

 University of Groningen

Mutual exclusion by four shared bits with not more than quadratic complexity
Hesselink, Willem H.

Published in:
Science of computer programming

DOI:
10.1016/j.scico.2015.01.001

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Hesselink, W. H. (2015). Mutual exclusion by four shared bits with not more than quadratic complexity.
Science of computer programming, 102, 57-75. https://doi.org/10.1016/j.scico.2015.01.001

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-11-2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Groningen

https://core.ac.uk/display/232490112?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.scico.2015.01.001
https://www.rug.nl/research/portal/en/publications/mutual-exclusion-by-four-shared-bits-with-not-more-than-quadratic-complexity(dc1c14d0-530f-4092-9f5a-b4d013cf6d5b).html

Science of Computer Programming 102 (2015) 57–75
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Mutual exclusion by four shared bits with not more than

quadratic complexity

Wim H. Hesselink

Dept. of Computing Science, University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 February 2014
Received in revised form 4 November 2014
Accepted 5 January 2015
Available online 14 January 2015

Keywords:
Concurrent algorithm
Mutual exclusion
Fault tolerance
Time complexity
Verification

For years, the mutual exclusion algorithm of Lycklama and Hadzilacos (1991) [21] was
the optimal mutual exclusion algorithm with the first-come-first-served property, with a
minimal number of (non-atomic) communication variables (5 bits per thread). Recently,
Aravind published an improvement of it, which uses 4 bits per thread and has simplified
waiting conditions. This algorithm is extended here with fault tolerance, and it is verified
by assertional methods, using the proof assistant PVS. Progress is proved by means of
UNITY logic. The paper proposes a new measure of concurrent time complexity, and proves
that the concurrent complexity for throughput of the present algorithm is not more than
quadratic in the number of threads.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Due to the advent of multiprocessors and multicore architectures, the practical relevance of concurrent algorithms is
increasing dramatically. This raises the interest in the correctness of them because, as is well known, such algorithms can
unexpectedly misbehave due to subtle bugs or race conditions.

Testing and model checking are important methods to find errors, but, for concurrent algorithms, they are often not able
to ensure correctness. Formal verification of a concurrent algorithm usually requires many case distinctions. Therefore, even
carefully drafted man-made proofs are hardly convincing. In recent years, the advance of mechanical theorem provers like
ACL2, Coq, HOL, Isabelle, PVS has made it possible to prove concurrent algorithms exhaustively, and in such a way that the
proof script can be inspected and replayed to verify the correctness claims of the verifier. Effective use of a prover for these
purposes requires a good understanding of the methods of concurrency verification.

The present paper illustrates these possibilities by presenting a computer assisted verification of a recent improvement
by Alex Aravind [5] of the mutual exclusion algorithm of Lycklama and Hadzilacos [21]. For many years, the algorithm
of [21] was the “best possible one”, in the sense that it provides mutual exclusion with the first-come first-served property
by means of a minimum number of communication variables: 5 bits per thread which need not be atomic.

Aravind’s improvement reduces the number of communication bits to 4, simplifies the waiting conditions, and retains
the other properties of the algorithm. Moreover, the algorithm is fault tolerant in the sense that a thread may fail at any
time. A failed thread goes immediately to its noncritical section, but its communication variables may get arbitrary values.
After some period of time it resets them, and it may try and reenter the protocol.

The algorithm and its proof work under the assumption of sequentially consistent memory. If one wants to apply it on
current hardware, memory fences are needed to prevent the hardware from reordering loads before stores [7, Section 4].

E-mail address: w.h.hesselink@rug.nl.
http://dx.doi.org/10.1016/j.scico.2015.01.001
0167-6423/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2015.01.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:w.h.hesselink@rug.nl
http://dx.doi.org/10.1016/j.scico.2015.01.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2015.01.001&domain=pdf

58 W.H. Hesselink / Science of Computer Programming 102 (2015) 57–75
Simplified versions of the algorithms of Lycklama–Hadzilacos and Aravind were tested with appropriate memory fences in
[7, Section 17].

