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ABSTRACT: In this study, for the first time, changes in expressions of
proteins and profiles of metabolites in liver of the small, freshwater fish
Danio rerio (zebrafish) were investigated after long-term exposure to
environmentally relevant concentrations of microcystin-LR (MC-LR).
Male zebrafish were exposed via water to 1 or 10 μg MC-LR/L for 90
days, and iTRAQ-based proteomics and 1H NMR-based metabolomics
were employed. Histopathological observations showed that MC-LR
caused damage to liver, and the effects were more pronounced in fish
exposed to 10 μg MC-LR/L. Metabolomic analysis also showed
alterations of hepatic function, which included changes in a number of
metabolic pathways, including small molecules involved in energy,
glucose, lipids, and amino acids metabolism. Concentrations of lactate were significantly greater in individuals exposed to MC-LR
than in unexposed controls. This indicated a shift toward anaerobic metabolism, which was confirmed by impaired respiration in
mitochondria. Proteomics revealed that MC-LR significantly influenced multiple proteins, including those involved in folding of
proteins and metabolism. Endoplasmic reticulum stress contributed to disturbance of metabolism of lipids in liver of zebrafish
exposed to MC-LR. Identification of proteins and metabolites in liver of zebrafish responsive to MC-LR provides insights into
mechanisms of chronic toxicity of MCs.

■ INTRODUCTION

Due to a combination of factors including eutrophication and
warming, blooms of cyanobacteria and associated releases of
cyanotoxins as extracellular products, are increasing world-
wide.1,2 Microcystins (MCs), a group of monocyclic heptapep-
tides (molecular weight about 1000 Da), are the most
frequently reported cyanobacterial toxins and are regarded as
a major hazard to health of humans and present challenges to
quality of drinking water.3−6 More than 100 MCs have been
identified. Although variations have been reported among all of
the amino acids, substitutions of the variable L-amino acids X
and Z in positions two and four are most prevalent7,8 MC-LR is
one of the most common and potent variants, which is why it
has been the most widely studied. In most cases, concentrations
of dissolved MCs in water are relatively small, within a range of
0.1−10 μg/L, whereas cell-bound concentrations are several
orders of magnitude greater.9−12 MCs are of concern due to
their adverse effects, such as hepatotoxicity, carcinogenicity,

reproductive toxicity, neurotoxicity, immunotoxicity, and
endocrine-disrupting effects.13,14 Exposure of humans to MCs
can occur via ingestion of contaminated drinking water and/or
consumption of cultivated plants, aquatic products including
fish and blue-green algae supplements (BGAS).13,15 In 1998,
the World Health Organization (WHO) established a provi-
sional guideline value of 1 μg MC-LR/L in drinking water.15,16

In 2010, the International Agency for Research on Cancer
(IARC) classified MC-LR as being “possibly carcinogenic to
humans” (Group 2B carcinogen).17

Compared to terrestrial organisms, aquatic organisms
(including fishes) are more frequently exposed to MCs. Since
MCs are released from cyanobacterial cells into waters, the first
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contact point for MCs would be through the aquatic
environment.18 Most aquatic organisms can come into contact
with MCs, or with cyanobacterial cells, with subsequent
accumulation of MCs in the aquatic food web.19−22 Similar
to mammals, results of both field and laboratory studies have
demonstrated that the liver is the primary target organ for MCs
and studies on various fishes have shown that MCs accumulate
mainly in liver, but also in gill, brain, intestine, and
viscera.18,21,23 MCs can affect biochemical, histopathological,
and behavioral patterns, osmoregulation, and growth, develop-
ment, and reproduction.23

Magnitudes of toxic effects, induced by MCs, depend on
route and magnitude of exposure to the toxin. Primary routes of
exposure used to assess effects of MCs on fish include
intraperitoneal (i.p.) injection, oral gavage, dietary and
immersion in water containing purified MCs, lysates, crude
extracts or whole cells of cyanobacteria.23 Several studies of
MCs have used i.p. injection or oral exposure, but few studies
have studied effects of water-borne exposures of fishes.18,24,25

MCs are less potent when exposed to contaminated water than
when they are injected intraperitoneally (i.p.).23,26 Therefore, to
obtain information that is more appropriate for predicting
potential for adverse effects under field conditions, waterborne
exposure is more relevant. Most studies of MCs, results of
which are in the literature, focused on acute and subchronic
toxicities of MCs, while fewer efforts have been devoted to
explore chronic effects of MCs.22,27−30 In aquatic ecosystems,
chronic exposure to MCs is the main pathway of exposure of
aquatic organisms to MCs. Concentrations of MCs are often a
few μg/L in waters of eutrophic lakes around the world. Also,
due to chemical stabilities and resistances of MCs to
breakdown, organisms can be exposed to lesser concentrations
of MCs, but for longer periods following lyses of the bloom.
Therefore, in order to make realistic evaluations of toxicity of
MCs to fish, longer-term chronic exposure by immersion
needed to be studied.18,22

Zebrafish (Danio rerio), a small, tropical, freshwater fish,
represents an important vertebrate model organism that is
widely used in toxicological research because they are small,
available in large numbers, and easily maintained under
laboratory conditions at small husbandry costs. With the
emergence of system biology, the “-omic” approaches, such as
transcriptomics, proteomics and metabolomics, are capable of
discovering broader ranges of biomarkers at molecular levels
and are increasingly being employed to investigate mechanisms
of toxic action of contaminants. Use of zebrafish is effective
since the genome of this species is known and annotated.31

To our knowledge, previously there have been no studies
combining proteomics and metabolomics for study of effects of
MCs on any aquatic organism or investigations of toxicological
effects of chronic exposure of aquatic organisms to MCs. In the
study, results of which are presented here, a complementary
pathological, proteomic and metabolomic approach was used to
elucidate responses of zebrafish to environmentally relevant
concentrations of MC-LR. To further investigate some of the
molecular pathways modulated by MCs, expressions of mRNA
for selected genes, identified by use of the omics approaches,
were measured by use of quantitative real-time polymerase
chain reactions (qRT-PCR).

