher order terms have to be included to match the
accuracy in the figures. Performing this analysis we obtain that the so-called ‘Starobinsky
point’ will be at ns = 0.96157, r = 0.004192 for Ne = 50 to first order in slow roll. One
should distinguish different late-time behaviours:

3We will comment on the omission of the factorial suppression in section 5.
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Figure 2. An r density plot, on a linear scale, for different values of MΩ with MV = 10 and ξ = 104.
For MΩ > 2 the system is truncation independent.

• The one we are looking for is when ε becomes 1, and then increases to infinity when
φ→ 0, which we will call a non-trivial ending, following the terminology of [10].

• In addition there is the possibility that the model does have an inflation phase with
ε = 1 at the end, but does not include the required 50 e-folds of inflation. Those models
are referred to as insuf.

• Besides the non-trivial and insuf endings, there is a fraction of the configurations with a
zero in Ω or V (or both) before inflation starts. Negative potential and frame function
are not allowed during inflation, thus we give them the label Ω, V -negative.

• Finally, a very small fraction of the models does not include an inflation phase at all,
but this fraction is negligibly small for the values of ξ discussed in this work.

In what follows, we will focus on the non-trivial trajectories.

Secondly, one should worry about the effects of the truncation of the polynomials
in (3.1): do the resulting predictions depend on these? Fortunately, at the large ξ val-
ues that we are presently interested in, it is computationally possible to include a sufficient
number of terms in both the non-minimal coupling and the scalar potential to render our
results truncation independent. This is illustrated in figure 2. In what follows, we will con-
sider the specific case of MV = 10 and MΩ = 5, but none of our results depend on these
specific numbers.

Turning to the numerical results, we start with a scatter plot in figure 3, comparing the
predictions for ξ = 102 and ξ = 104 with fixed MΩ = 5, MV = 10 (and setting Ne = 50). In
perfect agreement with our analytic results, indeed a clearly visible line is present that goes
from bottom left to top right through the Starobinsky point shown with a red star. Around
this point, its slope is given by (3.5). Moreover, this line is much more pronounced for the
larger value of ξ.

Studying models close to the Starobinsky point is difficult using scatter plots, since the
finite point size blurs too much information regarding the density of points. Therefore, to
be able to make any observation regarding the onset of the universal attractor regime, one
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Figure 3. The plot shows a scatter plot of 5000 trajectories from the ensembles with MΩ = 5 and
MV = 10 for ξ = 102 in green and ξ = 104 in blue. The ξ = 102 points overlap the ξ = 104 points.
The red star represents the Starobinsky point ns ≈ 0.962, r ≈ 0.004.

should consider the density of the spectrum. For this we binned the data in small bins of
ns (r) and counted the number of points within each bin, thereby marginalizing over r (ns).
The resulting curve is a rough measure for the probability distribution of the variable, since
the number of points over which is sampled is large. For a true measure of the probability,
the spectrum has to be normalized. However, we only calculated the number of points in a
bin, divided by the total number of points, which actually depends on the chosen binsize;
fortunately, this will not influence our conclusions.

The density plots for ns and r are shown in figure 4. In these plots it is clear that for
ξ = 102, the Starobinsky point is not of any importance, and the ensemble is most likely to
be found in a hilltop state. When ξ = 104 a peak is clearly visible at the Starobinsky point,
and this peak sharpens when ξ increases, just as the analysis in section 3 demonstrated. This
centering around the Starobinsky point is a continuous process, starting from around ξ ≈ N2

e .

There is one final probe we want to present here that shows the emergence of the
attractor phase, and that is the percentage of the number of non-trivial outcomes of inflation.
As explained before, a random model can have different outcomes of inflation, depending on
the shape of the potential and the frame function. However, if the attractor phase is reached
at infinite ξ, the outcome becomes independent of the model, and hence all models should
be non-trivially ending. To probe this we plot the percentage of the number of outcomes in
figure 5. The probability that a model ends non-trivially indeed increases when ξ increases,
and the number of models with insufficient e-folds to account for the observations (insuf )
and the number of models with negative potential and/or frame function during inflation
(Vneg) decrease.

