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Abstract

Recently, the complete action for an N = 1 pure supergravity action in 4 dimensions that allows

a positive, negative or zero cosmological constant has been constructed. The action is the gener-

alization of a Volkov-Akulov action for the Goldstino coupled to supergravity. The construction

uses a nilpotent multiplet.

This paper is written in honour of Philippe Spindel. AVP enjoyed collaborations and many

interactions with Philippe, who has always appreciated very precise derivations. We use this

occasion to give a very detailed account of the calculations that lead to the published results. We

review aspects of supersymmetry with de Sitter backgrounds, the treatment of auxiliary fields, and

other ingredients in the construction.
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I. INTRODUCTION

The very first paper on supergravity and the cosmological constant was written by

Townsend in January 1977 [1]. Using an iterative Noether procedure, he showed that a

cosmological constant could be added to the then one year old supergravity action consis-

tent with local supersymmetry. Furthermore, he found that the sign of the cosmological

constant Λ was negative leading to an AdS background solution. More specifically, the

Lagrangian was given by

LAdS =
e

κ2

(
1
2
R(e, ψ)− 1

2
ψ̄µγ

µνρDνψρ + 1
2
mψ̄µγ

µνψν + 3m2
)
, (1.1)

such that

Λ = −3
m2

κ2
< 0 . (1.2)
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Here m is a mass parameter that occurs in a mass-like term for the gravitino and defines

the value of the cosmological constant via (1.2). We note that the specific sign of Λ was not

stressed in [1]. The main interest of this paper was to show that a cosmological constant

consistent with local supersymmetry could be added in the first place. At that time it

was not yet known that we are living in a universe with a small positive cosmological

constant. It might seems strange that the Lagrangian (1.1) contains a mass term for the

graviton and gravitino but this is misleading because in the presence of a cosmological

constant the Minkowski spacetime is not a solution anymore. Instead, to determine the

spectrum, we should expand around an AdS vacuum solution. This has the effect that in

the expansion of the Einstein-Hilbert term the ordinary derivatives of Minkowski space get

replaced by covariant derivatives using the AdS background metric. The effect of these

covariant derivatives is that they lead to an additional mass-like term for the graviton that

precisely cancels the explicit mass terms present in the Lagrangian (1.1). Due to the presence

of the local supersymmetry, precisely the same happens in the case of the gravitino such

that we end up with a massless supergravity multiplet for the fluctuations around the AdS

background.

The paper of Townsend was written less than a year after the invention of supergravity.

A few months later, in April 1977, there was another paper on supergravity and the cosmo-

logical constant but this time in the context of broken supersymmetry [2]. It was argued

that a Lagrangian could exist where de Sitter solutions are possible with broken supersym-

metry. However, the explicit action including fermionic terms in supergravity for actions

with nilpotent chiral multiplets had not yet been obtained (though constructions in 2 and 3

dimensions were done in [3–5]). In 1978, it was shown how supergravity can be formulated

using auxiliary fields [6–8] and how this supergravity can be constructed using superconfor-

mal methods [9]. 37 years later, we constructed the ‘de Sitter supergravity’ theory, allowing

de Sitter vacua, using these methods. We reported about its construction in [10]. The same

result up to field redefinitions has been obtained in [11] by using other gauge choices for the

superconformal symmetries.

Nilpotent superfields are already known since a long time. They lead to non-linear actions

of fermions of the type of Volkov-Akulov [12], which were related to constrained chiral

superfields in [13–16]. These were also considered in the context of supergravity in [17]

and related to Born-Infeld actions, as far as the bosonic terms are concerned, in [18]. The

multiplets give a nice description of (partially) broken supersymmetry as studied in [19, 20].

In this paper, we will explain the steps for the construction of de Sitter supergravity [10]

in more detail.

In Sec. II we will recapitulate what is the problem with super-de Sitter algebras, and what

are the consequences thereof for de Sitter supergravity. Then we repeat the construction of

the rigid supersymmetry action with a nilpotent chiral multiplet from [20]. We reformulate

it in our conventions for easy comparison with future results. We encounter the problem of

the integration of an auxiliary field that does not appear just quadratically in the action, and

for which, therefore, the Gaussian integration cannot be applied. We prove a theorem that

can be used in different actions in Sec. IV. In Sec. V we give a detailed account of the steps

from the superconformal action to the pure de Sitter supergravity, explaining the elimination
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of auxiliary fields, the gauge fixing, several simplifications and the transformation laws. We

finish with some comments on the result and later work in Sec. VI. Three appendices explain

more details.

II. SUPERALGEBRAS AND DE SITTER SUPERGRAVITY

The de Sitter and anti-de Sitter algebras are characterized by the fact that translations do

not commute, but instead have a non-zero commutator given by (with µ = 0, 1, . . . , D− 1)

[Pµ, Pν ] = ∓ 1

4L2
Mµν , (2.1)

where L is a length scale. We use the notation [21] where the Lorentz algebra is given by

[Mµν ,Mρσ] = 4η[µ[ρMσ]ν] = ηµρMσν − ηνρMσµ − ηµσMρν + ηνσMρµ . (2.2)

The upper and lower signs in (2.1) correspond to a de Sitter and anti-de Sitter algebra,

respectively. The Lie algebras are SO(D, 1) for de Sitter and SO(D−1, 2) for anti-de Sitter.

When one tries to embed this algebra in a superalgebra with one Majorana spinor gen-

erator [21, Sec. 12.6.1], one finds that the Jacobi identities only allow such an extension for

D = 4 when the lower sign in (2.1) is used, and thus this is an N = 1 super-AdS algebra.

An N = 1 super-dS algebra does not exist.

Super-dS algebras do exist for even N in 4 dimensions (and for other D ≤ 6). W. Nahm

[22] classified the superalgebras that have a de Sitter algebra as a factor for the bosonic

subalgebra, and for D = 4 they are OSp(N ∗|2, 2), which have an R-symmetry algebra

so∗(N ). These exist only for even N and are so∗(2) = so(1, 1), so∗(4) = su(1, 1) ⊕ su(2),

so∗(6) = su(3, 1), and so∗(8) = so(6, 2). For higher N the so∗(N ) have a different form,

but we do not expect that such Lagrangian theories can exist. Hence all these R-symmetry

algebras are non-compact. This hints at ghosts, which has been made explicit in [23, 24].