■ MATERIALS AND METHODS
Zebrafish and Exposure to MC-LR. Healthy, adult, male

zebrafish (AB strain), about 3 months old, were obtained from

the China Zebrafish Resource Center, Institute of Hydro-
biology, Chinese Academy of Sciences. Zebrafish were
randomly divided into 20 L glass tanks containing 12 L
charcoal-filtered tap water (20 fish per tank) and acclimated for
2 weeks prior to exposure to MCs. Temperature was
maintained at 28 ± 0.5 °C with a 12:12 light/dark cycle and
zebrafish were fed with freshly hatched brine shrimp twice daily
and flake food once daily. Purified MC-LR (purity ≥95%) was
purchased from Taiwan Algal Science Inc. (China). After
acclimation, three replicate tanks were randomly assigned to
each exposure group, and zebrafish were exposed to 0, 1, or 10
μg/L for 90 days. The range of exposure concentrations was
based on previous studies.22,32,33 One-third of water of the
appropriate concentration of MC-LR was replaced by fresh
water every 3 days. After 90 days of exposure, zebrafish were
anesthetized in ice-cold water and livers were collected. One
portion was placed in Bouin’s solution or 2.5% glutaraldehyde,
and the remaining livers were immediately frozen in liquid
nitrogen and stored at −80 °C until analysis. All procedures
carried out on fish were approved by the Institutional Animal
Care and Use Committee (IACUC), and were in accordance
with the National Institutes of Health Guide for the Care and
Use of Laboratory.

ELISA Detection of Concentrations of MC-LR in Water.
Before and during the exposure, concentrations of MC-LR were
monitored after replenishment of water. A sample of 1 mL of
water was collected from each tank and stored at −20 °C until
analysis. Concentrations of MC-LR were determined by using
the commercially available microcystin plate kit (Beacon
Analytical Systems, Inc., Saco) with comparison to external
standards. The minimum detection limit (MDL) for MCs is 0.1
μg/L.

Light and Electron Microscopy. Histopathological
analyses were conducted by use of previously described
methods.34 Briefly, for light microscopy, livers were fixed in
Bouin’s solution and embedded in paraffin and blocks were
sectioned on a microtome. The 5 μm thick liver sections were
stained with hematoxylin and eosin (H&E). Histological
observation was performed using light microscopy.
For transmission electron microscopy (TEM), liver tissue

was diced into 1 mm3, prefixed in 2.5% glutaraldehyde solution
and fixed in 1% aqueous osmium tetroxide. The specimens
were then embedded in Epon 812. Ultrathin sections were
sliced with glass knives on a LKB-V ultramicrotome (Nova,
Sweden), stained with uranyl acetate and lead citrate and
examined by Tecnai G2 20 TWIN (FEI).

iTRAQ-Based Quantitative Proteomic Analysis. Quan-
titative proteomic analysis was performed according to the
methodology described in previous studies,25,35,36 with some
modifications, of which details are given in the Supporting
Information (SI). Briefly, livers from 5 individuals of each tank
were pooled as one replicate (n = 2), and proteins were
extracted by use of trichloroacetic acid/acetone. Concentrations
of protein in extracts were determined by use of a 2-D Quant
kit (GE Healthcare, Pittsburgh, PA). Subsequently, 100 μg
protein for each sample was reduced with dithiothreitol,
alkylated with iodoacetamide, digested with sequence-grade
modified trypsin, and labeled with iTRAQ (isobaric tag for
relative and absolute quantitation) reagents (AB Sciex, Foster
City, CA). Pooled peptides were cleaned-up, desalted, and then
separated using high pH reverse-phase high-performance liquid
chromatography (HPLC) using an Agilent 300 Extend C18
column (Santa Clara, CA). Fractionated samples were analyzed
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by use of a Q Exactive Plus hybrid quadrupole-Orbitrap mass
spectrometer (ThermoFisher Scientific, Waltham, MA).
Proteins with p < 0.05 and fold difference >1.2 or <0.83
were considered differentially expressed. Functions of differ-
entially expressed proteins were were determined by use of
Gene Ontology (GO) annotation, Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis, and functional
enrichment analysis. The GO classification was done using
UniProt-GOA database (http://www.ebi.ac.uk/GOA/) and
InterProScan soft. Wolfpsort was used to predict subcellular
localization of the proteins.
For quality control purposes, mass errors and lengths of all

peptides were analyzed. The distribution of mass error was near
zero and mostly less than 0.02 Da (SI Figure S1A), which
means the mass accuracy of the MS data was sufficient. Also,
lengths of most peptides were distributed between 8 and 16 (SI
Figure S1B), which agree with properties of tryptic peptides, so
that the results met the standard.
HR-MAS 1H NMR-Based Metabolomic Analysis. Metab-

olites in liver were analyzed by use of a Bruke Avance 600
NMR spectrometer (Bruker Biospin, Germany) equipped with
a triple-field resonance (1H/13C/31P) high resolution magic-
angle-spinning (HR-MAS) probe as described previously,37

with some modifications. More details about metabolomic
analysis are given in the SI. Briefly, tissue samples were
analyzed by HR-MAS 1H NMR using a water-suppressed one-

dimensional Carr−Purcell−Meiboom−Gill (CPMG) spin−
echo pulse sequence (recycle delay −90°-(τ-180°-τ)n- acquis-
ition), with one liver as one replicate (n = 6). Nuclear magnetic
resonance (NMR) spectra were Fourier transformed and
corrected for phase and baseline shifts by use of MestReNova
(version 7.0, Mestrelab Research, Spain). All spectra were
referenced to the internal lactate CH3 resonance at 1.33 ppm.
Multivariate statistical analyses, including unsupervised princi-
pal component analysis (PCA), and supervised partial least
squares discriminant analysis (PLS-DA) and orthogonal
projection to latent structure with discriminant analysis
(OPLS-DA) methods were performed by SIMCA-P+ (V11.0,
Umetrics, Umea, Sweden). Correlation coefficients (|r|) >
0.755, which was determined according to the test for the
significance of the Pearson’s product-moment correlation
coefficient, were considered statistically significant based on
the discrimination significance at the level of p < 0.05 and
degrees of freedom =5.

