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CONSIDERING HORN’S PARALLEL ANALYSIS FROM A RANDOM MATRIX THEORY

POINT OF VIEW

Abstract

Horn’s parallel analysis is a widely used method for assessing the number of

principal components and common factors. We discuss the theoretical foundations of

parallel analysis for principal components based on a covariance matrix by making use

of arguments from random matrix theory. In particular, we show that i) for the first

component, parallel analysis is an inferential method equivalent to the Tracy-Widom

test, ii) its use to test high order eigenvalues is equivalent to the use of the joint

distribution of the eigenvalues, and thus should be discouraged, and iii) a formal test for

higher order components can be obtained based on a Tracy-Widom approximation. We

illustrate the performance of the two testing procedures using simulated data generated

under both a principal component model and a common factors model. For the

principal component model, the Tracy-Widom test performs consistently in all

conditions, while parallel analysis shows unpredictable behavior for higher order

components. For the common factor model, including major and minor factors, both

procedures are heuristic approaches, with variable performance. We conclude that the

Tracy-Widom procedure is preferred over parallel analysis for statistically testing the

number of principal components based on a covariance matrix.

Key words: covariance matrix; Tracy-Widom distribution; dimensionality; principal

component analysis; common factor analysis; number of principal components; number

of common factors; major factors; minor factors
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Introduction

Determining the dimensionality underlying sample data is an important step in scale

construction and in psychological theory building (Hattie, 1985). Preceding a principal component

analysis (PCA) or common factor analysis (CFA), the dimensionality is typically indicated using

an empirical criterion. Many of those criteria are based on the behavior of the eigenvalues of the

sample covariance matrix or sample correlation matrix. Examples are the

eigenvalues-greater-than-one criterion (Guttman, 1954), Cattell’s scree-plot (Cattell, 1966) and

Horn’s parallel analysis (Horn, 1965; Glorfeld, 1995). Parallel analysis appears to be among the

most recommended methods (Fabrigar, Wegener, MacCallum, & Strahan, 1999; Hayton, Allen, &

Scarpello, 2004; Thompson, 2004) to indicate the number of principal components and common

factors.

The basic idea of Horn’s parallel analysis is to compare the kth eigenvalue of the sample

covariance or correlation matrix with the sampling distribution of the kth eigenvalue, which is

obtained via Monte-Carlo simulation from random, independent data. The sampling distribution

provides a reference distribution under the null hypothesis of independence. Under independence,

the dimensionality is zero, and thus one would retain zero components. A kth eigenvalue larger

than the 95th percentile of the kth eigenvalue sampling distribution (as proposed by Glorfeld

(1995)) indicates to retain the kth component. For the first eigenvalue, this procedure can be

viewed as a statistical test. For the remaining eigenvalues (i.e., k>1) this interpretation is not

straightforward, because of the inherent dependencies between successive eigenvalues. Buja and

Eyübğolu (1992) still interpreted the procedure for k>1 in terms of a statistical test, albeit with

reduced power. Other investigators explicitly refrained from the statistical test interpretation, in

stating that "[parallel analysis] must be viewed as a heuristic approach rather than a

mathematically rigorous method resting on a solid conceptual base" (Crawford et al., 2010,

p. 888) (Green, Levy, Thompson, Lu, & Lo, 2012, p. 360). In line with this, comparative

simulation studies have shown an excellent performance of parallel analysis for k=1, and varying

performance for k>1 (Garrido, Abad, & Ponsoda, 2013; Jackson, 1993; Peres-Neto, Jackson, &

Somers, 2005; Timmerman & Lorenzo-Seva, 2011).
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Because Horn’s parallel analysis is associated with PCA, rather than CFA, its use to indicate

the number of common factors is inconsistent (Humphreys & Montanelli Jr, 1975; Ford,

MacCallum, & Tait, 1986). Somewhat surprisingly, parallel analysis variants explicitly involving a

common factor model perform clearly worse than (Crawford et al., 2010) or similar to (Green et

al., 2012) Horn’s parallel analysis in indicating the number of common factors. Many studies in

this context include model error in their simulated data. Model error is represented by minor

factors (Tucker, Koopman, & Linn, 1969) that account for a relatively small amount of variance in

the common part of a variable. Horn’s parallel analysis appears to indicate the number of major

factors (Zwick & Velicer, 1982; Timmerman & Lorenzo-Seva, 2011), suggesting that Horn’s

parallel analysis is a reasonable heuristic for the number of major common factors. Note that the

distinction between major and minor factors is arbitrary to some extent, and that also small

factors may be important for interpretation in empirical practice.

Parallel analysis rests on resampling based distributions, because mathematical expressions

for the eigenvalues distributions under the null model were not known yet in 1965. Using methods

from random matrix theory, the asymptotic distribution for the largest eigenvalue of random

covariance matrices was found by Johnstone (2001), who also provided an approximate statistical

test for higher order components based on covariances. In the light of these recent developments it

seems timely to review parallel analysis in the context of modern inferential statistics theory.

In this paper, we show that for the first eigenvalue parallel analysis is equivalent to a formal

statistical test based on the Tracy-Widom distribution (Tracy & Widom, 1993, 1994). Further, we

show that for the second and further eigenvalues parallel analysis is improper, as it is based on the

joint distributions; in contrast, a Tracy-Widom based procedure is a proper test for the number of

principal components based on covariances. For indicating the number of common factors, both

methods are heuristic approaches at best. The theoretical relationships between the Tracy-Widom

procedure and parallel analysis are illustrated using simulated data, complying with a principal

component model. Further, the performance of both procedures for indicating the number of

common factors is examined using simulated data complying with a common factor model,

including major and minor factors. To illustrate the performance in empirical practice, both

procedures are applied to data from two scale evaluation studies, and to data from a study
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towards the intracultural structures underlying emotional experiences in different cultures.

The paper is organized as follows. First, we introduce the statistical background needed to

arrive at a formal test for the significance of the largest eigenvalues of a sample covariance matrix.

Then we introduce parallel analysis and establish its relationship to the Tracy-Widom procedure.

Next we compare the two testing procedures on the basis of simulated data generated with

different population covariance matrix structures, and using empirical data. We conclude by

discussing the implications of our findings.

Background theory and theoretical setting

In this paper we focus explicitly on principal component analysis in the covariance setting.

