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1

1 I N T R O D U C T I O N

The liver is the major organ involved in the metabolism and excretion of the majority of
drugs and toxins that are introduced into the body. Parent drugs or their metabolites can
cause hepatotoxicity, that lead to drug-induced liver injury (DILI). DILI has an estimated
annual incidence between 10 and 15 per 10,000 to 100,000 persons exposed to prescription
medications [1, 2, 3, 4]. DILI is also the most frequently cited reason for withdrawal of
medications from the market [5, 6]. DILI may not be detected in the pre-clinical and clinical
studies prior to drug approval, because most new drugs are tested in fewer than 10,000

people prior to drug approval. As a result, DILI with an incidence of 1 in 10,000 may
be missed. Apart from the safety issues, drug development is a time consuming process
(10-15 years) and huge costs ($2.6 billion) are involved before a new drug is approved on
the market [7]. As a consequence, intensive efforts are being made both in academia and
industry to develop biomarkers and methodologies to assess hepatotoxic effects as early as
possible. The methods include quantitative structure activity relationship assessments, in
vitro assays, high-content screening assays and omics studies [8, 9]. Currently, hepatotoxicity
is evaluated in in vivo repeated-dose toxicity tests in animals by analysis of hematological,
histopathological and clinical parameters. However, these parameters can generate false
negative results due to their insensitivity [10, 11] or due to species differences. In addition the
predictive value of these preclinical studies is limited [12]. This emphasizes the need for novel
screening methods that facilitate the early assessment of the toxic potential of new molecules
[]. These new screening methods are preferably applied on in vitro test systems to reduce
the number of laboratory animals. In addition preferably human derived systems should
be used to avoid interspecies extrapolation. To improve the sensitivity of the preclinical
parameters, omics-technologies have been developed and in particular the transcriptomics
based screenings have already shown promising results for improving the current toxicity
tests [8].

The development of predictive models is also hampered by the wide variety of phenotypes
of liver injury. DILI is mainly classified into intrinsic (dose-dependent, reproducible) and
idiosyncratic (low incidence and largely dose-independent) types. Intrinsic DILI results in
different phenotypes of toxic injury based on acute or chronic exposure to drugs such
as apoptosis, necrosis, cholestasis, steatosis, fibrosis or cirrhosis. Whereas idiosyncratic
drug-induced liver injury (IDILI) is a rare adverse drug reaction of which the mechanism
is still poorly understood and which can lead to cholestatic or hepatocellular injury resulting
in liver failure, or even death.

1.1 liver toxicity phenotypes

In this thesis, we focused on four toxic phenotypes: cholestasis, fibrosis, necrosis and
idiosyncratic toxicity. Some mechanistic details underlying the studied toxic phenotypes are
outlined here.

1
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liver necrosis Necrosis is caused by acute metabolic perturbation that leads to ATP
depletion. Drug-induced cell necrosis results from an intense and massive perturbation
of cell homeostasis, with ATP depletion associated with cytoskeletal alterations, cellular
swelling and bleb formation and rupture of the lysosomal membrane resulting in release of
lysosomal enzymes and irreversible collapse of electrical and ion gradients [13]. The clinical
course of acute hepatic necrosis resembles an acute, toxic injury to the liver with sudden
and precipitous onset, marked elevations in serum aminotransferase levels, and early signs
of hepatic (or other organ) dysfunction or failure despite minimal or no jaundice. Rapid
recovery after withdrawal of the causing agent is also typical. Acute hepatic necrosis is
typically caused by a direct hepatotoxin and is usually dose dependent and intrinsic, rather
than idiosyncratic. In many cases a reactive metabolite is involved that covalently binds to
tissue macromolecules.

liver cholestasis Cholestasis is a condition characterized by inhibition of bile flow
from the liver to the bile ducts, which may damage the liver. Cholestasis accounts for 40-50

% of all reported DILI cases [14, 15]. The main causative event involved in drug-induced
cholestasis is assumed to be BSEP (Bile Salt Export Pump) inhibition by drugs. As a
result of this, toxic bile acids accumulate in the hepatocytes or bile canaliculi [16, 17, 18].
These bile salts trigger an adaptive response and a direct deteriorative response. Adaptive
response activation counteracts bile accumulation and thus cholestatic liver injury. A
complex machinery of transcriptionally coordinated mechanisms mediated by FXR, LXR,
CXR and PAR nuclear receptors is activated by bile acids, which collectively decrease
the uptake and increase the export of bile acids into and from hepatocytes, respectively.
Also, detoxification of bile acids is enhanced, while their synthesis becomes downregulated
[19, 16, 17, 18]. Despite the activation of these protective pathways, a deteriorative response
occurs, accompanied by mitochondrial impairment, inflammation, the production of reactive
oxygen species and ultimately to the onset of cell death by both apoptotic and necrotic
mechanisms. Recently, Vinken et al proposed an Adverse Outcome Pathway for cholestasis
(fig. 1), which describes the mechanism of cholestasis from the first molecular interaction
between the toxin and the cell, via the cellular effects to the effect on the tissue and the final
outcome for the organism [16, 17, 18]. Proposed key events are the accumulation of bile acids,
the induction of oxidative stress and inflammation, and the activation of nuclear receptors.

liver fibrosis Liver fibrosis is the scarring process that represents the liver s response
to chronic cellular injury and reflects an imbalance between liver repair and scar formation
[20]. A central event in liver fibrosis is the activation of hepatic stellate cells to adopt
a myofibroblasts like phenotype [21]. Different key events at the cellular and tissue
level include hepatocyte injury and cell death, activation of Kupffer cells, expression of
transforming growth factor beta 1, activation of hepatic stellate cells, oxidative stress and
chronic inflammation, collagen accumulation and changes in hepatic extracellular matrix
composition [22]. CCl4 intoxication, which is a well-known inducer of fibrosis in rat and
mouse, is most studied as a model to understand mechanistic events in liver fibrosis [23].
Also for fibrosis an adverse outcome pathway was proposed (fig. 2), clearly indicating the
involvement of several liver cell types [22].
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Figure 1: Adverse outcome pathway for cholestasis (reprinted with permission from [18])

Figure 2: Adverse outcome pathway for fibrosis (reprinted with permission from [22])
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Figure 3: Links between inflammatory stress and other hypotheses for the pathogenesis of IDILI
(reprinted with permission from [26])

idiosyncratic dili Idiosyncratic drug-induced liver injury differs from intrinsic
toxicity in that IDILI is not directly reproducible in animal models; not strictly
dose-dependent (although it occurs mainly with drugs that are dosed at a relatively high
dose); variable and often delayed time of onset, variable liver pathology and usually not
related to the drug’s pharmacologic mechanism of action. To illustrate the latter, clozapine
is associated with IDILI whereas olanzapine is not. Although the risk of acute liver failure
associated with idiosyncratic hepatotoxins is low (about 1 in ten thousand patients) there are
more than 1,000 drugs and herbal products associated with this type of toxic reaction [24, 25].

Several hypothesis are being tested to understand the mechanisms of IDILI drug
reactions such as the inflammatory stress hypothesis, hapten hypothesis, failure to adapt
hypothesis, danger signal hypothesis, reactive intermediate hypothesis and mitochondrial
stress hypothesis (fig. 3) [25, 26, 27]. The inflammatory stress hypothesis is based on the
assumption that an acute episode of inflammation has the potential to interact with the
concurrent drug therapy to precipitate IDILI. Inflammatory stress models in rodents have
suggested the potential role for inflammatory stress in the mechanism of human IDILI.
Substantial evidence for interactions between IDILI-causing drugs and inflammation has
been reported in these rodent models, which suggests that inflammation plays a role in
the idiosyncratic toxicities induced by some well-known IDILI drugs [26]. However, it is
also likely that various other mechanisms (fig. 3) alone or in combination, are involved in
idiosyncratic toxicities.
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1.2 in vitro model systems to study dili

In vivo animal studies are the toxicological gold standard for the assessment of the toxic
effect of chemicals. However, this type of study is time consuming, expensive and causes
suffering of the animals. Another problem is the increasing number of compounds that have
to be tested (among others as a result of the REACH initiative), making the in vivo studies not
eligible. Although animal studies are an important and useful tool and have to be performed
due to guidelines, there are limitations, and a study by Olson et al. showed that half of
the drugs that are hepatotoxic in humans did not have the same effect in animals. This
study included 221 drugs and the concordance for liver toxicity in humans and experimental
animals was 55%, which is only slightly better than tossing a coin, and which is much lower
than for other organs, such as the gastrointestinal (85%) and cardiovascular (80%) system
[28, 29, 30]. Moreover, in order to reduce the number of animals used in these studies and to
increase the possibilities for detailed mechanistic studies, in vitro models were developed to
evaluate the safety of compounds. In vitro models in general are more cost effective and
contribute to the replacement, reduction, and refinement of animal testing [31]. For the
hepatic metabolism and toxicity evaluation of drugs several in vitro models are currently
used: the isolated perfused liver (i.e. the intact organ), liver slices, isolated cell preparations
(e.g. hepatocytes, or cocultures of hepatocytes with other cell types), cell lines (e.g. HepaRG,
HepG2), subcellular fractions (e.g. microsomes), expressed enzymes and in silico models [32].
Stem cell derived hepatocytes are currently under development, which will enable ample
availability of differentiated human cells [33].

Drug-induced liver injuries are caused by complex processes, which involve numerous
cell types and mediators, making toxicity studies in isolated hepatocytes or liver cell lines
incomplete. In contrast, the ex vivo model of precision-cut organ slices retains the same
multicellular, structural and functional characteristics as the in vivo tissue. This model allows
a better understanding of cell interactions involved in drug-induced injuries. Precision-cut
liver slices (PCLS) retain the organ architecture and compared to primary hepatocytes, they
allow the analysis of regional toxicity (e.g. zonal effects across the liver lobule) and the
study of the role of all liver cell types in hepatic toxicity [34]. Since the tissue architecture
is maintained, the effects of toxicants can be evaluated with morphological techniques (e.g.
histological evaluation, immunocytochemistry) in addition to the clinical biochemistry tests
[32]. This model can be used for different species and organs (e.g. liver, kidney, lung, brain,
small intestine and colon), allowing cross-species and inter-organ comparisons [34]. Although
this model has been successfully applied to human liver tissue, like for all in vitro models
prepared from human tissue, the availability of human tissues limits the throughput of
human PCLS. Advantages and disadvantages of the PCLS model in comparison to other
in vitro systems are summarized in table 1.
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Table 1: Summary of commonly used in vitro hepatotoxicity model systems

System Advantages Disadvantages

Liver slices - retained organ complexity, cell polarity,
intercellular and cell-matrix contacts

- similar preparation for all species

- several organs from the same donor can be
studied and cocultured

- histological and biochemical tests

- intra-organ regional differences

- functional bile canaliculi

- exposure and activity of cells in slices can
vary

- lifespan limited to 5 days

- no cryopreservation available yet

- low throughput

- development of fibrosis in cultures longer

than 2 days

Primary

hepatocyte

suspensions

- short time maintenance of in vivo function

- cryopreserved hepatocytes available

- medium-high throughput

- in vitro lifespan <3 hours

- rapid and progressive loss of in vivo
properties

- loss of cell polarity

Hepatocyte

monocultures
- polarity partly restored in sandwich
cultures

- cryopreserved hepatocytes available

- medium-high throughput

- limited interactions between cells

- absence of other cell types

- loss of differentiation and drug metabolism

Co-cultures of

hepatocytes

and other cells

- better maintenance of differentiation

- cryopreserved cells available

- specific cell-cell interactions can be studied

- conflicting cell culture requirements for
different cells

- non-physiological orientation

- complex procedures

- low throughput

Cell lines - readily available

- relatively reproducible

- easy preparation

- cryopreserved cell lines available

- restored polarity in some cell lines

- high throughput

- loss of differentiation

- cancer cell properties

- lacking many functional characteristics of

liver tissue

Stem

cell-derived

hepatocytes

- once successfully differentiated, ample
availability

- high throughput

- patient-specific cells

- cryopreservation possible

- full differentiation not yet achieved

- complex preparation

Organoid

cultures
- restored cell contacts and polarity

- patient-specific cells

- technically complex

- low-medium throughput

- loss of differentiation

Perfused liver - biliary excretion functions intact

- maintenance of organ complexity,
intercellular contacts and cell polarity

- intact blood/medium supply through the

sinusoids

- short life span (<3h)

- difficult to apply to human livers

- very low throughput
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model compounds

For the research studies described in this thesis, prototypical hepatotoxic compounds were
selected based on extensive literature search, that are known to induce a specific phenotype
of toxicity such as necrosis, cholestasis, fibrosis and IDILI, based on their known in vivo
toxicity. These well-defined hepatotoxicants served to elucidate the mechanisms underlying
the toxic phenotype and classify the hepatotoxicants based on their phenotype of toxicity.
The compounds studied in this thesis are briefly described here.

Necrotic compounds

Hepatotoxicants that were described to induce liver necrosis only, with limited or no signs
of cholestasis, were selected by literature search and also by using the histopathology data
from the TG-GATEs toxicogenomics database (http://toxico.nibiohn.go.jp/).

acetaminophen Acetaminophen (paracetamol, APAP) is a widely used
over-the-counter drug, used for its analgesic and antipyretic effects. At therapeutic
doses, APAP is considered a safe drug, but at higher doses it can produce centrilobular
hepatic necrosis, that can be fatal to the patient. APAP hepatotoxicity is by far the most
common cause of acute liver failure [35]. The liver injury is attributed to its reactive
metabolite (NAPQI), which among others shows mitochondrial toxicity.

benziodarone Benziodarone (BZ) is a vasodilator and a uricosuric agent. It was
withdrawn in 1964 due to hepatotoxicity [36]. The compound has a chemical structure similar
to benzbromarone, a well-known hepatotoxic agent [37].

chloramphenicol Chloramphenicol (CH) is a broad-spectrum antibiotic extracted
from the bacterium Streptomyces venezuelae. An in vivo study in rats showed that CH has
necrotic effects on the liver [38]. In humans, acute liver necrosis was reported after CH
therapy [39]. Oxidative stress is possibly involved in the CH induced hepatotoxicity [40].
One isolated case of cholestatic jaundice was reported [41].

colchicine Colchicine (CL) is a natural product and secondary metabolite, originally
extracted from plants of the genus Colchicum used in treatment of gout. Colchicine is known
to cause hepatic necrosis and inhibition of microtubule or spindle formation and mitotic
arrest were suggested to be the mechanisms of colchicine hepatotoxicity[42, 43].

n-nitrosodiethylamine N-nitrosodiethylamine is a carcinogen, and it is used to
induce hepatocellular carcinoma in animal experiments [44]. It is also shown to induce
hepatic necrosis in mice in vivo [45]. Generation of reactive oxygen species (ROS) that results
in oxidative stress or cellular injury is the suggested mechanism involved in hepatotoxicity
[45].

Cholestatic compounds

Hepatotoxicants, which are known to induce cholestasis by different mechanisms, were
chosen from the literature.
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1-napthyl isothiocyanate (anit) ANIT is a model compound which causes
cholestasis in experimental animals [46]. ANIT induced cholestasis involves direct injury
to bile ducts, called cholangiodestructive cholestasis [47].

cyclosporine (cs) Cyclosporine is an immunosuppressant drug widely used in organ
transplantation to prevent organ rejection. Cyclosporine is known to induce cholestasis in
kidney, heart and liver transplant patients [48, 49]. CS is a potent inhibitor of BSEP and BSEP
inhibition is the mechanism involved in the CS induced cholestasis [47, 50].

chlorpromazine (cp) Chlorpromazine is a antipsychotic drug being used to treat
schizophrenia. Chlorpromazine treatment was observed to cause hepatocanalicular jaundice
in 1% of patients within 1-5 weeks of treatment. Chlorpromazine-induced cholestasis is
associated with hypersensitivity or idiosyncratic reaction resulting in cholestatic hepatitis
[47]. Other mechanisms have also been suggested, including inhibition of bile flow, inhibition
of Na+-K+-ATPase function and an alteration of membrane fluidity.

ethinyl estradiol (ee) Ethinyl estradiol is an orally active estrogen used in many
formulations of oral contraceptive pills. Pure cholestasis without hepatitis characterized by
selective interference with bile excretory mechanisms is observed with ethinyl estradiol [47].
Interference of the glucuronide metabolite of EE with bile excretory transporters (BSEP) is
involved in the ET induced cholestasis.

methyl testosterone (mt) Methyl testosterone is used as anabolic steroid.
Cholestatic jaundice is observed in a patient with normal or mild elevation of alkaline
phosphatase [51]. As like EE, interference with bile excretory mechanisms is involved in
the MT induced cholestasis. Pure cholestasis without hepatitis is also observed with methyl
testosterone in rats [47, 52].

Idiosyncratic compound

In order to apply toxicogenomics to study the possible mechanisms involved in IDILI,
clozapine, which is known to cause drug-induced IDILI in humans was considered.

clozapine Clozapine is an atypical antipsychotic medication used in the treatment of
schizophrenia. Idiosyncratic reactions associated with clozapine include cholestatic liver
injury as evidenced by an increase in serum γ-glutamyl transferase (GGT) activity in humans
[53]. A non-injurious dose of LPS and nontoxic dose of clozapine in rats resulted in significant
increases in serum liver enzymes which did not occur with neither clozapine nor LPS alone
[54]. As a non-idiosyncratic pharmacological analogue to clozapine, olanzapine was included
in the studies to be able to separate the pharmacological effects from the IDILI. Olanzapine
is also an atypical antipsychotic drug and is considered a safe alternative in the treatment of
refractory schizophrenia [55].
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1.3 toxicogenomics

Drug induced liver injury is traditionally assessed in preclinical studies using clinical
biomarkers. Clinical biomarkers such as alkaline phosphatase, alanine amino-transferase,
asparate amino-transferase, gamma glutamyl transferase and bilirubin can give valuable
information about liver injury due to drugs but their lack of sensitivity and specificity
challenges the identification and differentiation of different liver toxic phenotypes. The
current biomarkers for liver injury are reflecting the amplitude of the organ damage rather
than the mechanism of action of toxicants. Also, these enzymatic or endogenous markers are
released in blood (or medium) as a result of irreversible damage of the cell membrane due
to necrosis and mostly reflect a late response to the drug-induced injury. Drug-induced liver
injury is the result of alteration of biological processes induced by a drug or its metabolite,
resulting in toxic effects. Toxicogenomics deals with the collection and interpretation of
information about gene, metabolite and protein expression within a particular cell or tissue in
response to toxic substances [56]. It serves to elucidate the molecular mechanisms involved in
the toxicity, and to derive molecular expression patterns (i.e. molecular biomarkers) that can
predict toxicity [57, 58, 59, 8, 60]. Toxicogenomics combines toxicology with genomics, and
uses high throughput molecular profiling technologies such as transcriptomics, proteomics
and metabolomics and is being used in the academia and industry for more than a decade
to study toxic effects of pharmaceutical drugs or environmental chemicals in various ex vivo,
in vitro and in vivo model systems in order to predict the risk to patients or the environment
[11, 60].

transcriptomics Transcriptomics is the study of the transcriptome (the complete
set of RNA transcripts) that is produced by the genome, under specific conditions using
microarray analysis. Comparison of transcriptomes allows the identification of differentially
expressed genes in response to different drug treatments. Toxic drugs can cause alterations in
the expression of genes, leading to the interruption of the corresponding biological functions,
networks and pathways that are of importance for the normal functioning of the organ [61].
Hence, the alterations in the levels of expression of these genes can reflect underlying toxicity
mechanisms [62]. There is also evidence that suggests that the gene expression changes in
the target organs present before the appearance of the classical biochemical and histological
indicators of toxicity [63, 64], thereby elucidating early events. As such, the determination
of changes in gene expression of selective gene markers in the target organs in response
to the exposure to toxic drugs helps in the pre-clinical diagnosis of toxic endpoints and in
turn helps in the selection of drug candidates. Moreover it may be helpful to design effective
intervention strategies for preventing adverse effects. The gene expression data provides
insights in the possible mechanisms underlying the toxicity and may also be used to identify
biomarkers of early toxicity.
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1.4 aim and scope of the thesis

The research described in this thesis was focused on the use of precision-cut liver slice
(PCLS) as an ex vivo model in combination with transcriptomics analysis to predict and
understand the possible mechanisms of intrinsic and idiosyncratic DILI. The ultimate goal
of this research is to contribute to a better early identification of drugs that cause intrinsic or
idiosyncratic toxicity in humans before the drug forward to further preclinical and clinical
evaluation, with concurrent reduction in the use of experimental animals.

In Chapter 2, rat PCLS was validated as an ex vivo model to identify the fibrotic potential
of toxic compounds after short-term exposure using a transcriptomics approach. In rat in
vivo, both paracetamol (APAP) and carbon tetrachloride (CCl4) induce liver necrosis, but
long-term treatment with CCl4, in contrast to paracetamol, causes liver fibrosis. The aim of
this study was to perform transcriptomic analysis to compare the early changes in mRNA
expression profiles induced by APAP and CCl4 in the rat PCLS and to identify early markers
that could predict fibrosis-inducing potential.

In Chapter 3, the human PCLS model was validated as an ex vivo model to reflect
drug-induced cholestasis and to identify the possible mechanisms of cholestasis-induced
toxicity using gene expression profiles. Five hepatotoxicants, which are known to induce
cholestasis (alpha-naphthyl isothiocyanate, chlorpromazine, cyclosporine, ethinyl estradiol
and methyl testosterone) were tested in the presence of a non-toxic concentration of a
physiological bile acid mixture. This non-toxic bile acid mixture (60 µM) was added to the
incubation medium in order to create an environment similar to that in the portal vein of
human in vivo. We aimed to verify whether human PCLS incubated with these cholestatic
drugs in the presence of this physiological bile acid mixture, correctly reflect the pathways
affected in drug-induced cholestasis in the human liver.

In Chapter 4, we aimed to confirm the hypothesis that hepatotoxicants can be classified
according to their phenotype of toxicity using human PCLS ex vivo, we tried to classify
known hepatotoxicants on their phenotype of toxicity using gene expression profiles.
Hepatotoxicants that are known to induce either necrosis (n=5) or cholestasis (n=5) were
tested at concentrations inducing low (<30%) and medium (30-50%) toxicity. Random forest
(RF) and support vector machine (SVM) algorithms were used to identify classifier genes,
which can discriminate hepatotoxicants based on the phenotype of toxicity.

Apart from testing PCLS as a suitable model to study drug induced intrinsic toxic
phenotypes such as fibrosis, cholestasis or necrosis, the PCLS model was also used to
study drug induced idiosyncratic toxicity. Recently, Hadi et al successfully developed and
validated the human PCLS as a model, based on the inflammatory test hypothesis, to discern
IDILI-related drugs from non-IDILI-related drugs, using human PCLS co-incubated with
IDILI drugs and lipopolysaccharide [65].

In Chapter 5, we carried out a transcriptomic analysis to identify possible biomarkers and
pathways responsible for IDILI using clozapine as a well-known IDILI drug and olanzapine
as its non-IDILI-associated analogue.

Finally, Chapter 6 presents a summary and general discussion of the major findings of
all studies presented in this thesis and a discussion of the future perspectives of the use of
human PCLS as model for the research on drug-induced toxicity in man.
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abstract

In rat in vivo, both paracetamol (APAP) and carbon tetrachloride (CCl4) induce liver
necrosis, but long-term treatment with CCl4, in contrast to paracetamol, causes liver fibrosis.
The aim of this study was to perform transcriptomic analysis to compare the early changes
in mRNA expression profiles induced by APAP and CCl4 in the rat precision-cut liver slice
model (PCLS) and to identify early markers that could predict fibrosis-inducing potential.

Microarray data of rat PCLS exposed to APAP and CCl4 was generated using a toxic
dose based on decrease in ATP levels. Toxicity pathway analysis using a custom made
fibrosis-related gene list showed fibrosis as one of the predominant toxic endpoints in
CCl4-treated, but not in APAP-treated PCLS. Moreover, genes which have a role in fibrosis
such as alpha-B crystallin, jun proto-oncogene, mitogen-activated protein kinase 6, serpin
peptidase inhibitor and also the transcription factor Kruppel-like-factor-6 were up-regulated
by CCl4, but not by APAP. Predicted activation or inhibition of several upstream regulators
due to CCl4 is in accordance with their role in fibrosis.

In conclusion, transcriptomic analysis of PCLS successfully identified the fibrotic potential
of CCl4 as opposed to APAP. The application of PCLS as ex vivo model to identify early
biomarkers to predict the fibrogenic potential of toxic compounds should be further explored.
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2.1 introduction

Paracetamol (APAP) and carbon tetrachloride (CCl4) are two well-known model
hepatotoxins. The mechanism of liver toxicity for both compounds is a multicellular
phenomenon [66, 67]. Chronic exposure to CCl4 in vivo leads to necrosis and subsequently to
fibrosis. In contrast, APAP induces necrosis but no fibrosis [68]. It remains to be established
why CCl4 induces fibrosis and APAP does not. The elucidation of this difference could lead
to more insight into the mechanisms of fibrosis and may also be used to find new early
biomarkers for fibrosis. If such differences in the mechanism of injury between APAP and
CCl4 could be mimicked in vitro, this would enable the study of these processes in man
by using human tissue. This would allow prediction of fibrogenic effects in man, thereby
circumventing the issue of possible species differences, which arise when using animal
models.

The study of fibrosis in vitro requires a model with an intact liver architecture that can
mimic the multicellular mechanism of this process. One such model is precision-cut liver
slices (PCLS), as it has all the different liver cell types in their original architecture. This
PCLS model system has been validated extensively for over a decade [69, 70, 71, 72, 73].
Although the process of fibrosis in vivo is considered to be the result of chronic exposure, it
has been shown that CCl4 treatment leads to induction of biomarkers for hepatic stellate cell
activation in liver slices, as early as after 16 hours of exposure, indicating that the early phase
of fibrosis can be detected in this ex vivo system [72, 74]. In addition, in PCLS, the other cell
types involved in fibrosis, such as hepatocytes, endothelial and Kupffer cells, remain viable
and functional during culture and can be activated, as has been shown in studies using
endotoxin [75, 76, 77, 78] or bile acids [79, 80]. As the validation of the rat PCLS model
is greatly supported by comparison with in vivo data, which is largely confined to animal
studies and is scarcely available for human liver, we studied the gene expression in rat PCLS
after treatment with CCl4 and APAP. Although we do not make the comparison with in vivo
data in this paper, we know that in rats in vivo CCl4 induces liver necrosis and fibrosis and
that APAP does induce only necrosis. Microarray analysis of rat liver treated with CCl4 and
APAP in vivo and in PCLS, using a commercial gene expression in vivo database, showed
that rat PCLS can predict the toxicity and at least part of the pathology observed in vivo [71].
Data of human PCLS are currently being collected and will be analyzed and published in the
future.