Quantitative Real-Time PCR (qRT-PCR). Five livers from
each tank were pooled together as one replicate (n = 3).
Isolation, purification, and quantification of total RNA were
performed by use of previously described methods.38 First-
strand cDNA synthesis was carried out with random hexamers
and oligo-dT primers. Sequences of primers used in qRT-PCR
were designed with Primer Premier 5.0 (Premier, Canada) (SI
Table S1). Housekeeping genes, gapdh and 18S rRNA were

Figure 1. Micro- and ultrastructural changes in liver of zebrafish exposed to 1 or 10 μg MC-LR/L for 90 days. (A) (D) Control group. (B) (E) 1 μg
MC-LR/L, showing swollen hepatocytes (black arrowhead), and cell vacuolar degeneration (white arrowhead). (C) (F) 10 μg MC-LR/L, showing
swollen hepatocytes (black arrowhead), and cell vacuolar degeneration (white arrowhead). (G) Control group. (H) 1 μg MC-LR/L, showing cell
shrinkage (white star), and dilation of rough endoplasmic reticulum (black circle). (I) 1 μg MC-LR/L, showing swollen mitochondria (black arrow).
(J) 10 μg MC-LR/L, showing vacuoles (white arrow), and swollen mitochondria (black arrow). (K) 10 μg MC-LR/L, showing hyperplasia of
smooth endoplasmic reticulum associated with mild expansion (black box), and lysosomes (gray arrow). (L) 10 μg MC-LR/L, showing autophagic
vacuole (white arrowhead). (A) (B) (C), bar = 25 μm, (D) (E) (F), bar = 10 μm, (G) (H) (I) (J) (K) (L), bar = 1 μm.
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Table 1. Differentially Expressed Proteins (with Functional Annotation) In Liver of Zebrafish Exposed to MC-LR

fold changeb

protein
accessiona protein description 1 μg/L 10 μg/L function category

Amino Acid Metabolism
F1Q6E1 4-hydroxyphenylpyruvate dioxygenase 2.09 ± 0.25 2.18 ± 0.06* tyrosine metabolism
Q6TGZ5 4-hydroxyphenylpyruvate dioxygenase 0.28 ± 0.00** 0.30 ± 0.02** tyrosine metabolism
F1QHM8 methylthioribulose-1-phosphate dehydratase 0.98 ± 0.03 0.73 ± 0.03* methionine metabolism
Q1RLT0 S-adenosylmethionine synthase 1.02 ± 0.02 0.72 ± 0.01** methionine metabolism
Protein Metabolism
A8E526 Rpl14 protein 1.52 ± 0.15 1.28 ± 0.04* ribosome biogenesis and assembly;

protein biosynthesis
P62084 40S ribosomal protein S7 1.30 ± 0.06 1.35 ± 003* ribosome biogenesis and assembly;

protein biosynthesis
Q6P5L3 60S ribosomal protein L19 1.85 ± 0.40 1.44 ± 0.03* ribosome biogenesis and assembly;

protein biosynthesis
Q6PBV6 H/ACA ribonucleoprotein complex subunit 2-like protein 1.40 ± 0.09* 1.12 ± 0.07 ribosome biogenesis and assembly;

protein biosynthesis
F1Q5S9 probable signal peptidase complex subunit 2 1.18 ± 0.06 1.35 ± 0.06* protein processing
Q6NWJ2 signal peptidase complex subunit 3 homologue (S. cerevisiae) 1.32 ± 0.14 1.45 ± 0.06* protein processing
Q7T2E1 SEC13 homologue (S. cerevisiae) 1.14 ± 0.11 1.39 ± 0.09* protein transport
Lipid Metabolism
A3QK15 acetoacetyl-CoA synthetase 1.61 ± 0.66 0.69 ± 0.03* Fatty acid metabolism
Q4 V8S5 Acbd7 protein 1.95 ± 0.19* 1.48 ± 0.15 atty-acyl-CoA binding
Q58EG2 Erlin-1 1.12 ± 0.01 1.33 ± 0.03* lipid metabolism
Q6DRN8 Cdipt protein 0.97 ± 0.04 1.30 ± 0.06* lipid metabolism
Q7T2J4 alcohol dehydrogenase 8b 0.90 ± 0.16 0.67 ± 0.05* lipid metabolism
Q9I8L5 fatty acid-binding protein 10-A, liver basic 0.99 ± 0.11 0.82 ± 0.02* Fatty acid transport
O42364 apolipoprotein Eb 0.89 ± 0.13 0.72 ± 0.01** lipid transport; lipoprotein

metabolism
Mitochondrial Energy Metabolism
Q6AZA2 NADH dehydrogenase (Ubiquinone) flavoprotein 1 0.89 ± 0.03 0.69 ± 0.03* electron transport chain
Q6IQM2 cytochrome c 0.85 ± 0.10 0.70 ± 0.04* electron transport chain
Q9MIY7 cytochrome c oxidase subunit 2 1.21 ± 0.02* 1.05 ± 0.07 electron transport chain
Other Metabolism
A2BHD8 beta-hexosaminidase 1.22 ± 0.03* 1.38 ± 0.16 beta-N-acetylhexosaminidase activity
F8W5B8 phosphorylase 0.79 ± 0.17 0.70 ± 0.03* glycogen phosphorylase activity
Q0E671 cytidine monophosphate sialic acid synthetase 1 1.33 ± 0.07* 1.22 ± 0.09 nucleotidyltransferase activity
Q5CZW2 uridine phosphorylase 0.75 ± 0.08 0.76 ± 0.03* nucleotide metabolism
Q7ZUN6 phosphoribosylaminoimidazole carboxylase,

phosphoribosylaminoimidazole succinocarboxamide synthetase
1.08 ± 0.17 0.73 ± 0.02** nucleotide metabolism