The major result illustrated here is Johnstone’s Theorem, which concerns the asymptotic

distribution of the largest eigenvalue of random covariance matrices. As this forms a reasonable

approximation also for limited sample sizes (n) and number of variables (p), it is applicable as a

statistical test for determining the number of principal components of empirical data. An

analogous procedure for standardized data (i.e., principal components based on correlations) is

lacking so far. Though Johnstone’s Theorem has been recently extended to the largest eigenvalue

of random correlation matrices (Bao, Pan, & Zhou, 2012; Pillai, Yin, et al., 2012), this asymptotic

result requires very large n and p to arrive at a reasonable approximation. An approximate

solution has been proposed for the first largest eigenvalue, which appears applicable to smaller n

and p (Saccenti, Smilde, Westerhuis, & Hendriks, 2011). However, no satisfying approach is

available for testing the number of principal components in the case of correlation matrices.

Definitions

Given a data matrix X containing n observations (rows) of p variables (columns), the sample

covariance matrix C is defined as

C = XTX. (1)

If the entries of X are identically and independently multivariate normally distributed, i.e., X

∼ N (µ,Σ), the sample covariance matrix C is said to have a Wishart distribution with n degrees
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of freedom and p× p population covariance matrix Σ, i.e., C ∼ Wp(n,Σ) (Wishart, 1928).

We distinguish the p population eigenvalues λ1, λ2, . . . , λp of the population covariance matrix

Σ, and the p sample eigenvalues l1, l2, . . . , lp of the sample covariance matrix C, where it is

assumed that the n observations are randomly drawn from the population.

Testing for equality of eigenvalues

The problem of determining the number of components can be translated into the question

whether the associated population eigenvalues are equal to each other. That is, the test for the

significance of the k-th eigenvalue is on the null hypothesis (see, for instance, Bartlett (1950))

H0k : λk = λk+1 = · · · = λp, (2)

k = 1, . . . , p. The justification of the test, also known as Bartlett’s test, is that the first k − 1

eigenvalues may indicate some substantial component of variation and that the last p− k + 1

eigenvalues are associated with components of equal variation and thus reflect "noise" (Jolliffe,

2005). A useful null model to consider in this context is in terms of the following diagonal

population covariance matrix:

Στ = diag(τ21 , τ
2
2 , . . . , τ

2
k−1, τ

2, . . . , τ2), (3)

where τ21 ≥ τ22 ≥ · · · ≥ τ2k−1 > τ2. This model, referred as spiked covariance model, can be used in

all cases with equality of the last p− k + 1 eigenvalues. The assumption of diagonality of Σ is

without loss of generality, since every data matrix X can be transformed via an orthonormal

transformation into a matrix with diagonal covariance matrix, without changing the eigenvalues.

Now the question arises how to test the null hypothesis

H0 : Σ = Στ . (4)

The problem can be addressed by sequentially testing for the null hypothesis H0 for k = 1, 2, . . .

until it is not rejected anymore. To test for k = 1, an exact test is available. For k > 1, an

approximate extension of the latter exact test, under a population covariance model defined by
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Equation (3), is available. The formal test and its extension were first proposed by Johnstone

(2001) who derived the distribution of the first largest eigenvalue of random covariance matrices.

We begin by introducing Johnstone’s theorem on which the theoretical results presented in this

paper do rest.

Theorem 1. (Johnstone) Let the entries of X (n× p) be identically and independently

multivariate normally distributed (i.e., X ∼ N (0, I)), and l1 be the largest eigenvalue of the p× p

sample covariance matrix C = XTX, with n = n(p) an increasing function of p, implying that the

number of samples should increase with the number of variables. Define the centering and scaling

parameters (Johnstone, 2006) as

ηnp = (
√
n− 1/2 +

√
p− 1/2)2 (5)

ξnp = (
√
n− 1/2 +

√
p− 1/2)

(
1√

n− 1/2
+

1√
p− 1/2

) 1
3

If

lim
n→∞

p

n
→ γ ≥ 1 (6)

then the statistic

L1 =
l1 − µnp
σnp

dist
=⇒ F1(s, 1) (7)

where µnp = ηnp, σnp = ξnp and F1(s, 1), is the Tracy-Widom distribution of order 1.

For a mathematical definition of the Tracy-Widom distribution, we refer the reader to Appendix

1. The theorem is stated for the case n ≥ p, but it holds also for n < p: it is enough to exchange n

and p in Equation (5). Figure 1 displays the probability density function (pdf) of the

Tracy-Widom distribution of order 1 (panel A), and illustrates the functioning of Johnstone’s

theorem (panels B and C). This theorem holds true asymptotically, that is for data matrix

dimensions going to infinity. However, numerical simulations have shown that the Tracy-Widom
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limit holds even for the finite case, with n and p as small as 5 (Johnstone, 2001). Therefore, the

Tracy-Widom distribution provides an excellent approximation of the largest eigenvalue

distributions of a covariance matrix in the case of a finite sample matrix, which is of great interest

in multivariate statistics and data analysis. Recently, Chiani (2012) provided semi-analytical

expressions for the exact distribution of the largest eigenvalue of the covariance matrix for any

given n and p, confirming the excellent agreement of the finite sample case with the asymptotic

Tracy-Widom limit.

Johnstone’s theorem provides the distribution of the L1 statistics, and thus of l1, for the case

with a population covariance matrix Σ = I. From this, the L1-distribution can be derived for the

more general population covariance matrix Σ = τ2I. This can be done by noting that

l1(τ
2I) = τ2 · l1(I), and thus the statistic L1 can be computed using µnp = τ2ηnp and σnp = τ2ξnp.

To test for the first eigenvalue, one examines the null-hypothesis H0 : Σ = τ2I, with τ2 the

population variances to test. (As will be clarified later, τ2 can also be estimated on the basis of

the sample data, but this results in an approximate, rather than an exact test.) For a given

sample data set, one needs the statistics L1 for the data at hand, and the Tracy-Widom percentile

associated with the desired significance level α. Critical values can be obtained using software

(i.e., the RMstat package implemented in R (Johnstone, Ma, Perry, & Shahram, 2009); the

RMTFredholmToolbox implemented in Matlab (Bornemann, 2009, 2010)), or from Table 1.

The formal testing procedure to assess the significance of the first component in principal

component analysis can be summarized as follows:

1. Given a n× p data matrix X, compute the p× p sample covariance matrix C.

2. Compute the largest eigenvalue l1 of C.

3. Compute L1 from l1, as specified by Johnstone’s theorem in Equations (5) and (7), using

µnp = τ2ηnp and σnp = τ2ξnp.