Note that in figure 5 we observe the maximal increase of the number of non-trivial
points around ξ = 104. Also ξ = 104 was the location where the peak was first centred
around the Starobinsky point. We hence conclude that the lower bound ξ & 104 appears first
from CMB normalization arguments and our toy model analysis in subsection 3 and follows
to be a special value also in the numerical study.
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Figure 4. Density profiles (on a log-scale) for different values of ξ. The left frames show the density
profile for ns, while the right frames show the density profile for r. The bottom frames are a zoom in
around the Starobinsky point. Both ns and r peak at the Starobinsky point for ξ & 104.
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Figure 5. The occurrence of different late-time behaviours as a function of ξ. The circles denote
actual data points, the lines are only to guide the eye.
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5 Discussion

In this work, we have revisited non-minimally coupled inflation models in the spirit of [7–9].
Our interest was whether there exists a value of the non-minimally coupling strength that is
preferred not only by matching COBE normalisation.

We first described how the non-minimal coupling ξ may be used to induce an effective
shift-symmetry which is protected against a possibly infinite tower of higher order corrections.
The size of the non-minimal coupling determines the field range of this Einstein frame shift-
symmetry. We identified two distinct regimes:

• ξ ∼ O(N2
e ): in this regime, the Jordan frame field is mostly sub-Planckian during

inflation. As a consequence, it is inherently protected from most higher order terms,
and may only be affected by a single correction term to the square relation (1.3).
Inflation will be driven by an intermediate plateau of hilltop potential generating at
least Ne e-folds. The inflationary predictions will therefore be roughly similar to those
of PLANCK.

• ξ > O(N2
e ): for larger values, the Jordan field only takes small values during infla-

tion, and inflation is therefore protected from any higher-order term and is effectively
governed the square relation (1.3). Due to the larger non-minimal coupling, the inter-
mediate plateau is prolonged such that the inflationary observables begin to converge
towards the sweet spot of PLANCK. The predictions will have entered the 2-σ contours
of PLANCK once ξ ∼ O(104). This lower bound is in remarkable agreement with the
value of ξ required to match the scalar perturbation amplitude As [20].

In the numerical component of this work, we parametrized non-minimal coupling functions
and potentials as arbitrary polynomials. Drawing the coefficients of the polynomials ran-
domly, we examined the resulting Einstein frame potentials to find out whether observation-
ally viable slow-roll inflation occurs. We found that with increasing non-minimal coupling
ξ, the number of non-trivial inflationary trajectories increases. Remarkably, this increase is
most pronounced in the range ξ ∼ O(N2

e ) to ξ ∼ O(104). Furthermore, we found that at
ξ ∼ O(N2

e ) there is a transition from a peak at low ns to a peak at the Starobinsky prediction
of ns = 0.962.

In other words, a non-minimal coupling ξ can induce a shift-symmetry protected against
all higher order terms (i.e. length of an inflationary plateau). The preferred value to
match the COBE normalization coincides with the inflationary observables taking PLANCK-
compatible values.

To have a prediction of the implications of the assumption of factorial fall-off of the
coefficients we repeated the analysis with choosing the random interval as [−1, 1] for an, bn
in (3.1). Though, as will be explained in appendix B, the low order truncations of this system
were different, the truncation independent regime showed the same observations. Thus we
conclude that the above analysis is independent of the choice of the prior interval. Regarding
the type of series used, for instance using Fourier series instead of polynomials, we expect
that our main finding; that for large ξ all models are located around the Starobinsky point,
is still valid. However, the approach towards this point, i.e. the predictions for ξ ∼ O(N2

e )
and ξ ∼ O(104), might in general be different as well as how these models approach the
Starobinsky point, i.e. figure 3. Studying the model dependence of the predictions is an
interesting follow-up analysis.
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A Inflationary observables

We now outline how to derive the leading order terms of expressions (2.5) and (3.4). Consider
the potential slow-roll parameters for a canonical inflaton χ

εV =
1

2

(
1

V

dV

dχ

)2

, and ηV =
1

V

d2V

dχ2
. (A.1)

The number of e-folds Ne is

Ne =

∫
1√
2 εV

dχ . (A.2)

Given Lagrangian (2.3) with ξ & 1 and

Ω = 1 + ξf(φ) , VJ = λf2(φ) , (A.3)

the inflationary potential in canonical fields is

V = V0

(
1− e−κχ

)2
, (A.4)

where V0 = λ/ξ2 and κ =
√

2/3. Considering the potential and its derivatives to first order
in e−κχ, we may evaluate (A.2) to obtain

Ne =
1

2κ2
eκχ . (A.5)

Considering potential and derivatives only to leading order and recalling the expressions for
the spectral index ns and the tensor-to-scalar ratio r, we substitute (A.5) to obtain

ns = 1 + 2ηv − 6εv = 1− 2

N
+ . . . , and r = 16εV =

12

N2
e

+ . . . , (A.6)

where we have omitted the calculation of subleading terms as presented in [16].
For our generic ansatz (3.1), the canonical inflaton potential after conformal transfor-

mation is

VE =
λ

a2
1ξ

2

(
1− 1

Ω

)2
[
b2 +

∑
k=1

bk+2

(
Ω− 1

a1ξ

)k]
. (A.7)

Recalling canonical normalisation (2.7), the above can be expanded to leading order during
inflation as

V = V0

(
1− 2e−κχ + ξ−1 b3

b2
eκχ + . . .