Q8UVG6 cellular retinol-binding protein type II 0.74 ± 0.15 0.54 ± 0.02** vitamin A metabolism
Chromatin Assembly and Modification
E7F4R5 histone deacetylase 8 0.82 ± 0.18 0.70 ± 0.02* histone deacetylase activity
G1K2S9 histone H3 1.34 ± 0.11 1.59 ± 0.12* chromatin assembly
Q1RLR9 histone H2A 1.58 ± 0.07* 1.68 ± 0.23 chromatin assembly
Q6NUW5 acidic leucine-rich nuclear phosphoprotein 32 family member E 1.38 ± 0.13 1.23 ± 0.04* H2A.Z chaperone
Signal Transduction
F1QT29 calcium uniporter protein, mitochondrial 0.82 ± 0.03* 1.00 ± 0.04 calcium uptake into mitochondria
Q1LWV8 phosphoinositide phospholipase C 0.82 ± 0.03* 0.82 ± 0.04 signal transducer activity
Q2L6L1 protein canopy-1 1.57 ± 0.33 1.52 ± 0.08* fibroblast growth factor receptor

signaling pathway
Q803G3 serine/threonine-protein phosphatase 2A catalytic subunit 0.82 ± 0.01* 0.98 ± 0.03 signal transduction
Immune Response
C1IHU8 intelectin 1 0.64 ± 0.03** 0.58 ± 0.02** immune response
Q24JW2 lysozyme 0.39 ± 0.08* 0.39 ± 0.24 immune response
Q6PFU1 CD81 antigen 0.62 ± 0.04* 0.62 ± 0.13 immune response
Q7ZVM6 cytotoxic granule-associated RNA binding protein 1, like 1.18 ± 0.18 1.43 ± 0.03* immune response
Q6PHG2 hemopexin 0.58 ± 0.11 0.50 ± 0.05* inflammatory response
Response to Stress
F1QUW4 hypoxia up-regulated protein 1 1.29 ± 0.25 1.27 ± 0.03* response to hypoxia
Q90486 hemoglobin subunit beta-1 0.62 ± 0.04* 0.84 ± 0.24 response to hypoxia
E9QH31 aldehyde dehydrogenase 1.21 ± 0.03* 1.22 ± 0.05 oxidoreductase activity
F1QUR3 protein disulfide-isomerase (Fragment) 1.30 ± 0.21 1.44 ± 0.10* protein folding

Environmental Science & Technology Article

DOI: 10.1021/acs.est.6b03990
Environ. Sci. Technol. 2017, 51, 596−607

599

http://dx.doi.org/10.1021/acs.est.6b03990


stable and unaffected by exposure to MC-LR. Therefore, they
were used as the endogenous assay control. Geometric means
of expression level of gapdh and 18S rRNA were used to
normalize qRT-PCR data.39

Statistical Analyses. Statistical analyses of the data were
performed using SPSS package16.0 (SPSS, Chicago, IL). All
values were presented as the mean ± standard error (SE). The
Kolmogorov−Smirnov test and Levene’s test were employed to
check normality and homogeneity of variances in the data,
respectively. If necessary, data were log-transformed to

approximate normality. Nonparametric analysis was conducted

if data could not meet the normality even after transformation.

One-way analysis of variance (ANOVA) and Tukey’s multiple

comparison tests were applied to determine statistical differ-

ences between data of the control and MC-LR treatment

groups. Significant differences were set at the p < 0.05 (*) and p

< 0.01(**) levels.

Table 1. continued

fold changeb

protein
accessiona protein description 1 μg/L 10 μg/L function category

Response to Stress
Q6NYZ0 Dnajb11 protein 1.27 ± 0.23 1.28 ± 0.03** protein folding
Q6PE26 Calr protein 1.56 ± 0.34 1.47 ± 0.05** protein folding
Q7ZZA3 peptidyl-prolyl cis−trans isomerase 1.50 ± 0.11* 1.20 ± 0.10 protein folding
Z4YIA7 calumenin-A 1.51 ± 0.22 1.48 ± 0.04* protein folding
Other Function
Q7SXF6 cysteine-rich with EGF-like domain protein 2 1.40 ± 0.40 1.39 ± 0.03** calcium ion binding
Q7ZT36 parvalbumin 3 0.74 ± 0.03* 1.12 ± 0.27 calcium ion binding
E9QB46 selenium-binding protein 1 1.34 ± 0.09 1.44 ± 0.04* selenium binding
Q6DGU5 solute carrier family 25 member 46 0.81 ± 0.01* 0.84 ± 0.01 mitochondrial membrane fission;

transport
F1QT89 reticulon 1.13 ± 0.11 1.24 ± 0.03* membrane morphogenesis
Q5U3G0 progesterone receptor membrane component 1 1.35 ± 0.12 1.62 ± 0.07** progesterone receptor
Q64HD0 sex hormone binding globulin 0.71 ± 0.02* 0.79 ± 0.08 sex hormone transport
F1QRA6 tetratricopeptide repeat protein 38 0.93 ± 0.11 0.73 ± 0.02* unknown
Q8AW82 novel protein similar to human proliferation-associated 2G4 protein

(PA2G4)
1.22 ± 0.02* 1.03 ± 0.03 growth regulation

aMore information on proteins that were up- or down-regulated are listed in SI Table S2. bThe fold changes are indicated as compared to the
controls. Values >1 indicate up-regulation, and values <1 indicate down-regulation. Proteins with fold difference >1.2 or <0.83 and p < 0.05 were
considered significantly altered, which are indicated with * (p < 0.05) or ** (p < 0.01).

Figure 2. Classification of differentially expressed proteins (with functional annotation) in liver of zebrafish exposed to MC-LR based on (A)
biological processes, (B) molecular function, (C) cellular component, and (D) subcellular location.
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Figure 3. Typical 1H HR-MAS CPMG NMR spectra (δ0.5−6.0 and δ6.0−9.5) of liver of zebrafish exposed to MC-LR. The region of δ6.0−9.5 (in
the dashed box) in the aquatic phase was magnified 10 times compared with corresponding region of δ0.5−6.0 for the purpose of clarity. Keys: 3-
HB: 3-hydroxybutyrate; Ace: acetate; Adi: adipate; Ala: alanine; Asp: aspartate; Cho: choline; DMA: dimethylamine; EA: ethanolamine; Eth:
ethanol; Fum: fumarate; G: glycerol; Glc: glucose; Glg: glycogen; Gln: glutamine; Glu: glutamate; Gly: glycine; GPC: glycerolphosphocholine;
GSH: glutathione; IB: isobutyrate; Ile: isoleucine; Ino: inosine; L1: LDL&VLDL, CH3-(CH2)n-; L2: LDL&VLDL, CH3-(CH2)n-; L3: VLDL,
−CH2−CH2−CO; L4: Lipid, −CH2−CHCH-; L5: Lipid, −CH2−CO; L6: Lipid, CH−CH2−CH; L7: lipid, −CHCH-; Lac: lactate;
Leu: leucine; Lys: lysine; M: malonate; Met: methionine; m-I: myo-inositol; Mol: methanol; NA: nicotinamide; PCr: phosphocreatine; Phe:
phenylalanine; Py: pyruvate; Sar: sarcosine; Suc: succinate; Thr: threonine; TMA: trimethylamine; TMAO: trimethylamine N-oxide; Trp:
tryptophan; Tyr: tyrosine; U: unknown; Val: valine.