In the present study we performed further transcriptomic analysis from the data of the
above-mentioned experiments with the rat PCLS model to characterise the gene expression
profiles induced by APAP and CCl4 and to elucidate whether a gene expression pattern
related to early fibrosis could be detected for CCl4 but not for APAP. We performed
a comparison analysis with respect to the regulated genes, and also analysed upstream
regulators, which could possibly be responsible for the observed gene expression changes.
If prediction of long-term toxicity appears to be feasible at an early time point using PCLS,
this model would contribute greatly to reducing and refining animal experimentation and to
reducing costs of toxicity testing.
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2.2 materials and methods

Microarray data of APAP and CCl4 from our earlier published transcriptomic study using
rat PCLS was used [71]. In these experiments rat PCLS were exposed to CCl4 [72, 74] and
APAP [71]. RNA was isolated and the RNA processing and hybridization was performed as
described [72, 74, 71]. These methods are described only briefly here; see for details these
two references.

rat liver slice preparation Rat livers from male Wistar rats (Harlan, Zeist,
The Netherlands) were harvested under anesthesia with isoflurane and stored at 4

oC in
University of Wisconsin organ preservation solution (UW, Dupont Critical Care, Waukegan,
IL, USA) until slicing (max 15 min). Precision-cut liver slices (diameter 8 mm, thickness 250

µm) were prepared using a Krumdieck tissue slicer in ice-cold Krebs-Henseleit buffer, pH
7.4, supplemented with glucose to a final concentration of 25mM, saturated with carbogen
(95% O2/5% CO2). Slices were stored at 4

oC in UW until the start of the experiment [71].

rat liver slice experiments Slices were pre-incubated individually in 6-well
culture plates, each slice in 3.2 ml Williams Medium E with glutamax-1 (Gibco, Invitrogen,
Paisley, Scotland) supplemented with 25mM D-glucose and 50 g/ml gentamycin (Gibco,
Invitrogen) (WEGG medium) under carbogen atmosphere at 37

oC for 1 hour, while gently
shaken (90 times/min). After pre-incubation the slices were transferred to fresh WEGG
medium. The experiments with APAP were performed in 6-well plates with 3.2 ml medium
[71], while CCl4 slices were incubated in 25 ml Erlenmeyer flasks containing 5 ml medium
[72, 74]. The toxic dose was selected at a 60 to 90% decrease in ATP levels with respect to
corresponding controls. The PCLS were exposed to 2.5 mM APAP. CCl4 was spotted in an
amount of 5 µl on a filter paper, which was attached to the stopper with a needle and was
situated above the liquid phase as described earlier [72, 74]. Since the toxic concentration of
CCl4 at 16 h already showed a relatively large ATP depletion, this 16 h time point was chosen
in contrast to 24 h APAP samples. Three different livers were used for each experiment; for
RNA isolation 3 slices were pooled and quickly frozen in liquid nitrogen and stored at -80

oC.

isolation of rna for microarray analysis Total RNA was isolated from three
combined slices from each experiment with the use of Trizol reagent (Invitrogen, Carlsbad,
CA, USA). The RNA concentration and quality was determined with use of the NanoDrop
(ND-1000 spectrophotometer) and the agilent technology (Agilent 2100 Bioanalyzer with
Agilent RNA 6000 Nano kit). Before processing the purity of RNA was determined by
measuring E260/E280 and the Agilent RNA Integrity number (RIN) [81]. The E260/E280

values from all samples were >1.8. The RIN values were >8, with one exception: one
16h control for CCl4 with a RIN value of 7.8. If necessary, RNA was cleaned-up by
extraction with phenol/chloroform/isoamylalcohol, followed by a second extraction with
chloroform/isoamylalcohol and precipitation with ethanol and lithium chloride.

rna processing and hybridization Double-stranded cDNA was synthesized
from 5 µg total RNA using the Custom Superscript ds cDNA synthesis kit (Invitrogen,
Carlsbad, CA) and used as a template for the preparation of biotin-labeled cRNA with
use of the Bioarray HighYield RNA Transcript Labeling kit (T7) (Enzo Life Sciences, Inc,
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Farmingdale, NY). After fragmentation at 1µg/µl according to the manufacturer’s protocol,
biotin-labeled cRNA (10 g) was hybridized at 45 C for 16-17 hours to the RGU34A array
(Affymetrix, Santa Clara, CA). Following hybridization, the arrays were washed, stained
with phycoerythrin-streptavidin conjugate (Molecular Probes, Eugene, OR), and the signals
were amplified by staining the array with biotin-labeled anti-streptavidin antibody (Vector
Laboratories, Burlingame, CA) followed by phycoerythrin-streptavidin. The arrays were laser
scanned with a GeneChip Scanner 3000 (Affymetrix, Santa Clara, CA) according to the
manufacturer’s instructions.

microarray data pre-processing and analysis Normalization of the
microarray data was performed by RMA normalization using MicroarrayRUS v.1.0 software
[82]. Control genes are removed from the rest of the analysis. Rank product analysis of
the normalized data was performed using MicroarrayRUS v.1.0 software [83]. A list of
differentially expressed genes was created using criteria of fold change of 1.5 and multiple
hypothesis adjusted p-value 0.05 and used as input for pathway analysis in Ingenuity
software.

gene expression dynamics analysis Gene Expression Dynamics Inspector (GEDI)
transforms high-dimensional gene expression data into distinct two-dimensional (2D) color
patterns. The graphical output of GEDI gives the visual representation of the samples. The
metagene signature of each sample is represented in a grid of 26 × 25 tiles; each of the tiles
contains genes that are highly correlated with each other. The tiles are arranged such that
each tile is also correlated with the adjacent tiles. Thus, it allows a global first-level analysis
of the data to observe the response due to the effect of a drug. Pattern analysis of the data
was performed by GEDI software (default settings) to understand the global transcriptomic
changes induced by compounds [84].

pathway and network analysis Ingenuity Pathway Analysis
("http://www.ingenuity.com/products/ipa") was used to determine pathways and
networks that could describe the toxicity of APAP and CCl4. Rat liver tissue specific pathway
analysis was performed.

custom-made toxlist analysis Custom-made toxlists were also considered for
analysis along with toxlists present in the Ingenuity knowledgebase. Custom fibrosis toxlists
were created based on our observation that the toxlist for hepatic fibrosis in IPA does not
include all the known genes related to the fibrotic process. Custom-made toxlists for fibrosis
were generated by using the information from different sources such as SABioscience fibrosis
PCR chip ("http://www.sabiosciences.com/rt_pcr_product/HTML/PARN-120Z.html") and
an in-house custom made chip with genes related to collagen synthesis and breakdown [85].
SABioscience provides a custom fibrosis PCR array chip containing genes related to fibrosis.
Finally a combined gene list is generated from the genes of IPA fibrosis toxlist, SABioscience
and in-house custom array of collagen-metabolism related genes. IPA uses Fisher exact test
to calculate statistical significance.

upstream regulator analysis Upstream Regulator Analysis was performed to
identify the upstream regulators that may be responsible for the observed gene expression
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changes. IPA predicts which upstream regulators are likely to be activated or inhibited,
which in turn could explain the gene expression changes observed in the dataset. IPA
makes predictions on upstream regulators using a z-score algorithm [86]. The z-score value
is calculated using the gene expression patterns of the genes downstream of an upstream
regulator. P-value of overlap indicates the statistical significance of genes in the dataset
that are downstream of the upstream regulator but unlike the z-score, it does not take into
consideration up or down-regulation of genes in dataset. Upstream regulators with a z-score
greater than 2 or smaller than -2 and p-value of 0.05 were considered significant and their
role in fibrosis was studied.

causal network analysis Causal Networks are small hierarchical networks of
regulators that control the expression of the regulated genes. This helps to identify novel
upstream regulators, because they influence the expression either directly or indirectly via
intermediate regulators [86]. Causal networks generated by IPA with an activation z-score
greater than 2 or smaller than -2 and p-value of overlap 0.05 were considered significant and
their role in fibrosis was studied.

2.3 results

gene expression dynamics analysis The expression values of all the replicates
of each group were averaged to make a representative self-organizing map of each group
using GEDI (Fig. 4). The regions where gene expression patterns are different are indicated
in boxes (as in A, B, C, D).

The change in color of the cells in those boxes can be interpreted as change in expression
intensity of genes in those cells. The APAP control (A) group at 24h is similar to the
CCl4 control group at 16h (C), although there are slight differences, which may be ascribed
to a difference in incubation time. Expression patterns of slices treated with each of the
compounds were considerably different from their corresponding controls. Although visually
small differences were noticed between the APAP treated (B) and CCl4 treated (D) group, the
gene expression intensity levels were different in those highlighted regions. Since each tile in
the GEDI map contains a group of correlated genes, such minor differences could indicate the
difference between compounds. Thus, GEDI analysis revealed evidence on the global level
that APAP and CCl4 have induced characteristic expression profiles, which can be explained
possibly by the different mechanisms of toxicity of both compounds.

gene selection by rank product analysis The rank product analysis method
has been showed to perform well to identify the regulated genes, particularly for datasets
that have a low number of samples or a high level of noise [83]. Regulated genes were
selected using a criterion of fold change of 1.5 and adjusted p-value of < 0.05 using the
MicroarrayRUS program. The Vennplex program [87] was used to observe the commonly
up- or down-regulated or contra-regulated genes. Contra-regulated genes are those that are
up-regulated in one compound and down-regulated in another compound. In total 174 genes
were deregulated in the case of CCl4 and 116 genes were deregulated in the case of APAP,
while 63 genes were similarly regulated in the presence of both compounds, of which 19
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Figure 4: Global Transcriptomic changes induced by APAP and CCl4
Comparative Gene Expression Dynamics Inspector (GEDI) analysis of averaged values of expression values from
biological replicates of APAP control (A) and treated (B), CCl4 control (C) and treated (D) samples. The Gene
density map (E), indicates the number of genes in each cell (white cells indicate the absence of genes in those
cells). The expression intensity is indicated in (F). Regions of difference are indicated with squares.

genes were up-regulated and 44 genes were down-regulated. No contra-regulated genes were
found as shown in Fig. 5.

The list of genes that are specifically deregulated by either APAP or CCl4, and also
the genes that are regulated in common due to APAP and CCl4 treatment are shown in
Supplementary data S3.

custom fibrosis toxlist analysis Custom fibrosis toxlist analysis was performed
using IPA with the toxlists obtained from the different sources described in the materials
and methods section. Toxlists regulated with a p-value of < 0.05 were considered significant
(corresponds to -log [p value] of 1.3). This analysis indicated that the set of genes in the
fibrosis toxlist from SABioscience was significantly regulated by CCl4 but not by APAP (Fig
6). The other custom toxlists were not found to be significantly regulated as a whole. However,
differences between the effects of CCl4 and APAP were found for some individual genes for
the other toxlists as well as for the combined fibrotic toxlist.

Genes such as JUN, LITAF, MAPK6, PLAT and SERPINE1 from the SABioscience fibrotic
toxlist were regulated by CCl4.

In Table 2 the genes from the fibrosis toxlists that are specifically deregulated in CCl4 are
listed. Except for PLAT, all the genes mentioned in Table 2 that are known to play a role in
the fibrotic process are specifically deregulated by CCl4 and not by APAP. Furthermore, the
markers specific for hepatic stellate cells such as KLF6 and CRYAB are up-regulated by CCl4.
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Figure 5: Venn diagram comparison of regulated genes between APAP and CCl4
Genes regulated with a fold change criterion of 1.5 and multiple hypothesis adjusted p-value of <0.05 were
compared. Genes regulated due to CCl4 and APAP are indicated in yellow and blue circles respectively and the
genes regulated in common are indicated in the region of interaction between yellow and blue circles.

Figure 6: Custom fibrosis toxlist analysis of APAP and CCl4 regulated genes
Horizontal line indicates the threshold corresponding to p-value of <0.05 and ND means that no
regulated genes were found in common with the corresponding toxlist and hence overrepresentation
was not assessed.
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Table 2: Fibrosis related genes, which are specifically regulated in case of CCl4

Gene Description Fold
change

Role in fibrosis

PLAT * Tissue plasminogen
activator

2 PLAT increases extra
cellularmatrix (ECM)
degradation [88, 89]

SERPINE1 Serpin peptidase
inhibitor

3.7 Progression of fibrosis [88]

MAPK6 Mitogen-activated
protein kinase 6

2.5 MAPK pathway is known to be
involved in the activation of
HSC [90]

JUN Jun proto-oncogene 2.6 JunD is implicated in the
regulation of hepatic stellate
cell (HSC) activation and liver
fibrosis [91, 92]

LITAF Lipopolysaccharide-induced
TNF factor

2.5 Induced in hepatic stellate cells
[93]

KLF6 Kruppel-like factor 6 11 Induced in response to early
fibrosis [94]

CRYAB Crystallin, alpha B 10.5 Induced in activated hepatic
stellate cells [95]

Genes known to play a role in fibrosis and are specifically regulated in CCl4 with corresponding fold
change and their role in fibrosis. * PLAT is also regulated due to APAP.
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Table 3: Upstream regulators predicted to be activated or inhibited due to CCl4 treatment

Upstream
Regulator

Molecule Type Predicted
State

Activation
z-score

P-value

EDN1 cytokine Activated 2.2 4.38E-03

EGF growth factor Activated 2.7 1.05E-04

ERN1 kinase Activated 2.2 1.23E-04

IL1A cytokine Activated 2.4 1.67E-02

IL1B cytokine Activated 2.2 1.71E-06

NUPR1 transcription regulator Activated 2.8 2.11E-02

STAT1 transcription regulator Activated 2 5.33E-02

TGFA growth factor Activated 2.4 2.53E-04

TGFB1 growth factor Activated 3.8 6.40E-04

TNF cytokine Activated 3.6 1.00E-09

ACOX1 enzyme Inhibited -2.6 1.38E-11

HNF1A transcription regulator Inhibited -2.6 4.55E-10

HNF4A transcription regulator Inhibited -3.0 7.28E-09

PPARA ligand-dependent nuclear
receptor

Inhibited -2.6 7.66E-22

PPARD ligand-dependent nuclear
receptor

Inhibited -2.6 1.28E-10

PPARG ligand-dependent nuclear
receptor

Inhibited -2.4 8.27E-07

RXRA ligand-dependent nuclear
receptor

Inhibited -2.6 6.74E-09

TFAM transcription regulator Inhibited -2 1.18E-04

Upstream regulators with their corresponding molecular type, predicted activation or inhibition state,
activation z-score and p-value of overlap.

upstream regulator analysis Upstream Regulator Analysis revealed that several
regulators are involved in controlling the expression of the genes regulated by CCl4 and
APAP treatment. These regulators and their target molecules (regulated genes) are shown in
Table 3 and Table 4 respectively. ACOX1, HNF4A and HNF1A are predicted to be inhibited
and TGFB1 is predicted to be activated due to treatment with both compounds. However
PKD1, AKT1, BRCA1, FGF2 and TP53 are unique to APAP treatment and PPARA, NUPR1

IL18, STAT1, TGFA, TNF, PPARD, PPARG, RXRA, TFAM, EDN1, EGF, IL1A and ERN1 are
unique to CCl4 treatment.

TGFB1, a growth factor known to play an important role in hepatic fibrosis during hepatic
stellate cell activation, is predicted to be activated due to both APAP and CCl4. However,
28 genes regulated by CCl4 treatment are causally linked to activation of TGFB1, whereas
only 19 genes are causally linked due to APAP treatment, resulting in a much lower p value
for CCl4 than for APAP. Mechanistic networks for visualizing the causal link between TGFB1

activation and their corresponding target molecules are shown in Fig. 7 and 8.
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Figure 7: Upstream regulator TGFB1 and corresponding regulated target genes due to CCl4 treatment
TGFB1 is predicted as activated and early fibrotic genes such as JUN, MAPK6, PLAT SERPINE1,
are causally linked to TGFB1. Their up-regulation due to CCl4 is consistent with TGFB1 activation.
Regulated genes are highlighted in red or green color, based on up or down-regulation respectively;
the intensity of the color increases with degree of fold change. The upstream regulator (TGFB1)
is indicated as activated (orange) or inhibited (blue) with the color intensity increasing with the
confidence level. Orange lines with arrowheads at the end of interactions indicate activation, while
blue lines with bars indicate inhibition. Yellow lines indicate inconsistent findings and grey line
indicate effect not predicted.
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Figure 8: Upstream regulator TGFB1 and corresponding regulated target genes due to APAP
treatment

TGFB1 is predicted as activated but none of the fibrosis related genes are causally linked to
TGFB1 except for PLAT. Regulated genes are highlighted in red or green color, based on up or
down-regulation respectively; the intensity of the color increases with degree of fold change. The
upstream regulator (TGFB1) is indicated as activated (orange) or inhibited (blue) with the color
intensity increasing with the confidence level. Orange lines with arrowheads at the end of interactions
indicate activation, while blue lines with bars indicate inhibition. Yellow lines indicate inconsistent
findings and grey line indicate effect not predicted.
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Table 4: Upstream regulators predicted to be activated or inhibited due to APAP treatment

Upstream
Regulator

Molecule Type Predicted
State

Activation
z-score

p-value of
overlap

AKT1 kinase Activated 2.2 4.77E-03

BRCA1 transcription regulator Activated 2.4 2.67E-04

FGF2 growth factor Activated 2.2 4.45E-02

TGFB1 growth factor Activated 2.2 1.27E-03

TP53 transcription regulator Activated 2.0 1.32E-02

ACOX1 enzyme Inhibited -2.6 1.80E-04

HNF1A transcription regulator Inhibited -2.0 2.16E-09

HNF4A transcription regulator Inhibited -2.9 1.33E-04

PKD1 ion channel Inhibited -2 2.34E-02

Upstream regulators with their corresponding molecular type, predicted activation or inhibition state,
activation z-score and p-value of overlap.

causal network analysis Causal Network Analysis reveals small hierarchical
networks of interacting regulators, which explains the gene expression changes observed
in the dataset. In the case of treatment with CCl4, many of these networks involve multiple
regulators combined with a master regulator. For example HNF4A interacts with HNF1A
and CTNNB1, which in turn have causal relations with 23 genes in the network. All the
significant networks which are predicted to be activated or inhibited due to both APAP and
CCl4 are reported in supplementary data S2. There were 24 causal networks predicted as
activated or inhibited in case of CCl4 but only five such significant networks are reported in
the case of APAP. Although the overall number of regulated genes affected by exposure to the
toxic concentration of APAP or CCl4 was more or less the same, there were large differences
with respect to the resulting causal networks.
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2.4 discussion

In this study, we performed the comparative analysis of the gene expression profiles of
rat PCLS induced by APAP and CCl4, which are known to induce toxicity by different
mechanisms. Comparison was performed using gene expression patterns, regulated genes,
and pathway and upstream regulator analysis of regulated genes.

Pattern analysis using GEDI revealed characteristic expression patterns due to a toxic
concentration of each of the compounds with respect to the corresponding control (Figure
4). The relatively small differences between the APAP and CCl4 induced expression patterns
could be due to the different mechanisms of toxicity, including the onset of fibrosis due
to CCl4. Similarities in the changes in expression patterns may be explained by the fact that
both compounds induce necrosis after short-term treatment, which was concluded previously
both for CCl4 after 16 h and for APAP after 24 h by ToxShield prediction [71].

Comparison of the regulated genes showed that there is good overlap among the regulated
genes and there is also a significant number of genes uniquely regulated due to either APAP
or CCl4 (Figure 5). Some of those genes uniquely regulated due to CCl4 treatment include
fibrosis related genes (Table 2). With the exception of PLAT, these fibrosis related genes were
not found to be regulated by treatment of rat PCLS with the necrosis-inducing compounds
iproniazid and bromobenzene either (data not shown).

Bovenkamp et al. showed that in non-treated rat liver slices, the expression of hepatic
stellate cell specific markers such as aB-crystallin, KLF6 and heat shock protein 47 remained
constant during incubation for 24 h, indicating quiescence of HSC. In contrast, incubation
with CCl4 led to a time- and dose-dependent increase in mRNA expression of these markers.
In accordance with these findings, in our microarray analysis, aB-crystallin, KLF6 and HSP47

were also up-regulated [72, 74]. Regulation of these hepatic stellate cell markers indicates
initiation of the fibrotic processes in CCl4 treated slices.

The growth factor TGFB1 plays a key role in fibrosis via hepatic stellate cell activation.
When we focused on genes involved in the TGFB1 signaling pathway and their change in
expression due to treatment with APAP or CCl4, we found that more genes involved in the
TGFB1 pathway are regulated by CCl4 than by APAP: 19 target genes in the dataset have
an expression direction consistent with activation of TGFB1 due to CCl4 treatment (Figure
7), in contrast only 13 target genes have an expression direction consistent with activation
of TGFB1 due to APAP treatment (Figure 8). This observation gives an indication of early
fibrotic processes activated within 16 h due to a toxic concentration of CCl4. From the TGFB1

network resulting from regulated genes due to APAP or CCl4 treatment, it can be seen that,
in the case of exposure to CCl4, genes that have a clear role in fibrosis such as JUN, LITAF,
MAPK6, PLAT and SERPINE1 are causally linked to TGFB1 and are up-regulated, but in
case of exposure to APAP, only PLAT is up-regulated and causal relation to TGFB1 is seen.
It has been reported that TGF- induces SERPINE1 expression via pSmad2L/C signaling and
promotes extracellular matrix deposition in myofibroblasts, thereby accelerating liver fibrosis
[96]. This observation indicates a substantial involvement of TGFB1 in the toxicity process
initiated by CCl4 but not by APAP.

Upstream regulator analysis revealed several regulators that control the expression of
regulated genes. Predicted activation or inhibition of those regulators and their relation with
hepatic fibrosis is outlined here. While a few upstream regulators were activated or inhibited
similarly due to APAP and CCl4 treatment, some regulators were particularly activated
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or inhibited by either APAP or CCl4. Toxic concentrations of APAP and CCl4 are known
to induce necrosis in short-term treatment; however, transcriptomic analysis in this study
revealed significant differences with respect to genes involved in the toxicity process.

ACOX1, a ROS producing enzyme, is down-regulated due to CCl4 treatment in our study.
A mouse study established the role of ACOX1 in fibrosis showing that ACOX1 knockout mice
develop fibrosis [97, 98]. ACOX1 is down-regulated due to CCl4 treatment and also 17 genes
which have causal relation to it are regulated. In contrast, in the case of exposure to APAP,
ACOX1 expression is not altered. HNF4A and HNF1A transcription factors are predicted to
be inhibited due to both APAP and CCl4 treatment. HNF4A is involved in differentiation
of hepatocytes and is known to be down-regulated in fibrosis [99]. Furthermore, HNF1A
also plays a role in the differentiation of hepatocytes. Therefore, the predicted inhibition of
HNF4A and HNF1A due to both APAP- and CCl4-induced necrosis is possibly related to
their general role in the process of differentiation of hepatocytes after induction of necrosis.
Inhibition of PPARG and RXRA activity, which is predicted due to CCl4 treatment but not
to APAP, has been shown to lead to hepatic stellate cell proliferation [100]. PPARD agonistic
activity leads to anti-fibrotic effects in a fibrosis mouse model induced with CCl4 [101]. These
results are in accordance with ours, supporting the fibrogenic potential of CCl4, which is
not seen in APAP. PPARA, known to attenuate oxidative stress, one of the most important
processes responsible for fibrosis, and to have anti-fibrotic effects in a rat study in vivo [102],
is predicted to be inhibited by treatment with CCl4. Thus, the predicted inhibition of PPARA
due to CCl4 also accords with its fibrotic effect. TFAM, a mitochondrial transcription factor, is
predicted to be inhibited in the case of CCl4 treatment in PCLS, whereas it was observed to be
activated in maintenance of quiescent hepatic stellate cells [103]. No such predicted inhibition
of TFAM was seen due to APAP treatment. PKD1, which is predicted to be inhibited in the
case of treatment with APAP but not CCl4, has not been described as playing a potential role
in fibrosis up to now. NUPR1, a transcription factor regulating apoptosis is up-regulated due
to CCl4 and was found to be involved in fibrotic changes due to CCl4 treatment in mice [104].
ERN1 which is known to play a role in the adaptive response to endoplasmic reticulum (ER)
stress is also predicted to be activated due to CCl4 [105]. In addition, inflammatory cytokines
such IL1A, IL1B and TNF are predicted to be activated due to CCl4. TNF is also known
to play a role in HSC proliferation. Overall, transcription factors such as PPARD, PPARA,
TFAM, NUPR1, ERN1 and TNF, which are all known to play a role in fibrosis, are predicted
to be activated or inhibited only due to CCl4.

Causal network analysis revealed many causal networks which with either one regulator
or with groups of interconnected regulators, may have accounted for the observed gene
expression changes. Comparison of the causal networks regulated by APAP and CCl4

revealed interesting differences since many of the networks were specifically found to be
activated or inhibited by CCl4, whereas in the case of APAP few such networks were observed.
For instance, causal network containing NOCR2 transcription factor as master-regulator in
connection with other intermediate regulators such as AR, ESR1, HNF4A, NCOR2, NR4A1,
PGR, PPARG, RXRA, THRB and VDR could account for the observed expression changes of
35 genes regulated due to treatment with CCl4. TGFB1 was shown to up-regulate NCOR2

expression [106]. Causal networks helps to identify novel upstream regulators such as
NCOR2 with possible role in hepatic fibrosis, which in-turn helps to derive mechanistic
hypothesis. Since the aim of this paper was to explore the differences between APAP and
CCl4 in fibrosis, the causal networks were not explored further in detail.
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A recent paper reported the characterization of the proteins involved in hepatic stellate
cell activation by CCl4 in vitro [107]. When we compared the genes regulated in our
transcriptomic analysis with the proteins regulated due to CCl4 treatment in hepatic stellate
cells, 17 genes were found in common with the proteins including CRYAB and SERPINE1.
Furthermore, a comparison with genes regulated by APAP treatment and proteins involved
in HSC activation revealed that 11 are similarly regulated, but none of them overlap with the
fibrosis related genes (Supplementary data S3).

In conclusion, in this study we focused on the changes in gene expression profiles due to
treatment of PCLS with APAP or CCl4 and found that those changes reflect the characteristic
difference between these compounds in their ability to induce liver fibrosis after chronic
dosing in vivo. This study indicates that transcriptomic analysis of PCLS can be used to
identify the fibrotic potential of toxic compounds after short-term exposure. Further studies
with more fibrotic and non-fibrotic compounds are needed to verify this finding and to
identify a set of biomarkers that can be used in drug- induced toxicity screening.
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abstract

Hepatotoxicity is one of the major reasons for withdrawal of drugs from the market.
Therefore there is a need to screen new drugs for hepatotoxicity in human at an earlier
stage. The aim of this study was to validate human precision-cut liver slices (PCLS) as an
ex vivo model to predict drug-induced cholestasis and identify the possible mechanisms of
cholestasis-induced toxicity using gene expression profiles. Five hepatotoxicants, which are
known to induce cholestasis (alpha-naphthyl isothiocyanate, chlorpromazine, cyclosporine,
ethinyl estradiol and methyl testosterone) were used at concentrations inducing low (<30%)
and medium (30-50%) toxicity, based on ATP content. Human PCLS were incubated
with the drugs in the presence of a non-toxic concentration (60 µM) of a bile acid
mixture (mimicking the portal vein concentration and composition) as model for bile acid
induced cholestasis. Transcriptomics analysis was performed using Illumina bead arrays. A
concentration dependent increase in the number of regulated genes was observed for all
compounds. Regulated genes include bile acid transporters ABCB11 (BSEP) and ABCB4

(MDR3), and the cholesterol transporters ABCG5 and ABCG8. Pathway analysis revealed
that hepatic cholestasis was among the top ten regulated pathways, and signaling pathways
such as FXR-, LXR-, PXR- and VDR-mediated responses, which are known to play a role
in cholestasis, were significantly affected by all cholestatic compounds. Other significantly
affected pathways include unfolded protein response and protein ubiquitination implicating
the role of endoplasmic reticulum stress in bile acid induced cholestasis. In addition,
NRF2-mediated oxidative stress response was evident. This study shows that human PCLS
incubated in the presence of a physiological bile acid mixture correctly reflect the pathways
affected in drug-induced cholestasis in the human liver. In the future this human PCLS model
can be used to identify cholestatic adverse drug reactions of new chemical entities.
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3.1 introduction

Drug induced hepatotoxicity (DILI) is one of the major reasons for failure of drugs
in the drug development or post marketing phase, leading to withdrawal of drugs from
development or from the market respectively. It is of major concern for the consumers,
regulatory authorities such as the FDA and the EMA, and pharmaceutical companies. In
the drug discovery process, valuable information about possible mechanisms of toxicity
is gained by exposing a compound to suitable ex vivo, in vitro or in vivo models. The
possibility to determine early in the drug development process whether a compound causes
a particular pathology results in valuable information about the mechanism of action of an
as yet uncharacterized compound.