A supergravity theory has an algebra based on structure functions, and not on structure

constants. These have been called ‘soft algebras’. Hence the previous analysis does not

restrict supergravity constructions. A supergravity theory is called a ‘de Sitter supergravity’

if there is a solution of the field equations where the metric takes the form of a de Sitter space

(and thus has positive cosmological constant in that solution). Then the Killing vectors of

that solution satisfy a de Sitter algebra. What the previous analysis does imply is that there

is no supersymmetric extension (for N = 1, D = 4) of this algebra of Killing vectors. In

other words, the solution cannot preserve supersymmetry.

Thus, we conclude that there is a no-go theorem based on Jacobi identities, that a solution

of the field equations of a supergravity theory cannot preserve a de Sitter algebra and

supersymmetry at the same time. Supergravity theories can exist that have a de Sitter

solution (background) and in that solution, supersymmetry is broken. We remark that it has

been shown in [25] that (classical) superconformal theories do exist in a de Sitter background,

because the de Sitter spacetime is related to Minkowski space by a Weyl rescaling of the

metric.
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III. THE RIGID SUPERSYMMETRY MODEL REVISITED

In order to illustrate our method we first rewrite the model of Sect. 3.1 of [20]. This is

a model with rigid supersymmetry, with a chiral multiplet X that satisfies the constraint

X2 = 0. Following [26, 27], we write the action using a Lagrange multiplier chiral multiplet

Λ as

L = [XX̄]D + [f X]F +
[
ΛX2

]
F
. (3.1)

We use the notations for the actions that [C]D and [Z]F refer respectively to

[C]D =

∫
d4x 1

2
D + . . . , [Z]F =

∫
d4x

(
F + . . .+ F̄ + . . .

)
=

∫
d4x 2 ReF + . . . ,

(3.2)

where the . . . refer to extra terms that appear in supergravity, D is the last component

of the real multiplet that has C as lowest component, and F is the last component of the

chiral multiplet that has Z as lowest component. X is the lowest component of the chiral

multiplet that becomes nilpotent, and Λ is the lowest component of the chiral Lagrange

multiplier multiplet. The second term contains a real constant f , which in supergravity will

be generated from the value of the compensating multiplet.

The Lagrangian (3.1) is supersymmetric since it is built from the well-known ingredients

of multiplet calculus or superspace. Before the equation of motion for Λ is solved, this is

just linear supersymmetry.

We denote the components of the two chiral multiplets in (3.1) as

(X,χ, F ) , (Λ, χΛ, FΛ) . (3.3)

The full Lagrangian (3.1) can be written in components as

L = L1(X,χ, F ) + Lc(X,χ, F,Λ, χΛ, FΛ) ,

L1 = −∂µX∂µX̄ −
1

2
χ̄/∂χ+ FF̄ + 2f ReF ,

Lc = FΛX2 + Λ (2X F − χ̄PLχ)− 2χ̄ΛPLχX + h.c. . (3.4)

The field equations are as follows [26]:

FΛ : X2 = 0 , (3.5)

χΛ : X PLχ = 0 , (3.6)

Λ : 2X F − χ̄PLχ = 0 , (3.7)

F : F̄ + f + 2ΛX = 0 , (3.8)

PLχ : −PL/∂χ− 2XPLχ
Λ − 2ΛPLχ = 0 , (3.9)

X : 2X̄ + 2FΛX + 2ΛF − 2χ̄ΛPLχ = 0 . (3.10)

The first three equations contain the three components of the chiral multiplet X2. With

f 6= 0, the field F will have a nonzero value, which allows us to solve (3.7) by taking

X(χ, F ) =
χ̄PLχ

2F
≡ χ2

2F
, (3.11)
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where

χ2 ≡ χ̄PLχ , χ̄2 = χ̄PRχ . (3.12)

Since PLχχPLχ = 0 (see the argument after (6.26) in [21]), this condition solves also the

first two field equations: (3.5) and (3.6).

We insert this solution already in the action, such that the last line of (3.4) vanishes and

the action reduces to an effective action that is the first line with the replacement (3.11).

We write it as

L(χ, F ) = L1(X(χ, F ), χ, F ) =

(
χ2

2F

)
2

(
χ̄2

2 F̄

)
− 1

2
χ̄/∂χ+ FF̄ + 2f ReF . (3.13)

In Appendix A it is proven (in a more general context) that the field equations obtained

with this effective Lagrangian are also those that follow from the field equations including

the Lagrange multipliers, (3.5) – (3.10).

We write the Lagrangian as

L(χ, F ) = (F + f)(F̄ + f) +

(
χ2

2F

)
2

(
χ̄2

2 F̄

)
− f 2 − 1

2
χ̄/∂χ . (3.14)

Without the substitution of X as in (3.11), we could have eliminated the auxiliary field F

by a Gaussian integration, and the first term in (3.14) would have disappeared. However,

the peculiar feature in this action is the non-linear appearance of the auxiliary field F . In

the next section, we will show how the auxiliary field can be eliminated in actions of this

form. The theorem that we prove there (see (4.5) and (4.6) with A = 2 and B = 0) leads

to:

L(χ, F (χ)) = −1

2
χ̄/∂χ− f 2 +

1

4f 2
χ̄22χ2 − 1

16f 6
χ2χ̄2(2χ2)(2χ̄2) . (3.15)

This is the result obtained in [20]. It is proven in [28] that after nonlinear field redefinitions

this action is equal to the Volkov-Akulov action [12].