Figure 4. OPLS-DA score plots (left panel) derived from 1H CPMG NMR spectra of liver of zebrafish exposed to MC-LR and corresponding
coefficient loading plots (right panel) obtained from different groups. The color map shows the significance of variation among metabolites between
the two classes. Peaks in the positive direction (up) indicate metabolites that are more abundant in the MC-LR treatment groups than in the control
group. Consequently, metabolites that are more abundant in the control group are presented as peaks in the negative direction (down). Keys of the
assignments were shown in Figure 3.
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■ RESULTS

Actual Concentrations of MC-LR in Water. Measured
concentrations of MC-LR in water were 0.82 ± 0.08 (from 0.69
to 1.02), 8.45 ± 0.71 (from 7.34 to 9.83) μg/L, respectively, for
the nominal 1 and 10 μg/L MC-LR groups (SI Figure S2). No
MC-LR was detected in control water.
Light Microscopy and Ultrastructural Observations.

No histological changes were observed in livers of fish from the
control group (Figure 1A and D). However, in livers of fish
exposed to 1 μg MC-LR/L (Figure 1B and E), cord-like
parenchymal architecture of liver was lost and some
cytoplasmic inclusions were no longer observable. Swelling of
hepatic cells and hepatocellular vacuolar degeneration were
observed. Hepatic lesions were more severe in fish exposed to
10 μg MC-LR/L (Figure 1C and F) and cells were nearly
collapsed. Similarly, observations of ultrastructure also showed
that MC-LR caused histological damage to the liver. Liver cells
showed cytoplasmic shrinkage, dilation of rough endoplasmic
reticulum and swollen mitochondria occurred in livers of fish
exposed to 1 μg MC-LR/L (Figure 1H and I). In livers of fish
exposed to 10 μg MC-LR/L (Figure 1J, K and L), some
vacuoles, swollen mitochondria and hyperplasia of smooth
endoplasmic reticulum associated with mild expansion were
also observed. Numerous lysosomes were present in the
cytoplasm, and autophagic vacuoles were also detected.
Proteome Analysis. In total, 2,761 proteins were identified

of which 1,966 proteins could be quantified by use of iTRAQ
labeling and HPLC fractionation followed by LC-MS/MS
analysis. Among those quantified, 37 and 81 proteins were up-
and down-regulated by exposure to 1 or 10 μg MC-LR/L,

respectively (SI Table S2). All annotated proteins that were up-
or down-regulated are listed (Table 1), including proteins
involved in mitochrondrial energy metabolism (NADH
dehydrogenase (Ubiquinone) flavoprotein 1, cytochrome c
oxidase submit 2), lipid metabolism (acetoacetyl-CoA
synthetase, apolipoprotein Eb), and endoplasmic reticulum
stress (Calumenin-A, Dnajb11 protein), etc. Full details of the
altered proteins are given (SI Table S3). Differentially
expressed proteins were classified into various categories
(Figure 2). When these regulated proteins were classified
according to biological process, regulated proteins were mostly
involved in cellular (22%), metabolic (20%), or single-organism
process (18%) (Figure 2A). Affected proteins covered a wide
range of molecular functions, mainly including catalytic activity
(30%) and binding (45%) (Figure 2B). Based on classification
by cellular components, many proteins were in organelles
(20%) or cells (27%) (Figure 2C). Most proteins were located
in the cytosol (38%), extracellular region (21%), nucleus (9%),
mitochondria (9%), and plasma membrane (9%) (Figure 2D).

Metabolome Analysis. Typical 1H NMR spectra of livers
of zebrafish exposed to 0, 1, or 10 μg MC-LR/L are presented
(Figure 3). PCA was performed to provide an overview of 1H
CPMG NMR data from all samples. PCA score plots (SI Figure
S3) demonstrated some separation between control and MC-
treated groups. Separation between controls and those exposed
to 10 μg MC-LR/L was especially obvious. PLS-DA was further
applied to achieve separation profiles of the various treatments
through maximizing intergroup variance. Results from both
permutation tests and cross validation parameter Q2 suggested
that models constructed from spectral data of zebrafish liver
were valid and strong (Figure S4). In order to understand

Table 2. OPLS-DA Coefficients Derived from NMR Data for Metabolites in Liver of Zebrafish Exposed to MC-LR