One of the major causes for DILI is cholestasis. Cholestasis is characterized as inhibition
of bile flow caused by a variety of mechanisms that can involve elements of the biliary
tree, including the bile ducts and ductules, but also the transporters in the basolateral or
canalicular membrane, as well as disruption of the tight junctions, of the hepatocytes can be
involved. BSEP inhibition is a common cause of cholestasis and the resulting accumulation
of bile acids in the hepatocytes triggers a direct cellular response, which is associated with
apoptosis, inflammation, oxidative stress, endoplasmic reticulum stress and cell death. It also
causes adaptive cellular responses mediated via nuclear receptors [16, 17, 18].

Most of the information has been obtained from in vivo models such as bile duct ligation in
different animal species, but mechanistic information on human liver in vivo is very scarce. In
addition, in vitro models such as human and rat hepatocytes, HepG2, and HepaRG cells have
been investigated as predictive model. Ansede et al., published an in vitro assay to assess the
transporter-based inhibition of excretion of a tracer concentration of bile acid using sandwich
cultured rat hepatocytes [34]. But as bile acids are only present at very low concentration,
this model may not detect bile-acid dependent toxicity. In contrast, Ogimura et al. incubated
sandwich cultured rat hepatocytes with cholestatic compounds in the presence of bile acids
to develop an experimental model reflecting bile acid dependent cholestatic injury [108].
Both models were developed with rat hepatocytes, and extrapolation of the results to predict
human cholestatic injury remains hazardous. Recently, Chatterjee et al., [109, 110] showed
that indeed a model with sandwich cultured human hepatocytes in the presence of bile acids
predict the cholestatic potential of drugs more accurately in human than rat hepatocytes.
However, it is well known that the hepatocytes show dedifferentiation during culture, which
is accompanied by a decrease in drug metabolism capacity and unphysiological expression
of transporters [111]. Therefore predictions based on sandwich cultures may not always be
very precise.

In the present study we aimed to investigate whether human Precision-Cut Liver Slices
(PCLS) in the presence of a physiological concentration of bile acids could be used as a
predictive model for drug-induced bile acid dependent cholestatic injury. PCLS has been
shown to be a viable ex vivo tool to study the metabolism and toxicity of xenobiotics for
over a decade [34]. Recently mouse PCLS was used as a model to identify the mechanisms
of drug induced cholestasis [112, 113], but also this mouse model is prone to problems of
species extrapolation and no bile acids were present during the incubation. The possibility
to use human tissue for toxicity studies helps to reduce unnecessary animal studies and
to identify human specific toxicity. Advantages of this PCLS model include the presence
of all cells of the tissue in their natural environment with intact intercellular and cell-matrix
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interactions, stable expression of drug metabolizing and detoxification enzymes, the ability to
produce bile acids, and most importantly polarized physiological expression of transporters.
This model is therefore highly appropriate for studying multicellular drug toxicity processes
[72, 74, 71, 114, 73, 115, 116, 85, 117]. Elferink et al., used transcriptomics analysis to show that
rat PCLS reflect the proper mechanisms of hepatotoxicity [71]. Moreover they showed that in
human PCLS the gene expression profiles of genes related to drug metabolism, transport and
toxicity remain fairly constant during 24 h of incubation but that these profiles are affected by
paracetamol-induced toxicity. However up to now no transcriptomics data on human PCLS
exposed to cholestatic compounds have been reported. Since the primary event involved in
the majority of drug induced cholestasis in vivo is accumulation of bile acids due to inhibition
of export transporters such as BSEP, we hypothesized that to further optimize the PCLS
to mimic cholestasis induced by accumulation of the bile acids in vivo, the PCLS should
be incubated with a non-toxic concentration of a bile acid mix mimicking the portal vein
bile acid concentration and composition. Therefore, in this study we exposed human PCLS
to drugs or chemicals known to induce cholestasis such as alpha-naphthyl isothiocyanate
(ANIT), cyclosporine, chlorpromazine, ethinyl estradiol and methyl testosterone at different
concentrations inducing low to moderate toxicity based on either decrease in ATP content in
the presence of a physiological bile acid mix. To detect cholestatic injury and the mechanisms
involved, the profiles of differentially expressed genes were analyzed using IPA pathway
analysis. Moreover they were compared to expression profiles of human in vivo late-stage
cholestasis caused by biliary atresia and intrahepatic cholestasis.
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3.2 methods and materials

chemicals Alpha-naphthylisothiocyanate (ANIT), chlorpromazine (CP), cyclosporine
(CS), ethinyl estradiol (EE) and methyl testosterone (MT) were purchased from
Sigma-Aldrich (St.Louis, MO, USA). Stock solutions for all compounds were prepared in
DMSO (VWR, Briare, France).

human liver tissue Human liver tissue was obtained from the remaining liver tissue
after split liver transplantation (TX). The characteristics of the human livers used in the
experiments are described in Table 5. The experimental protocols were approved by the
Medical Ethical Committee of the University Medical Center Groningen.

preparation and incubation of human pcls Precision-cut liver slices of 5 mm
diameter and 250 µm thickness) were prepared [118]. PCLS were made using the Krumdieck
tissue slicer (Alabama R&D, Munford, AL, USA) in ice-cold Krebs buffer at pH 7.42, enriched
with glucose to a final concentration of 25 mM, saturated with carbogen (95% O2/5% CO2).
Immediately after the slices were made, they were placed in ice-cold University of Wisconsin
organ preservation solution (UW, Dupont Critical Care, Waukegan, IL, USA) and stored
on ice until the beginning of the experiment. Slices were pre-incubated individually in
12-well plates (Greiner CELLSTAR(R)) in 1.3 ml of Williams Medium E with glutamax-1
(Gibco, Invitrogen, Paisley, Scotland) supplemented with 25 mM D-glucose and 50 µg/ml
gentamycin (Gibco, Invitrogen, Paisley, Scotland). In the incubator (Sanyo CO2/O2 Incubator,
PANASONIC, Secaucus, NJ, USA), the plates were gently shaken (90 times/min) for 1h under
80% O2 and 5% CO2 atmosphere at 37 C. This pre-incubation allows the slices to restore
their ATP levels. After pre-incubation the slices were moved to different well plates filled
with 1.3 ml Williams Medium E with glutamax-1 supplemented with 25 mM D-glucose, 50

µg/ml gentamycin, 60 µM human bile acid mix (table 6) and different concentrations of the
compounds ANIT (25 µM, 50 µM and 75 µM), chlorpromazine (9 µM, 18 µM and 27 µM),
cyclosporine (9 µM, 12 µM and 15 µM), ethinyl estradiol (25 µM, 50 µM and 75 µM) and
methyl testosterone (50 µM, 75 µM and 100 µM) or solvent (DMSO). These concentrations
were selected from pilot experiments where a larger concentration range was used to detect
concentrations that resulted in low to medium toxicity. The plates were incubated under
the same conditions for 24 h. All incubation conditions were carried out in triplicate. Each
experiment was performed in slices of 6 different human livers (table 5). Slices were harvested
for ATP assay in 100mM Tris buffer with 2 mM EDTA and for RNA isolation in RNAlater.

Table 5: Demographics of donors of human liver tissue used for the experiments

Human liver Sex Age

1 Female 58

2 Male 50

3 Female 71

4 Male 24

5 Female 24

6 Male 64
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Table 6: Composition of human bile acids mix

Composition of bile acids Final concentration in the
incubation medium (µM)

Cholic acid (CA) 2.65

Chenodeoxy cholic acid (CDCA) 4.51

Deoxycholic acid (DCA) 6.37

Glycochenodeoxycholic acid (GCDCA) 22.69

Glycocholic acid (GCA) 5.44

Glycodeoxycholic acid (GDCA) 5.04

Glycoursodeoxycholic acid (GUDCA) 3.72

Hyodeoxycholic acid (HDCA) 2.79

Lithocholic acid (LCA) 0.40

Taurocholic acid (TCA) 0.64

Taurochenpodeoxycholic acid (TCDCA) 2.79

Taurolithocholic acid (TLCA) 1.15

Taurodeoxycholic acid (TDCA) 0.58

Ursodeoxycholic acid (UDCA) 1.46

The bile acid mix was added to the medium in order to create an environment similar to the
physiological concentration in the portal vein. The composition of the serum bile acids was
according to Scherer et al., [119]. Pilot experiments were performed to find out the non-toxic
concentration of the bile acid mix. A series of concentrations (10-200 µM) of the bile acid mix
containing the 14 different bile acids (BA) shown in Table 6 were tested. Concentrations up
to 60 µM were found to be non-toxic and hence further experiments were performed using
a concentration of 60 µM, which is close to the reported portal vein bile acid concentration
[119]. The final concentrations of the bile acids in the incubation medium are presented in
Table 6.

viability assay: atp and protein content of pcls The viability of PCLS
was assessed by the content of ATP. The determination of ATP was performed using the ATP
Bioluminescence Assay Kit CLS II (Roche, Mannheim, Germany). Three slices were harvested
in a 2 mM EDTA solution containing 70% ethanol, pH 10.9, and immediately frozen at -80

C. Slices were homogenized using a mini beat beater and the homogenate was centrifuged
for 5 min at 13,000 g. The supernatant was used for the ATP assay and the pellet for the
protein analysis. The ATP assay is performed in 96-well plate. 5 µL of sample was diluted 10

times with 100 mM Tris-HCl, 2 mM EDTA buffer pH 7.8. 50 µL of luciferase was added to
each sample and the ATP was measured with the Lucy1 luminometer (Anthos, Durham, NC,
USA). The protein content of each slice was assessed using the BIO-Rad DC protein assay kit
(Bio-Rad, Munich, Germany) as described before [34] and the ATP values are corrected with
their corresponding protein content.



502429-L-bw-Vatakuti502429-L-bw-Vatakuti502429-L-bw-Vatakuti502429-L-bw-Vatakuti

3

3.2 methods and materials 37

rna isolation RNA was isolated from slices with <10%, <30% and 30-50 % decreased
viability. Maxwell(R) 16 LEV Total RNA purification kit (Promega, The Netherlands)
with Maxwell(R) 16 LEV Instrument was used to isolated RNA from the samples.
Immediately after isolation, the RNA quality was assessed by measuring the 260/280 and
260/230 ratios and the concentration was measured with the ND-1000 spectrophotometer
(Fisher Scientific, Landsmeer, The Netherlands). The quality (RIN value) and quantity of the
RNA was determined by high throughput Caliper GX LabChip RNA kit (Caliper).

amplification, labeling, and hybridization of rna samples Ambion
Illumina Total Prep RNA kit was used to transcribe 300 ng RNA to cRNA according to
the manufacturer’s instructions. A total of 750 ng of cRNA was hybridized at 58

oC for 16

hr to the Illumina HumanHT-12 v4 Expression BeadChips. BeadChips were scanned using
Iscan software and IDAT files were generated (Illumina, SanDiego, CA).

preprocessing of gene expression data Genome studio software (Illumina)
was used to read the IDAT files and generate raw expression values. The ArrayAnalysis
webservice (www.arrayanalysis.org/) was used for further preprocessing the data, which
uses lumi R package [120]. Raw gene expression data was background corrected (bgAdjust),
variance stabilized (VST) and normalized by quantile normalization. After normalization, the
data was corrected for batch differences owing to RNA isolation and hybridization using the
ComBat method implemented in the swamp package in R [121]. Differentially expressed
genes in slices exposed to the cholestatic drugs in the presence of bile acids versus the
slices exposed to vehicle (DMSO) in the presence of bile acids were identified using the
limma package [122]. Genes that are regulated with a criterion of fold change of 1.5 and
FDR corrected p- value 0.05 (Benjamini and Hochberg method) were chosen for pathway
analysis. To compare our data with the scarcely available human in vivo data, human in vivo
late-stage cholestasis data were downloaded from the Gene Expression Omnibus database
(GSE46960). These gene expression data were generated in GeneChip human Gene 1.0 ST
array (Affymetrix, CA), hybridization experiments using human liver biopsies obtained from
64 infants with biliary atresia, 14 age-matched infants with cholestasis of other origin than
biliary atresia, and from 7 deceased healthy children [123]. Affymetrix data normalization
and statistical analysis was performed using the ArrayAnalysis website [120] using similar
criteria as for the PCLS. A gene is considered as regulated in association with cholestasis
in human PCLS if its expression is differentially regulated in the same direction by two or
more of the five tested compounds. A gene is considered as regulated in vivo in human if its
expression is differentially regulated in either biliary atresia or intrahepatic cholestasis.

pathway analysis Canonical metabolic and signaling pathway analysis was
performed using QIAGEN’s Ingenuity(r) Pathway Analysis (IPA(r), QIAGEN Redwood City,
California, USA). The compound exposures where no or very few genes were regulated
(AN 25µM , CP 9µM, CP18µM EE 25µM, EE50µM and MT 25µM) were excluded from the
pathway analysis. Comparison pathway analysis feature in IPA was used to compare the
canonical pathways affected by the different compounds in human PCLS.
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3.3 results

concentration selection for transcriptomic studies Concentration 
response studies were performed to find out toxic concentrations for the cholestatic 
compounds. Pilot studies were performed using a range of concentrations (data not shown) 
and the concentrations which showed a 10-30 % and 30-50% decrease in ATP for each of 
the tested cholestatic compounds were chosen for the microarray gene expression studies. 
All five cholestatic compounds showed a concentration dependent decrease in cell viability 
(Supplementary figure 11). A concentration-dependent increase in the number of regulated 
genes was observed. From the data on the number of regulated genes (figure 9) it is clear that 
concentrations that do not result in a substantial reduction of viability do not cause regulation 
of a significant number of genes. At concentrations causing up to 30% decrease in viability, 
a relatively limited number of genes were regulated and at higher concentrations, where 
toxicity amounted to 30-50%, a significant number of genes was regulated. However, despite 
of a similar decrease in toxicity, the compounds have different effects on gene expression 
judged on the basis of a different number of regulated genes.

canonical pathway analysis The Ingenuity knowledgebase contains canonical
pathways that are well characterized metabolic and cell signaling pathways. The differentially
regulated genes as shown in figure 9 were scored against the canonical pathways and the
resulting scaled values for pathway enrichment are shown as a heatmap in figure 10.

Figure 2 shows that many canonical pathways that are related to bile acid homeostasis
and cholestasis are regulated in the PCLS treated with the 5 cholestatic compounds in the
presence of a portal vein concentration of a physiological bile acid mix. Hepatic cholestasis
appeared as one of the top 10 most significantly affected pathways. Moreover, signaling
pathways such as FXR, LXR, PXR and VDR, which play a prominent role in cholestasis, are
also significantly affected. In addition, endoplasmic reticulum stress (ER stress), unfolded
protein response and protein ubiquitination pathways, known to play a role in bile acid
induced cholestasis process [124] are significantly affected. Furthermore, the pathways
involved in bile acid induced damage such as Nrf2 mediated stress response, coagulation
system and complement activation appear affected. The observed patterns of activated genes
appeared concentration dependent, nevertheless there was a good overlap of the regulated
genes at the different concentrations. Therefore, for the comparison of the genes regulated
in these different canonical pathways, the highest concentration for each of the different
cholestatic compounds was considered for further analysis. It is interesting to observe that
the genes coding for transporters and metabolic enzymes in the hepatic cholestasis pathway
are downregulated (table 7). It should be mentioned here that most of the genes involved in
the hepatic cholestasis pathway are also part of the signaling pathways mentioned below.

The FXR pathway was the most significantly regulated pathway. The genes regulated in
the human PCLS that are involved in FXR mediated response are summarized in table 8.
It is apparent that many target genes involved in the FXR pathway such as BSEP, MRP2,
MDR3, BACS, BAAT, FGF15 and PXR are downregulated. The LXR pathway was also
significantly downregulated in human PCLS exposed to cholestatic compounds and bile
acids. The genes regulated in human PCLS that are involved in LXR mediated response
are summarized in supplementary table 10. Also the genes involved in the cholesterol
biosynthesis pathway were downregulated in human PCLS by the cholestatic compounds
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Figure 9: Number of genes differentially regulated with a fold change of 1.5 and multiple
hypothesis-adjusted p-value 0.05

Table 7: Genes involved in hepatic cholestasis pathway and their regulation after exposure to
cholestatic drugs in human PCLS

Significantly regulated genes with fold change -1.5 or 1.5 are highlighted in orange and blue color,
respectively.
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Table 8: Genes involved in the FXR pathway and their regulation after exposure to cholestatic drugs
in human PCLS

Significantly regulated genes with fold change -1.5 or 1.5 are highlighted in orange and blue,
respectively.
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Table 9: Genes involved in unfolded protein response (UPR) and their regulation after exposure to
cholestatic drugs in human PCLS

Significantly regulated genes with fold change -1.5 or 1.5 are highlighted in orange and blue
respectively.

except for CP (supplementary table 11). The downregulation of the cholesterol biosynthesis
genes is well in line with the downregulation of the LXR target genes. As expected, also target
genes in the PXR (supplementary table12) and VDR (supplementary table 13) pathways
were regulated. Among the PXR target genes some of the Cytochrome P450 isoforms were
upregulated ex vivo in the slices. In line with the published involvement of ER stress in
cholestasis, the unfolded protein response pathway was significantly regulated and most of
the genes involved in unfolded protein response (ER stress) were significantly upregulated
(table 9).

Complement and coagulation pathways were affected and genes involved in those
pathways were mostly downregulated as shown in supplementary table 14 and 15

respectively. NRF2 mediated oxidative stress response was affected and upregulation of
genes coding for heat shock proteins and the activation of transcription factors such as ATF4

and NRF2 were apparent (supplementary table 16). In addition, the hepatic fibrosis pathway
was affected and some genes involved in the hepatic stellate cell activation were upregulated
such as KLF6 (supplementary table 17).
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3.4 discussion

In this study, human PCLS were validated as an ex vivo model that reflects the
drug-induced cholestasis processes using transcriptomic analysis. Hepatotoxicants that are
known to induce cholestasis in humans, such as cyclosporine, chlorpromazine, ethinyl
estradiol and methyl testosterone, clearly induced regulation of genes and pathways
associated with cholestasis in human PCLS when incubated in the presence of bile acids.
In addition, ANIT, a well-known cholestatic compound in rats, was included in the study,
and showed a similar cholestatic gene expression pattern in human liver slices. From the
data it is clear that concentrations that do not cause a decrease in viability also do not lead to
differential expression of a substantial number of genes. Also, the addition of 60 µM of bile
acid mix to the incubation medium does not induce major changes in gene expression (data
not shown). Pathway analysis clearly showed a gene expression pattern of cholestatic injury,
which was concentration dependent for all drugs. The direction of regulation of most genes
was similar among the five tested cholestatic drugs, but there were differences with respect to
the number of genes that were significantly regulated in each pathway. Importantly, hepatic
cholestasis was among the top 5 regulated pathways. The majority of the pathways regulated
in the human PCLS are represented in the Adverse Outcome Pathway (AOP) for cholestasis
as proposed by Vinken et al, including the primary direct cellular responses and secondary
adaptive responses involved in bile acid induced cholestatic injury [16, 17, 18], such as
primary toxicity by NRF2 mediated oxidative stress response, inflammation mediated hepatic
fibrosis, endoplasmic reticulum stress, and activation of the coagulation and complement
system. Moreover signaling pathways such as FXR, LXR, PXR and VDR as well as the
related cholesterol biosynthesis pathways were affected. It is generally assumed that the
accumulation of bile acids, cholesterol and bilirubin during onset and progression of
cholestatic condition induces response processes characterized by the activation of nuclear
receptors such as FXR, LXR, PXR and VDR, which triggers cellular adaption to counteract
bile acid accumulation and thus cholestatic liver injury [19]. The farsenoid X receptor (FXR)
acts as a sensor for intracellular bile acid levels [125] and activation of FXR (NR1H4) induces
adaptive gene expression changes in response to accumulation of bile acids in cholestasis
such as inhibition of bile acid synthesis, upregulation of phase I bile acid hydroxylation,
phase II conjugation enzymes, and induction of the expression of canalicular and basolateral
bile acid transporters. In contrast with this expected activation of FXR, in the human PCLS
the target genes in the FXR pathway were downregulated. Interestingly a similar trend
of downregulation of FXR target genes was observed in mouse PCLS after exposure to
cholestatic drugs in the absence of bile acids [112, 113]. Important genes known to play
a role in cholestasis such as ABCB4 (MDR3), ABCB11 (BSEP) and NR0B2 (SHP) were
downregulated in human PCLS exposed to bile acids and cholestatic drugs. Previously we
showed upregulation of SHP and downregulation of BSEP as a response to accumulation of
bile acids after incubation of human PCLS with 100 µM CDCA [80]. Either a limited increase
in the concentration of the total bile acids and particularly of CDCA in the hepatocytes or the
presence of other bile acids such as LCA that can counteract the effect of CDCA [126] may be
the cause for this difference. Lew et al, showed that FXR controls the gene expression of its
target genes in a ligand dependent fashion based on the individual bile acids [127]. However,
BSEP down regulation may also indicate a direct effect of the tested cholestatic drugs
on the regulation of the BSEP transporter, as potent BSEP inhibitors have been shown to



502429-L-bw-Vatakuti502429-L-bw-Vatakuti502429-L-bw-Vatakuti502429-L-bw-Vatakuti

44 validation of precision-cut liver slices to study drug-induced cholestasis -
a transcriptomics approach

downregulate BSEP expression in primary human hepatocytes [128]. Moreover the decreased
expression of FXR (table 4) can at least partly explain this reduced FXR signalling. This is
in line with the finding that both FXR and SHP expression was reduced by 90% or more
in cholestatic patients [15]. Thus, based on our findings it can be postulated that exposure
to cholestatic compounds could lead to compromised FXR mediated adaptive responses,
causing hepatic cholestasis. The Liver X receptor (LXR) is involved in the regulation of
metabolism of lipids and cholesterol to bile acid catabolism. Activation of the LXR receptor
is shown to prevent toxicity from bile acid accumulation in female mice [129]. We found in
human PCLS that the LXR pathway including the genes involved in cholesterol transport
such as ABCG5 and ABCG8 was downregulated by the cholestatic drugs, which may
indicate a loss of this protective action of LXR. In addition the PXR and VDR pathways
are downregulated due to the exposure of PCLS to the cholestatic drugs. The Pregnane X
receptor (PXR) is activated by drugs and endogenous molecules and plays a central role
in their metabolism by induction of cytochrome P450 enzymes, conjugation enzymes and
efflux transporters. PXR activation also regulates bile acid synthesis, their metabolism and
transport, cholesterol homeostasis and lipid metabolism. The exposure of the human PCLS to
the cholestatic compounds resulted in upregulation of some of the phase I metabolic enzymes
such as CYP1A2, CYP2C8 and CYP2C9. However again in contrast to the results obtained
after incubation with 100 µM CDCA, there was no change in the expression of CYP7A1

involved in bile acid synthesis in human PCLS. The Vitamin D receptor (VDR) expression
is restricted to non-parenchymal cells, such as biliary epithelial cells in the liver [130]. VDR
downregulation was not observed in our data but RXR expression is down regulated. Since
VDR acts as a heterodimer with RXR, it can be assumed that VDR function is compromised
by this lack of RXR expression. Together, the reduced activation of FXR, LXR, PXR and VDR
could be responsible for reduced adaptive responses to the effects of the cholestatic drugs
and lead to development of cholestasis.Oxidative stress is implicated to play a role in the
pathogenesis of drug-induced cholestasis as a result of bile acid accumulation [131, 132, 133].
Oxidative stress was also shown to play a major role as a primary causal event in the
early CPZ-induced cholestasis in human HepaRG cells [133]. In addition, the protective
role of the NRF2 mediated oxidative stress response was reported in mice in response to
ANIT induced cholestasis [131]. This NRF2 mediated oxidative stress response counteracts
the cellular oxidative stress by induction of detoxifying and antioxidant enzymes, which
also occurred ex vivo as ATF4 (activating transcription factor 4) was upregulated in the
human PCLS treated with cholestatic drugs. ATF4 is known to increase the activation of
phosphorylated NRF2 protein, key regulator of the oxidative stress response. This indicates
that detoxifying mechanisms are activated in the PCLS to alleviate the oxidative stress due
to accumulating bile acids. Hepatic fibrosis and hepatic stellate cell activation was also
observed in human PCLS due to exposure to the cholestatic drugs. Accumulation of bile
acids by obstructive cholestasis [134], was shown to lead to an inflammatory response in
vivo which in turn leads to activation of hepatic stellate cells and liver fibrosis. We showed
recently that rat and human PCLS can be a suitable model to identify the early fibrotic
changes and fibrosis inducing potential of a compound by transcriptomics [117] or RT-PCR
[72, 74, 73, 115, 116, 85] Early fibrotic response genes identified in rat PCLS such as KLF6

and SERPINE1 were upregulated in human PCLS indicating their prominent role in the
early onset of fibrosis. A recent study revealed that endoplasmic reticulum stress is involved
in the bile acid induced hepatocellular injury [124]. In PCLS, ER stress, UPR and protein
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ubiquitination pathways were also among the most affected pathways. The UPR signaling
pathway is activated in response to ER stress and promotes cell survival and adaptation. Our
results suggest that ER stress, protein ubiquitination and unfolded protein response UPR
may be early cellular effects in drug-induced cholestasis.Cholesterol is the starting material
for the synthesis of bile acids in liver. Bile acid biosynthesis is the major catabolic pathway
for cholestasis. The genes involved in cholesterol biosynthesis were downregulated in human
PCLS indicating the adaptive response of hepatocytes to decrease cholesterol synthesis as a
response to cholestatic drugs (Supplementary table 11), as was also observed in mouse PCLS
[112, 113]. Also genes in the complement system such as C3 and C5 were downregulated
in human PCLS indicating possibly the adaptive response to the inflammation leading to
fibrosis. The complement system is known to play a critical role in the pathogenesis of
chronic liver disease [135] and is regulated by FXR in both human and rodents [136, 137]. The
coagulation system is one of the signaling pathways involved in cellular stress and injury. The
coagulation system is known to contribute to bile duct ligation induced and ANIT induced
liver injury [138, 139] in the rat. Downregulation of genes involved in the coagulation system
was observed in human PCLS.

comparison with human in vivo cholestasis The results obtained in PCLS
should preferably be validated by comparing with human liver tissue of patients suffering
from drug-induced cholestasis. However to the best of our knowledge this data is not
available. Therefore we compared our findings with gene expression data obtained from liver
samples of patients with cholestasis due to biliary atresia and intrahepatic not drug-induced
cholestasis [123]. Despite the fact that these samples represent an end-stage disease situation
and were mainly obtained from infants, comparison of the activated pathways between
human PCLS and the patient samples revealed that there was good overlap with respect
to the processes involved in cholestasis, although more pathways were affected in vivo than
in the cholestatic PCLS (supplementary figure 12). The FXR pathway was affected both in
vivo and ex vivo, however in human PCLS the genes involved in the FXR pathway were
downregulated in contrast to the patient samples, where they were upregulated. The genes
involved in the LXR pathway and cholesterol biosynthesis were mostly downregulated in
both the human PCLS and the patient livers. Remarkably, among the PXR target genes, some
of the Cytochrome P450 isoforms were strongly downregulated in the human cholestatic
livers in vivo, but were not regulated or somewhat upregulated in human PCLS. Several
genes involved in UPR response were upregulated after exposure to cholestatic drugs in
human PCLS, but were downregulated in in vivo cholestasis (supplementary figure 13).
Genes involved in the complement system were downregulated in both human PCLS and
in patient samples. Liver fibrosis or hepatic stellate cell activation is observed both in human
PCLS exposed to cholestatic drugs and in in vivo cholestasis. Structural alteration of tight
junction proteins is observed in the bile duct ligated cholestasis [140]. The tight junction
signaling pathway is not activated in slices but significant activation is seen in patient
samples (supplementary figure 12). An explanation for the observed differences between
in vivo data and the ex vivo data could be due to the different causes of cholestasis
or the large difference in time frame.In conclusion, the transcriptomic analysis of human
PCLS exposed to cholestatic drugs in the presence of bile acids revealed that this model
reflects the primary toxicity processes associated with hepatic cholestasis, and the related
processes such as oxidative stress, ER stress and UPR response and therefore seems to be
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promising for the future application in drug screening for cholestasis. The results suggest
that decreased adaptive responses mediated via nuclear receptors are associated with these
cholestatic effects, Our study demonstrates that human PCLS is a suitable model to identify
biomarkers and possible mechanisms of toxicity of cholestatic compounds, when incubated
in the presence of a physiological concentration of bile acids. Insights from the pathways
such as downregulation of cholesterol biosynthesis, ER stress response and NRF2 mediated
oxidative stress response could be included in the adverse outcome pathway of cholestasis.
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supplementary tables

Table 10: Genes involved in the LXR pathway and their regulation after exposure to cholestatic drugs
in human PCLS

Significantly regulated genes with fold change -1.5 or 1.5 are highlighted in orange and blue
respectively.