4. Compare L1 with the appropriate Tracy-Widom percentile to test H0 at significance level α.

Soshnikov (2002) has demonstrated that Johnstone’s theorem also holds true for the case in

which the data matrix entries have an arbitrary symmetric distribution with finite moments whose

tails decay towards infinity at least as fast as those of a Gaussian distribution. This implies that
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the constraint of normality can be relaxed, making Johnstone’s theorem applicable in many

situations encountered in empirical data analysis. Further generalizations and results concern

rectangular matrices (Soshnikov, 2002), non-identity of the population covariance matrix (Baik,

Ben Arous, & Péché, 2005; Baik & Silverstein, 2006; Karoui, 2007) and different asymptotic

behavior depending on the ratio n/p (and p/n) (Karoui, 2007).

We note that the definition of the sample covariance matrix C in Equation (1) is common in

random matrix theory. This contrasts with the standard definition

C∗ =
1

n− 1
(X− 11TX)T(X− 11TX) (8)

with 1 a (n× 1) vector of ones. This is not limiting, because it is proved that the asymptotic

distributions of the largest eigenvalues of C∗ have the same distributional properties as C,

provided that C ∼ Wp(n, I) (Pan, 2012).

When considering the Tracy-Widom test for the first component, it is important to recognize

that a limit of detection has been identified (Theorems 1.1, 1.2 and 1.3 in Baik & Silverstein,

2006). That is, the threshold on λ1 is given by

λ1 > 1 +

√
p

n
(9)

where n is the sample size and p is the number of variables. If the first population eigenvalue is

below the threshold, the corresponding sample eigenvalues are Tracy-Widom distributed, and thus

the first component is not distinguishable from noise (Baik et al., 2005). If it is above the

threshold the sample eigenvalues will be unbounded due to a so-called phase transition (see for

more details Appendix 2).

Testing for equality of higher order eigenvalues

Virtually in all situations of concern in multivariate analysis there is more than one

eigenvalue standing out from the rest of the sample eigenvalues. The covariance model proposed in

Equation (3) reasonably describes this condition and allows the definition of a statistical

procedure to test for the 2nd, 3rd, etc. eigenvalue of a sample covariance matrix.
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The core idea developed by Johnstone is to test against the null hypothesis under which the

eigenvalues are consistent with those of a scaled Wishart distribution Wp−k+1(n, τ
2I), where the

scale parameter τ2 can be estimated from the data. This can be done using the relation

τ̂2 =
1

n(p− k + 1)

p∑
q=k

lq (10)

To assess the null hypothesis H0 : λk = λk+1 = · · · = λp at a given α level, the x̂100−α percentile of

the approximated distribution for λk is calculated using the relation

x̂100−α = τ̂2 (µn,p−k+1 + x100−ασn,p−k+1) (11)

where x100−α is the 100− α percentile of the Tracy-Widom density distribution, µn,p−k+1 and

σn,p−k+1 are given by Equations (5) and τ̂2 is the estimation of the scale parameter τ2. Hence, to

assess the significance of the lk eigenvalue at a given significance level α it is enough to confront it

with the estimated percentile given by Equation (11). Johnstone (Proposition 1.2, 2001) has

demonstrated that this approach is always conservative, at least for true Wishart matrices. Note

that this approximate testing procedure could be applied to test for the first eigenvalue, implying

that one estimates τ2 for k = 1, on the basis of the sample data, rather than specifying it as in

Equation (3). Matlab code for perfoming the TW test and parallel analysis is available at

semantics.systemsbiology.nl.

Relationship between parallel analysis and the Tracy-Widom procedure

Parallel analysis (Horn, 1965) was proposed as an improvement of the

Kaiser-Guttman-root-one criterion (Guttman, 1954) that, due to sampling fluctuations, suffers

from an overestimation of the number of components. In particular, Horn proposed to use the

mean of eigenvalues generated from independent normal variates as the threshold, rather than the

value of 1, as in the Kaiser-Guttman-root-one criterion. Page 181 of his seminal paper (Horn,

1965) on parallel analysis reads (using Horn’s original notation):

"Suppose that an investigator has obtained m measurements on N subjects. Call these

measurements ’real data’. Now generate K matrices of random variables, each matrix of
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order m by N ; intercorrelate the rows of these matrices; find the latent roots for the

resulting K matrices; average (over K) the first root values. . . "

If one would replace the phrase average (over K) the first root values... with calculate the 100− α

percentile (which is the modification proposed by Glorfeld (1995)) and use covariances instead of

correlations (intercorrelate), the relationship between parallel analysis and the Tracy-Widom

procedure becomes clear. That is, both test the null hypothesis for the first eigenvalue, using

different approaches to arrive at the required sampling distribution. Summarizing, the parallel

analysis procedure is as follows (using a notation consistent with the rest of this paper):

1. Given a n× p data matrix X compute the p× p sample covariance matrix C = XTX and the

largest eigenvalue l1 of C.

2. Generate a random matrix Xr of size n× p whose entries are i.i.d N (0,Στ ), compute its

covariance matrix and compute its (first) largest eigenvalue lr1.

3. Repeat Step 2. N >> 1 times and collect the N eigenvalues to build the reference null

distribution of lr1.

4. Calculate the 100− α percentile from the reference distribution.

5. Compare l1 with 100− α percentile to test H0 at significance level α.

For the first eigenvalue, the Tracy-Widom test and parallel analysis test the same hypothesis:

where the Tracy-Widom test is based on random matrix asymptotic theory, parallel analysis

estimates the sampling distribution using resampling. The equivalence implies that parallel

analysis is grounded on a solid statistical basis and should be considered a fully inferential

approach.

It is interesting to note that parallel analysis has been found to be robust to departures from

normality (Buja & Eyübğolu, 1992; Dinno, 2009; Timmerman & Lorenzo-Seva, 2011). Those

results echo the universality theorems for the Tracy-Widom limit (Soshnikov, 2002) which

disposed, under certain conditions, of the normality required by Johnstone’s theorem.

As an alternative to drawing from N (0,Στ ) —to be denoted as parallel analysis-random in

what follows—, a nonparametric approach has been proposed to obtain the eigenvalue sampling
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distribution (Buja & Eyübğolu, 1992). We denote this approach as parallel analysis-permute in

what follows, because a permutation of the raw data is used. For testing the significance of the

first eigenvalue, PA-permute is similar to the approximate Tracy-Widom procedure for k = 1.

When parallel analysis is applied to correlation matrices, one uses either parallel

analysis-random with Στ = I, or parallel analysis-permute. The similarity in results of the two

approaches in a simulation study (Timmerman & Lorenzo-Seva, 2011) can be explained by the

fact that the associated population covariance matrices are equal.