The action (3.15) is still invariant under the supersymmetry transformation

δ(ε)PLχ =
1√
2
PL(/∂X + F )ε , (3.16)

where X is

X = −χ
2

2f
(1−A) , (3.17)

and here

A =
1

4f 4
χ̄22χ2 . (3.18)

F is substituted in (3.16) by (4.25). In this case

F (χ) = −f
(

1 +
χ̄2

4f 4
2χ2 − 3

16f 8
χ2χ̄22χ22χ̄2

)
. (3.19)
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IV. NON-GAUSSIAN INTEGRATION

We encounter Lagrangians of X and F , which appear as follows:

e−1L(X,F ) = (F + f)(F̄ + f̄)− ff̄ + X̄ AX +XB̄ +BX̄ , (4.1)

where f and B are complex functions of the other fields. A is an operator of second order

of the form

A = 2 + itµ∂µ + 1
2
ie−1∂µ(etµ) + r , 2 =

1
√
g
∂µ
√
ggµν∂ν , (4.2)

where tµ and r are real. The names tµ and r refer to the fact that they contain terms related

to torsion and curvature, respectively. This form is dictated by the fact that the action

should be real modulo total derivatives. We have∫
d4x e X̄ AX =

∫
d4x eX Ā X̄ =

∫
d4x e

[
−∂µX∂µX̄ + 1

2
itµ
(
X̄∂µX −X∂µX̄

)
+ rXX̄

]
,

(4.3)

where Ā has the itµ terms with the opposite sign. For the rigid case, we have the simplifi-

cations (we use that e =
√
−g is 1 for the rigid case):

Rigid case: A = 2 = ∂µ∂
µ , B = 0 , f = f̄ = constant . (4.4)

We will prove the following theorem (we neglect the factor e−1 in (4.1) since it plays no

role here).

Theorem 1 The Lagrangian

L = (F + f)(F̄ + f̄) + X̄ AX +XB̄ +BX̄ , where X =
χ2

2F
, (4.5)

reduces after using the equation of motion for F and F̄ to

L = Ȳ A Y + Y B̄ +BȲ − |Y ((AY +B))|2

ff̄
, where Y = −χ

2

2f
. (4.6)

We consider the Lagrangian as depending on F via two ways: L(F ) = L(X(F ), F ), where

X(F ) is the expression in (4.5) in terms of F and the fermion square χ2 = χ̄PLχ. Then the

fields F and F̄ can be eliminated using the algebraic eqs of motion:

δL(F )

∂F̄
=
δL(X,F )

∂F̄
− X̄

F̄

δL(X,F )

∂X̄
= 0 −→ F + f − X̄

F̄
(AX +B) = 0 , (4.7)

and its complex conjugate. This implies first of all that

F = −f +O(χ̄2) , F̄ = −f̄ +O(χ2) , (4.8)

where e.g. O(χ̄2) means that the correction terms are proportional to an undifferentiated

χ̄2. This then implies

X = −χ
2

2f
+O(χ2χ̄2) = Y +O(χ2χ̄2) , (4.9)
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where Y is of lowest order in X as given in (4.6). With (4.7) we obtain that the first term

at the r.h.s. of (4.5) is given by

(F + f)(F̄ + f̄) =
XX̄

FF̄
|AX +B|2 . (4.10)

Due to the overall factor XX̄ ∝ χ2χ̄2, one can check that in the latter expression only the

first terms of (4.8) and (4.9) contribute, and we can write

(F + f)(F̄ + f̄) =
Y Ȳ

f f̄
|AY +B|2 . (4.11)

For future use we introduce the notation

A =
Ȳ

f f̄
(AY +B) =

χ̄2

2ff̄ 2

(
A
χ2

2f
−B

)
. (4.12)

We write (4.11) as

(F + f)(F̄ + f̄) = ff̄AA . (4.13)

The complete expression for F is

F = −f
[
1− X̄

fF̄
(AX +B)

]
. (4.14)

Since X̄ is nilpotent, we have also

F−1 = − 1

f

[
1 +

X̄

fF̄
(AX +B)

]
. (4.15)

This allows us to write the following expression for X:

X =
χ2

2
F−1 = −χ

2

2f

[
1 +

X̄

fF̄
(AX +B)

]
= Y (1−A) . (4.16)

Indeed, the higher order terms of the second factor vanish in view of the χ2χ̄2 overall factor.

Observe that the two derivatives in A must both act on χ2 in order not to be killed by the

overall factor χ2.

Using (4.16) the X-dependent terms in (4.5) are

X̄ AX = Ȳ AY − ȲAAY − Ȳ A(YA) + ȲAA(YA) ,

XB̄ +BX̄ = Y B̄ +BȲ − YAB̄ +BȲA . (4.17)

Since YA is of order χ2χ̄2, the last term of the first line vanishes. The third term, however,

needs some more care. First of all, the A operator should act on the two χ̄ factors in A in

order that they are not killed by the factor Ȳ . Thus

Ȳ A(YA) = Y Ȳ AA , (4.18)
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and Ȳ AA is effectively of the form Ȳ ∂∂A. Since Ȳ ∂A = 0, we can ’integrate by parts’ the

two derivatives and obtain

Ȳ AA = (AȲ )A . (4.19)

Therefore

X̄ AX +XB̄ +BX̄ = Ȳ A Y + Y B̄ +BȲ

−ȲAAY − Y (AȲ )A+ YAB̄ +BȲA . (4.20)

Using the definition (4.12), the second line can be written as −2ff̄AA, and hence combines

with (4.13) to −ff̄AA, which is the last term in (4.6). This proves the theorem.