)
. (A.8)

Expression (A.2) can be evaluated exactly for the approximation given above, but its full
form is lengthy. We hence point to the leading order terms given in (3.2). It is straightforward

– 12 –



J
C
A
P
0
6
(
2
0
1
6
)
0
3
6

to evaluate the potential slow-roll parameters with potential (A.8). The crucial ingredient in
order to predict the correct slope (3.5) in the ns, r plot is to consider (3.2) up to order Ω3.
Then, solving for Ω(Ne) is still analytically tractable.4 Substituting the suitable solution into
the evaluated slow-roll parameters then yields our main findings (3.4).

B Higher order terms

The presented analysis has demonstrated that given a1, b2, b3 ∼ O(1) and ξ > O(N2
e ), infla-

tion occurs with a leading order Starobinsky (or Hilltop) signature and a value of ξ & O(104)
can serve to push all higher order corrections sufficiently far away in field space to arrive at
an observationally viable model. We hence find an inflationary regime independent of the
truncation of either series in (3.1).

However, due to the randomness of the coefficients an, bm, it could in principle happen
that terms bmφ

m,m > 2 in the potential evade the ξ-induced flattening and influence the
inflationary dynamics. Changing our set-up to an, bm ∈ [−1, 1], we now examine whether
or not the set-up remains truncation independent when the coefficients are drawn such that
terms bmφ

m for m > 2 are important, i.e. greater than unity, during inflation; in other words,
the Jordan frame field φ is trans-Planckian to maintain the required amount of e-folds. Having
the coefficients an, bm resemble a factorial suppression pattern, the non-canonical field has to
be φ & O(M) during inflation (M is the order of the frame function’s truncation) for higher
order terms to be non-negligible. Simply taking an, bm ∈ [−1, 1], the non-canonical field has
to be φ & O(1) during inflation to feel the effect of higher order terms.

In what follows, we study the case an, bm ∈ [−1, 1] and φ & O(1) but the argument
readily extends to the scenario an, bm ∈ [−1/n!, 1/n!] and φ & O(M). Consider

Ω(φ) = 1 + ξ

M∑
n=1

anφ
n, VJ(φ) = λ

2M+∆∑
m=2

bmφ
m, (B.1)

where ∆ is a positive integer and hence parametrizes how much the highest order term of
the Jordan frame potential departs from a square relation with the highest order term in the
non-minimal coupling function Ω. When φ > 1, we obtain the effective potential

VE ∼
λ

a2
Mξ

2

[
b2M +

∆∑
k=1

b2M+k

(
Ω

aMξ

) k
M

]
. (B.2)

If the potential departs from the square relation between potential and frame function at
highest order, the Einstein frame potential in principle feels this effect. While also this effect
can be made negligible by tuning ∆ or simply pushing it away in field space by enlarging ξ,
it could as such play an important role when the coefficients bm are drawn such that terms of
the order > 2M become dominant in the inflationary region of the Einstein frame potential.
As coefficients bm>2M may have either sign, the effect of these higher order terms on the
inflationary dynamics can either be to curve the potential upwards and hence increase the
number of chaotic signatures in the ns, r plot or to induce a hilltop and thus to enlarge the
number of signatures with redder ns and very small r. We conjecture that a large ∆ will
increase the number of hilltop signatures while chaotic signatures may only be visible when

4The solution to a cubic equation may be complex. We choose the branch such that the resulting expressions
for ns and r are real.
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Figure 6. Density profile for r with ξ = 104, MΩ = 1 and with coefficients bm that are not factorially
suppressed.

∆ ∼ O(1) and M is not too large. This is because a large ∆ will allow for an interplay
of coefficients bm>2M with possibly different signs such that hilltops occur whereas if there
exists just one or two higher order terms, a positive highest order coefficient could be suf-
ficient to steepen the potential before lower order terms will have induced a hilltop. The
phenomenology of this analysis is depicted in figure 6. This shows how chaotic signatures
are only visible for ∆ ∼ O(1).

We thus find that once sufficiently large ξ & O(N2
e ) drives the non-canonical field

displacement sub-Planckian, the form of the higher order coefficients is mostly irrelevant for
the inflationary predictions.
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