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Abstract—Superradiance of three-level optical systems with a doublet in the ground state ( -scheme) placed
in a high-Q cavity is studied theoretically. The conservation laws are obtained, which allow to considerably
reduce the dimension of the phase space of the examined model ( ). In the particular case of a
degenerate doublet, a mapping that makes it possible to reduce the problem of the three-level superradiance
to a Duffing oscillator model ( ) is found. It is shown the possibility to initiate the superradiance gen-
eration even in the case when the population of the upper level is smaller than the total population of the lower
doublet, i.e., without population inversion on the whole.

DOI: 10.1134/S0030400X1603019X

INTRODUCTION
It is well-known that the necessary condition for

the existence of the Dicke superradiance [1] is the
presence of the initial population inversion of transi-
tion levels [2–13]. In the case of multilevel emitters (in
particular, in the case of three-level atoms with the -
scheme of operating transitions, which are considered
in this work), this restriction is not necessary: the
superradiance can occur even when the initial popula-
tion of the upper level is smaller than the total popula-
tion of the lower doublet (inversionless superradiance)
[14–38]. The essence of the effect is as follows. If one
prepares the initial state of the lower doublet as a
coherent superposition, transition to which from the
upper state is forbidden, then the orthogonal to the
initial superposition, transition to which is allowed,
appears to be unpopulated. In this case, the transition
from the upper level to this superposition state appears
to be inverted at an arbitrarily small population of the
upper level. The initial coherent state of the doublet
can be created by a short low-frequency -pulse
[22–27, 31–36]. Systems of this kind can be realized
in crystals, e.g., in a  matrix doped with praseo-
dymium ions  [27–30], the ground state of which
has a fine structure. It should be noted that, in systems
of two-level emitters, it is frequently difficult to reach

population inversion. The presence of an additional
level that is close to the ground one opens the oppor-
tunity to avoid this problem.

The objective of this work is to theoretically study
the nonlinear dynamics of the superradiance of an
ensemble of three-level -atoms which are spatially
homogeneously and isotropically distributed in a
high-Q cyclic cavity. The model of the superradiance
that is proposed in this work is conservative (Hamilto-
nian); i.e., we do not take into account the relaxation
of the population and polarization and the dissipation
that is related to other (except superradiance) pro-
cesses, as well as the lateral losses of the superradiance
field energy. The time dynamics of the model is con-
sidered in terms of the semiclassical approach: the
ensemble of three-level emitters is described by equa-
tions for the density matrix  ( ), while
the electromagnetic field is described by the Maxwell
equations. The conservation of the system leads to the
occurrence of integrals of motion, that considerably
reduces the dimension of the phase space of the exam-
ined model: . For the degenerate doublet,
mapping is found that makes it possible to reduce the
problem of the three-level superradiance to the Duff-
ing oscillator model ( ). In this limit, the sep-
aratrix solution is investigated, and it is shown that the
separatrix represents the point.
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MODEL AND FORMALISM

We consider an ensemble of a three-level atoms
with the -scheme of operation transitions (Fig. 1),
with these atoms being homogeneously distributed
along one of the arms of a high-Q cyclic cavity (Fig. 2).
In addition, all vectors (transition dipole moments
and polarization of the field) are assumed to be
directed identically and perpendicularly to the axis of
the system. The evolution of the system then obeys the
following (one-dimensional) system of Maxwell–
Bloch equations:
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Λ

( )

( )

( ) ( )

( )

( )