Table 11: Genes involved in cholesterol biosynthesis and their regulation after exposure to cholestatic
drugs in human PCLS

Significantly regulated genes with fold change -1.5 or 1.5 are highlighted in orange and blue
respectively.
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Table 12: Genes involved in the PXR pathway and their regulation after exposure to cholestatic drugs
in human PCLS

Significantly regulated genes with fold change -1.5 or 1.5 are highlighted in orange and blue
respectively.

Table 13: Genes involved in the VDR pathway and their regulation after exposure to cholestatic drugs
in human PCLS

Significantly regulated genes with fold change -1.5 or 1.5 are highlighted in orange and blue
respectively.
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Table 14: Genes involved in the complement system and their regulation after exposure to cholestatic
drugs in human PCLS

Significantly regulated genes with fold change -1.5 or 1.5 are highlighted in orange and blue
respectively.

Table 15: Genes involved in the coagulation system and their regulation after exposure to cholestatic
drugs in human PCLS

Significantly regulated genes with fold change -1.5 or 1.5 are highlighted in orange and blue
respectively.
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Table 16: NRF2 mediated oxidative stress response genes and their regulation after exposure to
cholestatic drugs in human PCLS

Significantly regulated genes with fold change -1.5 or 1.5 are highlighted in orange and blue
respectively.

Table 17: Genes involved in hepatic fibrosis/ hepatic stellate activation and their regulation after
exposure to cholestatic drugs in human PCLS

Significantly regulated genes with fold change -1.5 or 1.5 are highlighted in orange and blue
respectively.
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Figure 11: Viability of human PCLS indicated by the ATP content after 24hr incubation with various
cholestatic drugs. ATP content (pmol/µg) is expressed as relative values to the control values
(error bar represent the standard deviation)

Data represent the average values from 3-5 experiments, using three PCLS per experiment.
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Figure 12: Heatmap of canonical pathway enrichment analysis results
Results from hPCLS were compared with in vivo cholestasis represented by biliary atresia and
intrahepatic cholestasis. Enrichment values (-log (p-value)) are scaled from 0 to 3 (black to red).
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56 classification of cholestatic and necrotic hepatotoxicants using
transcriptomics on human precision-cut liver slices

abstract

Human toxicity screening is an important stage in the development of safe drug candidates.
Hepatotoxicity is one of the major reasons for withdrawal of drugs from the market
because the liver is the major organ involved in drug metabolism and it can generate
toxic metabolites. There is a need to screen molecules for drug-induced hepatotoxicity in
humans at an earlier stage. Transcriptomics is a technique widely used to screen molecules
for toxicity and to unravel toxicity mechanisms. To date the majority of such studies
were performed using animals or animal cells, with concomitant difficulty in interpretation
due to species differences, or in human hepatoma cell lines or cultured hepatocytes,
suffering from the lack of physiological expression of enzymes and transporters and lack
of non-parenchymal cells. The aim of this study was to classify known hepatotoxicants
on their phenotype of toxicity in man using gene expression profiles ex vivo in human
precision-cut liver slices (PCLS). Hepatotoxicants known to induce either necrosis (n=5) or
cholestasis (n=5) were used at concentrations inducing low (<30%) and medium (30-50%)
cytotoxicity, based on ATP content. Random Forest and Support Vector Machine algorithms
were used to classify hepatotoxicants using a leave-one-compound-out cross-validation
method. Optimized biomarkers sets were compared to derive a consensus list of markers.
Classification correctly predicted the toxicity phenotype with an accuracy of 70-80%. The
classification is slightly better for the low than for the medium cytotoxicity. The consensus
list of markers includes endoplasmic reticulum stress genes such as C2ORF30, DNAJB9,
DNAJC12, SRP72, TMED7 and UBA5, and a sodium/bile acid cotransporter (SLC10A7). This
study shows that human PCLS are a useful model to predict the phenotype of drug-induced
hepatotoxicity. Additional compounds should be included to confirm the consensus list of
markers, which could then be used to develop a biomarker PCR-array for hepatotoxicity
screening.
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4.1 introduction

Drug induced hepatotoxicity is one of the major reasons for withdrawal of drugs in the
drug development or post marketing phase. It is of major concern for consumers, regulatory
authorities such as the FDA, and pharmaceutical companies. In the drug discovery process,
valuable information about possible mechanisms of toxicity may be gained by exposing liver
cells to a compound, which in turn gives insights about how a potential therapeutic drug
affects the liver. The ability to quickly determine whether a compound causes a particular
pathology is valuable information in assessing the mechanism of action of an uncharacterized
compound. It would be valuable to have a classification model that is able to accurately
predict or classify compounds based on the possible mechanism of toxicity or pathological
changes.

Acute exposure to a drug may result in different types of cell injury such as cholestasis,
necrosis and steatosis, whereas chronic exposure results in cholestasis, cirrhosis or
carcinogenesis[141]. Cholestasis is characterized as inhibition of bile flow caused by a
wide variety of mechanisms. Several mechanisms have been postulated to account for
impaired bile secretion such as inhibition of BSEP, impaired function of the microfilaments,
intracellular calcium homeostasis alteration, alteration of canalicular carriers, and ductular
obstruction [142, 143, 144]. Severe cholestasis is accompanied by cell death, both apoptosis
and necrosis. Necrosis is characterized by loss of cell membrane integrity, intracellular
swelling, cytoplasmic breakdown of nuclear DNA, and localized inflammation as a result
of release of cellular constituents. As necrosis can be the result of a primary toxic effect of a
chemical or be secondary to cholestasis, a method to classify a drug as inducing cholestasis
or necrosis would be very useful for prediction of drug-induced injury.

Several studies are reported in the literature using assay methods or omics based
classification models, which can discriminate hepatotoxicants based on their phenotype
of toxicity. One such study used cell based assay methods using hepatocyte cultures
combined with imaging technologies to identify hepatotoxicity of a compound as well
as the pathology involved in hepatotoxicity[145]. Hrach et al., reported a gene set of 724

genes, capable of discriminating hepatotoxic from non-hepatotoxic compounds in primary
rat hepatocytes after repeated dosing for 9 days[146]. However, these data are obtained in
rats and primary hepatocytes cultured for 9 days loose some liver-specific characteristics,
which makes the use of this gene set for human predictions uncertain. A transcriptomics
approach also has been applied in several studies to derive cholestasis specific gene
expression signatures. In a rat in vivo study, a cholestasis gene expression signature was
identified using a set of cholestatic compounds[147]. The cholestasis signature identified
is comprised of molecules associated with apoptosis, cell signaling, acute phase responses,
biotransformation of epoxides and peroxides. In another rat in vivo study, classifier or
predictive genes specific to bile duct hyperplasia (BDH), inflammation and necrosis were
reported. BDH is one of the morphological features of cholestatic livers[148]. BDH classifier
genes are mainly associated with p53 and ERBB2 pathways. Inflammation signature genes
are involved in the NFkB inflammatory pathway and the necrosis signature genes are
involved in NFkB complex and cell death[29, 30]. Hirode et al, derived a cholestasis signature
(59 genes) using compounds inducing elevation of bilirubin in rat in vivo, which is often
associated with cholestasis. The identified genes were related to lipid metabolism, transport,
ubiquitin-proteasome related factors, and mitochondrial components[52]. HEPG2, a human
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liver carcinoma cell line, was also used to identify markers, which can discriminate cholestatic
compounds from non-hepatoxicants. Of the 12 classifier genes selected, 6 were related
to endoplasmic reticulum stress and the unfolded protein response [149]. However, the
unphysiological expression of transporter proteins and biotransformation enzymes in these
cells, as well as their cancer characteristics induce uncertainty with respect to the predictive
value for the human liver. Also, different hepatotoxicants were classified based on their
mechanism or phenotype of toxicity using rat in vivo transcriptomics data[150]. Moreover,
a proteomics approach has been used to identify protein expression patterns, which can
classify hepatotoxicants in primary human hepatocytes.

In order to find a more relevant model for human, that retains the normal liver
characteristics during the experiment and which reflects the complex liver cellular
composition better, we started a study using human precision-cut liver slices (PCLS).

PCLS are viable ex vivo for at least 48 hours and have been used for over a decade to
study the metabolism and toxicity of xenobiotics[34]. Advantages of the PCLS model include
the presence of all cells of the tissue in their natural environment with intact intercellular
and cell-matrix interactions, stable expression of drug metabolizing and detoxification
enzymes up to at least 24 hours and the ability to produce bile acids[114]. The presence
of all cell types in this model is important for toxicological studies as the involvement
of Kupffer cells, endothelial cells, hepatic stellate cells and bile duct epithelial cells in for
instance inflammation, necrosis, fibrosis and cholestasis is evident. PCLS are therefore highly
appropriate for studying multicellular acute drug toxicity processes[71, 114, 117]. The ability
to use human tissue for toxicity studies also helps to reduce unnecessary animal studies and
to identify human specific toxicity, thereby avoiding erroneous inter-species extrapolation.

Recently we reported on the use of human PCLS to study drug-induced cholestatic injury
(DICI) using microarray analysis [151]. To optimize the PCLS to mimic cholestasis induced
by accumulation of the bile acids in vivo, the PCLS model was incubated with a non-toxic
concentration of a bile acid mix, which is important as the toxicity of the increased bile acid
accumulation is thought to play an important role in DICI. Pathway analysis resulted in
interesting insight in the mechanisms involved in DICI, including regulation of FXR, LXR
and cholesterol metabolism pathways as well as endoplasmic reticulum (ER) stress [151].

In this study, we report on the results of toxicogenomics analysis of experiments where
precision-cut liver slices were exposed to drugs or chemicals known to induce necrosis at
different toxic concentration levels. The data of PCLS exposed to the cholestatic compounds
[117] were now used together with the data of PCLS exposed to the necrotic compounds
to develop classifiers for the identification of the type of injury based on the random forest
(RF) and support vector machine (SVM) algorithms. The prediction performance of classifiers
was determined by leave-one-chemical-out cross-validation. Pathway analysis of the classifier
genes was performed to understand the role of the classifier genes.
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chemicals Acetaminophen (APAP), alpha-naphthylisothiocyanate (ANIT),
chloramphenicol (CH), chlorpromazine (CP), colchicine (CL), cyclosporine (CS), ethinyl
estradiol (EE), methyl testosterone (MT), and nitroso diethylamine (ND) were purchased
from Sigma-Aldrich (St.Louis, MO, USA). Benziodarone (BD) was purchased from
Kemprotec Limited (Middlesbrough, United Kingdom). Stock solutions were prepared
for all the compounds in DMSO (VWR, Briare, France) except for APAP. For APAP stock
solutions were prepared using WME medium. RNAlater(R) reagent was purchased from
Sigma-Aldrich (St.Louis, MO, USA).

human liver tissue Human tissue was obtained from the remaining liver tissue after
split liver transplantation from six donors (TX). The characteristics of the human livers used
in the experiments are described in Table 18. The experimental protocols were approved by
the Medical Ethical Committee of the University Medical Center Groningen.

preparation and incubation of human pcls (hpcls) Precision-cut liver
slices (PCLS - diameter 5 mm, thickness 250 µM) were prepared following the methods
described earlier[34]. PCLS were made using the Krumdieck tissue slicer (TSE, Bad Homburg,
Germany). The slices were prepared in ice-cold Krebs buffer at pH 7.42, enriched with
glucose to a final concentration of 25 mM, saturated with carbogen (5% CO2/95% O2).
Immediately after the slices were made, they were moved to ice-cold University of Wisconsin
organ preservation solution (UW, Dupont Critical Care, Waukegan, IL, USA) and stored on
ice until the beginning of the experiment. Slices were pre-incubated individually in 12-well
plates in 1.3 ml of Williams Medium E with glutamax-1 (Gibco, Invitrogen, Paisley, Scotland)
supplemented with 25 mM D-glucose and 50µg/ml gentamycin (Gibco, Invitrogen, Paisley,
Scotland). In the incubator (Sanyo CO2/O2 Incubator, PANASONIC, Secaucus, NJ, USA),
the plates were under 5%/ CO2 and 80 % O2 atmosphere at 37

oC for 1 h, while gently
shaken (90 times/min). Pre-incubation allows the slices to restore the ATP levels[34]. After
pre-incubation, the slices were moved to different well plates filled with 1.3 ml Williams
Medium E with glutamax-1 supplemented with 25 mM D-glucose, 50 µg/ml gentamycin,
60 µM human bile acid mix and different concentrations of the tested compounds. It is
important to note that PCLS of each liver were exposed to all 10 compounds, as well
as controls, in order to limit the influence of nonbiological experimental variation. This
experimental design helps to limit inter-individual variation between compound classes, as

Table 18: Demographics of donors of human liver tissue used for the experiments

Human liver Sex Age

1 Female 58

2 Male 50

3 Female 71

4 Male 24

5 Female 24

6 Male 64
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Table 19: Composition of human bile acids mix

Composition of bile acids Final concentration in the
incubation medium (µM)

Cholic acid (CA) 2.65

Chenodeoxy cholic acid (CDCA) 4.51

Deoxycholic acid (DCA) 6.37

Glycochenodeoxycholic acid (GCDCA) 22.69

Glycocholic acid (GCA) 5.44

Glycodeoxycholic acid (GDCA) 5.04

Glycoursodeoxycholic acid (GUDCA) 3.72

Hyodeoxycholic acid (HDCA) 2.79

Lithocholic acid (LCA) 0.40

Taurocholic acid (TCA) 0.64

Taurochenpodeoxycholic acid (TCDCA) 2.79

Taurolithocholic acid (TLCA) 1.15

Taurodeoxycholic acid (TDCA) 0.58

Ursodeoxycholic acid (UDCA) 1.46

well as between compounds and controls, in the data set. We tried to limit this unwanted
variation as humans have more inter-individual variation than cell lines or animals. The
plates were incubated in the same conditions for 24 h. The bile acid mix was added in order
to create an environment similar to the physiological plasma concentration in the portal
vein. [119]. Pilot experiments were performed to find out the non-toxic concentration of the
bile acid mix. The human bile acid mix was made as presented in Table 19. A series of
concentrations of bile acid mix were tested (10 µM, 30 µM, 60 µM, 200 µM and 600 µM)
and concentrations up to 60 µM were found to be non-toxic and hence further experiments
were performed using 60 µM concentration. Three slices were used for each experimental
condition.

viability assay: atp and protein content of pcls After 24 h of incubation,
the viability of PCLS was assessed in three individual slices for each experimental condition
by measuring the content of ATP using the ATP Bioluminescence Assay Kit CLS II
(Roche, Mannheim, Germany) as described before (Vatakuti et al.). In brief, the slices were
homogenized in in a buffer containing 70% ethanol, 100mM Tris-HCl and 2 mM EDTA and
after centrifugation, the supernatants were diluted 10 times with 100 mMTris-HCl, 2 mM
EDTA buffer. 5 µL of each sample was added to 50 µL of luciferase and the ATP was
measured with the Lucy1 luminometer (Anthos, Durham, NC, USA). The protein content
of each slice was assessed using the BIO-Rad DC protein assay kit (Bio-Rad, Munich,
Germany), as described before [117] and the ATP values of the slices were corrected for
their corresponding protein content.
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rna isolation After the incubation, the three slices of each incubation condition were
combined in 1 ml RNAlater(R) and stored at -20

oC. After thawing, the Maxwell(R) 16 LEV
Total RNA purification kit was used to isolate RNA from the samples. Immediately after
isolation, the RNA concentrations were measured and the RNA quality was assessed by
measuring the 260/280 and 260/230 ratios with the ND-1000 spectrophotometer (Fisher
Scientific, Landsmeer, The Netherlands). The quality (RIN value) and quantity of the RNA
was determined by high throughput Caliper GX LabChip RNA kit (Caliper).

amplification, labeling, and hybridization of rna samples The Ambion
Illumina Total Prep RNA kit was used to transcribe 300 ng RNA to cRNA according to the
manufacturer’s instructions. A total of 750 ng of cRNA was hybridized at 58

oC for 16 hr to
the Illumina HumanHT-12 v4 Expression BeadChips. BeadChips were scanned using Iscan
Software (Illumina, SanDiego, CA).

preprocessing of gene expression data. Genome studio software (Illumina)
was used to read the IDAT files and generate raw expression values. The raw expression
values were background corrected and normalized by the neqc method[152, 153]. Probes
were re-annotated using the illuminaHumanv4.db annotation package of Bioconductor [154,
155]. Probe filtering was performed to remove non-responding probes and probes with a
high expression level caused by non-specific hybridization. After normalization and filtering,
the probe set expression value of each sample was corrected with time-matched controls.
To assess the effect of inter-individual variation on the prediction results, gene expression
analysis was performed both unpaired and paired. For paired analysis, gene expression data
from each treatment sample of each human liver were corrected using the corresponding
control sample. For unpaired analysis, expression data were corrected for the average of all
control samples. Subsequently, classification was performed on the corrected data.

class prediction. SVM and RF algorithms were used for class prediction. SVM is
based on hyperplane separation, whereas RF is based on a decision tree network. Both
algorithms were employed to check the robustness of the obtained classifier genes. SVM was
applied using a radial kernel on scaled data for classification of the complete set of chemicals.
The training set data comprised the data for all-but-one chemical; the test set contained the
data for the remaining chemical. This type of cross-validation, called leave-one-chemical-out
cross-validation, keeps replicate samples of each compound together. For the training set,
features (probe sets or genes) were selected by applying a Student’s t-test using the two
classes, where different numbers of top-ranking features were tested for use in the classifier.
For RF, different numbers of top-ranking features were tested with the ranking based on the
importance measure as determined by the RF algorithm. After prediction, the prediction
accuracy for the left out compound samples was determined. The percentage of correct
classifications was calculated as the average of all 10 predictions. For each training set, a set
of biomarkers was optimized to get the maximum prediction accuracy, thus yielding 10 sets
of biomarkers. The genes that are present in 6 or more of these were selected as consensus
classifier genes.
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pathway analysis IPA ingenuity knowledgebase (QIAGEN’s Ingenuity(R) Pathway
Analysis tool (IPA(R), QIAGEN Redwood City)), was used to retrieve the annotations of the
classifier genes and their role in toxic responses. A literature search was also performed.
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toxic concentration selection Compounds that are known to induce cholestasis
or necrosis were incubated with PCLS in presence of bile acid mixture (60 µM) to identify
low (concentration that causes less than 30 % decrease in ATP (TC<30) in comparison to
controls) and medium concentration (concentration that causes 30-50% decrease in ATP
(TC30-TC50) in comparison to controls). The concentrations that were finally chosen for the
gene expression studies are shown in table 20. Viability data represented by the decrease in
ATP content due to exposure of hPCLS to the low and medium concentration are provided
as supplementary data (supplementary figures 17 and 18).

classification model development SVM and RF machine learning algorithms
were used to develop classifiers and to identify classifier genes. Using multiple algorithms to
develop classifiers also helps to check the robustness of the predictions as well as the classifier
genes selected. Using a combination of two algorithms (SVM and RF) and two concentrations
(low and medium), four models were developed namely, SVM low concentration model
(SVMlow), SVM medium concentration model (SVMmedium), RF low concentration model
(RFlow), RF medium concentration model (RFmedium). Prediction accuracy for necrosis
and cholestasis based on all combined data per compound (figure 14A) and for each of
the samples (figure 14B) using low and medium concentration is summarized in figure 14.
Both SVM and RF algorithms using both low and medium concentration gene expression
data correctly predicted the mechanism of the toxicity for each compound with 60-100%
prediction accuracy. Cholestasis compound prediction accuracy was greater than 80%, while
the necrotic compound prediction accuracy was only 60% by the four models. It was also
evident that the prediction accuracy is higher for the individual cholestatic samples than
for the necrotic samples. All four models showed prediction accuracy greater than 80% for
the cholestatic samples, with the SVMlow model being the best model in classifying the
cholestatic samples with a prediction accuracy of 87%. It is worthwhile to mention here that
the SVM algorithm using low and medium concentration gave a comparable accuracy in
predicting the correct class of samples but noticeable differences were found in the accuracy
by the RF algorithm (figure 14).
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Figure 14: Prediction accuracy (%) of the compounds (A) and separate samples of the compounds (B)
of SVM and RF models using low and medium concentration
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Table 20: Concentrations selected for hepatotoxicants based on low (TC<30) and medium
(TC30-TC50) toxicity

Necrosis Class
Compound Low Medium

Acetaminophen (AP) 2.5 mM 5 mM

Benziodarone (BD) 5 µM 7.5 µM

Chloramphenicol (CH) 0.5 mM 1 mM

Colchicine (CL) 2.5 mM 5 mM

Nitroso diethylamine (ND) 8 mM 15 mM

Cholestasis Class
Compound Low Medium

1-naphthyl isothiocyanate (AN) 50 µM 75 µM

Chlorpromazine (CP) 18 µM 27 µM

Cyclosporine (CS) 12 µM 15 µM

Ethinyl estradiol (EE) 50 µM 75 µM

Methyl testosterone (MT) 75 µM 100 µM

comparison of classification accuracy Predictions for the individual samples
of each compound by the four prediction models are shown in Table 21. Of the cholestasis
inducing drugs ANIT, chlorpromazine, cyclosporine and ethinyl estradiol were correctly
predicted by all the models. However, methyl testosterone was only correctly predicted as
cholestatic by the SVMlow model. Acetaminophen, colchicine and nitroso-diethylamine were
correctly predicted as necrotic drugs by all the four models. However, benziodarone and
chloramphenicol were not correctly predicted by all the four models. In case of benziodarone,
out of the 6 individual livers, 2 to 3 samples were correctly classified but for chloramphenicol
the majority of the predictions were not correct. Overall, if the models are compared based
on how they would classify drugs rather than individual samples, their performances are
comparable. This indicates that the results are not too dependent on a particular algorithm
or concentration. The SVMlow model gives the best overall performance.

correction for inter-individual differences Genetic variability in drug
metabolizing enzyme levels of each individual human liver could lead to variability in
response to drug induced injury[156]. It can be hypothesized that inter-individual differences
in response to drug treatments could affect the prediction results. To assess this we
also carried out a paired analysis to account for the inter-individual differences. The
corresponding predictions are summarized in Table 22. It is apparent from the predictions
that there is no further improvement with the paired analysis.

comparison of classifier genes selected by low and medium
concentration For each of the classifier models, a consensus set of classifier genes
was obtained. The consistency of the selected classifier genes was assessed across low and
medium concentration as well as across SVM and RF algorithms. It is evident from the
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Table 21: Summary table indicating the predictions from the unpaired analysis for each of the
samples of 10 compounds (6 samples each) by the SVM and RF algorithms using low
and medium concentration

N refers to the necrosis class and C refers to the cholestasis class. The numbers reflect the identity
number of the individual livers. For any compound if at least 4 out of 6 samples were predicted

correctly, then the predictions for that compound were considered successful (indicated with green
color).

Table 22: Summary table indicating the predictions from the paired analysis for each of the samples
of 10 compounds (6 samples each) by the SVM and RF algorithms using low and medium
concentration

N refers to the necrosis class and C refers to the cholestasis class. The numbers reflect the identity
number of the individual livers. For any compound if at least 4 out of 6 samples were predicted

correctly, then the predictions for that compound were considered successful (indicated with green
color).
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Venn diagram comparison, that there is good overlap between the classifier genes selected by
the low and medium concentration gene expression profiles (figure 15aA and B). Classifier
genes based on SVM are somewhat more consistent across concentrations than the classifiers
based on the RF algorithm. Among the 14 classifier genes selected by the SVMlow model, 12

classifier genes were found in common with classifier genes selected by the SVMmedium
model, which include C2ORF30, CADPS2, DNAJB9, DNAJC12, NFXL1, PAN2, REEP5,
SLC10A7, SORL1, SRP72, TMED7 and UBA5. In contrast, 6 of the 10 classifier genes selected
by the RFlow model were in overlap with classifier genes selected by the RFmedium model,
which include C2ORF30, C7ORF54, DNAJB9, FILIP1L, SRP72 and TMED7.

comparison of classifier genes selected by rf and svm algorithms To
check the consistency of the selected classifier genes by the two different algorithms RF
and SVM, the classifier genes selected by both SVM and RF algorithms using low and
medium concentration were compared. There was also good overlap with classifier genes
selected by SVM and RF (figure 15aC and D). Among the 14 classifier genes selected by the
SVMlow model, 5 classifier genes were found in common with classifier genes selected by the
RFmedium model, which includes DNAJB9, ERLEC1, SRP72, TMED7 and UBA5. Similarly
49 of the 52 classifier genes selected by the RFmedium model were in overlap with classifier
genes selected by the SVMmedium model (supplementary information 2). To summarize,
a considerable number of class-predictive genes were selected by different algorithms as
well as at different concentrations. Further comparison of the classifier genes selected in
paired and unpaired analysis using SVM and RF algorithms revealed that 8 classifier genes
were consistently selected across the low and medium concentration in paired and unpaired
analysis using SVM algorithm. Those genes include C2ORF30, DNAJB9, DNAJC12, SLC10A7,
SRP72, PAN2, TMED7 and UBA5; in contrast only one classifier gene (C2ORF30) was found
in common using the RF algorithm. Thus, correction for intra-individual differences does not
further improve classification accuracy, but does seem to negatively affect the consistency of
biomarker selection.

