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Abstract

For effective child education, playing games with a social robot should be motivating for a longer period of time. One aspect that can
affect the motivation of a child is the difficulty of a game. The game should be perceived as challenging, while at the same time, the child
should be confident to meet the challenge. We designed a user modelling module that adapts the difficulty of a game to the child’s skill
level, in order to provide children with the optimal challenge. This module applies a Bayesian rating method that estimates the child’s
skill and game item’s difficulty levels to personalise the game progress. In an experiment with 22 children (aged between 10 and 12 years
old), we tested whether the personalisation leads to a higher motivation to play with the robot. Although the personalised system did not
challenge the participants optimally, this study shows that the Bayesian rating system is in principle able to measure the skill and per-
formance of children in playing a game with a robot (even without accurate estimates of the difficulty of items). We outline multiple ways
in which the rating method and module can be used to further personalise and enhance the child-robot interaction, other than adapting
the difficulty of games (e.g. by adapting the dialogue and feedback).
� 2016 Elsevier B.V. All rights reserved.
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1. Introduction

For children, playing educational games with a social
robot can be a fun way to learn, to take their mind of their
current situation, or simply for the sake of enjoyment.
Within the ALIZ-E and PAL projects, educational games
are used to teach children with diabetes how to manage
their chronic illness. The children need to be able to calcu-
late how much insulin they need to inject based on their
food intake and the physical exercise. To this end, a math
http://dx.doi.org/10.1016/j.cogsys.2016.08.003
1389-0417/� 2016 Elsevier B.V. All rights reserved.
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game and imitation game were developed for the social
robot. With these two games the robot can provide the chil-
dren with a fun way of learning how to calculate the insulin
dosage and learn about the relation between physical exer-
cise and food intake in regard to the insulin dosage. How-
ever, keeping children motivated to interact with a social
robot can be difficult after the initial novelty has worn off
(Gockley et al., 2005; Kanda, Hirano, Eaton, & Ishiguro,
2004; Leite, Martinho, & Paiva, 2013). One factor that
can influence the motivation is the perceived difficulty
(Csikszentmihalyi, 1990; Deci & Ryan, 1985). Two types
of motivation can be distinguished, namely intrinsic and
extrinsic motivation (Ryan & Deci, 2000). Intrinsic motiva-
tion refers to participating in an activity because it is

http://dx.doi.org/10.1016/j.cogsys.2016.08.003
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inherently interesting or enjoyable. On the other hand,
extrinsic motivation refers to participating in an activity
because it leads to a separable outcome, such as a reward
or the approval of others. To facilitate intrinsic motivation,
a child should perceive the content of the game as challeng-
ing, but within his or her capability (Csikszentmihalyi,
1990). If the content is perceived as too easy, the child will
become bored. And if the content is perceived as too chal-
lenging, the child can become discouraged and give up.
Furthermore, according to Vygotsky’s Zone of Proximal
Development (Vygotsky, 1978), providing challenging con-
tent for children to learn, whilst providing guidance, will
encourage learning.

Because the skill amongst children in any given group
may vary significantly, there is a need to adapt the difficulty
of the game to a personal level in order to keep children
motivated (Janssen, van der Wal, Neerincx, & Looije,
2011). While adults can quickly gauge how skilled a child
is in playing a game, a social robot will require a computer
model to assess the skill of a child. Such a model has to be
accurate quick, reliable, be applicable to different kinds of
games, and should work without negatively influencing the
interaction, for example by asking a series of skill-related
questions. In this paper we discuss such a (Bayesian) model
and present the results of a study using this model to adapt
the difficulty of the two games to a personal level, in order
to keep children motivated to interact with the social robot.
The main question of this study is to determine the effec-
tiveness of a Bayesian model to estimate a child’s skill for
playing a game with a robot and personalizing the game
play to keep children motivated, whilst using a limited
amount of data to calibrate the model.