This mechanism of flipping the sign of the (F + f)(F̄ + f̄) term, can be understood by

defining F replacing the auxiliary field F :

F = F + f . (4.21)

After one has realized that F is of order χ̄2, one sees that

X =
χ2

−2f + 2F
= Y − Y F

f
, (4.22)

where F is the unknown part of the auxiliary field. The Lagrangian (4.5) can be written as

(using the same steps as in the previous proof)

L = Ȳ A Y + Y B̄ +BȲ +

+FF − F
f̄
Ȳ AY − F

f
Y AȲ − F

f
B̄ − F

f̄
BȲ . (4.23)

The value of F up to the order that we need, is the same as if we consider it here as an

independent field, with field equation

F = fA =
Ȳ

f̄
(AY +B) , (4.24)

and it is eliminated as in a Gaussian integration. Note, however, that we already use

properties of the solution (proportionality of F to χ̄2) to obtain (4.23), and therefore one

cannot really consider F as the auxiliary field. In fact (4.24) does not give the full solution of

F that follows from (4.14). This solution, which one needs for supersymmetry transformation

rules, was obtained in [10] as

F = −f
[
1 +A

(
1− 3Ā − χ2

2f 2f̄
B̄

)]
. (4.25)
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V. PURE VA SUPERGRAVITY

A. Superconformal action

In order to produce supergravity, we use the superconformal calculus, which implies

that we need a compensating chiral multiplet. Its components are a scalar X0, a fermion

χ0 and an auxiliary field F 0. These are added to the nilpotent chiral multiplet that was

used already in Sec. III, and that is now denoted as {X1, χ1, F 1}. Furthermore there is the

Lagrange multiplier multiplet whose first component is Λ, see (3.3). All these multiplets have

conformal weight 1. We construct the action that corresponds to the two chiral multiplets

XI = (X0, X1) and the compensating multiplet Λ in the form [27]

L = [N(X, X̄)]D + [W(X)]F +
[
Λ(X1)2

]
F
. (5.1)

In order to use the superconformal density formulas as in (3.2), the expression for the D-

term should have Weyl weight 2, and the F -terms should have Weyl weight 3. We take the

U(1, 1) invariant model, with I = {0, 1}, and ηIJ diagonal with η00 = −1 and η11 = 1:

N = ηIJX
IX̄J = −X0X̄0 +X1X̄1 , W = a

(
X0

√
3

)3

+ b

(
X0

√
3

)2

X1 , (5.2)

where a and b are dimensionless (not necessarily real) constants, which will provide respec-

tively an anti-de Sitter supergravity and an uplifting of the potential to de Sitter.

In order to write the D terms in (5.1), we use the relation that for a chiral multiplet

(X,PLχ, F ) of Weyl weight 1, the D-action can be written in the form of an F -action:

[XX̄]D = 1
2
[XF̄ ]F , (5.3)

where F̄ is the lowest component of a chiral multiplet of Weyl weight 2 since it transforms

only under PLε. The components of this multiplet are given in [21, (16.36)]:

(F̄ , /DPRχ,2CX̄) . (5.4)

The explicit expression of the superconformal covariant derivative is given in [21, (16.34)]

and of the superconformal d’Alembertian on a scalar field of Weyl weight 1 in [21, (16.37)].

These steps can be performed separately for the X0 multiplet and for the X1 multiplet.

Therefore, we write the Lagrangian as

L = [1
2
ηIJX

IF̄ J ]F + [W(XI)]F +
[
Λ(X1)2

]
F
. (5.5)

The component expression of the superconformal F -type action (5.5) is given in [21, (16.35)].

The first term of (5.5) is identical to [21, (16.39)], where pure gravity was explained, and
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the W term was written in [21, (17.19)]. The full Lagrangian is thus

L = L1 + Lc
e−1L1 = 1

2
ηIJ
(
F IF̄ J +XI2CX̄J − χ̄IPL /DχJ

)
+WIF

I − 1
2
WIJ χ̄

IPLχ
J

+
1√
2
ψ̄µγ

µ
[

1
2
ηIJ
(
PLχ

IF̄ J +XI /DPRχJ
)

+WIPLχ
I
]

+1
2
ψ̄µPRγ

µνψν
(

1
2
ηIJX

IF̄ J +W
)

+h.c. ,

e−1Lc = FΛ (X1)2 + Λ
(
2X1F 1 − χ̄1PLχ

1
)
− 2χ̄ΛPLχ

1X1

+
1√
2
ψ̄µγ

µ
(
2ΛX1PLχ

1 + (X1)2PLχ
Λ
)

+1
2
ψ̄µPRγ

µνψνΛ(X1)2

+h.c. . (5.6)

In these expressions appear the following derivatives of the superpotential in (5.2):

W0 = 3a
(X0)2

(
√

3)3
+

2

3
bX0X1 , W1 =

1

3
b(X0)2 ,

W00 = 6a
X0

(
√

3)3
+

2

3
bX1 , W01 =

2

3
bX0 . (5.7)

The field equation of Λ is

2X1F 1 − χ̄1PLχ
1 +
√

2ψ̄µγ
µX1PLχ

1 + 1
2
ψ̄µPRγ

µνψν(X
1)2 = 0 . (5.8)

This is solved as in the rigid case by

X1 =
χ1PLχ

1

2F 1
, (5.9)

since this kills all components of the chiral multiplet (X1)2.

B. Simplifications of the action

We want to eliminate the auxiliary fields, and use (5.9). For the elimination of F 1, we will

use the theorem of Sec. IV. In order to write the action in the form (4.1), it is convenient to

write the X̄1 field equation. This will define what is AX1 + B in the terminology of (4.1).

We will make use of the fact that this should also be a covariant equation modulo other field

equations. This saves a lot of work, since we know that all the gauge connections recombine

in covariant derivatives:

e−1 δS1

δX̄1
= 2CX1 +W01F̄

0 − 1
2
W001χ̄

0PRχ
0

+
1√
2
ψ̄µγ

µ

[
/DPLχ1 +W01PRχ

0 +
1√
2

(F 1 +W1)PRγ
νψν

]
−1

2
ψ̄µPLψ

µ
[
F 1 +W1

]
, (5.10)
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where S1 =
∫

d4xL1. Note that the expression in square brackets in the second line is the

field equation of PRχ
1, while the one in the third line is the field equation of F̄ 1. Writing

out some covariant derivatives leads to simplifications. One of these is that terms with F 1

all cancel. The simplification amounts to :

e−1 δS1

δX̄1
= 2′CX1 +W01F̄

0 − 1
2
W001χ̄

0PRχ
0

+
1√
2
ψ̄µγ

µW01PRχ
0 +

1√
2
ψ̄µγ

µνPLD′νχ1 +
1

2
ψ̄µγ

µνPLψνW1 , (5.11)

where (valid for {X, χ} being {XI , χI}, and used here for {X1, χ1})