ra ra

metabolites 1 μg/L 10 μg/L metabolites 1 μg/L 10 μg/L

3-HB: 3-hydroxybutyrate: 1.21(db) −0.86 0.90 L6: lipid, CH−CH2−CH: 2.82(br) −0.79 −
Ace: acetate: 1.92(s) − 0.85 Lac: lactate: 1.33(d), 4.11(q) 0.80 0.82
Adi: adipate: 1.56(m), 2.18(m) −0.77 0.91 Leu: leucine: 0.96(t) − 0.86
Ala: alanine: 1.48(d) − 0.89 Lys: lysine: 1.72(m), 1.91(m), 3.02(m), 3.76(t) − 0.91
Asp: aspartate: 2.67(dd), 2.81(dd), 3.95(dd) 0.81 0.91 M: malonate: 3.11(s) − 0.89
DMA: dimethylamine: 2.72(s) − 0.92 Met: methionine: 2.14(s), 2.64(t) 0.77 0.91
EA: ethanolamine: 3.13(t), 3.87(t) 0.78 0.87 m-I: myo-inositol: 3.26(t), 3.62(m), 4.07(m) 0.86 0.81
Eth: ethanol: 1.19(t) −0.86 − Mol: methanol: 3.36(s) 0.80 −
G: glycerol: 3.58(m), 3.68(m) 0.86 − NA: nicotinamide: 7.59(m), 8.25(m), 8.71(d), 8.93(s) 0.93 0.77
Glg: glycogen: 3.97(m), 5.42(m) 0.81 − PCr: phosphocreatine: 3.04(s), 3.93(s) 0.89 0.93
Gln: glutamine: 2.12(m), 2.45(m), 3.78 (t) − 0.86 Phe: phenylalanine: 7.32(d), 7.37(t), 7.42(m) − 0.82
Glu: glutamate: 2.07(m), 2.12(m), 2.35(m), 3.78(t) − 0.86 Py: pyruvate: 2.38(s) − 0.86
Gly: glycine: 3.56(s) 0.87 0.78 Sar: sarcosine: 2.73(s) − 0.89
GPC: glycerolphosphocholine: 3.23(s), 4.33(m) 0.79 0.78 Suc: succinate: 2.42(s) − 0.79
GSH: glutathione: 2.56(m), 2.95(m) 0.82 0.82 Thr: threonine: 4.26(m) − 0.89
IB: isobutyrate: 1.09(d) − 0.83 TMAO: trimethylamine N-oxide: 3.27(s) 0.86 −
Ile: isoleucine: 0.94(t), 1.01(d) − 0.90 Trp: tryptophan: 7.53(d), 7.73(d) − 0.81
L1: LDL&VLDL, CH3-(CH2)n-: 0.90(br) −0.78 − Tyr: tyrosine: 6.89(d), 7.19(d) − 0.81
L2: LDL&VLDL, CH3-(CH2)n-: 1.30(br) −0.83 − Val: valine: 0.99(d), 1.04(d) − 0.89
L3: VLDL, −CH2−CH2−CO: 1.59(br) −0.80 − α-Glc: α-glucose: 3.42(t), 3.54(dd), 3.72(t), 3.74(m), 3.84(m),

5.23(d)
0.86 −

L4: Lipid, −CH2−CHCH-: 2.02(br) −0.76 − β-Glc: β-glucose: 3.25(dd), 3.41(t), 3.46(m), 3.49(t), 3.90(dd),
4.65(d)

0.88 −

L5: Lipid, −CH2−CO: 2.26(br) −0.87 −
aCorrelation coefficients, positive and negative signs indicate positive and negative correlation in the concentrations, respectively. The correlation
coefficient of |r|> 0.755 was used as the cutoff value for the statistical significance based on the discrimination significance at the level of p = 0.05 and
df (degree of freedom) = 5. “‘−’” means the correlation coefficient |r| is less than 0.755. bMultiplicity: s, singlet; d, doublet; t, triplet; q, quartet; dd,
doublet of doublets; m, multiplet; br, broad resonance.
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differences in profiles of metabolites in fish exposed to MC-LR,
metabolic profiles obtained from individuals exposed to MC-LR
or controls were further analyzed by use of OPLS-DA. The
OPLS-DA score plots and corresponding loading plots based
on the NMR data of liver tissue for the pairwise groups are
presented in Figure 4. The OPLS-DA score plots (left panel in
Figure 4) give a clear separation between MC-treated groups
and the corresponding controls, and the color-coded coefficient
plots (right panel in Figure 4) revealed detailed metabolic
changes induced by MC-LR. The dominant metabolites
contributing to separation between the control and groups
exposed to MC-LR are listed (Table 2). The elevation of
intermediate metabolites in energy metabolism (pyruvate,
lactate, succinate) and amino acids (alanine, glycine,
methionine, etc.), reduction of lipid metabolites (glycerol,
lipid, −CH2−CO, −CH2−CHCH−, etc.) were observed
in liver of zebrafish exposed to 1 or 10 μg MC-LR/L.
Expressions of Genes. Changes in transcription of genes

involved in glycolysis (pfk1b, pklr), tricarboxylic acid cycle
(pdha1a, sdha), electron transport chain (nd1, coxI), and
oxidative phosphorylation (atp6) are shown (Figure 5A). All of
these genes were significantly down-regulated in livers of
zebrafish exposed to 10 μg MC-LR/L. For fish exposed to 1 μg
MC-LR/L, levels of mRNA for of pdha1 and atp6 were greater
while there were no differences in levels of mRNA for nd1 or
coxI. At this concentration of MC-LR, levels of mRNA for
pfk1b, pklr and sdha were significantly less.
Alterations of transcripts of genes that encode proteins

important for protein folding (pdi, ppcti) and endoplasmatic
reticulum stress (ern1, xbp-1s, eif 2ak3, eif 2s1, atf6, atf4, hspa5,
hsp90b1, chop) are shown (Figure 5B). Abundances of
transcripts of pdi, ppcti, atf6, atf4, hspa5 were significantly
greater in fish exposed to 1 μg MC-LR/L, relative to the
unexposed controls. In individuals esposed to 10 μg MC-LR/L,
there were greater levels of mRNA for pdi, ppcti, ern1, xbp-1s,
eif 2ak3, atf6, atf4, hspa5, hsp90b1, but no obvious changes for
mRNA of eif2s1 or chop.

■ DISCUSSION

Concentrations of MC-LR used in the study, results of which
are presented here, were chosen to represent those likely to

occur in aquatic environments and were less than those
expected to cause overt toxicity or lethality. No lethality was
observed during exposures to MC-LR, which indicated that
exposures were indeed less than the threshold for overt toxic
effects on general health of exposed fish. However, damage to
liver was observed by use of histology. This finding potentially
has implications for long-term health of fish (and other aquatic
animals) which are exposed throughout their lives to
environmentally relevant concentrations of MCs.
Under normal conditions, the major source of energy supply