31
11 31 13

32
22 32 23

31 32
33 31 13 32 23

31 32
21 21 21 23 31

31 32
31 31 31 33 11 21

32 31
32 32 32 33 22 12

2 2

2 2

,

,

    ,

  ,

  ,

  ,

1

d Ei

d Ei

d E d Ei i

d E d Ei i i

d E d Ei i i

d E d Ei i i

x c t

ρ = ρ − ρ

ρ = ρ − ρ

ρ = − ρ − ρ − ρ − ρ

ρ = − ω ρ − ρ + ρ

ρ = − ω ρ − ρ − ρ + ρ

ρ = − ω ρ − ρ − ρ + ρ

∂ ∂−
∂ ∂

�
�

�
�

�
� �

�
� �

�
� �

�
� �

2

2 2 2
4 .PE
c t

⎛ ⎞ π∂=⎜ ⎟ ∂⎝ ⎠

Here,  are the elements of the density matrix of
the three-level atom at the point with coordinate  at
moment of time  ( );  and  are the
dipole moments of the corresponding transitions,
which, without loss of generality, can be considered to
be real-valued and positive;  and  are the fre-
quencies of optical transitions between the upper level
3 and the doublet sublevels 1 and 2;  is the fre-
quency of the transition between the sublevels of the
doublet;  is the polar-
ization of the medium;  is the concentration of
atoms;  is the speed of light in vacuum; and  is the
electric field strength. The relaxation of the popula-
tions and of the polarization (homogeneous and
related to inhomogeneous broadening) is not taken
into account: we assume that the superradiance time is
considerably shorter than all relaxation times and con-
sider the dynamics of the superradiance on this scale.
In addition, we will neglect the decay of the field due
to cavity losses. Frequency  of the doublet splitting
is assumed to be much smaller than frequencies 
and  of the optical transitions. We also assume that
the spectrum of the superradiance and the value of
doublet splitting  do not exceed the spacing
between cavity modes; i.e., we restrict ourselves to the
single-mode approximation.

We will seek the solution to the system of equations
(1) in the form

 (2)

where , while the field amplitude ! and off-
diagonal elements  and  of the density matrix (in
what follows, they will be referred to as the high-fre-
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Fig. 1. Energy-level diagram of examined -emitters. The
number of the level ( ) corresponds to the state of
the emitter with energy . Solid and dashed arrows indi-
cate, respectively, the allowed and forbidden transitions
between the singled out energy levels of the emitter, with
the frequencies of the corresponding transitions being ,

, and  and the transition dipole moments being 
and  ( ).
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quency coherences) are functions that vary slowly on a
scale of the optical period  and the radiation
wavelength  (the approximation of slowly
varying amplitudes). Note that an analogous assump-
tion with respect to low-frequency coherence  (on
a scale of ) is not used. It is natural to assume that
the passage time L/c (  is the cavity length) is much
shorter than characteristic times of the problem; i.e.,
during one round trip of the light in the cavity, the
state of the medium changes insignificantly. In this
case, the retardation can be neglected. Then the field
at the input into the active medium (by virtue of a high
quality factor of the cavity) is equal to the field at the
output of it, which also justifies the use of the mean-
field approximation. And, finally, let us assume that
the  and  transition dipole moments
are identical ( )—the approximation that
is not principal for the problem under consideration.

By passing in the standard way from the system of
equations (1) to a similar system for slowly varying
amplitudes, we obtain

 (3a)

 (3b)

 (3c)

 (3d)

 (3e)

 (3f)
Here, dots denote the derivatives with respect to

the dimensionless time , where Ω–1 =

 is the constant that determines the
time scale ( );  is the dimensionless split-
ting frequency of the doublet; and  is
the dimensionless amplitude of the electric field
strength. For simplicity, eigenfrequency

 of the cavity is considered to be cen-
tered between frequencies  and .

This system of equations has the following integrals
of motion:

 (4a)

 (4b)

 (4c)

The last two expressions, (4b) and (4c), represent
the normalization conditions for the density matrix
and its square, respectively. The interpretation of inte-
gral (4a) is not so evident, although it resembles con-
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servation law of the excitation energy. The presence of
integrals of motion makes it possible to considerably
simplify the analysis of the dynamics of the three-level
superradiance.

INITIAL CONDITIONS, SYMMETRY, 
AND SIMPLIFICATION OF THE MODEL

As compared to the two-level superradiance [11,
12], the scheme with the doublet in the ground state
(three-level superradiance) introduces new effects
into the response of the system, which are generated by
the competition between the transitions  and

. In connection with this, in order to investi-
gate the kinetics of the three-level superradiance, we
will choose the initial conditions such that the interac-
tion process of the parts of the system “cavity + atoms +
field” would proceed most efficiently, namely, at any
initial population of the upper state and with a mini-
mal delay of the superradiance pulse. For this purpose,
let us turn attention to the fact that Eqs. (3d) and (3e)
for the high-frequency coherences (  and )
contain terms that are proportional to the low-fre-
quency coherence . In this case, if , the
evolution of initial f luctuations of  and  (their
decay or growth) will depend on phase of . At
positive values of , these f luctuations will
decrease; however, if the values of  are negative,
these f luctuations, on the contrary, will increase ava-
lanche-like, thereby initiating the superradiance. We
emphasize that this becomes possible at any difference
of the populations in channels  and  and is
ensured by the transformation of the low-frequency
coherence  into the high-frequency coherences

 and . The latter effect is explicitly reflected in
integral of motion (4c). The analysis of the superradi-
ance of this -system is significantly simplified upon
passage to a new basis , ,

 [22, 24, 25, 31–33]. In such a case,
the elements of the density matrix are transformed in
accordance with the following relations:

 (5)

where  and  are the populations of the active
and passive states, respectively;  is the low-fre-
quency coherence; and  and  are the high-fre-
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quency coherences of the corresponding optical chan-
nels.