Relationship between parallel analysis and the Tracy-Widom procedure for higher order components

Parallel analysis has been also used for the second eigenvalue and further (simply change l1 to

l2, and lr1, . . . to lr2, . . . , in Steps 2 to 5 above). In this case the statistical test interpretation is no

longer straightforward, as indicated by various authors (Buja & Eyübğolu, 1992; Glorfeld, 1995;

Crawford et al., 2010; Green et al., 2012). The empirical distributions for the 2nd, 3rd, . . .

eigenvalue, generated under a null model using parallel analysis, correspond to the joint

distribution of the 2nd, 3rd, . . . eigenvalues of random covariance matrices. Remarkably, these

distributions are members of the Tracy-Widom distributions family, as shown by Shosnikov’s

theorem (Soshnikov, 2002):

Theorem 2. (Soshnikov) Let the entries of the n× p data matrix X be identically and

independently distributed, i.e., X ∼ D(0, 1), with n− p = O(n1/3) and n/p→ γ ≥ 1, and

distribution D which is symmetric, with all finite moments, decaying at infinity at least as fast as

a Gaussian distribution does.

Let lk be the k-th largest eigenvalue of the p× p sample covariance matrix C = XTX. Define

the centering and scaling parameters as in (5).

Then the statistic

Lk =
lk − µnp
σnp

dist
=⇒ F1(s, k) (12)
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where F1(s, k) is the Tracy-Widom distribution of order 1 for the k-th eigenvalue and µnp and σnp

are defined as in Johnstone’s Theorem.

This result provides the limiting joint distribution for the 2nd, 3rd, . . . largest eigenvalues of

random sample covariance matrices. As proven, this theorem holds for 0 ≤ γ ≤ ∞ (Karoui, 2003).

In Figure 2, we provide for the 1st to the 4th largest eigenvalues examples of

probability-probability plots for the Tracy-Widom joint distribution and the empirical distribution

as obtained using parallel analysis. As can be seen, the agreement is excellent. This shows that for

higher order eigenvalues (k > 1) the use of parallel analysis is equivalent to test the significance of

the kth eigenvalue using the joint distribution. We argue that this procedure is statistically

debatable because to properly test the 2nd, 3rd, . . . eigenvalues, one would need the distributions

of the 2nd, 3rd, . . . eigenvalues conditional upon the previous eigenvalues, rather than the joint

distributions. This is so, because the subsequent eigenvalues are dependent upon each other (as

the sum-of-eigenvalues equals the sum-of-squares). Thus, parallel analysis is unsuitable to test for

higher order components, as one could already surmise based on the suboptimal performance for

higher order components observed in the literature (Garrido et al., 2013; Jackson, 1993;

Peres-Neto et al., 2005; Timmerman & Lorenzo-Seva, 2011). Unfortunately, analytical expressions

for such distributions are not yet available.

Nevertheless, the approximated Tracy-Widom procedure proposed by Johnstone seems to be

a valid and effective alternative, as shown by several authors (Patterson, Price, & Reich, 2006;

Kritchman & Nadler, 2008) and by the results that we are going to present in the next sections.

Simulation study to compare the Tracy-Widom procedure and parallel analysis

To illustrate the theoretical relationships between the Tracy-Widom procedure and parallel

analysis, we show their comparative performances on simulated data consistent with a principal

component model. This is the covariance setting for which the Tracy-Widom procedure has been

developed. Because parallel analysis is often used as a heuristic to indicate the number of major

common factors, it might be of interest to see how the Tracy-Widom procedure performs in this

context. Therefore we also considered simulated data that comply with a common factor model,
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including major and minor factors. Note that for indicating the number of common factors both

parallel analysis and the Tracy-Widom procedure must be considered as heuristic approaches.

Data generated under a principal component model

For the conditions consistent with the principal component model, we considered diagonal

p× p population covariance matrices representing the null-model and the spiked model. In

particular, for the null-model (model A) we considered a population covariance matrix ΣA of the

form

ΣA = diag(λ1, 1, 1, . . . , 1)p (13)

where we varied λ1 as 1, 3, 5, . . . , 17, 20, yielding 10 conditions, and took fixed λk = 1 for

2 ≤ k ≤ p (see Table 2, Σ−conditions 1 to 10). The condition with λ1 = 1 is obviously equivalent

to the null case defined by the Tracy-Widom distribution. In the conditions with λ1 > 1,

increasing values for λ1 represent increasing departures from the null model.

For the spiked model (model B), we considered the population covariance matrix ΣB as

ΣB = diag(λ1, λ2, λ3, 1, . . . , 1)p (14)

where we manipulated the magnitude of λ1, λ2 and λ3 to create different Σ-conditions. The actual

values used are given in Table 2 (Σ−conditions 11 to 20).

For each population covariance matrix under consideration, we varied the data matrix

dimensions at three levels (square (n = p), rectangular with n < p, rectangular with n > p), and

the size of n, p at three levels (100, 300 and 1000), in a completely crossed design, using 1000

replicates per condition. It should be noted that such values of n and p yield a good approximation

of the asymptotic properties outlined by Theorem 1, as has been shown (Johnstone, 2001, 2006).

Each simulated data matrix X of size n× p is obtained by random sampling from a

multivariate normal distribution N (0,Σ), taking Σ = ΣA or ΣB, depending on the Σ−condition.
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Data generated under a common factor model

For the population covariance matrices complying with a common factor model including

both major and minor factors (model C), we used the same design as Timmerman and

Lorenzo-Seva (2011). That is, we considered the population covariance matrix

ΣC = wmaΛ
T
maΛma + wmiΛ

T
miΛmi + wunIp (15)

where Λma (Qma × p) and Λmi (Qmi × p) are major and minor loading matrices, with Qma and

Qmi the number of major and minor factors, respectively; wma, wmi and wun are weights to

manipulate σ2ma, σ2mi and σ
2
un, the variances of the major part, minor part and unique part of the

population covariance matrix Σ, respectively.

The major loading matrix Λma was chosen fixed such that it relates each variable to a single

major factor (with each row consisting of a single element equal to 1 and 0 otherwise). Each

major factor is associated to 5 observed variables, hence the observed number of variables is

p = Qma × 5. The elements of the minor loading matrix Λmi are randomly drawn from a uniform

distribution on the interval [−1, 1]. The number of minor factors was set at Qmi = Qma × 3.

We varied the number of major factors at 10 levels (taking Qma=1,2,...,10), the sample size at

four levels (taking n = 50, 100, 500, 1000), and the relative size of the minor part at two levels

(very small: wmi =
√

0.1, wma =
√

0.75, wun =
√

1− 0.75− 0.1 and small: wmi =
√

0.35,

wma =
√

0.5, wun =
√

1− 0.5− 0.35). We used 100 replicates per condition. Each simulated data

matrix X of size n× p is obtained by random sampling from a multivariate normal distribution

N (0,ΣC).