In the present paper, the algorithm is verified completely, including nonatomicity and fault tolerance. The verification is
done entirely with assertional methods, i.e., in terms of states, the next state relation, and the forward steps done under
weak fairness. The safety properties are verified by invariants and history variables. Progress of the algorithm is verified
with a bounded version of UNITY logic [9,12]. In this way, we obtain explicit bounds for throughput and individual delay.

Contributions:

• Addition of fault tolerance and fault recovery.
• Verification of safety and progress.
• Explicit bounds for throughput and individual delay in terms of rounds.

1.1. Overview

Section 1.2 presents the mutual exclusion problem (MX) and the first-come-first-served property (FCFS). Section 1.3
introduces the solution of Lycklama and Hadzilacos, as improved by Aravind. In Section 1.4, we explain our time complexity
for concurrent algorithms. Section 1.5 sketches the approach to verification.

Section 2 presents the algorithm with 4 shared bits. It first explains how Lycklama and Hadzilacos [21] have separated
the concerns for MX and FCFS. It then presents Aravind’s algorithm along these lines.

Section 3 presents the formal model for concurrent algorithms with shared memory, introduces UNITY and our bounded
version of it, and then discusses atomicity and nonatomic shared variables.

In Section 4, we decorate the algorithm as presented in Section 2 with history variables and environment steps in such
a way that it forms a blueprint for a transition system amenable to formal verification. We prove that this system satisfies
MX and FCFS, and absence of immediate deadlock.

Progress is treated in Section 5. Here, the fault tolerance complicates matters considerably, because a frequently failing
thread can obstruct the progress of nonfailing threads completely. We conclude in Section 6.

1.2. Mutual exclusion

The problem that concurrent processes may need exclusive access to some shared resource was first proposed and
solved in [10]. The problem came to be known as mutual exclusion in [11]. Numerous solutions to this problem have been
proposed, e.g., see the surveys [2,7,25,27].

An early and elegant solution is Lamport’s bakery algorithm [18], which has three additional properties: it has the
first-come-first-served property (FCFS), the shared variables used need not be atomic, and it is fault tolerant in a certain
sense. The second point means that the algorithm does not assume mutual exclusion on read and write operations on
shared variables. On the other hand, these shared variables hold integer values that can become arbitrarily large.

In the past, devising busy-waiting solutions to the mutual exclusion problem was primarily an academic exercise, because
busy waiting is inefficient on a single processor. The advent of multiprocessors and multicore architectures, however, has
spurred renewed interest in such algorithms [3, p. 133].

Similarly, algorithms for nonatomic shared variables are becoming practically relevant, because several recent systems
such as smart-phones, multi-mode handsets, multiprocessor systems, network processors, graphics chips, and other high
performance electronic devices use multiport memories, and such memories allow nonatomic accesses through multiple
ports [17,26,28].

Mutual exclusion without FCFS does not require much shared memory. Indeed, the algorithm of Burns–Lamport [8,19]
establishes mutual exclusion with only one nonatomic shared Boolean variable per thread.

Lamport’s bakery algorithm for N threads gives mutual exclusion with FCFS, using only N nonatomic shared integer
variables, but these variables cannot be bounded. The algorithm of [6] also gives mutual exclusion with FCFS. It uses N
nonatomic variables with values ≤ N , and 3N + 2 nonatomic shared bits.

In terms of shared-space complexity, however, the best mutual exclusion algorithm with the FCFS property, that is known
to us, is the one of Lycklama and Hadzilacos [21], or rather the recent simplification by Aravind [5].

1.3. Mutual exclusion by Lycklama–Hadzilacos–Aravind

The mutual exclusion algorithm of Lycklama and Hadzilacos [21] establishes mutual exclusion with the FCFS property for
an arbitrary number of threads. Per thread, it uses five shared Boolean variables, which need not be atomic.