SVMlow markers and their expression levels in necrotic and cholestatic samples are shown
in figure 16. Classifier genes have high expression levels in cholestasis samples in comparison
to necrotic samples (figure 16A). Also the PCA plot shows clear separation of necrotic
samples from cholestatic samples on the first principal component axis (figure 16B). The
14 classifier genes selected by the SVMlow model were further studied for their role in the
mechanism of toxicity. Interestingly most of the classifier genes are related to the cellular
toxicity processes ER stress, oxidative stress and unfolded protein response.
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Figure 15: Venn Diagram comparisons of classifier genes
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Figure 16: A: Heatmap of the gene expression levels of the 14 classifier genes that discriminated the
cholestatic compounds (yellow color) from the necrotic compounds (blue color) using the
SVMlow model
B: PCA plot showing the separation of compounds using the 14 classifier genes (red circles
refer to necrosis samples and green circles refer to cholestasis samples)
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4.4 discussion

In this study, we aimed to classify hepatotoxicants according to their phenotype of
toxicity based on the gene expression profiles after exposure of human precision-cut liver
slices (hPCLS). The hPCLS were exposed to ten hepatotoxicants with a well-characterized
mechanism of toxicity: acetaminophen, benziodarone, chloramphenicol, colchicine, and
nitroso-diethylamine are known to induce hepatic necrosis; ANIT, chlorpromazine,
cyclosporine, ethinyl estradiol and methyl testosterone are known to cause hepatic
cholestasis. Machine learning on gene expression data of PCLS exposed to these five
cholestatic and five necrotic compounds resulted in four classification models based on two
different algorithms (SVM and RF algorithm) and two different tested concentrations (low
and medium), which were 70-80% accurate in predicting the phenotype of hepatotoxicants.
Cholestatic compounds such as ANIT, chlorpromazine, cyclosporine and ethinyl estradiol
were classified correctly. Similarly, three of the necrotic compounds (acetaminophen,
colchicine, and nitrosodiethylamine) were correctly classified, but two others, benziodarone
and chloramphenicol, were not. Although the compounds were chosen based on their
reported phenotype of liver injury, it is well known that some compounds can cause a
mixed type of toxicity. For instance, among the cholestatic compounds considered in this
study, cyclosporine, ethinyl estradiol and methyl testosterone can cause cholestasis without
hepatitis but chlorpromazine causes cholestasis with hepatitis and is associated with bile
duct injury[141]. Moreover cholestasis often presents as mixed cholestatic and hepatocellular
injury[141]. Chloramphenicol is generally considered a direct acting necrotic compound;
however a few older reports indicated that it can also cause cholestasis with hepatitis[157].
This possibly explains the fairly consistent classification of chloramphenicol as cholestasis
inducing drug by all the models (table 21 and table 22). If chloramphenicol would be
considered as cholestatic, then the compound prediction accuracy improved. Many studies
about the mechanisms of cholestatic liver injury indicated bile acid-induced apoptosis as the
mechanism involved in cholestatic liver injury[158, 159]. However, recent evidence suggests
that inflammatory cell-mediated necrosis might also accompany cholestasis[160]. This
overlap of mechanisms involved in the toxicity of necrotic and cholestatic compounds further
complicates the classification of hepatotoxicants into the correct phenotype of toxicity[150].
There is no evidence in the literature about the mechanism of toxicity of benziodarone
apart from being necrotic, but based on the results presented here, it may be worthwhile
to investigate whether the hepatotoxicity of benziodarone is accompanied by cholestasis.
Despite the complexity owing to overlap of mechanisms in toxicity for the classification of
necrosis and cholestasis, the classification models developed in this study were able to classify
the hepatotixicants with relatively good accuracy. Low concentration gene expression profiles
gave a better prediction accuracy than the medium concentration, which may be due to the
accompanying necrosis at higher concentrations. The SVM low concentration model shows
the highest prediction accuracy in correctly classifying all 5 cholestatic compounds, including
methyl testosterone (Table 21). In addition, the SVM classifier genes are more consistent
across the approaches used such as different concentrations (Figure 15a) or considering
inter-individual variation (Figure 16). Although the RFlow model gives a better accuracy
than the SVMlow model for predicting the necrotic compounds, the classifier genes were less
consistent across the concentrations or considering inter-individual variation. In conclusion,
all models give a reasonably comparable overall performance in compound class prediction
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accuracy. However, the accuracy of the SVMlow model is highest and this model gives
biomarkers that are consistent across concentrations and not too sensitive for inter-individual
variation, which would give this model greater applicability in future settings. Further
analysis of the function of the classifier genes identified by the SVMlow model showed that
they are involved in ER stress, oxidative stress and unfolded protein response (UPR), and
lipid and cholesterol metabolism. Nine of the classifiers are related to ER stress. The SRP 72

gene encodes the 72-kDa component of the signal recognition particle, a ribonucleoprotein
complex that mediates the targeting of secretory proteins to the endoplasmic reticulum (ER).
Caspase cleavage of SRP 72 is thought to shut down or alter the translation of secretory
proteins[161]. UBA5, a homodimer member of the E1 enzyme family is known to activate
Ubiquitin-fold modifier 1 (UFM1) and their interaction is proposed to play an important
role in the endoplasmic reticulum (ER) stress response[162]. Also DNAJC12, which belongs
to the Heat shock protein 40 (HSP40) family, is known to be upregulated in response to
ER stress[163]. HSP40 family proteins are known to bind to HSP70 through their J-domain
and regulate the function of HSP70 by stimulating its adenosine triphosphatase activity.
The endoplasmic reticulum localized DNAJ homologue ERDJ4 (DNAJB9) is up-regulated
by ER stress and is implicated in ER-associated degradation (ERAD) of multiple unfolded
secretory proteins[164]. C2ORF30, also known as CIM or ERLEC1 (endoplasmic reticulum
lectin 1), is known to be involved in ER-associated degradation via its interaction with
the membrane-associated ubiquitin ligase complex. It binds selectively to improperly folded
luminal proteins and functions in endoplasmic reticulum quality control and ERAD of both
non-glycosylated proteins and glycoproteins[165]. C2ORF30 is also involved in UPR through
its interaction with the key ER stress protein BiP, influencing cell proliferation under ER
stress conditions. REEP5 (Receptor expression enhancing protein 5), is a membrane protein
involved in the structural development of ER by shaping the tubular form of the endoplasmic
reticulum[166].In addition to these ER stress related proteins, SLC10A7 (Sodium/Bile Acid
Cotransporter 7) appeared as classifier, which belongs to the solute carrier family 10 (SLC10)
comprising influx transporters for molecules such as bile acids and steroidal hormones,
but the substrate specificity of SLC10A7 is not defined so far in the literature[167]. In
addition, its expression is shown to be upregulated in response to treatment with ER
stress inducers such as tunicamycin and thapsigargin[168]. NFXL1 (nuclear transcription
factor, X-box binding-like) is a transcription factor, which is shown to be upregulated along
with other NRF2 dependent genes in response to tunicamycin induced ER stress in mouse
liver[169]. TMEM-117 (Transmembrane protein 117) is an integral membrane component
of the endoplasmic reticulum. Two of the classifiers, TMED7 and CADPS2, are related to
oxidative stress. TMED7 (transmembrane p24 trafficking protein 7) is involved in trafficking
of TLR4 (Toll like receptor 4) from the ER to the plasma membrane. TLR4 participates
in the activation of many downstream intracellular pathways such as the NFkB pathway
in response to cellular stress[170]. Knockdown of CADPS2 (Calcium-dependent activator
protein for secretion 2) was shown to play a cell protective role under oxidative stress
in human iPSCs[171]. Two classifiers, SORL1 and HACL1, are related to cholesterol and
lipid metabolism. SORL1 (Sortilin-Related Receptor 1), is involved in cholesterol metabolism
and HACL1 (2-Hydroxyacyl-CoA Lyase 1) is involved in lipid metabolism. Both cholesterol
and lipid metabolism are affected in cholestasis as shown in the pathway analysis of
these hPCLS [117]. Finally, PAN2 (Poly (A) Specific Ribonuclease Subunit) is involved in
ubiquitin proteasome dependent proteolysis. The involvement of ER stress in cholestasis



502429-L-bw-Vatakuti502429-L-bw-Vatakuti502429-L-bw-Vatakuti502429-L-bw-Vatakuti

72 classification of cholestatic and necrotic hepatotoxicants using
transcriptomics on human precision-cut liver slices

has been described before. Hepatocytes are enriched with endoplasmic reticulum, which is
highly involved in protein synthesis, and it is generally assumed that endoplasmic stress
might play an important role in liver toxicity[172, 173, 174, 175]. A recent in vitro study
in human HEPG2 cells[176, 177, 149] showed that cholestatic compounds were classified
from non-hepatotixicants with good accuracy and 5 out of the 12 classifier genes were
related to endoplasmic reticulum stress and unfolded protein response, in accordance with
our findings. Adachi et al. elucidated the role of endoplasmic reticulum stress in bile acid
mediated hepatocellular injury. Bile acids were shown to elevate intracellular Ca2+ and
reactive oxygen species (ROS), leading to induced ER stress mediated apoptosis, which
correlated with the hydrophobicity of the bile acids[124]. Toxicogenomics studies using
in vitro models also revealed the involvement of ER stress in cyclosporine-mediated DICI
[178, 149, 179]. Additional studies would be necessary to further elucidate the exact role of
ER stress in cholestasis. When the classifier genes identified in our human PCLS model
were compared with cholestasis-specific classifier genes reported in different rat in vivo
studies[150, 147, 52, 29, 30], no overlap among the classifiers genes between rat in vivo
and human ex vivo were found. This can at least partly be explained by species differences
and underlines the importance of the use of human cells or tissues. Surprisingly, there
was also little or no overlap among the classifier genes found between the different rat in
vivo studies (supplementary information). This lack of concordance further questions the
applicability of the identified markers and could be partly due to overfitting of the data.
Liu et al. reported a novel algorithm to find classifier genes with functional relevance to
the phenotype with a reduced risk of overfitting in classification. Drugs inducing biliary
duct hyperplasia (BDH) were compared to drugs inducing necrosis or inflammation; and
the accuracy of the classification was determined. Classifier genes for each phenotype were
identified and validated, however the authors assigned some of the compounds to more
than one phenotype, complicating the interpretation of the classifier genes. In conclusion,
gene expression profiling after ex vivo exposure of precision-cut human liver slices to
hepatotoxicants known to induce either cholestasis or necrosis resulted in a classification
model that was 70-80% accurate in distinguishing cholestasis from necrosis. This is the first
ex vivo study with human tissue to test the possibility of discriminating hepatotoxicants based
on the phenotype of toxicity. It supports the importance of incubating hPCLS with a bile acid
mixture to create an environment similar to the physiological concentration in the portal vein
in vivo to be able to mimic the toxic mechanisms underlying the cholestasis phenotype. Apart
from being predictive, the identified classifiers were mechanistically involved in endoplasmic
reticulum stress, unfolded protein response and other stress response pathways, phenomena
shown to play a role in cholestasis. They appeared consistent across different concentration
levels, different predictive algorithms and inter-individual variation in response. A limitation
of our study is the low sample size and further validation of the identified classifiers
by incorporating additional compounds in the model building process will be necessary.
Moreover different time points should be considered. Despite the limitation of the low
sample size and a single time point (24 h), the developed models were able to classify the
hepatotoxicants based on their phenotype or mechanism of toxicity with a good accuracy
and the identified classifier genes are associated with the phenotype of toxicity. Hence, the
human PCLS model is a useful model to study the mechanisms of drug-induced toxicity and
to classify toxins based on their mechanism of toxicity and to identify and validate classifiers
responsible for drug-induced liver toxicity in humans.
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Figure 17: Viability of human PCLS indicated by the ATP content (pmol/µg) after 24hr incubation
with various cholestatic compounds

ATP content is expressed as relative values to the control values. Data represent the average values
from 3-5 experiments, using three PCLS per experiment (error bars represent the standard deviation)
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Figure 18: Viability of human PCLS indicated by the ATP content (pmol/µg) after 24hr incubation
with various necrotic compounds

ATP content is expressed as relative values to the control values. Data represent the average values
from 3-5 experiments, using three PCLS per experiment.
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abstract

Idiosyncratic drug-induced liver injury (IDILI) is a major concern leading to drug
withdrawal or post market restrictions. Low incidence in patients and low concordance
of animal and human data necessitate the need of robust screening methods to predict
IDILI early in the drug development process. Several possible hypotheses are being
tested using in vitro or in vivo models to understand the possible mechanisms underlying
IDILI. One such hypothesis is the inflammatory stress hypothesis. Recently, we have
successfully developed and validated a model using human precision-cut liver slices model
(hPCLS) based on this hypothesis to screen IDILI-related drugs from non-IDILI-related
drugs, using hPCLS co-incubated with drugs and lipopolysaccharide (LPS). As a follow-up
to this work, we carried out a transcriptomic analysis to identify possible biomarkers
and pathways responsible for IDILI using clozapine as a well-known IDILI drug and
olanzapine as its non-IDILI-associated analogue. Gene expression pattern analysis revealed
that LPS+clozapine-treated samples were clearly separated from samples treated with
LPS alone or clozapine alone in contrast to LPS+olanzapine-treated samples, confirming
synergistic toxicity caused by LPS and clozapine. Gene expression analysis revealed that
the activation of HMGB1, p38 MAPK, NFkB and NRF2 signaling pathways is involved in
the LPS+clozapine-induced IDILI. A significant number of genes were uniquely expressed in
LPS+clozapine-treated hPCLS compared to LPS+olanzapine, LPS, clozapine or olanzapine
alone. Pathway analysis of the uniquely regulated genes due to LPS+clozapine revealed
oxidative phosphorylation as the predominantly affected pathway implicating the role of
mitochondrial dysfunction in IDILI. Furthermore, IFN-gamma, IL1A, IL1B, MAPKAPK2,
NFkB and PAI-1 were up regulated uniquely or to a greater degree in LPS+clozapine-treated
hPCLS compared to LPS or LPS+olanzapine and need to be further validated as biomarkers
for IDILI. In conclusion, our study reveals the possible involvement of inflammation and
mitochondrial dysfunction signalling pathways in IDILI in the human liver.



502429-L-bw-Vatakuti502429-L-bw-Vatakuti502429-L-bw-Vatakuti502429-L-bw-Vatakuti

5

5.1 introduction 79

5.1 introduction

Idiosyncratic drug-induced liver injury (IDILI) occurs in a small fraction of the exposed
patients, but is the cause of severe morbidity and mortality. It is not predicted by preclinical
animal studies and in clinical patient studies, since these adverse reactions occur at very low
frequency both in animals and in patients. The low incidence of IDILI combined with the
insufficient predictive power of the existing in vitro models used in regular toxicity screening
makes it difficult to detect IDILI in the drug development process.

The mechanisms underlying IDILI are poorly understood for the vast majority of drugs
although it is generally recognized that it is not related to the pharmacological activity of the
drugs. There are numerous proposed mechanisms of action of IDILI in the literature. In many,
but not all, cases reactive metabolites and/or induction of specific immunological responses
play a prominent role [180, 181]. In addition, the presence of hepatic inflammation may lead
to cytokine release, which in turn reduces the threshold for drug toxicity thereby eliciting
an individual susceptible to IDILI. This is the basis of the inflammatory stress hypothesis.
Furthermore, there is increasing evidence that mitochondrial dysfunction is involved in IDILI
[182, 183, 184].

Several animal models have been developed on the basis of this inflammatory stress
hypothesis with the aim of mimicking IDILI, where IDILI related drugs were rendered
more toxic in rats or mice in vivo due to an inflammation caused by co-treatment with
lipopolysaccharide (LPS) [185, 186, 187, 188, 189, 190, 191]. The insights provided by these
animal models of IDILI were instrumental for the development of human IDILI-predictive
models to be used during preclinical studies with the aim to detect and eliminate new drug
candidates that have the potential to cause human IDILI.

Recently, we have developed the human and mouse PCLS model to test the inflammatory
stress hypothesis. PCLS represent an ex vivo system that retains the normal tissue architecture
of an intact liver with all its cell types in their natural arrangement and are metabolically fully
competent with active phase I and II drug metabolism enzymes during 24 h incubation [114].
The gene expression profile of rat PCLS was shown to have a higher degree of similarity to
intact liver compared to primary hepatocytes and cell lines [192]. Transcriptomics analysis
using rat PCLS showed that they could mimic the toxicity as observed in vivo and
discriminate between different mechanisms of hepatotoxicity [71, 117]. It has also been shown
that LPS treatment induces an inflammatory response by activation of Kupffer cells in PCLS,
leading to the production of nitric oxide (NO) and inflammatory cytokines, such as tumor
necrosis factor- (TNF), interleukin 6 and interferon gamma [75, 76, 77, 193, 78, 194, 65].

We tested several IDILI-inducing drugs and their non-IDILI-associated analogues and
found that synergistic toxicity was observed when human precision-cut liver slices (hPCLS)
were co-incubated with LPS and the IDILI drugs [195]. Concentration-response studies were
performed to select a slightly toxic concentration and subsequently it was tested whether
the selected concentration could become significantly more toxic under inflammatory stress
conditions. For instance, hPCLS treated with the combination of LPS+clozapine showed
extensive necrotic areas and decreased ATP content, while incubation with LPS alone
or the drug alone showed only minor toxicity. However, treatment with olanzapine did
not show any appreciable difference in damage in the absence or presence of LPS. In
addition, the release of inflammatory mediators into the medium of hPCLS was analyzed.
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Marked elevation of inflammatory mediators was observed in the case of LPS+clozapine in
comparison with LPS+olanzapine [195].

In this study, we used a transcriptomic approach in order to identify biomarkers and
possible mechanisms of the synergistic toxicity by comparing the gene expression profiles
induced by clozapine and olanzapine in the absence and presence of LPS in hPCLS.
Comparison of these hepatic gene expression profiles might help to identify gene expression
changes critical for LPS+clozapine induced liver injury and possibly also for clozapine
induced idiosyncrasy. We tested the hypothesis that co-treatment with LPS and clozapine
triggers not only a unique profile of gene expression in comparison to clozapine or LPS
alone, but also augments changes in gene expression caused by LPS itself, which does not
occur in olanzapine and LPS co-treatment. The objectives of this study were to determine
possible pathways responsible for the IDILI using hPCLS and a transcriptomics approach.

5.2 materials and methods

Chemicals

Clozapine and LPS derived from Escherichia coli serotype B55:O55 (Lot 050M4014, 600,000

EU/mg) were purchased from Sigma-Aldrich (St. Louis, MO). Olanzapine was a kind gift
from MSD (Oss, The Netherlands). All other drugs and chemicals were purchased from
Sigma-Aldrich unless stated otherwise. Stock solutions of each drug were prepared using
dimethyl sulfoxide (VWR, Briare, France) as solvent.

Human Liver Tissue

Pieces of human liver tissue were obtained from patients undergoing partial hepatectomy
for the removal of carcinoma (PH) or from liver tissue remaining as surgical waste after split
liver transplantation (TX), as described previously [195]. Six different livers were used. The
experimental protocols were approved by the Medical Ethical Committee of the University
Medical Center Groningen.

Table 23: Human liver donor characteristics used in this study (n = 6)

Human liver Type Sex Age ATP at 24h (nmol/mg protein)

1 TX Female 10 9.3

2 TX Male 7 10.7

3 PH Male 58 7.3

4 TX Female 67 6.7

5 TX Male 55 5.6

6 PH Male 59 7

PH is liver tissue after partial hepatectomy; TX is liver tissue remaining from donor liver after
transplantation.
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preparation of the human pcls Human PCLS were made as described previously
[34]. Pieces of human liver were perfused with a cold University of Wisconsin (UW) organ
preservation solution (DuPont Critical Care, Waukegan, IL) either in situ in case of surgical
waste of donor livers, or in case of tissue obtained after partial hepatectomy, immediately
after removal from the body. Cores with a diameter of 5 mm were punched out of the tissue,
and these cores were sliced with a Krumdieck tissue slicer (Alabama R&D, Munford, AL) in
ice-cold Krebs-Henseleit buffer saturated with carbogen (95% O2 and 5% CO2). The hPCLS
(5 mm diameter, 200-300µm thick, and 4.5-5.5 mg wet weight) were stored in an ice-cold UW
solution until they were incubated.

incubation of the human pcls The hPCLS were pre-incubated at 37 C for 1 h
individually in a well containing 1.3 mL of Williams’ medium E with glutamax-1 (Gibco,
Paisley, U.K.), supplemented with 25 mM d-glucose and 50µg/mL gentamicin (Gibco)
(WEGG medium) in a 12-well plate with shaking (90 times/min) under a saturated carbogen
atmosphere. After preincubation, the hPCLS were transferred to fresh WEGG medium in
the presence or absence of LPS (24000 EU/mL) and in combination with clozapine (60µM)
or its analogue olanzapine (60µM) or the vehicle (the final concentration of DMSO during
incubation was always 0.5%) and incubated for an additional 24 h without any further
change in medium. The concentrations of drugs used in this study were selected from initial
concentration-response relationship studies, where the highest concentration that elicits no or
minimal drug-only hepatotoxicity was selected. This concentration was used to test whether
a nontoxic concentration would become toxic under inflammatory conditions. Preliminary
concentration-response studies were also performed for LPS, with the objective of identifying
a concentration of LPS that generated significant inflammatory responses based on the
measurements of pro-inflammatory cytokines while causing minimal toxicity. LPS and the
drug were administered simultaneously.

viability of hpcls The viability of the hPCLS after incubation for 24 h with various
treatments was determined by measuring the ATP content and morphology as described
[195].

rna isolation and hybridization The triplicate slices of the each treatment or
control group were pooled and snap frozen and the total RNA was isolated using the RNeasy
mini kit (Qiagen, Venlo, Netherlands). The quality control, RNA labeling, hybridization
and data extraction were performed at ServiceXS B.V. (Leiden, The Netherlands). RNA
concentration was measured using the Nanodrop ND-1000 spectrophotometer (Nanodrop
Technologies, Wilmington, DE, and U.S.A). The RNA quality and integrity was determined
using Lab-on-Chip analysis on the Agilent 2100 Bioanalyzer (Agilent Technologies,
Inc., SantaClara, CA, U.S.A.) Biotinylated cRNA was prepared using the Affymetrix 3’
IVT Express Kit (Affymetrix, Santa Clara, CA, USA) according to the manufacturer’s
specifications with an input of 100 ng total RNA. The quality of the cRNA was assessed
using the Shimadzu MultiNA in order to confirm if the average fragment size was according
to Affymetrix’ specifications. Per sample, 7.5µg cRNA of the obtained biotinylated cRNA
samples was fragmented and hybridized in a final concentration of 0.0375µg/µl on the
Affymetrix HT Human Genome U133+ PM array plate (Affymetrix, Santa Clara, CA, USA).
After an automated process of washing and staining by the GeneTitan machine (Affymetrix,



502429-L-bw-Vatakuti502429-L-bw-Vatakuti502429-L-bw-Vatakuti502429-L-bw-Vatakuti

82 transcriptomics analysis of human precision-cut liver slices reveals
pathways involved in idiosyncratic drug-induced liver injury

Santa Clara, CA, USA) using the Affymetrix HWS Kit for GeneTitan (part nr. 901530),
absolute values of expression were calculated from the scanned array using the Affymetrix
Command Console v3.2 software.

microarray preprocessing and analysis ArrayAnalysis webservice [120] was
used for preprocessing the data. Microarray data was normalized using the robust multichip
average RMA algorithm. After normalization the data was corrected for batch differences
using the ComBat method implemented in the swamp package in R [121]. Significantly
regulated genes with a fold change of 1.5 and multiple hypothesis corrected p-value of
0.05 were identified using Limma R package. The oposSOM package was used to visualize
the microarray data and perform gene set enrichment analysis [196]. The SOM-algorithm
distributes the genes over a 20 x 20 two-dimensional grid such that each gene profile is
associated with the most similar grid point using the Euclidian distance as criterion. Gene
profile refers to the changes in expression level of any gene with exposure to different
treatment groups. The resulting two-dimensional map of meta-profiles optimally covers all
gene profiles observed experimentally. Moreover, the map becomes self-organized, which
means that genes with similar profiles of expression changes are clustered together, whereas
genes with distinct profiles of expression changes localize in different regions of the map.
The training thus translates the data given as N x M matrix (N = 19000: number of genes, M=
36 number of samples) into a K x M matrix (K = 400: number of meta genes). Metagene refers
to the set of genes, whose expression changes similarly with exposure to different treatment
groups. Each sample is visualized by color-coding the meta-genes in the two-dimensional
grid according to their abundance values from red to blue for high to low abundance values,
respectively. Neighboring meta-genes tend to be colored similarly owing to their similar
profiles. oposSOM also performs second-level SOM analysis, which enables to visualize the
differences between different treatment groups. The second level SOM analysis visualizes the
similarity between individual first level SOM portraits. In short, it maps all samples together
into a two-dimensional mosaic pattern to visualize the degree of similarity between their
metagene expression profiles as described above. The mutual distances between the samples
in the map are related to the degree of similarity of their SOM expression pattern. Also
hierarchical clustering of the different treatment groups was performed using the 35 most
regulated metagene profiles.

pathway analysis Canonical metabolic and signaling pathway analysis was
performed using QIAGEN’s Ingenuity(R) Pathway Analysis (IPA(R), QIAGEN Redwood
City). More specifically, significantly regulated genes from each of the different treatment
groups were scored against the canonical signalling pathways involved in immune mediated
reactions. Comparison pathway analysis feature in IPA was used to compare the canonical
pathways affected by the different treatment groups in human PCLS. Pathways with an
activation z-score of 1.3 or -1.3 due to any one of the treatment groups were considered
for visualization in a heatmap.
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viability of human pcls Hadi et al. studied the effect of LPS and drugs on
the viability of hPCLS by comparing the ATP content after 24 h incubation. The drug
concentrations were selected to cause a minimal decrease in ATP content; the selected
concentration of 60µM clozapine and 60µM olanzapine significantly decreased the ATP
content in the hPCLS of the liver by 18% and 19% respectively after a 24 h incubation
without LPS. LPS itself caused slight but significant toxicity in hPCLS incubated for 24 h
(13% loss of ATP content). However, synergistic toxicity was observed when the hPCLS
were incubated with LPS and clozapine compared to LPS or clozapine alone. LPS and
clozapine co-incubation resulted in a decrease in ATP levels to 46 % of the value of the
control hPCLS [195]. This synergistic toxicity was substantial considering that treatment with
clozapine or LPS alone caused only a slight ATP decrease. In contrast, the incubation of the
non-IDILI-associated olanzapine with LPS did not exhibit this phenomenon (22% decrease
in ATP). The effect of LPS on the toxicity of the drugs was also assessed by histomorphology.
The histomorphology data also confirmed the findings made using the ATP viability data.
hPCLS co-incubated with the combination of LPS and clozapine showed extensive necrotic
areas, while incubation with LPS alone or the drug alone showed only minor toxicity. Similar
to the ATP results, 24 h treatment with olanzapine did not show any appreciable difference
in morphological damage in the absence or presence of LPS [195].

self-organizing map (som) analysis From the self-organizing maps, it is evident
that the expression patterns induced by clozapine are different from those induced by
olanzapine and a larger separation of clozapine treated samples from the control group is
observed compared to olanzapine treated samples (Figure 19). In addition, LPS treatment
induced clear changes in gene expression patterns. An LPS/drug-induced synergistic effect
is also evident as the profiles of the LPS+clozapine-treated samples are clearly separated
from those of the LPS treated samples in contrast to LPS+olanzapine-treated samples.