Analyses of simulated data

Each simulated data matrix was analyzed with the stepwise Tracy-Widom testing procedure

and with parallel analysis. For both, we took as the null distribution Στ = I, in line with the

simulation design.
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Results and Discussion of the simulation study

Principal component model: Rejection rates

We start by assessing the empirical probability of rejecting H0 considering a nominal α equal

to 0.05, using parallel analysis and the Tracy-Widom procedure, for the eigenvalues at three types

of positions, namely 1, 2 and 4; depending on the associated population eigenvalue, this

probability indicates the actual α or the power of the test.

The rejection rates of parallel analysis and the Tracy-Widom procedure are summarized in

graphical form in Figure 3 for the null-model condition (i.e., Σ = ΣA, Equation (13)) and Figure

4 for the spiked model condition (i.e., Σ = ΣB, Equation (14)). In both Figures, the successive

rows refer to the conditions with the squared matrices 300× 300, rectangular matrices n > p,

300× 100, and rectangular matrices n < p, 100× 300. The comparative performances of both tests

appeared to be highly similar for the other combinations of sizes (100, 300 and 1000). Therefore,

those results are not summarized here; they can be obtained from the first author upon request.

As can be seen in Figures 3 and 4, the comparative performances are highly similar across the

three data matrix dimensions. Therefore, we only explicitly discuss the case for which n = p = 300

(i.e., Figure 3, panels A and B; Figure 4, panels A, B and C).

In Figure 3, the rejection rates are displayed for the tests of l1 (panel A) and l2 (panel B) in

the null-model condition (i.e., Σ = ΣA). When testing l1, it can be observed that the

performances of the two methods appear to be highly similar, as expected. For λ1 equal to one,

the rejection rates for parallel analysis and the Tracy-Widom test were 0.061 and 0.059,

respectively; thus the actual α of both tests is reasonably close to the nominal α = 0.05. For both

tests, with increasing λ1, the rejection rate increases, indicating an increasing power with

increasing effect size, as expected. For parallel analysis, the sensitivity of the testing procedure

depends also on how accurate is the empirical estimation of the percentiles of the distribution: we

briefly comment on this in Appendix 3.

When testing l2 (under λ2 = 1), the rejection rates show striking differences between the

Tracy-Widom test and parallel analysis. As can be seen in Figure 3, panel B, the Tracy-Widom

test consistently shows actual α levels that are reasonably close to the nominal α of 0.05. In
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contrast, the actual α levels of parallel analysis increase considerably with increasing levels of λ1,

even up to about 0.5 in those conditions. Thus, the type I error rate of parallel analysis for the

second eigenvalue increases with increasing size of the first population eigenvalue.

In Figure 4 the rejection rates are displayed for the tests of l2, l3, and l4 (panels A, B, C,

respectively) in the spiked model condition (i.e., Σ = ΣB) with n = p = 300. Note that in all

conditions considered, the tests for l4 are under the null hypothesis, and for l2 and l3 under the

alternative hypothesis. For all those tests, the rejection rates differ greatly between the

Tracy-Widom procedure and parallel analysis.

As can be seen in Figure 4, panel C, the Tracy-Widom procedure for l4 consistently shows

actual α levels that are reasonably close to the nominal α of 0.05. In contrast, parallel analysis

shows increasing type I error rates with increasing sizes of λ1 (and thus of λ2 and λ3), even up to

actual α levels of 1.

As can be seen in Figure 4, panels A and B, the power of both parallel analysis and the

Tracy-Widom procedure increases with increasing population values (both for λ2 and λ3), as

expected. Herewith, parallel analysis shows a consistently larger power than the Tracy-Widom

procedure (except for those conditions where both tests have a power equal to 1). This seemingly

favorable behavior of parallel analysis can be attributed to actual α levels that are way above the

nominal ones.

The results in the null-model and spiked model conditions illustrate that parallel analysis to

test for lj , with j > 1, shows increasing type I error rates with increasing values of λk, k < j. This

may be denoted as the pulling phenomenon, where with λj = 1, the sampling eigenvalues lj

increase with increasing values of λk, k < j. It is clear that parallel analysis is not able to address

this situation: as previously illustrated, the use of parallel analysis to test high order eigenvalues is

equivalent to the use of the joint distribution for the lk largest eigenvalue that, of course, depends

on the values of lower order eigenvalues. This means that the use of parallel analysis for testing

the significance of second and higher order components is likely to result in the inclusion of noise

in the PCA model.
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Principal component model: Indicating the number of principal components

In Table 2 the averages (and standard errors) of the estimated number of components per

testing procedure and Σ−condition are presented. The results clearly show that the two testing

procedures perform about equally well when data are generated under the model with 0

components (i.e., Σ = I, condition 1). In all other conditions, with population dimensionality

equal to or larger than 1, parallel analysis always overestimates the number of components. This

observation is consistent with what has been shown in Figure 3. Moreover the variability observed

in the estimated number of components for parallel analysis is extremely high, as indicated by the

standard error (se), with coefficients of variation (se/mean) ≈ 1 or larger for all conditions. Thus

we can conclude than in a situation in which there is no information shared between variables

(i.e., under a spiked model) or when a low degree of correlation is expected, parallel analysis is not

an advisable testing procedure.

Common factor model: Indicating the number of major and minor common factors

The results of the comparison on simulated data under a common factor model, including

both major and minor factors, are presented in Table 3. In the condition with a very small minor

part (upper part of the Table), parallel analysis almost perfectly indicates the correct number of

major factors across all conditions considered, except for the condition with a sample size as small

as n = 50. The Tracy-Widom procedure shows similar behavior to parallel analysis for sample

sizes up to n = 100. For the large sample sizes (n = 500 and n = 1000) the Tracy-Widom

procedure indicates numbers higher than the true number of major factors. In the condition with

a small minor part (lower part of Table 3), both parallel analysis and the Tracy-Widom procedure

generally indicate numbers higher than the true number of major factors. Herewith, the

Tracy-Widom procedure consistently indicates a larger number than parallel analysis. From both

conditions, it appears that the Tracy-Widom procedure is more sensitive than parallel analysis to

identify also small dimensions that stand out from noise.
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Empirical examples to compare the Tracy-Widom procedure and parallel analysis

To illustrate the performance of the Tracy-Widom procedure and parallel analysis in

empirical practice, we applied them to data from two scale evaluation studies and from a study on

the structure of emotional experience. To each data set, we applied the Tracy-Widom procedure,

parallel analysis-random with Στ = I and parallel analysis-permute. The latter two may yield

different indications as the data were not standardized before analysis.