The presentation of the algorithm splits it in two parts: an inner algorithm to establish mutual exclusion and an outer
algorithm to guarantee the FCFS property. The inner algorithm is the mutual exclusion algorithm of Burns [8] and Lam-
port [19], which uses one shared bit per thread. The outer algorithm uses four shared bits per thread. The combined
algorithm thus uses five bits per thread.

W.H. Hesselink / Science of Computer Programming 102 (2015) 57–75 59
In [5], Alex Aravind simplifies the outer algorithm of [21] in such a way that it only needs three bits per thread and
has simpler waiting conditions. He also makes the inner algorithm more flexible. The papers [21,5] contain behavioral
correctness proofs that we are unable to follow. We give an assertional proof instead.

We also show that Aravind’s version of the algorithm allows a thread to fail at any time. This is based on a fault model,
described below in Section 2.5, which is slightly stronger than the one of Lamport [18].

1.4. Concurrent time complexity

Time complexity for concurrent algorithms is a difficult issue because at any time there are usually several threads
that can do steps, and these steps may or may not serve the purposes of the algorithm. Indeed, we need to partition
the steps of the algorithm into two classes: the environment steps that model the task of the algorithm and the forward
steps that model the solution. The algorithm can only be expected to accomplish its task when sufficiently many forward
steps are taken in a useful order. We make this explicit by prescribing a set of forward steps that are performed under
weak fairness, which means that in every execution, from any time onward, such a step is eventually taken if it is forever
enabled.

We quantify this idea by introducing rounds [12]. A round is a finite execution in which each of the forward steps is at
some time either disabled or taken. We measure the concurrent time complexity of reaching some goal by giving an upper
bound for the number of rounds needed. This approach is formalized in Section 3.3 in a bounded version of UNITY [9,12].

1.5. Verification

Concurrent algorithms are difficult to design because of the possible interference between actions of different threads.
Testing is not the solution because incorrectness may only show up in very unlikely scenarios. It follows that verification is
necessary. Verification of concurrent algorithms, however, often requires complicated arguments with large case distinctions.
We therefore use the proof assistant PVS [24]. All main assertions in this paper have been proved with PVS. The proof file
can be obtained from [16, Section 2]. PVS users can inspect it to check the correspondence of the proof goals with the
results claimed in the paper, and to replay the proof on their own system.

For any concurrent algorithm, verification has two aspects: safety and progress. Safety means that nothing goes wrong: in
this case, it amounts to mutual exclusion, the first-come-first-served property, and absence of immediate deadlock. Progress
means that every thread that aims at the critical section will eventually reach it and return to the idle state. Safety is proved
here with invariants and auxiliary variables, just as we used in [15] for a closely related algorithm. We prove progress with
a bounded version of UNITY logic [9,12].

2. Mutual exclusion with four bits

In this section, we present the algorithm without any correctness considerations. In Section 2.1, we introduce the problem
of mutual exclusion (MX) and the first-come-first-served-property (FCFS). Section 2.2 presents the algorithm as a combi-
nation of an MX algorithm and an FCFS algorithm. The MX algorithm is explained in Section 2.3. The FCFS algorithm is
explained in Section 2.4. For simplicity, in these sections, we ignore the questions of fault tolerance. Fault tolerance and
fault recovery are treated in Section 2.5.

2.1. Mutual exclusion described

Traditionally, mutual exclusion (MX) is modeled as follows. There are N threads, numbered from 0 upward, that com-
municate via shared variables and that repeatedly may compete for unique access to a shared resource. We thus use the set
Thread = {p ∈N | p < N}. The threads are of the form:

thread (p : Thread) =
while true do

NCS ; Doorway ; Waiting ; CS ; Exit
endwhile .