2. Related work

Educational robots are robotic systems that can support
children in a learning task by serving as tutor (Kennedy,
Baxter, & Belpaeme, 2015; Saerbeck, Schut, Bartneck, &
Janse, 2010), teaching assistant (Chang, Lee, Chao,
Wang, & Chen, 2010), or as a peer (Kanda et al., 2004).
Using the robot as a tutor or peer can be especially benefi-
cial, as it can provide children with one-on-one tutoring
which can increase learning gains (Bloom, 1984). For the
robot to be effective in supporting children in learning a
task, it will need to personalise its social behaviour and
the learning content to the user. For example, social beha-
viours that can influence learning include the use of ges-
tures (Szafir & Mutlu, 2012), socially supportive
behaviours (Saerbeck et al., 2010), or personalised lan-
guage (Henkemans et al., 2013). Personalising the tutoring
strategies based on a user’s skill has been shown to improve
learning gains (Leyzberg, Spaulding, & Scassellati, 2014).
In their study, Leyzberg et al. used two algorithms to
model the user’s skill: a simple additive model and a Baye-
sian network. The former model is susceptible to local
maxima and minima, while the latter categorises a skill to
be either learned or not learned. Gordon and Breazeal
(2015) used a social robot to teach children word-reading
skills. Words were selected by a specially designed Bayesian
Active Learning model based on which word would lead to
the largest gain in knowledge. The child’s motivation was
not taken into account.

In the related field of computer-based learning, educa-
tional computer programs called Intelligent Tutoring Sys-
tems (ITS) are developed to give individualised lessons
and have shown to be effective tutors (VanLehn, 2011).
ITS use student modelling techniques to measure and rep-
resent user characteristics (Polson & Richardson, 2013).
Estimates of a user’s skill can be obtained via models from
the item response theory (IRT). This theory contains a
number of statistical models which relate a user’s response
to items to a latent trait of the user (Lord, Novick, &
Birnbaum, 1968). Typically, these models were developed
with the assumption that skill does not change over time,
which is a reasonable assumption for skills that are learned
very slowly, or for short tests. In our context, the user’s
skill may change quickly, depending on the game, and is
not an assumption we can make. More specialised models
(for an overview see Chrysafiadi & Virvou (2013) and
Desmarais & de Baker (2012)) like Bayesian Knowledge
Tracing (Corbett & Anderson, 1994), do account for learn-
ing. These models are mainly used to model fine-grained
tasks (e.g. specific operations to solve a complex equation).
The implementation of these models is a time-consuming
task, often requiring large samples of data for calibration,
complex parameter fitting, or expert knowledge regarding
the domain of the application, making these models not
flexible and expensive to implement (Pelánek, 2016).

A rating or ranking system can be used to estimate the
skill of the user as a holistic construct. These models use
a numerical rating to represent a user’s skill level. Rating
systems are used in sports, such as football (Hvattum &
Arntzen, 2010) or computer games, to pair players of equal
skill to play with or against each other, resulting in a win,
loss, or a draw. They are also used in an educational setting
to match a user with an item, such as a mathematical
assignment, of a certain difficulty (Klinkenberg,
Straatemeier, & van der Maas, 2011).

There are three major benefits of using a rating system
for a social robotic platform in an educational setting.
First, rating systems are relatively easy to implement and
adapt for different applications, and do not require input
from experts on the implementation or on domain knowl-
edge. Second, rating systems are still capable of achieving a
high accuracy (Glickman, 1999; Klinkenberg et al., 2011),
and therefore should be able to adapt the difficulty of the
game in order for the children to answer 70% of the items
correctly. And last, rating systems are non-domain specific
and thus can be applied to any skill-based application.

Contemporary rating systems are based on the Elo rat-
ing system (Elo, 1978), which was designed to pair chess
players to compete against each other. The Elo rating
system is a paired-comparison model, closely related to
the Rasch Model (Rasch, 1960) used in IRT, and works
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as follows. All users start out with a certain numerical rat-
ing hu, which represent the estimated skill level of user u. A
similar rating hi is assigned to each item i and represents the
level of difficulty. The higher the rating, the more skilled
the user/more difficult the item is. When the initial ratings
are set, the user is paired with an item, based on a selection
algorithm that uses the ratings (e.g. minimising the differ-
ence between the user’s rating and item’s rating). When
an item is completed by the user, the rating of both the user
and item will be updated, based on the outcome of the
instance. The user rating hu and item rating hi are updated
as follows:

hu ¼ hu þ Kðs� Pðs ¼ 1ÞÞ ð1Þ
hi ¼ hi þ KðP ðs ¼ 1Þ � sÞ ð2Þ
where K is a constant that governs how much a rating can
change in one instance, s is the outcome of the instance –
i.e., 1 when the user answers the item correctly, 0 when
the user answers incorrectly, or 0.5 when the answer is nei-
ther correct nor incorrect, and Pðs ¼ 1Þ is the probability of
a correct outcome. For the item, a correct outcome is the
user answering incorrectly (the item ‘‘wins” in this case).
The expected probability for the user to answer correctly
can be calculated using the following equation:

P ðs ¼ 1Þ ¼ 1

1þ 10�ðhu�hi=400Þ ð3Þ

The original Elo rating system was designed for chess
and uses a specific rescaling of the standard logistic func-
tion, using base 10 instead of e and the constant 400. The
same equation can be applied to calculating the expected
probability for the item, when hu is substituted by hi and
vice versa.

When the discrepancy between the user’s rating and the
item’s rating is small hu � hi, the probability of the user
answering correctly will be close to .5; the user is expected
to give the correct answer approximately 50% of the time.
When the discrepancy becomes larger, it is estimated that
one side (the user or the item) has a greater probability
of winning. Winning means the user answering the item
correctly, in case the user had the higher rating, or the user
answering the item incorrectly, in case the item had the
higher rating.

The estimated probability is taken into account by the
rating update equation. It does so by increasing the differ-
ence between the old and new rating, when the discrepancy
becomes larger. For example, when the user has to answer
a difficult item (an item with a higher rating than the user)
the odds are against the user. As a result, the user will be
rewarded with a greater increase in rating, when giving
the correct answer. Also, the decrease in rating is dimin-
ished when the user answers incorrectly. For easy items
(items with a lower rating than the user), it is the other
way around; a greater decrease in rating when the user
answers incorrectly, and a smaller increase in rating when
the user answers correctly. The accuracy of the expected
probability depends on the accuracy of the rating of the
user and of the item (e.g. how close they are to the user’s
true rating/item’s true difficulty). Because the ratings are
adjusted after each instance, the Elo rating system is a
self-correcting system and will generally become more reli-
able the more instances occur.

For example, user A starts out with a rating of 1500 and
is going to answer an item with a difficulty of 1600. It is
estimated that the user has a 36% chance to answer cor-
rectly. If the user answers the item correctly, the user’s rat-
ing will increase by K � 0:64, and the item rating will
decrease by as much. When answered incorrectly, the user
rating will decrease, and the item rating will increase, by
K � 0:36.

The Glicko rating system (Glickman, 1999) extends the
Elo rating system by taking the uncertainty about the
user’s and item’s rating into account. The uncertainty is
represented by the rating deviation (RD), which is the esti-
mated standard deviation of the rating. A high rating devi-
ation indicates that the user has not played the game
(much), or that it has been a long time since the user last
played the game. A low rating deviation indicates that
the user has played the game to such an extent that the rat-
ing is assumed to be reliable. The rating updating formula
of the Glicko rating system takes the rating deviation of
both the user and item into account. If the user’s deviation
is large, the difference between the old and new rating will
be larger, because there is still much uncertainty regarding
the true skill level of the user. This allows ratings to
increase or decrease quickly when the rating deviation is
high, which is especially useful when the initial rating dif-
fers greatly from the true rating. As a result, the Glicko rat-
ing system will approximate the true rating much quicker
than the Elo rating system.

A disadvantage of using a rating system is that they are
designed to provide users with a probability of 50% of
answering correctly. Answering about 50% of the items
correctly is often experienced as discouraging, as the game
will be perceived as being too difficult. Based on other
studies (Eggen & Verschoor, 2006; Klinkenberg et al.,
2011), it can be concluded that a child user will be opti-
mally challenged when they give the correct answer
approximately 70% of the time. But in order to increase
the percentage of correct answers from 50% to 70%, a high
measurement precision is required (Eggen & Verschoor,
2006). In order for the rating system to optimally challenge
the user, it can select items based on the current percentage
that the user answered correctly. For example, when the
user answered around 50% correctly, the rating system
can select items that the user is more likely to answer cor-
rectly, and therefore increase the percentage of correct
answers.