2′CX = eaµ
(
∂µDaX − 2bµDaX + ωµabDbX + 2fµaX + iAµDaX +

1√
2
φ̄µγaPLχ

)
,

DaX = eµa

(
∂µX − bµX − iAµX −

1√
2
ψ̄µPLχ

)
,

PLD′µχ = PL

[(
∂µ +

1

4
ωµ

bcγbc − 3
2
bµ + 1

2
iAµ

)
χ− 1√

2

(
/DX
)
ψµ −

√
2Xφµ

]
. (5.12)

There are further simplifications. E.g. all bµ terms drop out if extracting them also from

the spin connection ωµ
ab = ωµ

ab(e, b, ψ) and correspondingly from fµµ . This is a consequence

of the special conformal invariance, since bµ is the only field in this action that transforms

under these transformations.

In Appendix B we obtained an expression for (5.3) in a form convenient for (4.1), which

we now use to write

L1 = ηIJX̄
I
[
∂µ
√
ggµν∂ν + i e tµc ∂µ + 1

2
i ∂µ(e tµc ) + e rc0

]
XJ

+e ηIJX̄
I BJ

c + e ηIJX
IB̄J

c + eCc
0 + eL1,F + eLW,ferm , (5.13)

(up to total derivatives). The indices I = 0, 1 and the subscript c are a reminder that we are

still in the superconformal setting with local conformal symmetry (and other symmetries)

unbroken:

tµc = −2Aµ + 1
4
iψ̄νγ?γ

νρµψρ ,

rc0 = −1
6
R(ω(e)) + 1

6
ψ̄µγ

µνρD(0)
ν ψρ − AµAµ − 1

6
LSG,torsion ,

BI
c =

1√
2

[
−e−1∂µ

(
eψ̄νγ

µγνPLχ
I
)
− 2

3
χ̄IPLγ

µνDµψν + iAµψ̄µPLχ
I
]
,

Cc
0 = ηIJ

(
−1

2
χ̄I /D

(0)
χJ + 1

4
iχ̄Iγ∗γ

µχJAµ

− 1
32

i e−1εµνρσψ̄µγνψρχ̄
Iγ∗γσχ

J − 1
2
ψ̄µPRχ

Iψ̄µPLχ
J
)
,

L1,F = ηIJF
IF̄ J +WIF

I +W ĪF̄
I ,

LW,ferm = −1
2
WIJ χ̄

IPLχ
J +

1√
2
ψ̄µγ

µWIPLχ
I + 1

2
ψ̄µPRγ

µνψνW + h.c. . (5.14)
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Furthermore:

LSG,torsion = − 1
16

[
(ψ̄ργµψν)(ψ̄ργµψν + 2ψ̄ργνψµ)− 4(ψ̄µγ · ψ)(ψ̄µγ · ψ)

]
−e−1∂µ

(
eψ̄ · γψµ

)
,

Dµψν =
(
∂µ + 1

4
ωµ

ab(e, ψ)γab
)
ψν ,

D(0)
µ = ∂µ + 1

4
ωµ

ab(e)γab . (5.15)

Note that at this point one can recover the formulae of the rigid case described in Sec. III

by taking eµ
a = δµ

a, ψµ = Aµ = F 0 = 0 together with X0 = 1, χ0 = 0.

C. Elimination of auxiliary field F 0

As mentioned before, the elimination of F 1 needs the theorem of non-Gaussian integra-

tion. However, we first already eliminate the auxiliary field F 0. This elimination will still

maintain the action in a form that fits in the general structure (4.1), where X is the field

X1.

In order to eliminate the auxiliary field F 0, we first collect the terms in the action with

F I . We write L1,F as

L1,F = ηIJ
(
F I + ηIKWK̄

) (
F̄ J + ηJLWL

)
−WIη

IJW J̄ . (5.16)

We eliminate F 0 and thus remain with

L1,F ≈
(
F 1 +W1

) (
F̄ 1 +W1

)
−W1W 1̄ +W0W 0̄ . (5.17)

The full Lagrangian L, obtained after this elimination from L1 in (5.13), is then given by

e−1L = (F 1 + f)(F̄ 1 + f̄)− f̄ f + X̄1AcX
1 +X1B̄c +BcX̄

1 + Cc , (5.18)

where, according to (5.17),

f =W1 =
1

3
b̄(X̄0)2 . (5.19)

The quantities in (5.18) got extra terms beyond those in (5.14) originating from the last

13



term in (5.17). We thus obtain

Ac =
[
∂µ
√
ggµν∂ν + i e tµc ∂µ + 1

2
i ∂µ(e tµc ) + e rc

]
, (5.20)

rc = rc0 +W01W01

= −1
6
R(ω(e)) + 1

6
ψ̄µγ

µνρD(0)
ν ψρ − AaAa − 1

6
LSG,torsion + 4

9
|bX0|2 ,

Bc = B1
c +W 01 [W0]X1=0

−1
2
WIJ1χ̄

IPRχ
J +

1√
2
WI1ψ̄µγ

µPRχ
I + 1

2
W1ψ̄µPLγ

µνψν

=
1√
2

[
−e−1∂µ

(
eψ̄νγ

µγνPLχ
1
)
− 2

3
χ̄1PLγ

µνDµψν + iAµψ̄µPLχ
1
]

+
1

3
b̄
(

2
1√
3
a(X0)2X̄0 − χ̄0PRχ

0 +
√

2ψ̄ · γPRχ0X̄0 +
1

2
(X̄0)2ψ̄µγ

µνPLψν

)
,

Cc = −e−1X̄0
[
∂µ
√
ggµν∂ν + i e tµc ∂µ + 1

2
i ∂µ(e tµc ) + e rc0

]
X0

−X̄0B0
c −X0B̄0

c + Cc
0 + [W0]X1=0

[
W0

]
X̄1=0

+

[(
−1

2
WIJ χ̄

IPLχ
J +

1√
2
ψ̄µγ

µWIPLχ
I + 1

2
ψ̄µPRγ

µνψνW
)
X1=0

+ h.c.