The Social Participation Questionnaire (SPQ) (Koster, Timmerman, Nakken, Pijl, & van

Houten, 2009) was designed to assess four key themes of social participation of pupils with special

needs in regular primary education. The SPQ consists of 24 items, where each item is associated

with one key theme. Koster et al. (2009) hypothesized that the four presumed subscales would

represent the four key themes and that the total SPQ scale would represent social participation in

general. A re-analysis of the data collected on 590 pupils (see for details Koster et al. (2009))

revealed that the data could be represented adequately by a bifactor model (RMSEA = .069, CFI

= .974) (Smits, Timmerman, & Meijer, 2012). This bifactor model had five common factors, with

the general factor representing the total SPQ scale and four specific factors representing the four

subscales. For this data, the Tracy-Widom procedure indicated in line with the bifactor model,

namely five, whereas the parallel analyses indicated lower figures, namely three with parallel

analysis-random, and two with parallel analysis-permute.

The Narcissistic Personality Inventory (NPI) (Raskin & Hall, 1979) is a commonly used

instrument to measure narcissism as a personality trait in normal populations. The factorial

structure has been debated, with the number of factors varying from two, three, four, or seven

factors (Barelds & Dijkstra, 2010). For the Dutch adaptation of the 40-item NPI (Raskin & Terry,

1988), Barelds and Dijkstra (2010) examined the structure using data from a community sample

(n = 460). Loading matrices from PCA’s with four and seven components were procrustes rotated

towards the hypothesized structure, but showed relatively low congruences (ranging from .52 to

.89). Based on the interpretability of (obliquely rotated) loadings, Barelds and Dijkstra (2010)

favored a two-component solution. For this data, the Tracy-Widom procedure and the parallel

analyses indicated larger figures, namely seven with the Tracy-Widom procedure, six with parallel
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analysis-random and four with parallel analysis-permute.

In a study towards similarities in intracultural and intercultural dimensions in recalled

emotional experience, the structure of the self-reported frequency of the experience of different

emotions within and across nations was examined (Kuppens, Ceulemans, Timmerman, Diener, &

Kim-Prieto, 2006). The data pertain to ratings on a 9-point scale, on 14 emotions (including e.g.,

pleasant, happy, anger, guilt, shame), which are available of 9300 participants stemming from 48

different nations. We applied the Tracy-Widom procedure and the parallel analyses to the data

per country. This implies that we examine the number of dimensions for each country separately.

This contrasts to Kuppens et al. (2006), who focused on the dimensions that are common across

all countries, using a simulteneous component analysis. Using a scree-plot, they identified two

components. Differences betweeen the two approaches may occur if some dimensions are small

and/or rather specific for one, or a few countries: These dimensions will be kept hidden in the

simultaneous component analysis (as in Kuppens et al. (2006)), and may be identified using an

analysis per country.

As can be seen in Table 4, the number of components indicated differ substantially between

methods. Parallel analysis-random consistentely indicates very large numbers of components (i.e.,

ranging from 9 to 14). This suggests that the population covariance matrix of Στ = I is rather

unsuitable in this context. This is not very suprising, given that the observed variances across

inhabitants per emotion and country range from 1.17 to 9.45 (median 3.89). Parallel

analysis-permute and the Tracy-Widom procedure indicate numbers of components ranging from

zero to four. Herewith, the Tracy-Widom procedure indicates either the same or a higher number

of components, with a maximal difference of two.

Discussion

Parallel analysis is widely used tool for assessing the dimensionality of empirical data. Since

its introduction it has gained ample popularity, especially in the field of social and behavioral

sciences (Fabrigar et al., 1999; Hayton et al., 2004; Thompson, 2004). In this paper we have shown

that when used to assess the significance of the first principal component based on covariances,

parallel analysis is just an empirical realization of the Tracy-Widom test. Our results show indeed
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that the two procedures are equivalent and lead to the same experimental results.

Based on theoretical considerations and numerical simulations we also showed that the use of

parallel analysis to test the significance of higher order components leads to an overestimation of

the number of components, while a testing procedure based on the Tracy-Widom distribution is

able to correctly address the problem of the rejection of non-significant components associated to

noise. This is so because the Tracy-Widom procedure for higher order components is based on

conditional distributions rather than the joint distribution. Green et al. (2012) proposed parallel

analysis variants for testing the kth + 1 common factor or principal component, while

incorporating a model for kth common factor or principal component. Those variants can be seen

as a resampling based estimation of the conditional distribution. The variant for principal

components is a direct counterpart of the Tracy-Widom procedure.

Parallel analysis is often applied to obtain an indication of the number of major common

factors. Our simulations under the common factor model suggest that parallel analysis yield

variable results, with typically correct indications of the number of major factors in conditions

with a very small minor part, and numbers higher than the number of major factors with a small

minor part. The Tracy-Widom procedure consistently indicates a larger number than the true

number of major factors. We comment here that the Tracy-Widom procedure is not able to

distinguish between major and minor factors because it tests for relevant dimensions (which

include both major and minor factors) other than those associated to noise. As a matter of fact,

also parallel analysis is not able to operate such a distinction: such a procedure is equivalent to

the use of the joint distribution of high order eigenvalues for testing their significance and the

distinction between major and minor factors is by no means encoded in the joint distribution.

In the light of this, we argue that this apparent capability of parallel analysis of correctly

indicating the number of major factors, and discarding the minor ones, is only a consequence of

the reduced power of parallel analysis. Stated otherwise, minor factors are discarded because the

parallel analysis procedure does not have enough power to detect them, not because parallel

analysis would focus on major factors. This can be seen in Figure 5, where the population

eigenvalues and sample eigenvalues of a simulated data set for the condition with a very small

minor part are presented, for the conditions with the number of major factors Qma = 1, ..., 9. The
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major factors clearly stand out, but also minor factors separate to some extent from background

noise. Therefore, in the context of a common factor model, both the Tracy-Widom procedure and

parallel analysis should be viewed as heuristic procedures at best.

When the aim is to identify the number of major factors or principal components, it seems

obvious to use a criterion explicitly designed for this goal. The CHull (Ceulemans & Kiers, 2006)

for model selection is such a criterion. It detects a model with an optimal balance between a

(large) model fit and (low) number of parameters. To indicate the number of major principal

components, the CHull criterion can be directly applied (Wilderjans, Ceulemans, & Meers, 2013).