Alternatively, using a social robot as a platform grants
the opportunity to capitalise on the properties of social
robots, like our tendency to project social qualities to the
behaviour of technology (Reeves & Nass, 1996) and to
view social robots as social communication partners
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(Powers, Kiesler, Fussell, & Torrey, 2007). Rather than
increasing the motivation of the child, by increasing the
percentage of correct answers, it may be better to utilise
the social qualities attributed to the robot and make the
user compete with the robot; the one with the most correct
answers wins. While the child will answer only 50% of the
items correctly on average, he or she can still win the game
by outperforming the robot. This way, the optimal chal-
lenge is dependent on the skill of the robot, instead of
the difficulty of the items.

Rating systems work best when a large amount of data
is available to calibrate the item ratings. However, in prac-
tice it might not be feasible to gather enough data to accu-
rately estimate the difficulty of the items. This leads to the
question whether using a rating system in such cases is still
viable for adapting the difficulty of a game. In this study we
will explore the use of a rating system by implementing
such a system in a social robot, using a limited amount
of data to initialise the item ratings. Furthermore, we will
explore whether it is possible to provide children with the
optimal challenge by keeping the percentage of correctly
answered items around 70% in order to keep the children
motivated.

In our experiment, children will play two different games
with the robot, namely a math game and an imitation
game. We address the following research questions:

� How accurate is the Bayesian rating system in estimat-
ing the chance of the child answering correctly?

� To what extent does providing children with the optimal
challenge affect the child’s motivation to interact a social
robot?

� How many items does a child need to answer before the
user rating stabilises?

3. Implementation

For this study, we developed a module which is an
implementation of the Glicko rating system and modified
a math game and an imitation game to the use of this rating
system. For the math game, the child has to solve arith-
metic assignments, varying in complexity and operation.
The imitation game involves memorising a sequence of
arm movements and reproducing those movements at the
end of the sequence.

We designed a GOAL agent (Hindriks, 2009) to model
the decision making of the robot. The GOAL agent can
take a number of actions, and bases its decisions on the
goals and beliefs it holds. In our case, the goal of the
GOAL agent was too keep the percentage of correctly
answered items around 70%. At any point in time during
the experiment, the GOAL agent would have a belief which
reflects the current percentage of the items answered cor-
rectly by the participant for each game. In order to achieve
its goal, the GOAL agent could take three different actions
when it was tasked with selecting a new item. It could select
either an easy, moderate, or difficult item, depending on its
beliefs. An easy item is an item that on average will be
answered correctly 70% of the time and is selected when
the child answered less than 70% correct. A difficult item
is selected when the child answered more than 80% of the
items correctly, and is an item which will be answered cor-
rectly 30% of the time on average. An item of a moderate
difficulty is an item that on average will be answered cor-
rectly 50% of the time on average, and is selected when
the child answered between 70% and 80% of the items
correctly.

The GOAL agent also keeps track of the child’s perfor-
mance and responds to exceptionally well and poor perfor-
mance. The child’s performance is defined as the
discrepancy between the expected probability of a correct
answer and the actual outcome. We used a basic algorithm
to calculate when the child is performing exceptionally well:

Y

m¼1

P ðs ¼ 1 jhi; hj; RDjÞm < :10 ð4Þ

where P ðs ¼ 1 jhi; hj; RDjÞ is the expected probability of a
correct answer given the estimated user rating, the difficulty
of the item, and the rating deviation of the item. Each time
the child correctly answered an item, the probability of a
correct answer was stored, provided that the user’s rating
deviation was less than 125. The cumulative probability is
calculated by multiplying the probabilities of answering
correctly each item in the sequence. The cumulative prob-
ability was reset when the child answered incorrectly. When
the cumulative probability was smaller than .10, the GOAL
agent responded by complimenting the child on doing well.
Eq. (4) was also used to estimate exceptionally poor perfor-
mance, by storing the probability of an incorrect answer
each time the answer was incorrect. When the cumulative
probability was smaller than .05, the GOAL agent would
change the game, as it was assumed the child was not moti-
vated to play the current game.