NCS and CS are given program fragments. NCS is the noncritical section, which need not terminate. Access to the shared
resource is modeled as the critical section CS, which is guaranteed to terminate. The aim is to implement Doorway, Waiting,
and Exit in such a way that the number of threads in CS is guaranteed to remain ≤ 1 (mutual exclusion). Thread p is said
to be idle when it is at NCS, otherwise it is competing.

The first-come-first-served property (FCFS) is defined in [18] to mean that, if thread p enters Doorway while thread q is
in Waiting, thread p will not enter CS before q does. It is a safety property (it would be bad when p enters before q).

The progress requirements are firstly that Doorway and Exit can be traversed without waiting, and secondly that, when
there is a thread in Waiting and no thread in CS, eventually a thread will enter CS. Together with FCFS, it implies lockout
freedom: every thread in Waiting eventually enters CS.

60 W.H. Hesselink / Science of Computer Programming 102 (2015) 57–75
(i) thread (p) =
while true do

NCS ; Doorway ; WaitingFcfs ;
(†) WaitingMx ; CS ; ExitMx ;

ExitFcfs
endwhile .

(ii) thread (p) =
while true do

NCS ; Doorway ; WaitingFcfs ;
WaitingMx ; ExitFcfs ; CS ; ExitMx

endwhile .

Fig. 1. Two ways for splitting mutual exclusion and FCFS.

thread (p : Thread) =
21 NCS ;
22 dw[p] := true ;
23 for all k ∈ Range do copy[k] := turn[k] end ;
24 turn[2p + nx] := true ;
25 dw[p] := false ;
26 for all k ∈ Range with copy[k] do 27 await ¬turn[k] end ;
28 cc[p] := true ;
29 for all thr < p with cc[thr] do
30 cc[p] := false ;
31 await ¬cc[thr] ; goto 28

end ;
32 for all thr > p do 33 await ¬cc[thr] end ;
34 turn[2p + nx] := false ; nx := 1 − nx ;
35 for all thr ∈ Thread do 36 await ¬dw[thr] end ;
37 CS ;
38 cc[p] := false ; goto 21 .

Fig. 2. Aravind’s algorithm for 4 shared bits.

2.2. The algorithm of Lycklama–Hadzilacos–Aravind

In the mutual exclusion algorithm of [21], MX and FCFS are accomplished by two separate algorithms that are nested as
shown at (i) in Fig. 1. The line (†) holds the inner algorithm for mutual exclusion. It requires one shared bit per thread. The
outer algorithm to guarantee FCFS consists of Doorway, WaitingFcfs, and ExitFcfs.

The FCFS algorithms of [21,15] require 4 shared bits per thread. Aravind [5] improved the FCFS algorithm so that it
only needs three shared bits per thread but that ExitFcfs requires waiting. As a mutual exclusion algorithm should have no
waiting after CS, he moved ExitFcfs to the position just before CS, thus getting the nesting shown at (ii) in Fig. 1.

The combined algorithm is presented in Fig. 2. The fragment of the commands 28 up to 33 together with command 38 is
the mutual exclusion algorithm of Burns–Lamport, which is described below in Section 2.3. The part for FCFS is described in
Section 2.4. It consists of Doorway in commands 22–25, WaitingFcfs in commands 26–27, and ExitFcfs in commands 34–36.

As it combines the algorithms for mutual exclusion and FCFS, the algorithm uses four shared booleans (bits) per thread.
The boolean dw[p] holds when thread p is in the Doorway. The boolean cc[p] holds when thread p is in the inner algorithm
and has not yet given priority to a lower numbered thread. The boolean turn[2p + nx] with nx ∈ {0, 1} serve to ensure
FCFS by indicating that thread p is in its waiting sections. All these bits are initially false.

We use the convention that shared variables are in typewriter font, while private variables are set in sans serif font. All
threads have the same private variables. If v is a private variable, it is denoted by v in the code of p, but outside the code
we write v.p for the value of v of thread p.