To indicate the number of major common factors, one can apply the Hull method, which is based

on the CHull criterion. In a simulation study the Hull method appeared to outperform parallel

analysis in indicating the number of major common factors (Lorenzo-Seva, Timmerman, & Kiers,

2011).
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Appendices

Appendix 1: The Tracy-Widom distribution

The Tracy-Widom distribution (Tracy & Widom, 1993, 1994, 1996) is defined as

F1(s, 1) = exp

(
−1

2

∫ ∞
s
q(t) + (t− s)q2(t)dt

)
(16)

The function q(x) is the unique Hastings-McLeod solution (Hastings & McLeod, 1980) of the

non-linear Painlevé differential equation

d2q

dt2
= tq(t) + 2q3(t)

satisfying the boundary condition

q(t) ≈ Ai(t) as x→ −∞

where Ai(t) is the Airy function (Airy, 1838) and

q(x) =

√
−x

2

(
1 +

1

8x3
+O(

1

x6
)

)
as x→ −∞

This distribution was found to be the limiting law for the largest eigenvalue of Gaussian

symmetric n× n matrices (the so-called GOE, Gaussian Orthogonal Ensemble). Johnstone’s

theorem showed that the same limiting distribution holds for the covariance matrices of

rectangular data matrices n× p when both n and p are large.

Appendix 2: The Baik-Ben Arous-Péché phase transition

Baik et al. (2005) provided the asymptotics of the distribution of the largest eigenvalue(s) of

a sample covariance matrix under the spike population model. These results were proved for

complex data, but there is strong evidence that they hold true also for real data. For this, the

results in Baik et al. (2005) can be stated in form of a conjecture, the so called Baik-Ben

Arous-Péché (BBP conjecture).

Conjecture 1. Let λ1 be the leading eigenvalue of the population covariance matrix with

λk = 1 for 2 ≤ k ≤ p and let l1 be the largest sample eigenvalue. In the asymptotic regime

(n, p)→∞ with finite limit ratio p/n it holds that:
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1. If

λ1 < 1 +

√
p

n
(17)

then l1 when properly normalized to L1, will have the same distribution as when λ1 = 1,

that is it will be Tracy-Widom distributed.

2. If

λ1 ≥ 1 +

√
p

n
(18)

then L1 will be almost surely unbounded.

Statement (2) was proved for real data in Baik and Silverstein (2006) and Paul (2007) showed

that in the real case, L1 will exhibit Gaussian fluctuations.

The behavior of L1 will be different depending on the size of λ1, hence the phase-transition

denomination. It is clear that as (n, p)→∞ the phase transition become arbitrary sharp. Stated

otherwise, if λ1 is below the BBP limit there will be little chance to detect structure in the data,

as the eigenvalues are distributed according the Tracy-Widom distribution, that is, as noise

eigenvalues. On the contrary, if λ1 is above the BBP limit detection of structure will be easier

(Patterson et al., 2006). This phenomenon has been recently used to explain some problems

arising in eigenanalysis when applied to population genetic studies (Patterson et al., 2006) and

economics (Harding, 2008). Similar results hold for higher order eigenvalues: it is enough to

replace l1 and λ1 with lk and λk in Equations (17) and (18). For more details, see Karoui (2007),

Johnstone (2006), Paul (2007), Paul & Aue (2014), Tracy & Widom (2009).

An interesting aspect of the BBP phase transition is that it provides one of the few examples

of power analysis in the multivariate setting. Given a problem and fixed the population size p, if

λ1 would have been known, then Equation (18) would give a direct estimate of the sample size

needed to be able to detect the presence of structure in the data. From Equation (18) also

descends that, increasing sample size, rather than variable number, is advantageous for detecting
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structure above the BBP threshold, but if λ1 lays below there is no gain in increasing the sample

size (Patterson et al., 2006).

Appendix 3: A note on percentiles estimation

Here we give a brief look at the quality of the estimates of the percentiles of the null

distribution, as obtained using parallel analysis. Consistently with the rest of the paper we

consider the percentiles of the Tracy-Widom distribution as the target against which to compare

the estimations obtained using parallel analysis. For the Tracy-Widom distribution, the

percentiles can be calculated with almost arbitrary precision using computational toolboxes (see

Bornemann, 2009, 2010). In contrast, obtaining reliable estimations of the percentiles of a

population density function from an empirical distribution is a known problem even when the

parameter of the population density (i.e., mean and variance) are known (Efron & Tibshirani,

1993; Efron, 1994; Rice & Church, 1996; DiCiccio & Efron, 1996). Using simulations we found

that the error on the percentiles estimation decreases, as expected, with the number N of

realizations used to build the empirical distribution. This is also indicated by the formula:

σ100−α,k =
σTW
y100−α

√
P (1− P )

N
(19)

where y100−α = TW−1(x100−α), σTW is the standard deviation of TW1(s), and P is the proportion

100− α (see e.g., Kendall & Yule, 1950; Deming, 1966; Rice & Church, 1996)).

Figure 6 shows the results of a simulation, where the 95% and 99% percentiles of the

Tracy-Widom distribution were estimated using different numbers of realizations N , using 10

replicates. As anticipated, the error decreases with N . Another aspect to be considered is the

sampling variability: given a fixed N , different realizations may lead to (slightly) different

estimations of the percentiles and this variability can be really large if the number of realizations

is limited. This is clearly shown in Figure 6: estimations tend to be really unstable for small

numbers of realizations (N < 103) (panel A) and even for size of N = 105, we can still observe

instability of the estimations (panel D).

With N = 105 the relative error is slightly below 1%. In the literature some authors have

recommended N = 300 in (Ledesma & Valero-Mora, 2007) or N = 2500 (Buja & Eyübğolu, 1992)
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being the latter a number that can still lead to a relative error in the range of 10%. Theoretical

estimates of the error on the estimation can be obtained using the Yule-Kendall formula. This is

outside the scope of this paper, but preliminary simulations seems to indicate that at least

N > 107 are needed to obtain a relative precision lower then 0.1%.