It can be seen from the expression for the popula-
tion  of the active state presented in relations (5)
that, for the three-level superradiance to take place,
the presence of an inversion population in active chan-
nel  is necessary; i.e., at the initial moment of
time, inequality  should be met. In the
ideal case, in which the population of the active state
is zero, ρ++(0) = ρ11(0) +  = 0, the
following conditions should be held:

 (6)

where  and . In what follows, we
will assume that the lower doublet is prepared in a
maximally coherent state if conditions (6) are met at
the initial moment of time. We emphasize again that,
under these starting conditions, the superradiance can
occur at any initial population  of the upper
state, even if there is no inversion population on the
whole, when the total initial population of the lower
doublet exceeds the initial population of the upper
level, .

If the initial electric field strength is zero,
 (7)

to initiate the superradiance, it suffices to set small
seed values of the high-frequency coherences, e.g., as

 (8)
where, without loss of generality, it is assumed that

, while the value of
. We are not interested in f luctuations of the

superradiance; therefore, initial values  and
 are specified as determinate parameters,

which corresponds to the conditions of the induced
superradiance [37, 38].

It is interesting to note that, if the states of the dou-
blet are populated incoherently at the initial moment
of time (e.g., ), then the presence of popula-
tion inversion for one of the optical transitions is not a
necessary condition to realize the superradiance,
which is also the coherent effect; however, we will not
consider it in this work.

The system of differential equations (3) with initial
conditions (6)–(8) was solved numerically. The fol-
lowing two controlling parameters were varied: the
initial population  of the upper level and the
splitting frequency  of the doublet. This allowed us to
reveal a number of interesting regularities of the time
dynamics of the amplitudes of the electric field of the
superradiance and elements of the density matrix. Fig-
ure 3 presents one of typical examples of these calcu-
lations. Here, we can see that the real part of the
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amplitude of the electric field of the superradiance
(Fig. 3.2) reveals a time dynamics ( ),
whereas its imaginary part (Fig. 3.3) remains undevel-
oped in time ( ). The real parts of high-
frequency coherences  (Fig. 3.5) and

 (Fig. 3.12) show a similar behavior,
whereas their imaginary parts  (Fig. 3.6)
and  (Fig. 3.13) exhibit an antiphase behav-
ior. In accordance with this, the squares of their mod-
uli, , evolve identically (Figs. 3.4 and
3.11). The dynamics of populations  (Fig. 3.7)
and  (Fig. 3.14) are identical and repeat the
dynamics for superradiance field intensity 
(Fig. 3.1). We note that these regularities are a conse-
quence of the initial conditions (6)–(8) and are real-
ized at any physically realistic parameters  and .
This makes it possible to considerably simplify the
mathematical model of the problem under consider-
ation.

By introducing the notation

 (9a)

 (9b)

 (9c)

we can transform the system of differential equations
(3) into the following system:

 (10a)

 (10b)

 (10c)

 (10d)

 (10e)

Therefore, the relations (9) implement the reduc-
tion of our model from the complex domain to the real
one. As a consequence of this, the initial phase space

 (3) of the model is completely mapped into 
(10). In addition, taking into account (4b) and rela-
tions (9), the integral of motion (4c) takes the form
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the phase space ( ) outside of which
solutions of the system of equations (10) do not exist at
any values of parameters  and . This makes it possi-
ble to characterize the process of superradiance as a
process that is stable in the sense of Lagrange [39].
Topological specific features of the hypersurface (11)

depend on the sign of constant . At , i.e., at

, this is a five-dimensional “dumbbell” with the

symmetry axis . If , i.e., , the hyper-
surface is a five-dimensional ellipsoid.

DEGENERATE DOUBLET

Let us consider a particular case of a degenerate
doublet ( ). In this limit, the system of differential
equations (10) is considerably simplified and takes the
form

 (12a)

 (12b)

 (12c)

, , , ,  and ξ ζ η χε

α δ

γ 11
3

≥ α >
0γ >

e
1 0
3

≥ α > 0γ <

0δ =

2 , 2 ,= ξ η = ξ��e e

2 , ,χ = ζ ζ = − χ�

� e e

31 3(3 1)   .
2 2

ξ = α − − − η�

e e e

This system of equations has integrals of motion.
First, Eq. (12a) along with the initial conditions

 and  yield the first integral of
motion:

 (13)
Second, Eq. (12b) and the initial conditions

 yield the second integral of motion:
, which means that functions  and

, which are defined in the real domain, remain
unchanged and equal to zero within the entire super-
radiance process: , . Then,
expressing functional dependence  from (13) via

 and substituting it into (12c), we obtain

 (14a)

 (14b)

Eliminating variable  from (14), we arrive at the
following closed equation for the field 
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which represents the Duffing equation (Georg Duff-
ing, [40]) for an oscillator with a cubic nonlinearity
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without friction and external driving force. Equation
(15) yields the third integral of motion:

 (16)

the physical meaning of which is that it corresponds to
the total energy of the oscillator (superradiance field),
where, taking into account the initial conditions

21 ( ) ,
2

e+ =� 9e e

 and , the value of the total
energy is  ( ), while the function

 can be interpreted as a potential
energy of the superradiance.