is oxidative metabolism of nutrients through aerobic respira-
tion; while under hypoxia, the major energy supply is shifted to
anoxic respiration, which is less efficient at producing energy
than is aerobic respiration. Gill tissue, which comes into direct
and immediate contact with MCs in water, is vulnerable to
effects of MC-LR.28,40 Because gills are respiratory organs of
fish, damage to that organ would cause limitations of efficiency
on exchanges of gases and ions, and result in insufficient oxygen
transfer from water into the body and ultimately the
bloodstream, thus producing hypoxia. Coincidentally, the
proteomic analysis also showed that hemoglobin subunit
beta-1 was less while hypoxia up-regulated protein 1 was
greater in fish exposed to MC-LR, which suggested that
exposure to MC-LR might induce hypoxia.41,42 Results of the
metabolomic analysis supported these findings, with lactate
being up-regulated in response to exposure to MC-LR. Lactate
results from glycolysis and its increase is indicative of a shift of
energy metabolism from aerobic respiration to anaerobic
respiration. Changes in amounts of several metabolites, related
to energy transformations, such as accumulation of pyruvate,
which is an end product of glycolysis, and succinate, which is an
intermediate of the tricarboxylic acid (TCA) cycle, were also
observed in livers of fish exposed to 10 μg MC-LR/L.
Expressions of NADH dehydrogenase (Ubiquinone) flavopro-
tein 1 (NDUFV1) and cytochrome c were down-regulated
(0.69-, 0.70-fold, respectively) in livers of fish exposed to 10 μg
MC-LR/L, whereas cytochrome c oxidase submit 2 (COX2)
was up-regulated (1.21-fold) in livers of individuals exposed to
1 μg MC-LR/L. NDUFV1, the core subunit of the
mitochondrial membrane respiratory chain NADH dehydro-
genase (Complex I), is a potent source of reactive oxygen

Figure 5. Expression of genes involved in energy metabolism and endoplasmic reticulum stress (ERS) in livers of zebrafish exposed to 1 or 10 μg
MC-LR/L for 90 days. (A) genes involved in glycolysis (pfk1b, pklr), tricarboxylic acid cycle (pdha1a, sdha), electron transport chain (nd1, coxI), and
oxidative phosphorylation (atp6), (B) genes involved in protein folding (pdi, ppcti) and ERS (ern1, xbp-1s, eif 2ak3, eif 2s1, atf6, atf4, hspa5, hsp90b1,
chop).Quantitative real-time PCR was used to test the expression levels of target genes. Gapdh and 18S rRNA were used as internal controls. Values
are presented as the mean ± standard error (SE). * indicates p < 0.05 versus control, and ** indicates p < 0.01 versus control.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.6b03990
Environ. Sci. Technol. 2017, 51, 596−607

603

http://dx.doi.org/10.1021/acs.est.6b03990


species (ROS), and its decrease might contribute to a deficit in
bioenergy or cause damage from oxidative stress.43,44

Cytochrome c (cyt c) is an essential component of the
electron transport chain (ETC) in mitochondria and transfers
electrons between Complexes III (Coenzyme Q - cyt c
reductase) and IV (cyt c oxidase), the terminal enzyme of
mitochondrial ETC.45 To further evaluate effects of MC-LR on
energy metabolism, real-time PCR was used to analyze
transcription of several genes involved in glycolysis (pfk1b,
pklr), TCA cycle (pdha1, sdha), ETC (nd1, sdha, coxI), and
oxidative phosphorylation (OXPHOS, atp6). Expressions of
mRNA for these genes were less in fish exposed to MC-LR
relative to those in controls not exposed to MC-LR, which
indicated that the energy generating system of zebrafish was
significantly impaired. Results of previous studies have shown
that MC-LR caused disorder in mitochondrial ETC and
OXPHOS systems of testis of rat and liver of crucian
carp.34,46 In the present study, swollen mitochondria were
also observed in livers of zebrafish exposed to MC-LR.
Impairment of mitochondria and depletion of energy reserves
would affect abilities of organisms to repair damage to cells or
proteins, due to exposure to MCs. Free amino acids can be
involved in both osmotic regulation and energy metabolism. In
this study, several amino acids were greater in livers of zebrafish
exposed to 10 μg MC-LR/L, which confirmed altered energy
metabolism.
In fish, lipids and fatty acids are preferred sources of energy,

in contrast to mammals which use carbohydrates.47 In this
study, significantly greater concentrations of glycerol and lesser
concentrations of L1: LDL&VLDL, CH3-(CH2)n-, L2:
LDL&VLDL, CH3-(CH2)n-, L3:VLDL, −CH2−CH2−CO,
L4: Lipid, −CH2−CHCH-, L5: Lipid, −CH2−CO, and
L6: Lipid, CH−CH2−CH observed in livers of fish
exposed to 1 μg MC-LR/L represented the disordering of
metabolism of lipids in liver. Moreover, the proteomic analysis
also showed that several proteins involved in metabolism of
lipids, such as Acetoacetyl-CoA synthetase, Apolipoprotein Eb,
Fatty acid-binding protein 10-A, liver basic, and Acbd7 protein
were up-regulated or down-regulated. These results are
consistent with the reported toxicological effects of MCs on
metabolism of lipids.28,48,49

CDIPT (CDP-diacylglycerol-inositol 3-phosphatidyltransfer-
ase), also known as phosphatidylinositol synthase (PIS), is
indispensable in synthesis of phosphatidylinositol (PtdIns)
from CDP-DAG and myo-inositol in endoplasmic reticula.50

Phosphorylated derivatives of PtdIns, phosphoinositides (PIs),
are crucial regulators of calcium homeostasis, membrane
trafficking, secretory pathways, signal transduction, and lipid
metabolism. In this study, CDIPT was up-regulated while
phosphoinositide phospholipase C (PLC) was down-regulated.
Previous studies demonstrated that cdipt-deficient zebrafish
exhibit endoplasmic reticulum stress (ERS) in liver and
steatosis.50 A recent study showed that MC-LR altered
mRNA and protein expression of ERS signaling molecules
(PERK and ATF6) related to hepatic lipid metabolism
abnormalities in mice.51