Hierarchical clustering analysis was performed for all samples and the 35 most regulated
metagene profiles to identify the similarity in gene expression patterns between the samples.
It can be seen that a similar trend is observed as seen in the SOM analysis (Figure 20).
The control samples and olanzapine samples show similar patterns, indicating little effect of
olanzapine. Similarly LPS alone and LPS+olanzapine show similar patterns, indicating that
the gene expression pattern of LPS+olanzapine is mainly determined by the LPS treatment.
However, the pattern of clozapine+LPS is clearly different from both clozapine alone and
LPS alone, indicating specific additional effects.

venn comparison of regulated genes Comparison of significantly regulated
genes by LPS, olanzapine or clozapine shows that many genes were uniquely regulated
in LPS (925 out of 1787) and clozapine (682 out of 1581) indicating compound-dependent
gene expression changes and thus different mechanisms of toxicity (Figure 21A). In contrast,
in olanzapine treated hPCLS only 17 out of 210 genes were uniquely regulated; the 172

overlapping genes by olanzapine and clozapine possibly indicate class-specific effects, which
may not be related to IDILI. Comparison of the genes regulated by LPS alone with those
regulated by LPS in combination with clozapine or olanzapine indicates that many genes
are uniquely regulated in case of LPS+clozapine (Figure 21B). To identify which genes are
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1 : Ctrl1
2 : Ctrl2
3 : Ctrl3
4 : Ctrl4
5 : Ctrl5
6 : Ctrl6
7 : LPS1
8 : LPS2
9 : LPS3
10 : LPS4
11 : LPS5
12 : LPS6
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Figure 19: Self organizing maps (SOM) portraits of the microarray samples of the different treatment
groups as obtained using 2nd level SOM mapping

(Ctrl= control, OZ = olanzapine, CZ = clozapine, LOZ = LPS+olanzapine, LCZ= LPS+clozapine. The
numbers behind these abbreviations indicate the different human livers used (see table 23).
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Figure 20: Hierarchical clustering visualization of the gene expression patterns of the treatment
groups based on 35 most regulated metagenes

This type of representation visualizes similarity relations between the samples in horizontal direction
and between the metagenes in vertical direction.



502429-L-bw-Vatakuti502429-L-bw-Vatakuti502429-L-bw-Vatakuti502429-L-bw-Vatakuti

86 transcriptomics analysis of human precision-cut liver slices reveals
pathways involved in idiosyncratic drug-induced liver injury

specifically regulated due to the combination of LPS and clozapine, a Venn diagram of the
unique genes of Figure 21A and 21B was made and is given in Figure 21C. A significant
number of 719 genes are uniquely regulated due to the combined treatment of LPS and
clozapine. These genes may represent information on the mechanism of the synergistic
toxicity and thus of IDILI.

pathway analysis Pathway analysis was performed on all regulated genes of all
treatment groups. As it was the aim of the study to test the inflammatory stress hypothesis
and to identify the pathways involved, we selected the immune related and cellular stress
response pathways in IPA. Canonical signalling pathway comparison revealed the impact
of the different treatment groups on the immune related and cellular stress response
pathways in IPA (figure 22). It is apparent that LPS+clozapine treatment leads to more
extensive activation of most of the pathways than all other treatment groups involved in
the comparison. Noticeable differences were also found between treatments with clozapine
alone and olanzapine alone. Olanzapine alone did not affect any of these pathways, however
clozapine itself already affected several of the pathways, among which the IL8 signaling,
Toll-like receptor signaling, HMGB1 signaling, MAPK signaling, IL6 signaling and CD 40

signaling.
Interestingly the NRF2-mediated stress response is inhibited by LPS alone, not affected by

clozapine or olanzapine alone or LPS+olanzapine, but is clearly activated by LPS+clozapine.
The pathways that were suggested to be associated with idiosyncratic DILI, such as p38

MAPK signalling, HMGB1 signalling, NFkB signalling, and iNOS signalling [187, 189], and
NFR2-mediated oxidative stress response [197] were further explored and the regulation of
genes in those pathways after exposure to the different treatments are shown in Tables 24-29.

As expected, many of the genes involved in each of the selected pathways are significantly
regulated by LPS treatment. Interestingly many of these genes were also regulated by
clozapine but not by olanzapine. Moreover they are regulated to a larger extend in the
LPS+clozapine group than in any of the other treatment groups (Table 24-29).

To further study the mechanism of the increased toxicity in the LPS+clozapine treatment,
further pathway analysis of the 719 genes (figure 21C) that are uniquely regulated due
to LPS+clozapine treatment, was performed and revealed that oxidative phosphorylation
and mitochondrial dysfunction were the most predominantly affected pathways. The genes
involved in the oxidative phosphorylation were downregulated (table 29 and figure 23).
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Figure 21: Venn diagram comparison of the significantly regulated genes by different treatment
groups

3A: genes regulated due to exposure to LPS, clozapine and olanzapine are compared; 3B:
genes regulated due to exposure to LPS, LPS+clozapine and LPS+olanzapine are compared; 3C:
Genes uniquely regulated due to clozapine are compared with genes uniquely regulated due to
LPS+clozapine.
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Figure 22: Canonical signalling pathway analysis (immune related and cellular stress response
pathways) of the regulated genes in the different treatment groups

Activation z-scores are scaled from 3 to -3 (yellow to blue) indicating positive or negative activation of
the corresponding pathways. Intensity of the color represents the relative effect among the different
treatment groups.
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Table 24: Expression changes of genes involved in the HMGB1 signalling pathway

Data are presented as fold change values in comparison to vehicle controls. Significantly upregulated
genes are highlighted blue and downregulated genes are highlighted orange.

Table 25: Expression changes of genes involved in the P38 MAPK signalling network

Data are presented as fold change values in comparison to vehicle controls. Significantly upregulated
genes are highlighted blue and downregulated genes are highlighted orange.
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Table 26: Expression changes of genes involved in the NFkB signalling pathway

Data are presented as fold change values in comparison to vehicle controls. Significantly upregulated
genes are highlighted blue and downregulated genes are highlighted orange.

Table 27: Expression changes of genes involved in the production of nitric oxide and reactive oxygen
species

Data are presented as fold change values in comparison to vehicle controls. Significantly upregulated
genes are highlighted blue and downregulated genes are highlighted orange.
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Table 28: Expression changes of genes involved in the NRF2-mediated oxidative stress response

Data are presented as fold change values in comparison to vehicle controls. Significantly upregulated
genes are highlighted blue and downregulated genes are highlighted orange.
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Figure 23: Canonical pathways predominantly affected by the genes uniquely regulated due to
LPS+clozapine treatment

Horizontal bars denote the significant values represented as negative logarithm of the p-value
(-log(p-value)). -log(p-value) of 1.3 corresponds to p- value 0.05.

Table 29: Expression changes of genes involved in the oxidative phosphorylation

Data are presented as fold change values in comparison to vehicle controls. Significantly upregulated
genes are highlighted blue and downregulated genes are highlighted orange.
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5.4 discussion

IDILI is a rare but serious side effect of many drug treatments and represents one of the
largest undetected liabilities for new drugs in development. Understanding the underlying
mechanisms responsible for IDILI is the first step towards identifying its risk in preclinical
models. Co-treatment with a small, non-hepatotoxic dose of LPS renders numerous drugs
hepatotoxic in rats [186, 187, 14, 198, 26, 199], which is in support of the inflammatory
stress hypothesis. As it is generally realized that animal studies have a low predictive value
for the human situation, models employing human cells or tissue are currently developed.
Several studies employing human cell cultures were reported previously as models for
IDILI [136, 200, 201, 202]. Recently Hadi et al. were the first to study idiosyncratic drug
reactions in human tissue culture ex vivo [195] and found that co-incubation of LPS with
several IDILI drugs, among which clozapine, resulted in synergistic toxicity, in line with
the inflammatory stress hypothesis. In this study, we applied a transcriptomic analysis to
the mRNA expression profiles of ex vivo human liver slices treated with LPS+clozapine in
order to identify pathways that might be involved in IDILI.The synergistic toxicity observed
when hPCLS were co-incubated for 24 h with LPS+clozapine but not with LPS+olanzapine
was confirmed by ATP content, cytokine release and morphological changes [195]. The
selected concentration of clozapine (60 µM) was the same as that of olanzapine (60 µM),
both showing minor toxicity. Despite their structural similarity and formation of the same
reactive metabolite (a reactive nitrenium ion), administration of an equimolar dose of
clozapine, but not olanzapine, in the rat in vivo is shown to cause neutropenia [203]. It
can be hypothesized that clozapine affects gene expression changes in a manner that makes
the response to inflammatory stimuli induced by LPS stronger, resulting in hepatocellular
injury. Alternatively, it can be hypothesized that LPS affects the gene expression changes
induced by clozapine is such a way that it initiates signaling pathways to hepatocellular
injury and synergistic toxicity. This synergistic toxicity does not occur in LPS+olanzapine
treated hPCLS, indicating that olanzapine lacks the ability to induce idiosyncratic liver
toxicity. IDILI has not been shown for olanzapine in patients, although it should be realized
that a much lower dose of olanzapine is used than clozapine [204]. Self-organizing maps
and hierarchical clustering analysis was performed to evaluate global differences among
different treatment groups (figure 19 and 20). hPCLS treated with LPS+olanzapine could
not be distinguished from LPS alone, suggesting that olanzapine co-treatment did not
greatly alter LPS-induced gene expression. In contrast, LPS+clozapine treated hPCLS were
clustered distantly from either LPS+olanzapine or LPS alone. Similarly, gene expression
patterns for clozapine clustered distantly from those for olanzapine or vehicle control. It was
observed that LPS alone at a slightly toxic concentration induced significant changes in gene
expression patterns compared to the control group, reflecting the inflammatory response.
Co-incubation with clozapine further altered the LPS-induced gene expression patterns. Venn
comparison of regulated genes also indicates that LPS+clozapine treatment caused regulation
of 1048 unique genes which were not regulated with LPS or LPS+olanzapine (figure 21).
LPS-induced mild inflammation interacts with drugs that cause human IDILI to cause liver
injury in experimental animal inflammation [14]. Inflammation involves the activation of
cells of the immune system, coordinated actions of the mediators they produce, and altered
inflammatory gene expression and cellular signaling events. We performed pathway analysis
using immune-mediated and cellular stress response signalling pathways to compare the
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effects in the different treatment groups. This comparison of canonical signalling pathways
revealed the enhanced activation of immune related and/or cellular stress related pathways
by LPS+clozapine in comparison to LPS or LPS+olanzapine. For instance, Toll-like Receptor
signalling is one of the predominantly activated pathways. Toll-Like receptors (TLRs) play
a critical role in the early innate immune response and are involved in sensing endogenous
danger signals (HMGB1). Stimulation of TLRs by LPS or HMGB1 initiates signaling cascades
leading to the activation of downstream signaling molecules like p38MAPK and NFkB which
then are translocated into the nucleus where they activate transcription regulators like FOS
and JUN leading to the induction of several pro-inflammatory cytokines [205, 206]. HMGB1

is secreted by macrophages and monocytes during inflammatory processes or released
passively by hepatocytes due to ischemia reperfusion injury or during drug-induced necrosis
[207, 208]. HMGB1 was also released by mouse and human PCLS after treatment with LPS
or paracetamol [194, 65]. HMGB1 in turn can activate cell surface receptors on various cell
types causing ERK1/2, JNK, and p38 activation and results in the release of proinflammatory
cytokines and chemokines (TNF, IL-1A, IL-1B, IL-6, IL-8) and the upregulation of adhesion
molecules such as ICAM1. Cytokines involved in the HMGB signalling such as IL1A and
IL1B were significantly regulated in the human PCLS after exposure to LPS alone and in
combinations with the tested drugs. It is interesting to observe that IL1A and IL1B and
ICAM1 expression due to LPS+clozapine was higher than with LPS or LPS+olanzapine (table
24). GM-CSF (CSF2) expression was also enhanced due to LPS+clozapine in comparison with
LPS or LPS+olanzapine. A similar trend was observed with measured cytokine levels in the
medium of hPCLS [195]. It is also interesting to see that PAI-1 upregulation was higher due to
clozapine than to LPS alone and that its expression was further enhanced with LPS+clozapine
co-treatment. Several studies reported the role of the hemostatic or coagulation system in
LPS+drug induced liver injury [185, 188, 189]. Increased expression of PAI-1 (SERPINE1)
in vivo causes increased fibrin deposition, leading to tissue hypoxia and hepatocyte cell
death. HMGB1 is also known to play a role in the regulation of coagulation by increasing
the expression of PAI-1 and PLAT [209]. LPS-induced stabilization of mRNAs encoding
for inflammatory mediators requires the downstream p38 pathway member, MAPKAPK-2
[210, 211]. Treatment with neither clozapine nor olanzapine alone, but with LPS caused
up-regulation of MAPKAPK2 in the hPCLS, and an additive increase was observed in
LPS+clozapine co-treated hPCLS (table 25). Similar enhanced expression of MAPKAPK2 and
its target genes was found in LPS+ranitidine co-treated rats in vivo [187]. It is possible that the
enhanced expression of MAPKAPK-2 in LPS+clozapine co-treated hPCLS stabilizes mRNAs
for inflammatory mediators initially expressed after LPS alone. In addition, consistent with
its regulation by MAPKAPK2 at the translational level, TNF concentration in the medium
was significantly enhanced in LPS+clozapine-treated hPCLS [195]. This enhanced production
of inflammatory mediators might result in liver injury represented by necrotic areas in
LPS+clozapine-treated hPCLS. Accordingly, identification of genes expressed to a greater
degree in LPS+clozapine-treated hPCLS suggested the possibility that p38/MAPKAPK-2
signaling was important for elevated levels of certain cytokine mRNAs. Also, p38 MAPK
is known to translocate to the nucleus where it phosphorylates transcription factors like
activating transcription factor (ATF1). The activated transcription factors trigger transcription
of several stress response genes responsible for cytokine production and apoptosis. ATF1

was upregulated by clozapine but not by olanzapine or LPS and its upreguation was
further enhanced by LPS+clozapine treatment. The family of NFkB transcription factors
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plays an important role in regulating the expression of many genes involved in cell survival,
immunity and inflammatory processes. NFkB transcription factors consist of five known
subunits (RELA/p65, c-REL, RELB, NFkB1 and NKB2). The expression of three of them,
NFkB1, RELA and RELB, was higher in hPCLS treated with LPS+clozapine than with
LPS or LPS+olanzapine. BCL10 involved in activation of NFkB via NIK and IKK was
also uniquely regulated due to both clozapine and LPS+clozapine treatments. MALT1,
known to enhance the BCL10-induced activation of NFkB, was also uniquely regulated
in LPS+clozapine. Amplification of NFkB-mediated gene expression was also observed
in an inflammatory stress model (LPS+diclofenac) in rat in vivo [189]. Thus, our study
also supports the possible involvement of NFkB pathways in IDILI. NFkB, p38 MAPK
and IFN signalling pathways lead to induction of iNOS, which was more enhanced by
LPS+clozapine than LPS+olanzapine. p38 MAPK mediated activation of AP-1 also leads to
induction of iNOS. The transcription factors FOS and JUN of the AP-1 complex were uniquely
regulated with clozapine and LPS+clozapine, possibly this reflects the ability of clozapine
to induce an idiosyncratic reaction. IFN induces the transcription of iNOS by activating
interferon-regulated factor-1 (IRF-1). IFN and IRF1 were upregulated by LPS or LPS+drug
combinations but upreguation was higher in LPS+clozapine in contrast to LPS+olanzapine.
Together, enhanced expression of NFkB, iNOS, AP-1 and IFN , leading to enhanced activation
of iNOS in LPS+clozapine in comparison to LPS+olanzapine, might contribute to the IDILI,
due to enhanced production of reactive nitrogen species causing mitochondrial damage
[212]. Enhanced activation of Nuclear factor erythroid 2-related factor 2 (NRF2) mediated
oxidative stress response was observed due to LPS+clozapine in comparison to other
treatments groups. NRF2 is involved in the cellular defense response to oxidative stress by
inducing antioxidant and detoxifying enzymes. The NRF2 transcription factor itself was also
significantly upregulated only due to LPS+clozapine treatment. Moreover, LPS+clozapine
treatment enhanced the expression of NRF2 target genes such as glutathione reductase
(GSR) and HMOX1 in comparison to LPS or clozapine alone (Table 28). GSR, a central
enzyme in cellular antioxidant defense, involved in glutathione (GSH) production and
regeneration, was upregulated by the incubation with clozapine alone, but it was not further
enhanced by the coincubation with LPS. Moreover, enhanced expression of genes involved
in protein kinase and MAP kinase pathways, which are involved in activation of NRF2,
was observed in LPS+clozapine. A recent study using HepG2 cells reported that drugs
that are more often associated with DILI cause a strong activation of the NRF2-mediated
stress response and a suppression of endogenous NFkB activity [197]. Partly in accordance,
we also observed a slight activation of NRF2 stress response but we found no effect on
NFkB activity due to clozapine treatment. However, in the presence of an inflammatory
stress mediator (LPS), the clozapine-induced NRF2 response was further enhanced and
activation of NFkB response was observed (Figure 22). NFkB activation could be ascribed
primarily due to treatment with LPS, as clozapine or olanzapine alone did not affect
the NFkB pathway. It is noteworthy that enhanced activation of NFkB was also observed
due to LPS+diclofenac co-administration in rats [189]. There is also increasing evidence
that numerous drugs associated with idiosyncratic drug reactions cause mitochondrial
dysfunction [182]. Gene expression profiling in rat in vivo revealed the activation of
mitochondrial dysfunction in IDILI-associated drugs but not in non-IDILI-associated drugs
[136, 184], although recently in a rat in vivo model of LPS+diclofenac co-administration, an
upregulation of the ATP synthase subunits ATP5J, ATPA, and ATPB was reported [213].
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In accordance with the reported mitochondrial dysfunction, pathway analysis of the genes
uniquely regulated due to LPS+clozapine treatment (figure 23 and table 29) also revealed
that oxidative phosphorylation was the predominantly affected pathway and many genes
involved in complex I-V of electron transport chain were downregulated (figure 24). This
further strengthens the role of the mitochondrial damage in inflammation-associated IDILI.
Genes which are uniquely regulated (719) due to LPS+clozapine treatment could be potential
biomarkers for inflammation-associated IDILI. Further studies with other IDILI drugs should
elucidate the potential IDILI biomarkers which are not specific for clozapine.

In conclusion, potential gene expression signatures leading to IDILI were identified using
a recently validated ex vivo model of human PCLS. Mitochondrial dysfunction was identified
as a potential mechanism of inflammation-associated IDILI as gene expression changes
indicating mitochondrial dysfunction were observed after exposure to LPS+clozapine. In
addition, hepatic gene expression analysis suggested the activation of HMGB1, p38 MAPK,
and NFkB signalling pathways to be involved in the LPS+clozapine induced IDILI. This study
underlines the use of human tissue to elucidate the mechanisms of IDILI in humans and to
eventually find human-specific biomarkers for IDILI. The hPCLS seems to be a promising
ex vivo model for characterizing IDILI. Further research including more IDILI-related
drugs together with their non-IDILI-related comparator drugs will elucidate whether the
mechanisms of clozapine-induced IDILI found in this study are specific for clozapine or are
also involved in liver toxicity induced by other IDILI drugs.
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6 S U M M A R Y , C O N C L U S I O N S A N D F U T U R E
P E R S P E C T I V E S

The safety assessment of potential drug candidates remains a challenge for the
pharmaceutical industry. Hepatotoxicity is one of the major reasons why candidate drugs
fail during preclinical or clinical trials. The liver is responsible for the metabolism of
drugs and toxic compounds, thus it is the most vulnerable organ for drug-induced
toxicity. Drug-induced hepatotoxicity can be intrinsic (dose-dependent) or idiosyncratic
(low incidence and largely dose-independent). Preclinical in vivo testing of drug toxicity is
accompanied by severe animal suffering and discomfort and is only partly predictive for
human toxicity because of species differences. This emphasizes the need for the development
of new screening methods that address the toxicological hazards early in the drug discovery
process. Therefore, great effort is put in developing new screening methods in order to find
novel and more accurate preclinical and clinical biomarkers. This will lead to a safer and more
efficient drug discovery and development process. With the traditional biomarkers for liver
injury, the differentiation between different classes of hepatotoxicity is difficult. Moreover
there is a need for reliable in vitro toxicity screening tests, which improve the prediction,
characterization and understanding of drug-induced hepatotoxicity. A prerequisite for a
proper prediction is that the model used has adequate drug metabolizing capacity, as
drug-related liver toxicity often results from toxic metabolites formed in the liver. In addition,
such methods are developed to be applicable to human tissue in order to better predict liver
toxicity in man by avoiding interspecies extrapolation. The Precision-Cut Liver Slice (PCLS)
model has been shown to be adequate to study drug metabolism and toxicity [34]. This model
can be positioned between in vivo experiments and the currently used cell culture models
and can be regarded as an ex vivo model, with all the different cell types of the liver present
in their natural architecture and with intact cell-cell and cell-matrix contacts. For toxicity
studies this is of great importance because drug-induced toxicity is currently recognized as
a multi-cellular process, where in addition to hepatocyte functions, also cell-cell interactions
and non-parenchymal cell functions are considered to be important contributors to the
toxicity process [31].

The application of transcriptomics enables investigating the changes in gene expression
of the complete genome induced by drug exposure. Through the measurements of the
global gene expression it is possible to identify phenotype specific hepatotoxic pathways
and mechanisms. In addition, it is possible to select similar endpoints in vivo and in vitro,
facilitating to perform in vitro to in vivo comparisons. Even if the endpoints are not similar
they could be predictive if a good correlation between the in vivo and in vitro endpoints
can be established. Thus, the application of transcriptomics facilitates the development and
use of ex vivo or in vitro models for the prediction of hepatotoxic responses in humans.
Also, a correct classification of the hepatotoxicants based on their hepatotoxic phenotype
is instrumental for the safety assessment of drugs. Drug-induced liver injury may result in
different toxicity phenotypes such as hepatic cholestasis, i.e. impairment of bile flow and
increase in intracellular accumulation of bile salts, necrosis, i.e. a form of premature cell
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death due to damage by for instance free radicals and/or toxic metabolites, or fibrosis, i.e.
the accumulation of collagen..

The aim of this thesis was to obtain insight in the use of PCLS as ex vivo model in
combination with transcriptomics for the identification and classification of hepatotoxic
compounds, and in the elucidation of the mechanisms of the hepatotoxic effects of those
compounds at the gene and pathway level. For this aim we analyzed gene expression profiles
of PCLS exposed to compounds inducing fibrosis, necrosis, cholestasis and idiosyncratic liver
injury.

Validation of rat PCLS as model to study fibrosis

In chapter 2, we aimed to further characterize PCLS as a suitable model to identify whether
early changes in gene expression could give an indication of the phenotype of long-term
toxicity induced by hepatotoxicants inducing necrosis or fibrosis. In this study, we performed
the comparative analysis of the gene expression profiles of rat PCLS induced by paracetamol
(APAP) and carbon tetrachloride (CCl4), which are known to induce toxicity by different
mechanisms, being necrosis and fibrosis respectively. The comparison was performed using
gene expression patterns, regulated genes, and pathway and upstream regulator analysis
of the regulated genes. Gene expression pattern analysis revealed characteristic changes
in expression patterns due to exposure to a toxic concentration of each of the compounds
compared to the corresponding control. Comparison of the regulated genes showed that
there is considerable overlap among the genes regulated by both toxins but there is also
a significant number of genes uniquely regulated due to either APAP or CCl4. Some of
those genes uniquely regulated due to CCl4 treatment include genes related to fibrogenesis.
Genes involved in the hepatic stellate cell activation and the onset of fibrogenesis such as
CRYAB (alpha-B crystallin), KLF6 (Kruppel-Like Factor 6) and HSP47 (Heat shock protein
47) were upregulated indicating initiation of the fibrotic processes in CCl4 treated slices, as
was shown before [72, 74, 73, 115, 116, 85]. The growth factor TGF-β1 (Transforming growth
factor beta 1) plays a key role in fibrosis via hepatic stellate cell activation [214]. From the
TGF-β1 gene network resulting from the analysis of the regulated genes due to APAP or
CCl4 treatment, it can be seen that genes that are causally linked to TGF-β1 and have a
clear role in fibrosis such as JUN (Jun Proto-Oncogene), LITAF (Lipopolysaccharide-induced
tumor necrosis factor) and SERPINE1(Serpin Peptidase Inhibitor, Clade E, Member 1), were
upregulated only in the case of exposure to CCl4, but not to APAP. This observation indicates
a substantial involvement of TGF-β1 in the toxicity process initiated by CCl4 but not by APAP,
and gives an indication that early fibrotic processes are activated within 16 h due to exposure
to a toxic concentration of CCl4. Upstream regulator analysis revealed several regulators that
are known to control the expression of the regulated genes and that are known to be related to
hepatic fibrosis. In conclusion, the early gene expression changes after short-term exposure to
CCl4 and APAP reflect the characteristic difference between these compounds in their ability
to induce liver fibrosis after chronic dosing in vivo. This study indicates that transcriptomic
analysis of PCLS can be used to identify the early events in PCLS that are indicative of a
pathology (fibrosis) that develops after chronic injury. Further studies with more fibrotic and
non-fibrotic compounds are needed to verify this finding and to identify a set of biomarkers
that can be used in the future in drug- induced toxicity screening.
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Validation of human PCLS to study drug-induced cholestatic injury (DICI)

In chapter 3, we aimed to validate human PCLS as an ex vivo model that reflects the
drug-induced cholestasis processes using transcriptomic analysis. To date, human PCLS were
not used for studies on cholestasis. Hepatotoxicants that are known to induce cholestasis in
humans, such as cyclosporine, chlorpromazine, ethinyl estradiol and methyl testosterone
were tested. In addition, ANIT (alpha-naphthyl isothiocyanate), a well-known cholestatic
compound in rats, was included in the study. For many cholestatic drugs, the primary
causative event involved in cholestasis is the inhibition of BSEP (Bile salt export pump)
resulting in the intracellular accumulation of bile acids. It was hypothesized that incubation
of PCLS in conventional culture medium would not be very sensitive to the toxic effects of
these BSEP inhibition, as they would only be exposed to the newly synthesized bile acids.
Therefore, a non-toxic bile acid mixture (60µM) was added to the incubation medium in
order to create an environment similar to the physiological concentration in the portal vein
of man in vivo [119]. Pilot experiments showed that indeed the bile acid concentration in
the slices is maintained during incubation with bile acids whereas it is strongly decreased
during incubation in conventional medium. Transcriptomic analysis revealed that cholestatic
drugs clearly induced the regulation of genes and pathways associated with cholestasis in
human PCLS when incubated in the presence of bile acids (60µM of bile acid mix). Also,
the observed gene expression pattern of cholestatic injury was concentration dependent
for all drugs. Hepatic cholestasis was among the top 5 regulated pathways. The majority
of the pathways regulated in the human PCLS are represented in the Adverse Outcome
Pathway (AOP) for cholestasis as proposed by Vinken et al., including the primary direct
cellular responses and secondary adaptive responses involved in bile acid induced cholestatic
injury [16, 17, 18], such as NRF2 (Nuclear factor (erythroid-derived 2)-like 2) mediated
oxidative stress response, inflammation mediated hepatic fibrosis, endoplasmic reticulum
stress, and activation of the coagulation and complement system. It is well known that
adaptive responses to intracellular bile acid accumulation are mediated via FXR (Farnesoid X
receptor), LXR (Liver X receptor), PXR (Pregnane X receptor), and VDR (Vitamin D receptor)
nuclear receptors. As expected, in the PCLS exposed to the cholestatic drugs, signaling
pathways such as FXR, LXR, PXR and VDR as well as the related cholesterol biosynthesis
pathways were affected. Activation of nuclear receptors such as FXR, LXR, PXR and VDR,
triggers cellular adaption to counteract bile acid accumulation and thus cholestatic liver
injury [19]. In contrast with the expected activation of FXR as indicated in the AOP, the target
genes in the FXR pathway were downregulated in the human PCLS including genes known
to play a role in cholestasis such as MDR3 (Multiple Drug Resistance 3), BSEP (ABCB11)
and SHP (Small Heterodimer Partner). Downregulation of BSEP may indicate a direct effect
of the tested cholestatic drugs, as potent BSEP inhibitors have been shown to downregulate
BSEP expression in primary human hepatocytes [128]. Moreover the decreased expression of
FXR can at least partly explain this reduced FXR signalling. This is in line with the finding
that both FXR and SHP expression was reduced by 90% or more in cholestatic patients
[15]. Thus, based on our findings it can be postulated that exposure to cholestatic compounds
could lead to compromised FXR mediated adaptive responses, causing cholestatic injury.
Also, downregulation of genes involved in cholesterol transport such as ABCG5 and ABCG8

indicate a loss of the protective action of LXR. In addition, also several genes in the PXR
and VDR pathways were mostly downregulated. Together, the reduced activation of FXR,
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LXR, PXR and VDR could be responsible for reduced adaptive responses to the effects of the
cholestatic drugs and lead to development of cholestatic injury.