For the math game, the initial item rating of each of
the assignments was set using the levels of difficulty used
in the study of Janssen and colleagues (Janssen et al.,
2011). The levels of difficulty were based on two instruc-
tion books (Borghouts et al., 2005; Goffree & Oonk,
2004) and have been verified by an elementary school
teacher. In total, there were 29 different levels of diffi-
culty which have been converted to ratings, using the
same order. All the assignments were given an initial
rating deviation of 150. The initial item ratings of the
imitation game were set based on the length of the
sequence and modified by the complexity of the move-
ment(s), and the presence of similar subsequent move-
ments. The initial user ratings were set based on the
teacher’s opinion on the skill of each of the participants
on math. Concerning the imitation game, the initial user
ratings were set to the middle of the scale. The rating
deviations were set at 350 for both games.



Fig. 1. The experimental set-up.
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4. Materials and methods

4.1. Participants

22 Dutch children (14 male and 8 female, age
10–12 years) from the elementary school ‘Griftschool’
(Woudenberg, the Netherlands) participated in the experi-
ment. None of the participants had diabetes. The partici-
pants were randomly divided into two groups of 11
participants, balancing for gender. In return for participat-
ing, the school received toys (K’NEX) as a gift, a lecture on
social robotics for the participating class, and the partici-
pants received a picture of themselves and the robot.

4.2. Experimental design

For the experiment, a between-subject design was used.
For the experimental group, the percentage of correct
answers was regulated to be between 60% and 80%, by ask-
ing items with an easy, moderate or hard difficulty, with
respectively a chance of correctly answering the item of
70%, 50%, and 30%. Furthermore, the robot reacted when
the performance of the participant was exceptionally poor
or exceptionally well. For the control group, the robot only
asked items of a moderate difficulty and did not react to the
performance of the participant. The order in which the par-
ticipants played the two games was counterbalanced; half of
the participants started with the math game, followed by the
imitation game, and the other half of the participants started
with the imitation game, followed by the math game.

The experiment consisted of two sessions, which were a
week apart. The first session served three purposes, namely
to get a reliable estimate of the user rating and to make the
item ratings more reliable, to reduce the initial enthusiasm
of interacting with a robot for the first time, and to ensure
the participants know how to play the games.

4.3. Procedure

The experiment took place in one of the offices at
the school. Because only one room was available, the
experimenters had to be in the same room as the partici-
pants. The robot was placed on a desk, as can be seen in
Fig. 1. The participant would sit or stand in front of the
robot and the experimenters would sit behind the partici-
pant. In order to minimise the presence of the experi-
menters, a covering screen was placed between them and
the participant. The experimenters observed the child via a
live feed from the camera which was placed next to the desk.

Prior to the experiment, the experimenters introduced
themselves and the robot to the participants during class.
The experiment consisted of two sessions with identical
procedures, and started with the experimenter explaining
the course of the session to the participant. Next, the robot
greeted the participant and would explain the first game.
The participant then played both games for five minutes.
The robot would ask the participant to provide an answer
to one of the items (selected by the GOAL agent). When
the child answered, the robot would say whether the
answer was correct or incorrect. When the five-minute
mark was reached for the first game, no new items were
asked and the robot waited for the participant to answer
the last item before introducing the second game, which
would also be played for five minutes. After the second
game, the robot would announce that the participant could
freely choose the next activity. At this point, the experi-
menter would tell the participant that the experiment was
over, and that he or she could engage in an activity of their
own choosing, while the experimenters checked to see if the
data was in order. The participant could freely choose what
to do. In order to provide the children with alternative
activities which might interest them, we provided some
options (cf. section 4.4.3 for the alternative activities).
But they were free to engage in a different activity of their
choosing. After five minutes, the robot would ask if the
participant liked playing with the robot and say goodbye.
Finally, the participant had to fill in a questionnaire that
measures the participant’s pleasure and arousal (cf. section
4.5) and could then return to class. Overall, a session lasted
approximately twenty minutes. Following the experiment,
the experimenters gave a lecture on social robotics for the
participants. This lecture also served as a debriefing.

4.4. Materials

4.4.1. NAO Robot
We used SoftBank Robotics’ NAO robot, starting out

with a blue NAO (v28), using Acapela Text-To-Speech
(v7.0, using the mature woman’s voice Femke22Enhanced)
to convert text to speech. It malfunctioned after having
been used by four participants, thus for the remainder of
the experiment the NAO v32 was used. This NAO was
coloured red, and used Fluency Text-To-Speech speech
editor professional (v4.0, using the child-like voice Fiona).
Both robots were provided with the name Lola, because the
first NAO was speaking with a mature woman’s voice.