The endoplasmic reticulum (ER) is one of the largest cellular
organelles and is responsible for regulation of synthesis, folding
and targeting of proteins as well as metabolism of lipids and
overall maintenance of calcium homeostasis. In the case of an
ER disturbance, whether through alteration of concentrations
of calcium, oxidative stress or disruption of energy balance, all
of which were observed previously due to exposure to MCs,

influx of unfolded or misfolded peptides exceeded capacity of
ER to fold and/or process, ER stress (ERS) would be
triggered.52−54 To combat ERS, cells have evolved a highly
conserved adaptive response, referred to as the unfolded
protein response (UPR), by increasing production of protein
chaperones needed for proper folding of proteins or if
unsuccessful by degrading unfolded proteins. Formation of
correct disulfide bonds between cysteine (Cys) residues and the
cis−trans isomerization of peptide bonds preceding proline
(Xaa-Pro bonds) are the rate-determining processes in folding
of some proteins, which can be accelerated by protein disulfide
isomerase (PDI) and peptidyl-prolyl cis−trans isomerase (PPI),
respectively.55 However, both of these enzymes were shown to
be up-regulated, suggesting that protein folding was disturbed
by prolonged exposure to MC-LR. Apart from PDI and PPI,
several proteins involved in ERS and UPR, including
Calumenin-A, Dnajb11 protein, Calr protein, Cysteine-rich
with EGF-like domain protein 2, were up-regulated. Results of
real-time PCR also showed that transcription of genes involved
in protein folding (pdi, ppcti) and endoplasmatic reticulum
stress (ern1, xbp-1s, eif 2ak3, atf6, atf4, hspa5, hsp90b1) were
greater in individuals exposed to MC-LR, relative to those in
unexposed control individuals. The results of the study
presented here revealed that ERS plays a role in disruption of
metabolism of lipids in livers of zebrafish exposed to MC-LR.
Results of previous studies have shown that exposure to MC-
LR induced ERS and UPR in liver of zebrafish and mice, and
human hepatoma HepG2 and Huh7 cells.51,54,56−59 However,
since a longer exposure was performed in this study, the
zebrafish might be unable to alleviate ERS such that ER-
associated degradation occurred. Greater concentrations of free
amino acids observed by metabolomics might have also resulted
from MC-induced protein degradation and/or the process of
cellular injury and repair itself.
The organic osmolytes, myo-inositol, trimethylamine N-

oxide (TMAO), and glycerophosphocholine (GPC) were
significantly greater in livers of zebrafish exposed to MC-LR.
Severe histopathological change (cell shrinkage) in livers of fish
exposed to MC-LR, was indicative of disrupted osmotic
balance. During cell shrinkage, cells accumulate osmolytes to
adapt to changes in cell volume, but this process is
metabolically expensive.60 Thus, increases of myo-inositol,
TMAO and glycerophosphocholine might be an attempt of fish
to maintain intracellular homeostasis.
S-adenosylmethionine synthase (methionine adenosyltrans-

ferase, MAT), the unique enzyme responsible for synthesis of
S-adenosylmethionine (SAMe) from methionine and adenosine
triphosphate (ATP), was significantly down-regulated in livers
of fish exposed to MC-LR, whereas the concentration of
methionine was greater. SAMe is the principal biological donor
of methane and plays a critical role in maintaining normal
hepatic function.61 It can also regulate glutathione (GSH) levels
through the trans-sulfuration pathway. Results of our previous
studies also demonstrated that concentrations of both MAT1a
and GSH were significantly less in livers of rats exposed to MC-
LR, which resulted in a decoupling of the detoxification system
and making cells more susceptible to oxidative stress.62,63

However, concentrations of GSH were greater in livers of
zebrafish exposed to MC-LR, which can explain the greater
tolerances of fish to MCs than mammalians.64 MCs have been
previously shown to bind to cysteine (Cys) residues of proteins
in liver and it is likely that induction of protein disulfide
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isomerase (PDI) is involved in cellular detoxification to
formation of MC-Cys conjugation with proteins.65

Given the fact that osmotic regulation, unfolded protein
response, GSH synthesis, and excretion of MCs are energy-
dependent, accumulation of osmolytes and detoxification might
aggravate energy deficiency induced by MCs. However,
phosphocreatine (PCr) was significantly greater in livers of
zebrafish exposed to either 1 or 10 μg MC-LR/L, compared
with that of controls. PCr is used as an emergency energy
source, donating one phosphate group to adenosine diphos-
phate (ADP) to supply unmet ATP need.60 Glycogen and α-
and β-glycose, were also greater in livers of zebrafish exposed to
1 μg MC-LR/L. Thus, greater concentrations of PCr, glycogen
and glycose represented a protective mechanism to counteract
deficiency in energy caused by exposure to MC-LR and
qualified as biomarkers for toxicity of MC-LR.
One unexpected observation in proteomic analysis was that

exposure to MC-LR can down-regulate expression of serine/
threonine-protein phosphatase 2A catalytic subunit (PP2A C
subunit). Covalent binding and inhibition of PP1 and PP2A is
widely assumed to be the principal mechanism by which MCs
cause toxicity, which in turn causes excessive phosphorylation
of proteins.66,67 Results of several studies, which were
inconsistent with our study, have shown that MC-LR up-
regulated expression of PP2A C subunit in Huh7 cells and
zebrafish larvae and increased PP activities in liver and brain of
zebrafish after acute or subchronic exposure27,44,59,68 This could
potentially have resulted from differences in species-, organ-,
cell- sensitivities and/or difference between chronic exposure
and acute/subchronic exposure. It is also possible that chronic
exposure to MC-LR can modulate expression of protein
phosphatase rather than serving the previously predicted
structural roles as a molecular scaffold. Therefore, the finding
that MC-LR can down-regulate expression of the PP2A C
subunit observed in the present study might deepen our
understanding of its toxicity mechanisms.
Four proteins including histone 2A (H2A), histone 3 (H3),

histone deacetylase 8, acidic leucine-rich nuclear phosphopro-
tein 32 family member E (ANP32E) were significantly different
in livers of zebrafish exposed to 1 or 10 μg MC-LR/L. Histones
are primary protein components of chromatin, acting as spools
around which DNA winds, thus enabling compaction necessary
to fit large genomes of eukaryotes inside their nuclei. ANP32E
is an H2A.Z chaperone, specifically able to remove H2A.Z from
the nucleosome.69 Modifications of histones, including
acetylation and deacetylation act in diverse biological processes,
such as regulation of transcription, repair of DNA, and
condensation of chromosomes.70,71

In summary, this is the first study revealing that chronic
exposure to MC-LR cause damage of liver of a model fish
species, zebrafish. Using combined proteomics and metab-
olomics, we have provided detailed molecular information, at
both regulatory and functional levels, on the responses of
zebrafish to MC exposure. MC-LR significantly caused
dysfunctions of mitochondria and caused a switch from aerobic
to anaerobic respiration. In addition, endoplasmic reticulum
stress contributed to disturbance of metabolism of lipids in liver
of zebrafish exposed to MC-LR.
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