]
.(5.21)

D. Elimination of Aµ.

Then we turn to the elimination of Aµ. We write as in [21, (17.21)]

e−1 δS1

δAµ
= i

[
(DµXI)ηIJX̄

J̄ − h.c.
]

+
1

2
iηIJ χ̄

IPLγµχ
J̄

= 2AµX
IηIJX̄

J + i

[(
∂µX

I +
1√
2
ψ̄µPLχ

I

)
ηIJX̄

J̄ − h.c.

]
+

1

2
iηIJ χ̄

IPLγµχ
J̄ . (5.22)

With N given in (5.2), we use, due to the nilpotency of X1,

1

N
= − 1

X0X̄0
− X1X̄1

(X0X̄0)2
. (5.23)
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The solution for Aµ is

Aµ = Aµ +AF
µ ,

Aµ = i
1

2N
ηIJ(XI∂µX̄

J − X̄I∂µX
J) = A0

µ +A1
µ ,

A0
µ = i

1

2N
(−X0∂µX̄

0 + X̄0∂µX
0) ,

A1
µ = i

1

2X0X̄0
(−X1∂µX̄

1 + X̄1∂µX
1) ,

AF
µ =

1

4N
iηIJ

[√
2ψ̄µ(PLχ

JX̄I − PRχJXI) + χ̄IPLγµχ
J
]

= AF0
µ +AF1

µ ,

AF0
µ = − 1

4N
i
[√

2ψ̄µ(PLχ
0X̄0 − PRχ0X0) + 1

2
χ̄0γ∗γµχ

0
]
,

AF1
µ = − 1

4X0X̄0
i
[√

2ψ̄µ(PLχ
1X̄1 − PRχ1X1) + 1

2
χ̄1γ∗γµχ

1
]
. (5.24)

After the field equations, the action contains

LA = eN
[
A0
µ +A1

µ +AF0
µ +AF1

µ

]2
. (5.25)

Simplifications appear in the part

N
[
A1
µ +AF1

µ

]2
=

1

16N
χ̄1PLγµχ

1χ̄1PRγ
µχ1 =

1

8X0X̄0
χ2χ̄2 , χ2 ≡ χ̄1PLχ

1 , (5.26)

where the nonzero result comes only from the square of the very last term in (5.24) (after a

Fierz transformation).

E. Gauge fixing of the superconformal symmetry

We now impose the gauge-fixing for dilatations and S-transformations

X0 = κ−1
√

3 , χ0 = 0 . (5.27)

Here we differ from [11], who took more complicated, but convenient choices in order to have

the Einstein-Hilbert term eR appearing only multiplied with κ−2. But since in this case the

extra terms with R are multiplied with χ2χ̄2, we have chosen the simpler gauge fixing.

After this gauge fixing, one is left with the three fields: (eµ
a, ψµ, χ

1) and the auxiliary

F = F 1. The expressions in (5.24) simplify a lot. In fact A0
µ = AF0

µ = 0, and the full value

of Aµ is

Aµ = i
κ2

6

{
(−X1∂µX̄

1 + X̄1∂µX
1)− 1

2

[√
2ψ̄µ(PLχX̄

1 − PRχX1) + 1
2
χ̄γ∗γµχ

]}
. (5.28)

Here and below we use χ ≡ χ1, while χ2 is then its square as in (5.26). According to (4.16)

and (4.12),

X1 = −χ
2

2f
(1−A) , A =

χ̄2

2ff̄ 2

(
A
χ2

2f
−B

)
. (5.29)
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For the action, all what remains from (5.25) is the part in (5.26), which becomes

e−1LA = N
[
A1
µ +AF1

µ

]2
=
κ2

24
χ2χ̄2 . (5.30)

To present the result in a simpler form, we make a redefinition

a = κm , (5.31)

and we will rewrite the dependence on b in terms of (see (5.19))

f = κ−2b̄ . (5.32)

We take a and b, and thus also m and f , real. We show in Appendix C that these choices

amount to field redefinitions.

The expressions mentioned before simplify due to (5.27). The full Lagrangian is at this

point given by

e−1L(X,F ) = (F + f)(F̄ + f̄) + X̄1AX1 +X1B̄ +BX̄1 + C . (5.33)

With respect to the previous expressions, C gets an extra contribution from (5.30), replac-

ing Aµ terms, and absorbs the (−f 2) term from (5.18). We furthermore use the explicit

expressions in (5.7) and the redefinitions (5.31), (5.32). The quantities in this expression

are

A = 2 + itµ∂µ + 1
2
ie−1∂µ(etµ) + r , 2 =

1
√
g
∂µ
√
ggµν∂ν ,

tµ = 1
4
iψ̄νγ?γ

νρµψρ = −1
4
e−1εµνρσψ̄νγρψσ ,

r = −1
6

[
R(ω(e))− ψ̄µγµνρD(0)

ν ψρ + LSG,torsion − 8κ2 f 2
]
,

B =
1√
2

[
−e−1∂µ

(
eψ̄νγ

µγνPLχ
)
− 2

3
χ̄PLγ

µνDµψν
]

+ f
(

2m+
1

2
ψ̄µγ

µνPLψν

)
,

C =
1

2κ2

[
R(ω(e))− ψ̄µγµνρD(0)

ν ψρ + LSG,torsion

]
+ 3

m2

κ2
− f 2

+
1√
2
fψ̄µγ

µχ+
m

2κ2
ψ̄µγ

µνψν +
κ2

24
χ2χ̄2

−1
2
χ̄ /D

(0)
χ− 1

32
i e−1εµνρσψ̄µγνψρχ̄γ∗γσχ− 1

2
ψ̄µPRχψ̄

µPLχ , (5.34)

where Dµψν is given in (5.15).