Table 1
Percentage of correct answers for both conditions and games.

Game Control (n = 11) Experimental (n = 11)

M (%) SD (%) M (%) SD (%)

Math Session 1 77 9 72 7
Math Session 2 64 20 65 15
Imitation Session 1 40 15 47 19
Imitation Session 2 52 13 53 12
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4.4.2. Software

A Wizard of Oz set-up was used, preventing issues
related to the quality of speech and motion recognition
software. The experimenter interpreted the participant’s
movements and speech, and conveyed their response to
the robot via the Wizard of Oz interface. The robot would
then decide on how to respond. The participant was una-
ware of this, and from the outside it looked like as if the
robot is fully autonomous.

4.4.3. Alternative activities

For the free-choice period, we provided some activities
which the children could engage in. These included
continuing playing with the robot, reading a comic or play-
ing a game on the laptop. The children could choose from
five comics (including two Donald Ducks, one Dirk Jan,
one Asterix, and one Kid Paddle), or play Bubbles or
Bejeweled on the laptop. All the comics and both games
are popular and well known amongst 10 year old children.

4.5. Measures

The user and item ratings were stored after an item had
been answered by a participant. The user ratings are taken
as an estimate of the participant’s skill, and the item ratings
are an estimate of the difficulty of the item.

Intrinsic motivation was measured using the free-choice
method (Deci, 1971). This is a widely used method to study
the intrinsic motivation of both adults and children (e.g.
Vallerand, Gauvin, & Halliwell (1986) and Janssen et al.
(2011)). Participants are presented with a period in which
they are free to choose what activity they want to do. To
ensure that the participants choose an activity at their
own volition, they are led to believe that the free-choice per-
iod is not part of the experiment. The participant is believed
to be intrinsically motivated to engage in the chosen activ-
ity, because the participant selected the activity out of inter-
est/enjoyment and was free to do so (Deci & Ryan, 1985).
The time the participant spent playing with the robot was
measured and functioned as a measure for the intrinsic
motivation of the participant to interact with the robot.

After the free-choice period, the participant had to fill in
a questionnaire. The Self-Assessment Manikin (Bradley &
Lang, 1994) was used to measure the participant’s pleasure
and arousal. The participants also had to rate how fun
playing with the robot was, and how fun playing the math
game and the imitation game was, on a scale from 1 (terri-
ble) to 5 (amazing), each represented by a smiley. Finally,
the participants had to indicate which game they enjoyed
the most, and how difficult they considered the games.

4.6. Analysis

To assess the performance of the rating system, we
calculated the difference between the actual percentage of
correct answers and the percentage of correct answers pre-
dicted by the rating system. The item ratings were grouped
for every 100 points by rounding them to hundreds. Addi-
tionally, for the math game, the item ratings are evaluated
by comparing the response time for the different item rat-
ings. We expected that the more difficult an item is, the
more time a child will need to answer. For the imitation
game, response times cannot be used to evaluate the initial
item ratings, as more difficult sequences generally con-
tained more movements and thus took longer to complete.

We analyse the user ratings to estimate whether the user
rating approximated the child’s true rating. This will be the
case when the user rating fluctuates around a certain rating.

5. Results

5.1. Manipulation check

To check whether the GOAL agent was able to regulate
the difference in percentage of correctly answered items
between the experimental and control condition, we
checked whether the means were significantly different in
the two conditions for the second session. We found no dif-
ference in the percentage of correct answers on both the
math (F(1, 19) = 0.063, p = .805) and imitation game (F
(1, 19) = 0.12, p = .912) between the control and experi-
mental condition (see Table 1). For the participants in
the experimental condition, the GOAL agent could select
easy and hard items, in addition to items with a moderate
difficulty. In case of the math game, 41% of the items con-
sisted of either easy or hard items. For the imitation game,
this percentage was 52%.

5.2. User ratings

The relative change in user rating over time is a measure
of the reliability of the user rating. Fig. 2 shows the user
ratings on the math game during the first and second ses-
sion. On average, the user rating increased by 447 during
the first session, which can be attributed to the large
increase during approximately the first ten items. Such a
trend did not occur during the second session, where the
user rating changed by 29 on average. For about half of
the participants (e.g. participant number 6 and 19), the user
ratings were relatively stable from the beginning of the sec-
ond session. For the other half of the participants, the user
rating showed significant increases or decreases.