Compromised adaptive responses could lead to deleterious cellular effects via toxicity
processes such as oxidative stress and endoplasmic reticulum (ER) stress. Oxidative stress
is implicated to play a role in the pathogenesis of drug-induced cholestasis as a result of bile
acid accumulation. We observed the activation of NRF2 mediated oxidative stress response in
the human PCLS treated with cholestatic drugs. This indicates that detoxifying mechanisms
are activated in the PCLS to alleviate the oxidative stress probably due to accumulating bile
acids. Whether indeed the bile acids accumulate in the slices after exposure to a cholestatic
drug remains to be established and is currently under investigation in our lab.

A recent study showed that ER stress is involved in the bile acid induced hepatocellular
injury [124]. In line with this, we also observed that ER stress, unfolded protein response
(UPR) and protein ubiquitination pathways were among the most affected pathways. The
UPR signaling pathway is activated in response to ER stress and promotes cell survival
and adaptation. There is increasing evidence for the involvement of ER stress in cholestasis
[215, 176, 177, 149, 124]. Our results suggest that ER stress, protein ubiquitination and UPR
may be early cellular effects in drug-induced cholestasis. Further studies will be necessary to
elucidate the exact role of these processes in bile acid mediated cholestasis.

Hepatic fibrosis and hepatic stellate cell activation was also observed in human PCLS
due to exposure to the cholestatic drugs. Indeed, accumulation of bile acids by obstructive
cholestasis [134], was shown to lead to an inflammatory response in vivo which in turn leads
to activation of hepatic stellate cells and liver fibrosis.

The genes involved in cholesterol biosynthesis, the starting material for the synthesis of bile
acids in the liver were downregulated in human PCLS indicating the adaptive response of
hepatocytes to decrease cholesterol synthesis as a response to cholestatic drugs. Interestingly,
this was also observed in mouse PCLS exposed to cholestatic drugs [112, 113].

We also compared our findings with gene expression data obtained from liver samples of
patients with cholestasis due to biliary atresia and intrahepatic not drug-induced cholestasis
[123]. Comparison of the affected pathways between human PCLS and the patient samples
revealed that there was good overlap with respect to the processes involved in cholestasis,
although more pathways were affected in vivo. For instance, tight junction signalling was
affected in patient samples but not in human PCLS. An explanation for the observed
differences between in vivo data and the ex vivo data could be due to the different causes
of cholestasis or the large difference in time frame as the patient samples represent fully
developed cholestatic disease in infants. Human PCLS should therefore preferably be
validated by comparing with human liver tissue of patients suffering from drug-induced
cholestasis, but to our knowledge such data has not been published to date.

In conclusion, the transcriptomic analysis of human PCLS exposed to cholestatic drugs
in the presence of bile acids revealed that this model reflects the primary toxicity and
adaptive processes associated with hepatic cholestasis. The results suggest that decreased
adaptive responses mediated via nuclear receptors are associated with these cholestatic
effects and lead to the subsequent toxicity processes such as oxidative stress, ER stress and
UPR response. Our study demonstrates that human PCLS is a suitable model for future
application in drug screening for cholestasis and to identify possible mechanisms of toxicity
of cholestatic compounds, when incubated in the presence of a physiological concentration of
bile acids. Further studies may reveal biomarkers for DICI. Insights gained from the pathway



502429-L-bw-Vatakuti502429-L-bw-Vatakuti502429-L-bw-Vatakuti502429-L-bw-Vatakuti

6

summary, conclusions and future perspectives 105

analysis such as decreased activation of the FXR pathway, downregulation of cholesterol
biosynthesis, increased ER stress response and NRF2 mediated oxidative stress response,
could be included in the adverse outcome pathway of cholestasis.

Classification of cholestasis and necrosis inducing drugs

In chapter 4, we aimed to classify hepatotoxicants according to their known phenotype
of toxicity, cholestasis or necrosis, based on the gene expression profiles after exposure
of human precision-cut liver slices and to identify possible classifier or marker genes. In
addition to the five cholestatic compounds studied in chapter 3, the human PCLS were
exposed to five hepatotoxicants: acetaminophen, benziodarone, chloramphenicol, colchicine,
and nitroso-diethylamine known to induce hepatic necrosis. In all these experiments the
PCLS were exposed to the toxic compounds in the presence of the physiological bile acid
mix. Machine learning analysis on gene expression data of PCLS exposed to these five
cholestatic and five necrotic compounds resulted in four classification models based on
two different algorithms namely SVM (Support vector machine) and RF (Random forest)
and two different tested concentrations (low and medium), which were 70-80 % accurate
in predicting the phenotype of the hepatotoxicants. Interestingly, chloramphenicol was
consistently classified as cholestatic compound despite the fact that it is generally considered
a direct acting necrotic compound. However, some studies indicated that chloramphenicol
can also cause cholestasis [157]. In spite of the fact that the compounds were chosen
based on their literature reported phenotype of liver toxic phenotype, it is well known
that cholestasis often presents as mixed cholestatic and hepatocellular injury [141]. Further,
recent evidence suggests that inflammatory cell-mediated necrosis might also accompany
cholestasis. Steiner et al., reported that this overlap of mechanisms involved in the toxicity of
necrotic and cholestatic compounds further complicates the classification of hepatotoxicants
into the correct phenotype of toxicity [150]. However, despite the complexity owing to overlap
of mechanisms in toxicity for the classification of necrosis and cholestasis, the developed
classification models were able to classify the hepatotixicants with relatively good accuracy.
The low concentration gene expression profiles gave better prediction accuracy than the
medium concentration, which can probably be due to the accompanying necrosis at higher
concentrations of the cholestatic compounds. In conclusion, although all four models gave
a reasonably comparable overall performance in compound class prediction accuracy, the
SVM low concentration model shows the highest prediction accuracy in correctly classifying
all 5 cholestatic compounds and the classifier genes identified by this model are consistent
across concentrations and not too sensitive for inter-individual variation, which supports
the reliability of this model in future settings. Further analysis of the function of the
classifier genes identified by the SVM low model showed that they are involved in ER stress,
oxidative stress and unfolded protein response (UPR), and lipid and cholesterol metabolism
including a Sodium/Bile Acid Cotransporter, which is well in line with the findings of
chapter 3. Classifier genes identified in our human PCLS model were compared with
cholestasis-specific classifier genes reported in different rat in vivo studies [150, 147, 52, 29, 30].
No overlap was observed among the classifiers genes between rat in vivo and human ex
vivo. This lack of concordance could be partly due to species differences and underlines the
importance of the human cells or tissues to identify human specific biomarkers. It should also
be mentioned that there was also little or no overlap among the classifier genes found for
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the cholestasis phenotype between different rat in vivo studies [150, 147, 52, 29, 30]. The lack
of concordance in these studies further questions the applicability of the identified markers
and could be partly due to overfitting of the data.

In conclusion, gene expression profiling after ex vivo exposure of precision-cut human
liver slices to hepatotoxicants known to induce either cholestasis or necrosis resulted in a
classification model that showed good accuracy in distinguishing cholestasis from necrosis.
Despite the limitation of the low number of compounds studied at a single time point (24 h),
the developed models were able to classify the hepatotoxicants based on their phenotype or
mechanism of toxicity with a good accuracy and the identified classifier genes are associated
with the phenotype of toxicity. The identified classifiers were mechanistically involved in
endoplasmic reticulum stress, unfolded protein response and other stress response pathways,
phenomena shown to play a role in cholestasis (chapter 3). They appeared consistent across
different concentration levels, different predictive algorithms and inter-individual variation
in response. Hence, the human PCLS model is a useful model to study the mechanisms
of drug-induced toxicity and to classify toxins based on their mechanism of toxicity and
to identify and validate classifiers responsible for drug-induced liver toxicity in humans.
A limitation of our study is the low sample size and further validation of the identified
classifiers by incorporating additional compounds will be necessary.

Human PCLS to study mechanisms involved in drug induced in idiosyncratic toxicity

In chapter 5, we applied transcriptomic analysis to understand the possible mechanisms
or pathways that might be involved in idiosyncratic drug induced liver injury (IDILI).
Several hypotheses have been tested in animal or human models to study IDILI and
associated mechanisms. Among the hypothesis tested the inflammatory stress hypothesis
is of particular interest due to its inter-relation to other hypothesis such as mitochondrial
stress hypothesis [26] as it was reported that inflammatory mediators induced during
inflammation could induce mitochondrial dysfunction [216, 217, 218]. Recently, Hadi et al.
were the first to study the inflammatory stress hypothesis in human and mouse precision-cut
liver slices ex vivo [195] and found that co-incubation of LPS (Lipopolysaccharide) with
several IDILI drugs, among which clozapine, resulted in synergistic toxicity. To further
understand the possible mechanisms involved in clozapine induced IDLI, we compared
the gene expression profiles of clozapine with its non-IDILI analogue olanzapine in the
presence and absence of LPS. Pathway analysis using immune-mediated and cellular stress
response signalling pathways to compare the effects in the different treatment groups
revealed the enhanced activation of toll-like receptor signalling, HMGB1 (High-mobility
group box 1) signalling, iNOS (Inducible nitric oxide synthase) signalling, p38-MAPK
(Mitogen-activated protein kinase) and NRF2 oxidative stress response in LPS+clozapine.
Several inflammatory mediators involved in the different inflammatory signalling pathways
such as IL1A (Interleukin-1 alpha), IL1B (Interleukin-1 beta), ICAM1 (Intercellular adhesion
molecule 1), GM-CSF (Granulocyte-macrophage colony-stimulating factor), MAPKAPK-2
(MAPK-activated protein kinase 2) and PAI-1 (Plasminogen activator inhibitor-1) were
significantly regulated with enhanced expression in LPS+clozapine co-treated human PCLS
compared to the human PCLS exposed to LPS or clozapine alone, or to LPS+olanzapine.
This enhanced production of inflammatory mediators might contribute to the liver injury
represented by necrotic areas in LPS+clozapine-treated human PCLS. Also, the enhanced
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expression of NFkB, iNOS, AP-1 and IFN , leading to enhanced activation of iNOS in
LPS+clozapine, might contribute to the IDILI by enhanced production of reactive nitrogen
species causing mitochondrial damage [212]. Drugs that are more often associated with IDILI
are shown to cause strong activation of NRF2 mediated stress response [197]. In our results,
clozapine showed activation of NRF2 stress response but not LPS or olanzapine and the
clozapine-induced NRF2 response was further enhanced in the presence of an inflammatory
stress condition (LPS). There is also increasing evidence that numerous drugs associated
with idiosyncratic drug reactions cause mitochondrial dysfunction [182, 184]. In accordance,
pathway analysis of the 719 genes uniquely regulated due to LPS+clozapine treatment also
revealed that oxidative phosphorylation was the predominantly affected pathway and many
genes involved in complex I-V of the electron transport chain were downregulated. This
further strengthens the role of the mitochondrial damage in inflammation-associated IDILI.
In addition, hepatic gene expression analysis suggested the activation of HMGB1, p38 MAPK,
NFkB signalling pathways to be possibly involved in the LPS+clozapine induced IDILI.

In conclusion, the human PCLS seems to be a promising ex vivo model for characterizing
IDILI and toxic mechanisms associated with it. Inflammatory-associated mitochondrial
dysfunction was identified as a potential mechanism of inflammation-associated IDILI.
Further research including more IDILI-related drugs together with their non-IDILI-related
comparator drugs would be necessary to confirm the findings.

Limitations and future perspectives

In the studies described in this thesis, the precision-cut liver slice model is validated
as a model to study compound or drug induced toxicity mechanisms. Moreover, the
transcriptomic analysis revealed that the PCLS can serve as a useful model to identify
intrinsic drug induced toxicity phenotypes such as necrosis, cholestasis, and fibrosis as well
as IDILI.

One of the main limitations in these studies is that a limited number of compounds were
studied, in a limited number of human liver samples, mainly due to practical reasons such as
limited availability of human tissue, and the costs for the microarray measurements. Further
studies with an additional set of compounds are necessary to confirm the findings reported
in this thesis. The limited availability of human donors for human liver slices in turn limits
the use of PCLS for toxicogenomics research. However, the results of our studies confirm
that even with 5 different liver samples a fairly good characterization of hepatotoxicity can
be obtained. Although the human livers show quite some variation in basic gene expression,
the changes in gene expression due to exposure to a toxic compound are rather consistent,
thus showing the feasibility of this type of experiments with a limited number of human
samples.

Gene expression microarrays only measure the response at the mRNA transcription
level of a gene, which only gives a rather rough estimate of its corresponding changes in
protein expression level and the subsequent metabolic changes. Proteomics studies, aiming
to characterize the expression of all proteins in a cell, tissue or organism are needed to
understand the functional relevance of proteins regulated due to a toxic insult. In addition,
metabolomics studies, aiming to characterize the global metabolite profiles in a system (cell,
tissue or organism) under a given set of conditions, may elucidate the effects of the induced
changes in protein expression. The liver is responsible for the production and secretion of
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a large variety of plasma proteins and endogenous molecules and is also a major target
for drug-induced toxicity. Hence, secreted protein or metabolite profiles can also reveal
relevant toxicity signatures. To obtain a broader insight about the drug induced liver injury
and to discover clinically significant biomarkers, comparison of data from transcriptomics,
proteomics and metabolomics experiments would be necessary.

Further gene expression studies using RNA-Seq (RNA sequencing) can be considered for
the better prediction of biomarkers for DILI. RNA-Seq can look at different populations of
RNA, which include total RNA, small RNA, such as microRNA, transferRNA, and ribosomal
profiling, in addition to mRNA transcripts. MicroRNAs (miRNA) are non-coding RNAs that
play key roles in the post-transcriptional regulation of gene expression and participate in
physiological and pathological regulatory processes, including liver diseases. Changes in the
expression levels of specific miRNAs have been reported in different liver diseases, indicating
their potential use as biomarkers for DILI [219, 220, 221]. Other advantages of RNA-Seq
compared to microarrays include high sensitivity; discovery of novel genes; ability to quantify
a large dynamic range of expression levels allowing the identification of more differentially
expressed genes with higher fold changes [222].

So far, toxicogenomics studies using PCLS model were scarcely reported in the literature.
The presence of all the different liver cell types in the PCLS model allows for studying
the interaction between different cells in response to a toxic insult but at the same
can also contributes to an extra level of complexity in the study. Gene expression is
invariably heterogeneous between different cell types, and it is sometimes difficult to
attribute the observed changes in gene expression to any of the different cell types. Single
cell transcriptome studies using for instance Laser Scanning Dissection Microscopy, would
provide information about the response of each of the different cell types and identify the
most responsive cell types in the PCLS [223]. The limited lifetime of the PCLS model was also
considered as one of the main disadvantage and limited their extensive use in the toxicology
research in comparison to other in vitro models. However, recently, significant improvements
in the incubation medium were reported which facilitate the extension of the viability of
the PCLS up to 5 days [224]. So with the increased viability up to five days, it seems that
sub-chronic toxicity studies can be performed in the near future.

The results of the studies described in this thesis show the ability of human PCLS to
properly reflect drug-induced liver injury as observed in the clinic and to identify human
specific toxicity markers using toxicogenomics analysis. The use of human tissue will not only
greatly contribute to the replacement, reduction and refinement (3R’s) of animals for scientific
purposes, but also enables a better risk assessment by avoiding interspecies extrapolation.
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S A M E N VAT T I N G , C O N C L U S I E S E N
T O E K O M S T P E R S P E C T I E V E N

De veiligheidsbeoordeling van potentiële kandidaat-geneesmiddelen is een uitdaging voor
de farmaceutische industrie. Hepatotoxiciteit is een van de belangrijke redenen waarom
kandidaatgeneesmiddelen falen in preklinische en klinische testen. De blootstelling van
de lever is hoog en de lever is grotendeels verantwoordelijk voor het metabolisme van
geneesmiddelen wat tot toxische verbindingen kan leiden, en daardoor is de lever het meest
kwetsbare orgaan voor geneesmiddel-geïnduceerde toxiciteit. Geneesmiddel-geïnduceerde
hepatotoxiciteit kan intrinsiek (dosis-afhankelijk) of idiosyncratisch (lage incidentie en
grotendeels dosis-onafhankelijk) zijn. Preklinische in vivo testen van geneesmiddeltoxiciteit
gaan gepaard met ernstig dierenleed en ongemak, en zijn slechts gedeeltelijk voorspellend
voor humane toxiciteit als gevolg van verschillen tussen mens en dier. Dit benadrukt de
noodzaak van de ontwikkeling van nieuwe screeningsmethoden die het toxicologische
risico in begin van het geneesmiddel ontdekkingsproces beter in kaart kunnen brengen.
Daarnaast wordt veel energie gestoken in het ontwikkelen van nieuwe en accurate
preklinische en klinische biomarkers. Dit zal leiden tot een veiliger en efficiënter
geneesmiddelontdekking en ontwikkelingsproces. Met de traditionele biomarkers voor
leverbeschadiging is het onderscheid tussen verschillende klassen van hepatotoxiciteit
moeilijk te maken. Bovendien is er behoefte aan betrouwbare in vitro toxiciteitstesten,
waarbij de voorspelling, de karakterisering en het begrip van het mechanisme van
geneesmiddel-geïnduceerde hepatotoxiciteit verbeteren. Een voorwaarde voor een goede
voorspelling is dat het gebruikte model een goede geneesmiddelmetaboliserende capaciteit
heeft, omdat geneesmiddelgerelateerde levertoxiciteit vaak het gevolg is van toxische
metabolieten gevormd in de lever. Bovendien is het van belang om dergelijke methoden
te ontwikkelen voor toepassing op humaan weefsel om levertoxiciteit in mensen beter te
voorspellen door het vermijden van interspecies extrapolatie. Van het Precision-Cut Liver
Slices (PCLS) model is aangetoond dat het in staat is om metabolisme en toxiciteit van
geneesmiddelen in de lever goed te representeren [69]. Dit model kan worden geplaatst
tussen de in vivo experimenten en de momenteel gebruikte celkweek modellen, en kan
worden beschouwd als een ex vivo model met al de verschillende celtypen van de lever
aanwezig in hun natuurlijke architectuur en met intacte cel-cel en cel-matrix contacten. Voor
toxiciteitstudies is dit van groot belang, omdat geneesmiddel-geïnduceerde toxiciteit wordt
gezien als een multi-cellulair proces, waar naast hepatocyt-functies ook cel-cel interacties en
niet-parenchymale celfuncties worden beschouwd als belangrijke factoren in het toxiciteits
proces [31].

De toepassing van transcriptomics maakt het onderzoeken van de veranderingen in
genexpressie van het volledige genoom, geïnduceerd door blootstelling aan geneesmiddelen,
mogelijk. Door het meten van de globale genexpressie is het mogelijk om hepatotoxische
pathways en mechanismen van een specifiek fenotype van toxiciteit te identificeren.
Bovendien is het mogelijk om soortgelijke eindpunten te selecteren in vivo en in
vitro/ex vivo wat het vergelijken van in vitro/ex vivo en in vivo studies mogelijk
maakt. Zelfs als de eindpunten niet hetzelfde zijn, kunnen de gevonden in vitro/ex vivo
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eindpunten voorspellend zijn, mits een goede correlatie tussen in vivo en in vitro/ex
vivo eindpunten kan worden vastgesteld. De toepassing van transcriptomics kan dus
bijdragen aan de ontwikkeling en het gebruik van ex vivo of in vitro modellen voor het
voorspellen van hepatotoxische reacties bij mensen. Ook is een juiste classificatie van de
hapatotoxische stoffen op basis van hun hepatotoxische fenotype een randvoorwaarde voor
de veiligheidsbeoordeling van geneesmiddelen. Geneesmiddelgeïnduceerde leverschade kan
resulteren in verschillende toxische fenotypen, zoals hepatische cholestase (verminderde
galstroom en een toename van intracellulaire ophoping van galzouten), necrose (een vorm
van vroegtijdige celdood als gevolg van schade door bijvoorbeeld vrije radicalen en/of
tosiche metabolieten), of fibrose (de ophoping van collageen).

Het doel van dit proefschrift was om inzicht te krijgen in het gebruik van PCLS als
ex vivo model in combinatie met transcriptomics voor de identificatie en classificatie
van hepatotoxische verbindingen, en in de opheldering van de mechanismen van de
hepatotoxische effecten van die verbindingen op gen- en pathwayniveau. Voor dit
doel onderzochten we de genexpressie profielen van PCLS die waren blootgesteld aan
verbindingen die fibrose, necrose, cholestase en idiosyncratische leverschade induceren.

validatie van pcls rat als model om fibrose te
bestuderen

In hoofdstuk 2 was het doel om PCLS verder te karakteriseren als een geschikt
model om te bepalen of vroege veranderingen in genexpressie een indicatie kunnen
geven van het fenotype van toxiciteit op lange termijn dat wordt veroorzaakt door
levertoxische stoffen die necrose of fibrose induceren. In deze studie is een vergelijkende
analyse uitgevoerd van de genexpressieprofielen van rat PCLS geïnduceerd door
paracetamol (APAP) en koolstoftetrachloride (CCl4), waarvan bekend is dat deze
leverschade induceren via verschillende mechanismen, respectievelijk necrose en fibrose. De
vergelijking werd uitgevoerd met behulp van genexpressiepatronen, gereguleerde genen,
en pathway en upstream regulator analyse van de gereguleerde genen. Analyse van
de genexpressiepatronen onthulde kenmerkende veranderingen in de expressiepatronen
als gevolg van blootstelling aan een toxische concentratie van elk van de verbindingen
vergeleken met de overeenkomstige controle. Vergelijking van de gereguleerde genen toonde
aan dat er een aanzienlijke overlap is tussen de genen die gereguleerd worden door beide
toxinen, maar er is ook een significant aantal genen dat uniek wordt gereguleerd door
ofwel APAP of CCl4. Van sommige van die genen die alleen gereguleerd worden door
CCl4 behandeling is bekend dat ze zijn betrokken bij fibrogenese. Genen betrokken bij
de activatie van stellaatcellen en van fibrogenese zoals CRYAB (alfa-B crystalline), KLF6

(Krüppel-Like Factor 6) en HSP47 (heat shock protein 47) werden opgereguleerd, wat
aangeeft dat fibrotische processen in de met CCl4 behandelde slices worden geïnitieerd,
zoals eerder ook met andere methoden werd aangetoond [72, 73]. De groeifactor TGF-β1
(Transforming growth factor beta 1) speelt een sleutelrol in fibrose via activatie van de
stellaatcellen [214]. Uit het genetische netwerk van TGF-β1, dat volgde uit de analyse van
de gereguleerde genen door APAP of CCl4 behandeling, kan men zien dat de genen die
causaal zijn verbonden met TGF-β1 en een duidelijke rol hebben in fibrose, zoals JUN
(Jun Proto-Oncogene), LITAF (lipopolysaccharide geïnduceerde tumor necrosis factor) en
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SERPINE1 (Serpin Peptidase Inhibitor, Clade E, lid 1), alleen werden opgereguleerd na
blootstelling aan CCl4, maar niet door APAP. Deze waarneming duidt op een aanzienlijke
betrokkenheid van TGF-β1 in het toxiciteitsproces, geïnitieerd door CCl4 en niet door APAP,
en geeft een indicatie dat vroege fibrotische processen binnen 16 uur na blootstelling aan een
toxische concentratie van CCl4 worden geactiveerd. Bovendien bleek uit upstream regulator
analyse van de CCl4-behandelde PCLS, dat verschillende regulatoren waarvan bekend is dat
deze de expressie van de gereguleerde genen controleren, gerelateerd zijn aan leverfibrose.
Kortom, de vroege genexpressie veranderingen na kortdurende blootstelling aan CCl4 en
APAP ex vivo weerspiegelen het karakteristieke verschil tussen deze verbindingen in hun
vermogen om leverfibrose te induceren na chronische dosering in vivo. Deze studie geeft
aan dat transcriptoom analyse van PCLS kan worden gebruikt om de vroege gebeurtenissen
in PCLS, die indicatief zijn voor een pathologie (fibrose) die ontwikkelt na chronisch letsel,
te identificeren. Verdere studies, met meer fibrotische en niet- fibrotische verbindingen zijn
nodig om deze bevinding te verifiëren en een reeks biomarkers te identificeren die in
de toekomst kunnen worden gebruikt in de screening van nieuwe geneesmiddelen voor
geneesmiddel geïnduceerde toxiciteit.

validatie van humane pcls om geneesmiddel-
geïnduceerde cholestatische (dici) schade te
besturen

In hoofdstuk 3 was het doel om humane PCLS te valideren als een ex vivo model
dat de geneesmiddel-geïnduceerde cholestase processen weerspiegelt met behulp van
transcriptoom analyse. Tot op heden werden humane PCLS niet gebruikt voor onderzoek
naar cholestase. Hepatotoxische stoffen waarvan bekend is dat deze cholestase induceren
bij mensen, zoals cyclosporine, chloropromazine, ethinylestradiol en methyltestosteron zijn
getest in humane PCLS. Bovendien werd ANIT (a-naftyl-isothiocyanaat), een bekende
cholestatische verbinding bij ratten, opgenomen in de studie. Voor veel cholestatische
geneesmiddelen is de remming van BSEP (galzuuruitscheidingspomp) de primaire
oorzakelijke gebeurtenis leidend tot cholestasis, wat resulteert in de intracellulaire
ophoping van galzuren. De hypothese was dat incubatie van PCLS in het gebruikelijke
cultuurmedium niet erg gevoelig zou zijn voor de toxische effecten van deze BSEP
remming, omdat ze nietworden blootgesteld aan externe galzuren maar alleen aan
nieuw gesynthetiseerde galzuren. Daarom werd een niet-toxisch galzuur mengsel (60

μM) aan het incubatiemedium toegevoegd om een omgeving te creëen die vergelijkbaar
is met de fysiologische concentratie in de poortader van de mens in vivo [119]. Pilot
experimenten toonden aan dat de galzuurconcentratie in de slices inderdaad nagenoeg
gelijk blijft tijdens incubatie met galzuren, terwijl het sterk vermindert tijdens incubatie
in het gebruikelijke medium zonder galzouten. Transcriptoom analyse in humane PCLS
toonde aan dat cholestatische geneesmiddelen duidelijk de regulering van genen en
pathways veroorzaken die geassocieerd zijn met cholestase bij incubatie in aanwezigheid
van galzuren. Daarnaast was het waargenomen genexpressie patroon van cholestatische
schade concentratieafhankelijk voor alle geneesmiddelen. Lever-cholestase was een van de
top 5 gereguleerde pathways. De meeste van de pathways gereguleerd in de humane PCLS
komen voor in de Adverse Outcome Pathway (AOP) voor cholestase zoals voorgesteld door
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Vinken et al., inclusief de primaire directe cellulaire reacties en secundaire adaptieve reacties
betrokken bij galzuur-geïnduceerde cholestatische schade [16], zoals NRF2 (Nucleaire
factor (erythroide-afgeleide 2)-like 2) gemedieerde oxidatieve stressrespons, ontsteking
gemedieerde hepatische fibrose, endoplasmatisch reticulum stress en activering van de
stolling en het complementsysteem. Het is welbekend dat adaptieve reacties op intracellulaire
galzuur ophoping worden gemedieerd via de nucleaire receptoren FXR (farnesoid X
receptor), LXR (lever X-receptor), PXR (pregnaan X receptor) en VDR (vitamine D receptor).
Zoals verwacht, waren deze signaleringsroutes en de bijbehorende cholesterol biosynthese
pathways aangetast in PCLS blootgesteld aan cholestatische geneesmiddelen. Activering
van deze nucleaire receptoren activeert cellulaire aanpassing om galzuur ophoping, en dus
cholestatische leverschade, tegen te gaan [142, 19]. In tegenstelling tot de verwachte activatie
van FXR zoals in de AOP werd aangegeven, waren de doelgenen van de FXR pathway
verlaagd in humane PCLS, waaronder genen waarvan bekend is dat deze een rol spelen
in cholestase zoals MDR3 (Multiple Drug Resistance 3), BSEP (ABCB11) en SHP (Small
Heterodimeer Partner). Afname van BSEP expressie zou een direct effect kunnen zijn van de
geteste cholestatische stoffen, immers van potente BSEP remmers is gebleken dat zij de BSEP
expressie in primaire humane hepatocyten verminderen [128]. Bovendien kan de gevonden
verminderde expressie van FXR tenminste gedeeltelijk de verminderde FXR signalering
verklaren. Dit is in overeenstemming met de bevinding dat zowel FXR als SHP expressie
werd gereduceerd met 90% of meer in cholestatische patiënten [15]. Daarom, gebaseerd op
onze bevindingen kan worden gesteld dat blootstelling aan cholestatische verbindingen kan
leiden tot een verminderde FXR gemedieerde adaptieve responsen, waardoor cholestatische
schade ontstaat. Daarnaast lijken downregulatie van genen betrokken bij cholesteroltransport
zoals ABCG5 en ABCG8 een verlies van de beschermende werking van LXR te geven. Verder
waren verschillende genen in de PXR en VDR pathways meestal gereduceerd. Tezamen
zouden de verlaagde activatie van FXR, LXR, PXR en VDR verantwoordelijk kunnen zijn
voor een beperkte adaptieve respons op de effecten van de cholestatische stoffen en leiden
tot de ontwikkeling van cholestatisch letsel.