F. Elimination of F 1.

We can now apply Sec. IV and obtain

e−1L =
1

2κ2

[
R(ω(e))− ψ̄µγµνρD(0)

ν ψρ + LSG,torsion

]
+ 3

m2

κ2
− f 2

+
1√
2
fψ̄µγ

µχ+
m

2κ2
ψ̄µγ

µνψν +
κ2

24
χ2χ̄2

−1
2
χ̄ /D

(0)
χ− 1

32
i e−1εµνρσψ̄µγνψρχ̄γ∗γσχ− 1

2
ψ̄µPRχψ̄

µPLχ

+
χ̄2

2f
A
χ2

2f
−
(
χ2

2f
B̄ +

χ̄2

2f
B

)
− χ2χ̄2

16f 4

(
2χ2

f
− 2B

)(
2χ̄2

f
− 2B̄

)
, (5.35)
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where D(0) and LSG,torsion are given in (5.15), and the quantities in (5.34) are used. This is

the result that was given in [10].

G. Transformation laws

When using the gauge condition (5.27), the decomposition law for the S-supersymmetry

is as in [21, (16.46)]:

PLη =
1

2
iPL /Aε−

κ

2
√

3
F 0PLε . (5.36)

Therefore, the transformation laws are

δeaµ =
1

2
ε̄γaψµ ,

δPLψµ = PL

(
∂µ +

1

4
ωµab(e, ψ)γab − 3

2
iAµ +

1

2
iγµ /A+

κ

2
√

3
γµF̄

0

)
ε , (5.37)

with

F → F 0 =W0 =
√

3
m

κ
+

2√
3
κf X1 =

√
3
m

κ
− 1√

3
κχ2(1−A) , (5.38)

and Aµ as in (5.28). The transformation of the fermion follows from [21, (16.33)] and

δPLχ =
1√
2
PL
(
/DX1 + F 1

)
ε+
√

2X1PLη ,

= − f√
2
PLε+

1√
2
PL

[
/DX1 − fA

(
1− 3Ā − χ2

2f 3
B̄

)]
ε+
√

2X1PLη , (5.39)

where

DµX1 = ∂µX
1 − iAµX

1 − 1√
2
ψ̄µPLχ ,

F 1 = −f
[
1 +A

(
1− 3Ā − χ2

2f 3
B̄

)]
. (5.40)

This further simplifies since

AµX
1 = 0 , F 0X1 =

√
3
m

κ
X1 . (5.41)

The transformation law is then

δPLχ =
1√
2
PL

[
−f + (/∂ −m)X1 − fA

(
1− 3Ā − χ2

2f 3
B̄

)]
ε− 1

2
PLγ

µεψ̄µPLχ . (5.42)

VI. COMMENTS

We have given here the details of the result explained in [10]. The final Lagrangian

(5.35) has local supersymmetry given by (5.37) and (5.42). There are two independent
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constants, f and m, which give respectively positive and negative contribution to the energy.

Therefore we can have supergravities with dS, Minkowski and AdS vacua. The parameter

f is the supersymmetry breaking parameter. Thus, in agreement with the general algebraic

arguments repeated in Sec. II, de Sitter vacua are only possible in case of supersymmetry

breaking.

In [10] also other features of this action were discussed. It was also clarified how one can

define a unitary supersymmetry gauge χ = 0, in which case the action becomes very simple.

Meanwhile, the result has been extended to couplings with matter multiplets [11, 29–33],

and other similar constraints of multiplets in supergravity have been considered [34–45].
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Appendix A: Equivalence of using field equations before or after constraints

We consider an action with Lagrange multipliers λi, fields Xα that will be solved by the

constraints, and the other fields F a:

S(F a, Xα, λi) = S1(F a, Xα) + λiCi(F
a, Xα) . (A1)

We are using the condensed DeWitt notation so that the sum over i in the last term includes

an integral over spacetime. We suppose that there exist an expression

Xα = xα(F a) , (A2)

that solves the constraints, i.e.

Ci(F
a, xα(F a)) = 0 . (A3)

We will now show that such a solution of the constraints, solving also the other field

equations of (A1), should be a solution of the effective Lagrangian

Seff(F a) = S1(F a, xα(F a)) . (A4)

The field equations from (A1) are

δS

δλi
= Ci = 0 ,

δS

δF a
=

δS1

δF a
+ λi

δCi
δF a

= 0 ,

δS

δXα
=

δS1

δXα
+ λi

δCi
δXα

= 0 . (A5)
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The first ones are solved by (A2), whose derivative w.r.t. F a implies

δCi
δF a

+
δCi
δXα

δxα

δF a
= 0 . (A6)

We now assume that we have a solution of the other two equations in (A5). Then the second

equation, using (A6), implies

δS1

δF a
− λi δCi

δXα

δxα

δF a
= 0 . (A7)

Combining this with the third equation in (A5) leads to

δSeff

δF a
=
δS1

δF a
+

δS1

δXα

δxα

δF a
= 0 . (A8)

Thus it must be a solution of the field equations effective action. This solves in general a

problem raised in [26, Appendix C].

In our toy model this goes as follows. In the field equation for F , (3.8), we use the

derivative of the constraint (3.7) with respect to F , which is X + F ∂X
∂F

= 0. This leads to

0 = F̄ + f − 2ΛF
∂X

∂F
= F̄ + f + 2ΛX . (A9)

We now use Λ as obtained from (3.10), but since Λ is multiplied in (A9) by X, we only have

to use one term and obtain

0 = F̄ + f − 1

F
X2X̄ , (A10)

which is the field equation that follows from (3.13).