The development of the user ratings on the imitation
game can be seen in Fig. 3. Answering an item of the



Fig. 2. The user ratings on the math game per participant, for session 1 (left) and session 2 (right).

Fig. 3. The user ratings on the imitation game per participant, for session 1 (left) and session 2 (right).

228 B.R. Schadenberg et al. / Cognitive Systems Research 43 (2017) 222–231
imitation game takes more time than answering a math
item. Therefore, fewer items have been answered for the
imitation game, than for the math game. After the first ses-
sion, too few items were answered during the session to
state whether or not the user ratings fluctuate around a cer-
tain rating. In the second session, the user ratings appear to
fluctuate around a certain rating. However, the user rating
deviation was still too large, due to the limited number of
items answered, to speak of a reliable estimate of the par-
ticipant’s true rating. On average, the user rating changed
by 112 during the first session and by 37 in second session.

For the math game, the user ratings unanimously
increased during the first 10 items. We take this as a mea-
sure of the validity of the ratings; a user rating is a measure
of a child’s skill and an item rating is a measure of the dif-
ficulty of the item. While no unanimous increase in user
ratings can be seen for the imitation game, there is a corre-
lation of.54 (n = 21, p = .012) between the median rating
on the math game and the median rating on the imitation
game for the second session.

5.3. Item ratings

Fig. 4 shows the average response times for a math
item given the level of difficulty. As can be seen, the more
difficult the item, the longer it takes for the child to answer
the item. There is one exception to this trend, namely
items which had an initial item rating of 2700. In the first
session, the response times for these items were lower than
items with an initial item rating of 2500 or 2600. In the
second session, the update of the item ratings corrected
the ratings of the items with an initial rating of 2700 by
adjusting the ratings downwards to an item rating of
approximately 2600. As a result, the response times were
more in line with the item difficulty during the second
session.
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Fig. 4. The average response time (in milliseconds) for answering a math
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Fig. 6. Difference between the predicted percentage of correct answers and
the actual percentage, for the imitation game.

B.R. Schadenberg et al. / Cognitive Systems Research 43 (2017) 222–231 229
In Fig. 5, the difference between the actual and predicted
percentages of correct answers per level of difficulty are
shown. For 9 out of 12 difficulty levels, items have been
answered in both sessions. The difference between the
predicted and actual percentage of correct answers
decreased in the second session for 7 out of 9 difficulty
levels. For difficulty level 2200, the difference remained
the same between the two sessions. And for difficulty level
2600, the difference increased during the second session.

During the first session, 462 items were answered,
divided amongst 78 unique items. On average, each of
the 78 items was answered 5.9 times, with a standard
deviation of 4.9.
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Fig. 5. Difference between the predicted percentage of correct answers and
the actual percentage, for the math game.
Fig. 6 shows the difference between the actual and pre-
dicted percentage of correct answers. Two levels of diffi-
culty deviate from what is expected, namely items with
an item rating of 1300 and 1400. These items had a higher
percentage correct than was predicted. Compared to the
first session, the difference between the actual and predicted
percentages of correct answers has become smaller after the
adjustment of the item ratings. 208 imitation items were
answered during the first session, divided amongst 37
unique items. On average, each of the 37 items was
answered 5.6 times, with a standard deviation of 4.2.

5.4. Free-choice period

Of the 21 participants in the second session, 9 chose to
continue playing with the robot during the free-choice per-
iod. As a subjective measure of how the participants liked
the robot, they were asked to rate the robot on a scale from
1 (terrible) to 5 (amazing). On average the participants
rated the robot with a 4.37 (standard deviation is 0.67).

6. Conclusion and discussion

6.1. Performance of the rating system

We expected that the user ratings would become rela-
tively stable after the first session. The user rating should
start to fluctuate around a particular rating, which we
assume to be user’s true rating. In the math game, the user
ratings increased by 447 during the first session. This high
increase indicates that the initial user ratings were too low.
Contrary, during the second session, the user ratings were
fluctuating around a particular rating after answering
approximately ten items. The steady increase in user rat-
ings during the first session, and the stability of the user
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ratings in the second session indicates that the item ratings
have predictive value regarding the difficulty of items. For
the imitation game, the user rating were less stable, because
less items were answered than with the math game.