The relation between the signs in front of the linear
and nonlinear terms in (15) characterizes the superra-
diance field as that of a stable oscillation process in
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Fig. 4. Case of a degenerate doublet: (a) potential energy curve ; (b) phase portrait ( ), in which arrows on phase trajecto-
ries show the direction of increasing time; (c) pulse of the superradiance field in relation to the sign of  (solid curve corre-
sponds to the case of , dashed curve corresponds to the case , and arrows show the direction of increasing time).
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double-humped potential  with infinite walls,
which has three singular points in the phase space
( ) (Fig. 4а):  are the points of a
stable equilibrium of the type of a center (minima of
the potential ); and  is the point of an
unstable equilibrium of the type of a saddle (maximum
of the potential ). As can be seen from Fig. 4а,
the oscillations proceed within the range ,
where  are the turning points of the oscillator, and
are determined by the roots of the equation ;
in this case, it can be shown that .

In the general case, , the value of
total energy  (16) is always positive, . Conse-
quently, the oscillation process of the superradiance
always proceeds in the supernonlinear (“episepara-
trix”) regime (Fig. 4а). In this case, Eq. (16) will have
an exact solution. In terms of the elliptic functions, it
can be obtained by applying the following substitution:

Then,

 (17)

where  is the amplitude of Jacobi functions;
 is the elliptic cosine; , where  is

the delay time of the superradiance pulse (initial stage
of superradiance);  is the complete elliptic inte-
gral of the first kind; and  is the period of oscillations
of the electric field strength.

In this case, the physical picture of the superradi-
ance is rather transparent. From Eq. (14a), we have

. If , then  =
 and the field of the superradiance will

increase ( ) in the time interval 
with delay ; after that, the field will decrease within
the interval of the same length, initiating a superradi-
ance pulse. Upon the reverse motion, the system emits
an antiphase pulse, and this process is periodically
reproduced, since the system is conservative (Fig. 4c).
If  and , the field of
the superradiance has a phase shift by 
(Fig. 4b).

It is of interest to consider the particular case of the
separatrix solution of Eq. (16), when ,
and then . In this case, if , then ,

, and  by the assumption. This means
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that, in the phase plane ( ), the separatrix represents
the point that is located at the coordinate origin (Fig.
4b). The physical interpretation of this solution is very
simple: an oscillator, residing in the position of an
unstable equilibrium (point ; Fig. 4а), does not have
any initial displacement and any initial velocity. Con-
sequently, the system will reside for an arbitrarily long
time in this state, even though it is unstable, and does
not generate any superradiance field.

We also note that features of the superradiance
dynamics of the degenerate doublet manifest them-
selves in a more general case when the doublet is split
( ). Namely, the superradiance process will be
determined by the episeparatrix scenario. In the phase
space ( ), the separatrix will also be the
point, the coordinate origin, that corresponds to the
unstable position of the oscillator. For the activation of
its motion, i.e., for the initiation of the superradiance
process, a small seed is always necessary, e.g.,

.

CONCLUSIONS
For multilevel systems, in particular, for systems

with the -scheme of operating transitions, we
showed that, at any population of the upper level, even
without the inversion population on the whole, it is
possible to initiate the process of generation of a super-
radiance pulse. Analysis of the new collective basis of
the doublet state allowed us to obtain the conservation
laws, which made it possible to considerably reduce
the dimension of the phase space of the examined
model ( ) and to realize convertion of the
model from the complex to the real domain. As a con-
sequence of this, in the case of a degenerate doublet
( ), we found mapping that allowed us to reduce
the problem of the three-level superradiance to the
Duffing oscillator model ( ). In this case, it
was found that the oscillation process proceeds in the
episeparatrix (supernonlinear) regime. For this case,
in terms of elliptic functions, we found its analytical
solution. The separatrix itself represents the point of
an unstable equilibrium and is located at the coordi-
nate origin. At this point, the system can reside for an
arbitrarily long time, without generating any superra-
diance field.
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