Appendix B: Details of calculations of the action

In this appendix we write the expression of (5.3) in a form convenient for (4.1), which

can then as well be used for X = X0 as for X = X1. Our starting point is (5.6). However,

(5.11) is more useful to obtain AX + B. We further combine results mentioned in Chapter

16 and 17 of [21], leading to

[XX̄]D = 1
2
[XF̄ ]F = X̄

[
∂µ
√
ggµν∂ν + ie tµ∂µ + 1

2
i∂µ(e tµ) + e r0

]
X

+e X̄ B0 + eXB̄0 + eC0 , (B1)

(up to total derivatives) where

tµ = −2Aµ + 1
4
iψ̄νγ?γ

νρµψρ ,

r0 = −1
6
R(ω(e, ψ)) + 1

6
ψ̄µγ

µνρDνψρ − AaAa ,

B0 =
1√
2

(
−ψ̄µγνγµPLDνχ−Dµψ̄

µPLχ+ 1
3
χ̄PLγ

µνDµψν + iAµψ̄µPLχ

+ψ̄ · γψνψ̄νPLχ
)
,

C0 = FF̄ − 1
2
χ̄ /Dχ+ 1

4
iχ̄γ∗γ

µχAµ − 1
4

(
χ̄PLγ

µγνψµψ̄νPRχ+ h.c.
)
. (B2)
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Here

Dµχ =
(
∂µ + 1

4
ωµ

ab(e, ψ)γab
)
χ , Dµψν =

(
∂µ + 1

4
ωµ

ab(e, ψ)γab
)
ψν . (B3)

We give here a few remarks on how the expression (B1) was obtained. To find the

expression tµ, we extract the terms with a derivative on X̄ from (5.11). Except for the ω(e)

terms that are already included in the 2 part of A, there are the terms with Aµ and quadratic

gravitino terms. The former lead in an obvious way to a contribution to tµ proportional to

Aµ, while there are two quadratic gravitino contributions. One originates from the ωµab in

the first line of (5.12), for which we use [21, (17.167)], and the other from the D′χ term in

(5.11). These coefficients of e∂ρX̄ add up to

1
2
ψ̄ · γψρ − 1

2
ψ̄µPRγ

µνγρψν = 1
4
ψ̄µγ∗γ

µνρψν . (B4)

This leads to the expression for tµ in (B2). The quantity r0 in (B2) is obtained from the

calculation of [21, (16.44)], where the XX̄ in (B1), which is ZZ̄ in [21, Ch.16] is replaced

by −3κ−2 according to [21, (16.40)]. In the expression for C0 the last terms follow from

expanding the covariant derivative Dµχ.

Now we write out the torsion terms. Extracting these in the expression of r0 from

the scalar curvature and the covariant derivative of the gravitino produces the well-known

supergravity torsion term: −1
6
LSG,torsion.

For C0 we find

C0 = FF̄ − 1
2
χ̄ /D

(0)
χ+ 1

4
iχ̄γ∗γ

µχAµ + C0 t

C0 t = − 1
32
χ̄γµνρχψ̄µγνψρ − 1

4

(
χ̄PLγ

µνψµψ̄νPRχ+ h.c.
)
− 1

2
χ̄PLψµψ̄

µPRχ

= − 1
32
χ̄γµνρχψ̄µγνψρ + 1

16
ψ̄νγ

ρψµ (χ̄PLγ
µνγρχ+ h.c.)− 1

2
χ̄PLψµψ̄

µPRχ

= − 1
32
χ̄γµνρχψ̄µγνψρ + 1

16
ψ̄νγρψµχ̄γ

µνρχ− 1
2
χ̄PLψµψ̄

µPRχ

= − 1
32

i e−1 εµνρσψ̄µγνψρχ̄γ∗γσχ− 1
2
ψ̄µPRχψ̄

µPLχ , (B5)

where D
(0)
µ is the derivative without torsion, and we used symmetry properties of fermion

bilinears.

The torsion terms in B0 (taking into account that Dµψ̄
µ contains Γµµνψ̄

ν) combine to

B0 =
1√
2

[
−e−1∂µ

(
eψ̄νγ

µγνPLχ
)
− 2

3
χ̄PLγ

µνDµψν + iAµψ̄µPLχ
]
. (B6)

Note that here the torsion terms are still included in Dµψν . In fact we have

−2
3
PLγ

µνDµψν = −2
3
PLγ

µνD(0)
µ ψν + 1

6
PL
(
ψµψ̄ · γψµ + 1

2
γµνψµψ̄ · γψν − 1

4
γµνψρψ̄µγ

ρψν
)
.

(B7)

Appendix C: Phases of the constants

We prove here that the phases of the constants a and b in (5.2) are irrelevant, which

means that they can be removed by field redefinitions. Suppose

a = |a|eiθa , b = |b|eiθb . (C1)
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In the conformal variables we can replace

X0 = X0
(R)e

−iθa/3 , X1 = X1
(R)e

i(2θa/3−θb) , (C2)

such that after these replacement, the formulas with complex a and b are the same as those

with |a| and |b|, using X0
(R) and X1

(R) in stead of X0 and X1. We then have to do the same

phase transformation for the other fields in the multiplets. E.g.

PLχ
1 = PLχ

1
(R)e

i(2θa/3−θb) , F 1 = F 1
(R)e

i(2θa/3−θb) . (C3)

This is consistent for all formulas until we go to the Poincaré gauge (5.27). Using this

with the replacement (C2) would lead to another gauge fixing for the R-symmetry U(1).

Therefore, we have to compensate for this difference by a chiral rotation. We perform a

compensating chiral rotation with λT = θa/3 (see the weights of the fields in [21, Table

17.1] with w = 1 for the chiral multiplet). Also the gravitino has to be redefined. The final

redefinitions are

PLψµ = PLψµ(R)e
iθa/2 ,

X0 = X0
(R) ,

X1 = X1
(R)e

i(θa−θb) ,

PLχ
1 = PLχ

1
(R)e

i(θa/2−θb) ,

F 1 = F 1
(R)e

−iθb . (C4)

E.g., using the definition in (5.19) (see also (5.31) and (5.32))

m = |m|eiθa , f = |f |e−iθb . (C5)

These replacements do not modify the quantity A: i.e. A = A(R), where the latter means

that we replace all fields with their (R) values. But B undergoes a chiral rotation: B =

B(R)e
i(θa−θb). On the other hand, the quantity A is invariant, which is consistent with (5.29).

This shows that there is no physics in the phases of the constants a and b (or f and m).
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