Interesting to note is that there is a strong correlation
between the user ratings of the imitation and math game.
Participants with a high user rating on the math game also
had a high user rating on the imitation game. Because the
item ratings of the math items are related to the difficulty of
those items, it is likely that the item ratings of the imitation
items are also indicative of their difficulty.

6.2. Providing the optimal challenge

For the participants in the experimental condition, items
were selected based upon the current percentage of correct
answers, in order to achieve approximately 70% correct.
However, we were unable to achieve a difference in the per-
centage of correct answers between the experimental and
control condition in this experiment.

The update of the item ratings between the first and sec-
ond session shows a clear improvement in accuracy,
increasing the predictive power of the rating system. How-
ever, during the second session, there was still a significant
discrepancy between the predictions made by the rating sys-
tem and the actual outcome. This can be attributed to the
fact that the items were answered only a handful of times,
and therefore not reliable enough to be used for the manip-
ulation. Concluding, while the estimates of the rating sys-
tem were accurate enough to provide the children with a
personalised difficulty, they were not accurate enough to
increase the percentage of correct answers to 70%.

Other studies have shown that a high measurement pre-
cision can be achieved (Glickman, 1999; Klinkenberg et al.,
2011). In our case, the number of items answered was too
small to achieve a high enough measurement precision. This
illustrates the need for a large amount of data before the
system can be fully functional. One way of collecting more
data is by connecting the robot to a global platform where
the item ratings are stored and updated using the data from
all the connected social robots. This way, it should be rela-
tively easy to gather reliable item ratings, and when shared,
other robots can immediately start with these reliable rat-
ings; the calibration of the item bank is a one-time activity.

The rating system itself can be improved for the math
game, by incorporating response times. Maris and van
der Maas (2012) propose a novel measurement model that
incorporates response times, as well as the outcome of an
instance. If the rating of the item is lower than the rating
of the child, then a fast response is more likely to be cor-
rect, whereas a slow response is more likely to be incorrect.
When the rating of the item is higher than the rating of the
child, the reverse is true. Fast responses are more likely to
be incorrect, and slow responses are more likely to be cor-
rect. Thus, the response times can indicate how difficult a
certain item was. Klinkenberg et al. (2011) incorporated
response times in their rating system allowing them to
increase the number of correct answers from 50% to 75%,
without a great loss of measurement precision.

6.3. Additional options for using the ratings system

The predictive power of the Bayesian rating system can
also be used by a social robot to improve the social inter-
action with the child. The performance of the child may
deviate between sessions for various reasons that may war-
rant the robot’s attention. For example, a sudden drop in
performance may indicate that the child is less motivated
or attentive. The robot can then initiate a dialogue to find
out whether this is the case and if it can assist the child. For
example, the robot could change the game in case of bore-
dom, or give comfort when the child is distracted by a bad
experience. The predictions of a single item can also be
used during dialogue, by giving feedback on the difficulty
or performance when telling the correctness of the answer
(i.e. reassuring the child that it is okay to answer a difficult
item incorrectly).
6.4. General conclusion

The goal of this study was to determine the effectiveness
of a Bayesian model to estimate child’s skill level for play-
ing a game with a robot and personalising the game play to
keep children motivated. An important constraint was that
only a small number of interactions was provided for this
model. While the estimates of the Bayesian rating system
were not accurate enough to increase the percentage of cor-
rect answers to 70%, the Bayesian rating system was still
able to quickly assess the child’s skill level and adapt the
difficulty of the game accordingly. Providing the optimal
challenge by actively increasing the percentage of correct
answers to 70% is likely not feasible without access to
enough data to reliably calibrate the item rating. Instead,
it may be attractive to capitalise on the properties of social
robots, like our tendency to project social qualities to the
behaviour of technology (Reeves & Nass, 1996), and have
the child compete with the robot. In this case, the child can
answer only 50% of the items correctly, but still win the
game by outperforming the robot. In this scenario, it
may be that the child will not perceive the items as being
too challenging.

In this paper, we have shown that the rating method and
module can be effective for adapting the difficulty of a game
to a personal level. Furthermore, we have outlined multiple
ways in which the rating module can be used to further per-
sonalise and enhance child-robot interaction, other than
adapting the difficulty of games.
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