Gecompromitteerde adaptieve reacties kunnen leiden tot schadelijke cellulaire effecten
via toxiciteitsprocessen zoals oxidatieve stress en endoplasmatisch reticulum (ER) stress.
Van oxidatieve stress is bekend dat het een rol speelt in de pathogenese van
geneesmiddel-geïnduceerde cholestase als gevolg van galzuurophoping. We zagen ook
de activering van een NRF2 gemedieerde oxidatieve stress respons in de humane PCLS
behandeld met cholestatische geneesmiddelen. Dit geeft aan dat ontgiftende mechanismen
worden geactiveerd in de PCLS om de oxidatieve stress, wellicht als gevolg van accumulatie
van galzuren, te verlichten. Of de galzuren inderdaad ophopen in de slices na blootstelling
aan een cholestatisch geneesmiddel zal nog moeten worden vastgesteld en wordt momenteel
onderzocht in ons laboratorium.

Een recente studie toonde aan dat ER stress betrokken is bij galzuur-geïnduceerde
hepatocellulaire schade [124]. In overenkomst hiermee, zagen we ook dat ER stress,
unfolded protein respons (UPR) en eiwit ubiquitinatie pathways een van de zwaarst
getroffen pathways waren. De UPR signaleringsroute wordt geactiveerd in een reactie
op ER stress en bevordert de overleving en de adaptatie van de cel. Er is steeds meer
bewijs voor de betrokkenheid van ER stress in cholestase [215, 149, 124]. Onze resultaten
suggereren dat ER stress, eiwit ubiquitinilering en UPR vroege cellulaire effecten van
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geneesmiddel-geïnduceerde cholestase kunnen zijn. Verdere studies zijn nodig om de
precieze rol van die processen in galzuur-gemedieerde cholestase op te helderen.

Leverfibrose en stellaatcel activering werd ook waargenomen in humane PCLS als gevolg
van blootstelling aan cholestatische geneesmiddelen. Inderdaad, accumulatie van galzuren
door obstructieve cholestase [134] bleek te leiden tot een ontstekingsreactie in vivo wat
vervolgens leidt tot activatie van hepatische stellaatcellen en leverfibrose.

De genen betrokken bij cholesterol biosynthese, het uitgangsmateriaal voor de synthese
van galzuren in de lever, kwamen verminderd tot expressie in humane PCLS, hetgeen duidt
op een adaptieve respons van hepatocyten door de cholesterolsynthese te laten dalen als
reactie op cholestatische drugs. Interessant genoeg werd dit ook waargenomen in muizen
PCLS die werden blootgesteld aan cholestatische drugs [113].

We hebben onze bevindingen eveneens vergeleken met genexpressie data verkregen uit de
lever monsters van patiënten met cholestase als gevolg van galgangatresie en intrahepatische,
niet door geneesmiddelen-geïnduceerde cholestase [123]. Na vergelijking van de aangetaste
pathways tussen humane PCLS en patiënt monsters bleek dat er een goede overlap was
in de veranderingen in de cholestase gerelateerde genen, hoewel in vivo meer pathways
werden beïnvloed. Zo bleek de tight junction signalering beïnvloed in patiëntmonsters, maar
niet in de humane PCLS. De waargenomen verschillen tussen in vivo en ex vivo gegevens
kunnen zijn veroorzaakt door de verschillende oorzaken van cholestase of het grote verschil
in tijdsduur van de ziekte, omdat het in de patiënt chronische cholestatische aandoeningen
betreft en de PCLS slechts 24 uur werden blootgesteld aan cholestatische stoffen. Humane
PCLS moeten bij voorkeur worden gevalideerd door het vergelijken met humaan leverweefsel
van patiënten die lijden aan geneesmiddel-geïnduceerde cholestase, maar voor zover ons
bekend zijn zulke gegevens tot nu toe nog niet in de literatuur verschenen. De waarnemingen
in onze studie komen wel overeen met de verwachte genexpressiepatronen bij cholestase.

Tot slot, de transcriptoom analyse van humane PCLS die zijn blootgesteld aan
cholestatische geneesmiddelen in aanwezigheid van galzuren toonde aan dat dit model
de primaire toxiciteit en adaptieve processen die geassocieerd zijn met levercholestase
weerspiegelt. De resultaten suggereren dat de verminderde adaptieve responsen, gemedieerd
via nucleaire receptoren, in verband staan met deze cholestatische effecten en leiden
tot de daaropvolgende toxische processen zoals oxidatieve stress, ER stress en UPR
respons. Onze studie toont aan dat de humane PCLS geïncubeerd in aanwezigheid van
een fysiologische concentratie van galzuren, een geschikt model is voor toekomstige
toepassing in screening van geneesmiddelen op mogelijke cholestatische bijwerkingen en
voor identificatie van mogelijke mechanismen van toxiciteit van cholestatische verbindingen.
Verdere studies kunnen biomarkers onthullen voor geneesmiddel-geïnduceerde cholestase.
Inzichten verkregen uit de pathway analyse, zoals verminderde activering van de FXR
pathway, verminderde regulatie van de cholesterol biosynthese, verhoogde ER stressreactie
en NRF2 gemedieerde oxidatieve stress respons, kunnen worden opgenomen in de adverse
outcome pathway van cholestase.
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classificatie van cholestase en necrose
inducerende geneesmiddelen

In hoofdstuk 4 waren we gericht op het classificeren van hepatotoxicants naar hun
bekende toxische fenotype (cholestase of necrose) op basis van de genexpressieprofielen
na blootstelling van humane PCLS en op de identificatie van mogelijke classificatie of
markergenen. Naast de vijf cholestatische verbindingen die werden onderzocht in hoofdstuk
3, werden de humane PCLS blootgesteld aan vijf hepatotoxicants: paracetamol, benziodarone,
chlooramfenicol, colchicine en nitroso-diethylamine waarvan bekend is dat deze hepatische
necrose veroorzaken. In al deze experimenten werden de PCLS blootgesteld aan de toxische
verbindingen in aanwezigheid van de fysiologische galzuurmix. Machine learning analyse
van de genexpressie gegevens van PCLS blootgesteld aan deze vijf cholestatische en
vijf necrotische verbindingen resulteerde in vier classificatie modellen op basis van twee
verschillende algoritmes, namelijk SVM (Support Vector Machine) en RF (Random Forest), en
twee verschillende geteste concentraties (lage en middelhoge), die voor 70-80% nauwkeurig
het fenotype van de door de hepatotoxische stoffen veroorzaakte schade voorspellen.
Interessant genoeg werd chlooramfenicol steeds geklasseerd als cholestatische verbinding
ondanks dat het algemeen wordt beschouwd als een direct werkende necrotische verbinding.
Echter, sommige oudere studies hebben aangetoond dat chlooramfenicol ook kan leiden
tot cholestase [41, 157]. Ondanks het feit dat de verbindingen werden gekozen op basis
van hun in de literatuur gerapporteerde toxische lever fenotype is algemeen bekend dat
cholestase zich vaak presenteert als een combinatie van cholestatische en hepatocellulaire
schade [141]. Verder zijn er aanwijzingen dat inflammatoire necrose ook kan leiden tot
cholestase [225]. Deze overlappende mechanismen betrokken bij de toxiciteit van necrotische
en cholestatische verbindingen bemoeilijken de indeling van hepatotoxische stoffen op
grond van het juiste fenotype van toxiciteit [150]. Echter, ondanks de complexiteit als
gevolg van overlap van de mechanismen in de toxiciteit voor de classificatie van necrose
en cholestase, waren de ontwikkelde classificatiemodellen in staat om de hepatotixische
stoffen te classificeren als necrotisch of cholestatisch met een relatief goede nauwkeurigheid.
De classificatie gebaseerd op genexpressieprofielen van PCLS werden blootgesteld aan
een lage concentratie van de toxische stoffen bleek nauwkeuriger dan wanneer de PCLS
waren blootgesteld aan een hogere concentratie, wat waarschijnlijk zou kunnen worden
veroorzaakt door de bijkomende necrose bij hogere concentraties van de cholestatische
verbindingen. Tenslotte, hoewel alle vier de modellen een redelijk vergelijkbare prestatie
gaven wat betreft de nauwkeurigheid van de voorspelling van het fenotype van schade
van de toxische verbindingen, gaf het zogenaamde SVM lage concentratie model de meest
nauwkeurige voorspelling van de juiste classificatie van alle 5 cholestatische verbindingen,
en de classificatiegenen geïdentificeerd door dit model werden consistent gevonden bij
alle concentraties en bleken niet erg gevoelig voor inter-individuele variatie, wat de
betrouwbaarheid van dit model voor toekomstig gebruik ondersteunt. Verdere analyse van
de functie van de geïdentificeerde 4 classificatiegenen toonde aan dat ze betrokken zijn bij
ER stress, oxidatieve stress en ongevouwen eiwit respons (UPR), en het lipide en cholesterol
metabolisme (inclusief een natrium / galzuur cotransporter) wat in overeenstemming is
met de bevindingen in hoofdstuk 3. Classificatiegenen, geïdentificeerd in ons humane PCLS
model, werden vergeleken met cholestase-specifieke classificatiegenen die vermeld zijn in
verschillende rat in vivo studies [150, 52, 30]. Onder de classificatiegenen werd geen overlap
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waargenomen bij vergelijking van rat in vivo en humane ex vivo gevonden genen. Dit gebrek
aan overeenkomst kan deels te wijten zijn aan verschillen tussen mens en rat en onderstreept
het belang van humane cellen of weefsels om specifieke humane biomarkers te identificeren.
Daarnaast moet worden vermeld dat er ook weinig of geen overlap gevonden werd onder
de classificatiegenen die gevonden waren voor het cholestase fenotype tussen verschillende
rat in vivo studies onderling [150, 52, 226]. Het is nog onduidelijk hoe dit ontbreken van
overeenstemming in deze onderzoeken kan worden verklaard, maar het kan deels te wijten
zijn aan het overfitten van de gegevens.

Tot slot, de genexpressie profilering na blootstelling van humane PCLS ex vivo aan
hepatotoxische stoffen waarvan bekend is dat deze ofwel cholestase of necrose induceren,
resulteerde in een classificatiemodel dat een goede nauwkeurigheid toonde in het
onderscheiden van cholestase en necrose. Ondanks de beperking van het lage aantal
onderzochte verbindingen op één tijdstip (24 uur), waren de ontwikkelde modellen in staat
de hepatotoxische stoffen te classificeren op basis van hun fenotype of toxiciteitsmechanisme
met een goede nauwkeurigheid en de geïdentificeerde classificatiegenen zijn geassocieerd
met het toxische fenotype. De geïdentificeerde classificicatiegenen zijn mechanistisch
betrokken bij endoplasmatisch reticulum stress, ongevouwen eiwit respons en andere
stressreactie pathways, fenomenen waarvan is aangetoond dat deze een rol spelen bij
cholestase (hoofdstuk 3). Ze bleken consistent bij verschillende concentraties, verschillende
voorspellende algoritmen en bij de verschillende individuele levermonsters. Daarom is het
humane PCLS model een nuttig model om de mechanismen van geneesmiddel-geïnduceerde
toxiciteit te bestuderen, toxines op basis van hun mechanisme van toxiciteit te classificeren
en de classificatiegenen verantwoordelijk voor geneesmiddel-geïnduceerde levertoxiciteit bij
mensen te identificeren en te valideren. Een beperking van onze studie is de lage aantal
stoffen en humane weefselmonsters, en verdere validatie van de geïdentificeerde classifiers
door het opnemen van additionele verbindingen is nodig.

humane pcls om de mechanismen te bestuderen
die betrokken zijn bij geneesmiddel-geïnduceerde
idiosyncratische toxiciteit

In hoofdstuk 5, hebben we transcriptoom analyse toegepast om de mogelijke mechanismen
of pathways te ontdekken die betrokken zouden kunnen zijn in idiosyncratische
geneesmiddel-geinduceerde levertoxiciteit (IDILI). Verschillende hypotheses zijn recent
getest in dierlijke of humane modellen om IDILI en bijbehorende mechanismen te
onderzoeken. Onder de geteste hypothesen is de inflammatoire stress hypothese, die
onder mer gerelateerd is aande mitochondriale stress hypothese [198]. Zo werd gemeld
dat ontstekingsmediatoren die geïnduceerd worden tijdens ontstekingen mitochondriële
dysfunctie kunnen induceren [216, 217, 218]. Recentelijk waren Hadi et al. de eersten die de
inflammatoire stress hypothese in humane en muis PCLS ex vivo hebben bestudeerd [195],
waarbij zij ontdekten dat co-incubatie van de LPS (lipopolysaccharide) met verscheidene
IDILI geneesmiddelen, waaronder clozapine, resulteerde in synergistische toxiciteit. Om
de mogelijke mechanismen betrokken bij clozapine-geïnduceerde IDILI beter te begrijpen,
vergeleken we de genexpressie profielen van clozapine met de niet-IDILI analoog olanzapine,
in de aanwezigheid en afwezigheid van LPS. Pathway-analyse met name van immuun
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gemedieerde en signaaltransductie pathways van cellulaire stress respons toonde activatie
aan van Toll-like receptor-signalering, HMGB1 (High-mobiliteit groep box 1) signalering,
iNOS (Inducible nitric oxide synthase) signalering, p38-MAPK (Mitogen-activated protein
kinase) en NRF2 oxidatieve stress respons in de LPS + clozapine groep. Verschillende
inflammatoire mediatoren betrokken bij de verschillende inflammatoire signaalwegen
zoals IL1A (interleukin-1 alfa), IL1B (interleukine-1 beta), ICAM1 (Intercellulaire adhesie
molecuul 1), GM-CSF (granulocyt-macrofaag-koloniestimulerende factor), MAPKAPK-2
(MAPK-activated protein kinase 2) en PAI-1 (plasminogeen activator inhibitor-1) werden
gereguleerd met significant verhoogde expressie in LPS + clozapine behandelde humane
PCLS vergeleken met de humane PCLS blootgesteld aan LPS of clozapine alleen, of LPS
+ olanzapine. Deze verhoogde productie van ontstekingsmediatoren zou kunnen bijdragen
aan de leverbeschadiging die voorkomt in necrotische gebieden in humane PCLS behandeld
met LPS + clozapine. Ook zou de verhoogde expressie van NFkB, iNOS, AP-1 en IFNy,
in LPS + clozapine, kunnen bijdragen aan IDILI door de verhoogde productie van reactief
stikstofmono-oxide die mitochondriale schade kan veroorzaken [197]. Geneesmiddelen die
vaker geassocieerd worden met IDILI blijken een sterke activatie van de NRF2 gemedieerde
stressrespons te veroorzaken [197]. In onze studie veroorzaakte clozapine (maar niet LPS
of olanzapine) activatie van de NRF2 stressrespons en de clozapine-geïnduceerde NRF2

reactie werd verder versterkt door de aanwezigheid van een inflammatoire stress toestand
(LPS). Er is ook steeds meer bewijs dat een groot aantal geneesmiddelen, die in verband
worden gebracht met idiosyncratische bijwerkingen, mitochondriële dysfunctie veroorzaakt
[182, 184]. In overeenstemming hiermee, toonde pathway-analyse van de 719 genen die
uniek gereguleerd zijn als gevolg van LPS + clozapine behandeling aan dat oxidatieve
fosforylering de meest getroffen pathway was en veel genen betrokken bij complex IV van
de elektron transport keten werden gereduceerd. Dit bevestigt de rol van de mitochondriële
schade in ontstekingsgerelateerde IDILI. Daarnaast toonde de genexpressie analyse aan dat
de activering van HMGB1, p38 MAPK, en NFkB signaalwegen eventueel betrokken is bij
LPS+clozapine geïnduceerde IDILI.

Samenvattend, humane PCLS lijkt een veelbelovend ex vivo model voor het karakteriseren
van IDILI en toxische mechanismen die daarbij betrokken zijn. Mitochondriële dysfunctie
werd geïdentificeerd als een potentieel mechanisme van ontstekingsgerelateerde IDILI.
Verder onderzoek met meer IDILI gerelateerde geneesmiddelen in vergelijking met hun
niet-IDILI-gerelateerde analogen is nodig om de bevindingen te bevestigen.

beperkingen en toekomstperspectieven

Met de in dit proefschrift beschreven studies is het PCLS model gevalideerd als
een model om de effecten van mogelijke levertoxische stoffen en de mechanismen van
geneesmiddel-geïnduceerde toxiciteit te bestuderen. Bovendien is uit de transcriptoom
analyse gebleken dat de PCLS een nuttig model kan zijn voor het identificeren van intrinsieke
geneesmiddel-geïnduceerde toxische fenotypen zoals necrose, cholestase en fibrose alsook
IDILI.

Een van de belangrijkste beperkingen van deze studies is dat slechts een beperkt aantal
verbindingen werd bestudeerd in een beperkt aantal humane levermonsters, voornamelijk
vanwege praktische redenen zoals een beperkte beschikbaarheid van menselijk weefsel, de
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beperkte beschikbare tijd en de hoge kosten voor microarray metingen. Verdere studies
met een extra set van verbindingen zijn nodig om de bevindingen in dit proefschrift te
bevestigen. De beperkte beschikbaarheid van menselijke donoren voor humane lever slices
zou beperkend kunnen zijn voor het gebruik van PCLS voor onderzoek naar toxicogenomics.
Maar de resultaten van onze studies bevestigen dat zelfs met 5 verschillende levermonsters
een redelijk goede karakterisering van hepatotoxiciteit kan worden verkregen. Hoewel de
humane levers behoorlijk wat variatie vertonen in basale genexpressie, zijn de veranderingen
in genexpressie als gevolg van blootstelling aan een toxische verbinding vrij consistent, wat
de mogelijkheden aangeeft van de haalbaarheid van dit type experimenten met een beperkt
aantal humane monsters.

Microarrays meten alleen de respons op mRNA-transcriptieniveau van genen, wat
alleen een nogal ruwe schatting geeft van de corresponderende veranderingen op
eiwitexpressie-niveau en de daaropvolgende metabolische veranderingen. Proteomics
onderzoek, gericht op het meten van de expressie van alle eiwitten in een cel, weefsel
of organisme en vervolgens functionele studies van de gevonden eiwitten, is nodig om
het functionele belang begrijpen van eiwitten die gereguleerd worden door een toxische
insult. Daarnaast kunnen metabolomics studies, gericht op het karakteriseren van de globale
metabolietprofielen in een systeem (cel, weefsel of organisme) onder een gegeven set
van omstandigheden, de effecten van de geïnduceerde veranderingen in eiwitexpressie
ophelderen. De lever is verantwoordelijk voor de productie en secretie van een grote
verscheidenheid aan plasma-eiwitten en endogene moleculen en is ook een belangrijke
target voor geneesmiddel-geïnduceerde toxiciteit. Daarom kunnen uitgescheiden eiwit- of
metabolietprofielen ook relevante toxische kenmerken onthullen. Om een breder inzicht te
verkrijgen in de geneesmiddel-geïnduceerde leverschade en klinisch significante biomarkers
te ontdekken, is vergelijking van de uitkomsten van transcriptomics, proteomics en
metabolomics experimenten nodig.

Verdere genexpressie studies met behulp van RNA-Seq (RNA sequencing) kunnen worden
overwogen voor betere voorspelling van biomarkers voor DILI. RNA-Seq kan kijken
naar verschillende RNA populaties, waaronder totaal RNA, klein RNA (zoals microRNA),
transferRNA en ribosomale profilering, alsook naar mRNA transcripten. MicroRNA
(miRNA) zijn niet-coderende RNA’s die een belangrijke rol spelen in de post-transcriptionele
regulatie van genexpressie en participeren in fysiologische en pathologische regulatie
processen, waaronder leverziekten. Veranderingen in de expressie van specifieke miRNAs
zijn gemeld bij verschillende leverziekten, wat een indicatie is voor hun potentieel gebruik
als biomarkers voor DILI [227, 219, 221]. Andere voordelen van RNA-Seq vergeleken met
microarrays zijn de hoge gevoeligheid, de ontdekking van nieuwe genen, en de capaciteit
om een groot dynamisch bereik van expressieniveaus te kwantificeren [222].

Tot nu toe werden toxicogenomics studies die gebruik maken van het PCLS model
nauwelijks vermeld in de literatuur. De aanwezigheid van alle verschillende leverceltypes
in het PCLS model maakt het bestuderen van de interactie tussen verschillende cellen in
reactie op een toxisch insult mogelijk, maar draagt tegelijk bij aan een extra niveau van
complexiteit in de studie. Genexpressie is altijd heterogeen tussen verschillende celtypen, en
het is soms moeilijk de waargenomen veranderingen in genexpressie toe te kennen aan elk
van de verschillende celtypen. Single cel transcriptoom studies met gebruik van bijvoorbeeld
Laser Scanning Microscopy Dissection, zou informatie kunnen verstrekken over de reactie
van elk van de verschillende celtypen en de meest reagerende celtypen in de PCLS vaststellen
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[223]. De beperkte levensduur van het PCLS model werd ook beschouwd als een van de
belangrijkste nadelen en beperkte hun uitgebreide gebruik in toxicologisch onderzoek in
vergelijking met andere in vitro modellen. Onlangs zijn echter aanzienlijke verbeteringen in
het incubatiemedium gerapporteerd die de verlenging van de levensvatbaarheid van PCLS
tot 5 dagen mogelijk maken [224]. Met de verhoogde levensvatbaarheid tot vijf dagen, lijkt het
erop dat sub-chronische toxiciteitsstudies in de nabije toekomst kunnen worden uitgevoerd.

De resultaten van de in dit proefschrift beschreven studies tonen het vermogen van de
humane PCLS om geneesmiddel-geïnduceerde leverschade zoals waargenomen in de kliniek
weer te geven en humaan specifieke toxiciteitsmarkers te identificeren met behulp van
toxicogenomics analyse. Het gebruik van humaan weefsel zal een belangrijke bijdrage leveren
aan de vervanging, vermindering en verbetering (3R’s) van dieren voor wetenschappelijke
doeleinden, en kan daarnaast tot een betere risico-evaluatie leiden door het vermijden van
de vertaling van resultaten van proefdieren naar de mens.
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A B B R E V I AT I O N S

ACOX1 Peroxisomal acyl-coenzyme A oxidase 1

AKT1 Protein Kinase B Alpha

APAP Acetaminophen/ Paracetamol

BRCA1 Breast Cancer 1, early onset

C2ORF30/ERLEC1 Endoplasmic reticulum lectin 1

CADPS2 Calcium-dependent activator protein for secretion 2

CCl4 Carbon tetrachloride

DNAJB9/ERDJ4 DnaJ Hsp40 Homolog, Subfamily B, Member 9

EDN1 Endothelin-1

FGF2 Fibroblast growth factor

GMCSF- Granulocyte-macrophage colony stimulating factor

HACL1 2-Hydroxyacyl-CoA Lyase 1

HMGB1 High mobility group protein box-1

HNF1A Hepatocyte nuclear factor 1 homeobox A

HNF4A Hepatocyte nuclear factor 4 alpha

hPCLS Human precision-cut liver slices

HSC Hepatic stellate cell

IDILI Idiosyncratic drug-induced liver injury

IL1A- Interleukin-1 alpha

iNOS Inducible nitric oxide synthase

LPS Lipopolysaccharide

NFkB Nuclear factor kappa-light-chain-enhancer of activated B cells

NFXL1 Nuclear transcription factor, X-box binding-like

NUPR1 Nuclear Protein 1

p38 MAPK p38 Mitogen activated protein kinase

PAN2 Poly (A) Specific Ribonuclease Subunit
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PCLS Precision-cut liver slices

PKD1 Polycystin-1

PPARA Peroxisome proliferator-activated receptor alpha

PPARD Peroxisome proliferator-activated receptor delta

PPARG Peroxisome proliferator-activated receptor gamma

pSmadL/C Dually phosphorylated smad

REEP5 Receptor expression enhancing protein 5

RXRA Retinoid X receptor alpha

SLC10A7 Sodium/Bile Acid Cotransporter 7

SORL1 Sortilin-Related Receptor 1

TFAM Mitochondrial transcription factor A

TGFB1 Transforming Growth Factor Beta 1

TLR4 Toll like receptor 4

TMED7 Transmembrane p24 trafficking protein 7

TMEM-117 Transmembrane protein 117

TNF Tumor necrosis factor

TP53 Tumor protein p53

UW University of Wisconsin organ preservation solution

WME William’s medium E
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