Notation

Summary of the notation used in the paper:

X matrices (bold font, uppercase)

xij element of X in the i-th row, j-th column

Σ population covariance matrix

C sample covariance matrix

λk k-th eigenvalue of the population covariance matrix

lk k-th eigenvalue of the sample covariance matrix

Lk Tracy-Widom statistic for the lk

s argument of the Tracy-Widom cdf and pdf
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TABLES

P -value TW-percentile P -value TW- percentile P -value TW-percentile P -value TW-percentile

0.0001 4.3508 0.0130 1.8658 0.0255 1.4408 0.0380 1.1726
0.0010 3.2713 0.0135 1.8428 0.0260 1.4281 0.0385 1.1636
0.0015 3.0659 0.0140 1.8205 0.0265 1.4155 0.0390 1.1546
0.0020 2.9170 0.0145 1.7990 0.0270 1.4032 0.0395 1.1458
0.0025 2.7994 0.0150 1.7781 0.0275 1.3911 0.0400 1.1371
0.0030 2.7020 0.0155 1.7578 0.0280 1.3792 0.0405 1.1284
0.0035 2.6187 0.0160 1.7381 0.0285 1.3674 0.0410 1.1199
0.0040 2.5458 0.0165 1.7189 0.0290 1.3558 0.0415 1.1114
0.0045 2.4808 0.0170 1.7003 0.0295 1.3444 0.0420 1.1030
0.0050 2.4222 0.0175 1.6822 0.0300 1.3332 0.0425 1.0947
0.0055 2.3687 0.0180 1.6644 0.0305 1.3221 0.0430 1.0865
0.0060 2.3195 0.0185 1.6472 0.0310 1.3112 0.0435 1.0784
0.0065 2.2740 0.0190 1.6303 0.0315 1.3005 0.0440 1.0703
0.0070 2.2315 0.0195 1.6138 0.0320 1.2898 0.0445 1.0623
0.0075 2.1918 0.0200 1.5977 0.0325 1.2794 0.0450 1.0545
0.0080 2.1544 0.0205 1.5820 0.0330 1.2691 0.0455 1.0466
0.0085 2.1190 0.0210 1.5666 0.0335 1.2588 0.0460 1.0389
0.0090 2.0856 0.0215 1.5515 0.0340 1.2488 0.0465 1.0312
0.0095 2.0537 0.0220 1.5367 0.0345 1.2389 0.0470 1.0236
0.0100 2.0234 0.0225 1.5222 0.0350 1.2290 0.0475 1.0160
0.0105 1.9943 0.0230 1.5080 0.0355 1.2194 0.0480 1.0086
0.0110 1.9666 0.0235 1.4941 0.0360 1.2098 0.0485 1.0011
0.0115 1.9399 0.0240 1.4804 0.0365 1.2003 0.0490 0.9938
0.0120 1.9143 0.0245 1.4669 0.0370 1.1910 0.0495 0.9865
0.0125 1.8896 0.0250 1.4538 0.0375 1.1817 0.0500 0.9793

Table 1: Percentiles for the Tracy-Widom distribution calculated by inverse
interpolation of the cumulative distribution function.
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COUNTRY PA-random PA-permute TW

Australia 13 2 4
Austria 14 3 3
Bangladesh 14 2 3
Belgium 14 2 3
Brazil 14 3 3
Bulgaria 14 2 2
Canada 14 3 3
Cameroon 14 2 3
Chile 14 2 2
China 13 2 3
Colombia 9 0 3
Croatia 13 2 3
Cyprus 14 2 2
Egypt 14 2 2
Georgia 14 2 4
Germany 13 2 3
Ghana 14 2 3
Greece 14 2 2
Hong Kong 14 2 3
Hungary 14 2 2
India 13 2 3
Indonesia 12 2 3
Iran 14 2 4
Italy 14 2 3
Japan 12 2 2
Kuwait 12 2 3
Malaysia 13 0 3
Mexico 14 2 3
Nepal 10 3 3
Nigeria 14 2 2
Philippines 14 2 3
Poland 14 2 2
Portugal 14 2 2
Russia 14 2 3
Singapore 14 2 2
Slovakia 14 2 2
Slovenia 14 2 2
South Africa 14 2 2
South Korea 13 3 3
Spain 13 2 3
Switzerland 14 2 3
Thailand 14 2 3
The Netherlands 14 2 3
Turkey 14 2 3
Uganda 10 2 3
United States 14 2 2
Venezuela 12 0 2
Zimbabwe 14 2 2

Table 4: Number of estimated components according the Tracy-Widom pro-
cedure (TW), parallel analysis-random (PA-random) and parallel analysis-
permute (PA-permute) per country, of the International College Survey 2001
data on universal intracultural and intercultural dimensions of the recalled fre-
quency of emotional experience. For PA-permute, 104 permutations were used.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Psychometrika Submission February 17, 2016 35

Figure 1: The Tracy-Widom probability density function (panel A). Graphical
illustrations of Johnstone’s theorem (panels B and C) showing the Probability-
probability plots for N = 104 realizations of l1 from sample covariance matrices
of n×p (n = p = 200) matrices whose entries are i.i.d. N (0, 1), with the x-axis
referring to the order statistic medians for the Tracy-Widom distribution; the y-
axis refers to the ordered response values for the largest eigenvalue l1 statistic
(distribution of the sample eigenvalues before normalization using Equation
(5)) (panel B), and the L1 statistic (distribution of the sample eigenvalues
after normalization) (panel C). Note the shift in the x- and y-axes from panel
B to C. The vertical lines indicate the 95th and 99th percentiles. The order
statistic medians are calculated as F−1

1 ((i − .5)/N) for i = 1, 2, . . . , N where
N is the number of random realizations.
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Figure 2: Probability-probability plots for N = 104 realizations of Lk (with
k = 1 to 4, panels A to D) from sample covariance matrices of n× p (n = p =
300) matrices. The vertical lines indicate the 95th and 99th percentiles. The
x-axis is the order statistic medians for the Tracy-Widom distribution and the
y-axis is the ordered response values for the Lk statistic.
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Figure 3: Null-model condition (ΣΣΣ = ΣΣΣA): Comparison of the performance
of parallel analysis (PA) and the Tracy-Widom procedure (TW) for squared
matrices 300 × 300 (panels A and B), rectangular matrices n > p 300 × 100
(panels C and D) and rectangular matrices n < p 100× 300 (panels E and F).
Successive panels give the empirical probability of rejecting H0 for the l1 and
l2, respectively. Nominal α = 0.05

.
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Figure 4: Spiked-model condition (ΣΣΣ = ΣΣΣB): Comparison of the performance
of parallel analysis and the Tracy-Widom procedure for squared matrices 300×
300 (panels A, B and C), rectangular matrices n > p 300×100 (panels D, E and
F) and rectangular matrices n < p 100 × 300 (panels G, H and I). Successive
panels (e.g., A, B, C) give the empirical probability of rejecting H0 for the l2,
l3 and l4, respectively. Nominal α = 0.05

.
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Figure 5: Population and sample eigenvalues (averaged over 100 replications)
for data sets 1 to 9 in the simulation proposed by Timmerman and Lorenzo-
Seva (2011).

Figure 6: Variability on the estimation of the 95 and 99th percentiles of the
Tracy-Widom distribution using a parallel analysis approach. The diamond
symbol indicates the true percentile values. The sample size is N = 10q, with
q = 2, 3, 4 and 5 in panels A to D, respectively.
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