We use labels beginning at 21 to ease proof refactoring as described in [15]. We write p at � to indicate that thread p
is at the command labeled �, i.e., that pc.p = �. We write p in L for pc.p ∈ L.

2.3. Mutual exclusion implemented

The inner algorithm is a flexible version of the mutual exclusion algorithm of Burns [8] and Lamport [19]. In Fig. 2, it
consists of the commands 28–33 and 38. It uses a single nonatomic Boolean shared variable per thread, called cc[p], which
is initially false. We thus use the declaration:

cc : array [Thread] of B .

The idea is that, when it starts competing, thread p makes cc[p] true, and then inspects cc[q] for all threads q �= p, first
for the threads q < p. When it encounters a thread thr < p with cc[thr], it gives precedence to thr by making cc[p] false,

W.H. Hesselink / Science of Computer Programming 102 (2015) 57–75 61
waits until thr has made cc[thr] false, and then sets cc[p] true and restarts its inspection of the lower threads. When it
has inspected all lower threads successfully, it turns to the threads q > p. When it finds a thread thr > p with cc[thr], it
just waits until thread thr has made cc[thr] false. When its inspection loop terminates, thread p can enter CS. After CS, it
makes cc[p] false.

2.4. Design for FCFS

Recall from Section 2.1 that FCFS means that, if thread p enters Doorway while thread q is in Waiting, thread p will not
enter CS before q does.

The FCFS algorithm uses three nonatomic Boolean shared variables per thread p. They are declared as follows:

Range = {k ∈ N | k < 2N} ,
turn : array [Range] of B ;
dw : array [Thread] of B .

Thread q is the owner of the three variables dw[q] and turn[2q + e] with e ∈ Bit where Bit = {0, 1}. Note that every
k ∈ Range has a unique expression k = 2q + e with q ∈ Thread and e ∈ Bit.

The main private variables of the threads are declared by

copy : array [Range] of B ;
nx : Bit (persistent) .

In command 23 of Fig. 2, thread p makes a copy of array turn in its private variable copy. This copy turns out to be useful,
even though, because of possible interferences, we cannot claim any equality between copy.p and turn.

In command 24, the thread announces that it is competing by modifying one of its bits in array turn. After Doorway,
the thread waits at commands 26–27 until all threads in its private copy have completed WaitingMx. Then it can enter the
inner mutual exclusion algorithm. When it gets access to the critical section, it removes its announcement at command 34,
and enters the critical section.

This would guarantee FCFS because the thread does not enter CS before all threads in its private copy have completed
CS. Unfortunately, if we follow this informal description, it can lead to deadlock, as is shown by the following scenario:
thread p0 announces itself, thread p1 observes the announcement of p0 and announces itself, thread p0 concludes its
competing period (via CS), enters again, observes the announcement of p1, and announces itself again. Now both p0 and
p1 have announced and are waiting until the other removes its announcement: deadlock.

In order to break these cyclic dependencies, we give the announcements of thread p cyclic version numbers, kept in a
persistent private variable nx declared above. Indeed, in the commands 24 and 34 of Fig. 2, thread p indicates its interest
in the critical section at the index 2p + nx.p in array turn. This, however, is not enough, because while thread p1 is in the
doorway, thread p0 may cycle several times through competing periods and then use the version number observed by p1
again.

In order to preclude this unrestricted progress, every thread (p1 in this scenario) waits at the end of ExitFcfs (at com-
mands 35–36) for all threads to leave the Doorway. Indeed, thread p sets dw[p] in command 22 and resets it in command 25.
The other threads may have to wait for ¬dw[p] at command 36. It turns out that, in this way, the cyclic version numbers
can be bits. We come back to this in the proof of correctness.

2.5. Fault tolerance

The conclusion of the paper [21] mentions that it is possible, though complicated, to extend the algorithm of [21] with
fault tolerance. For the present algorithm, this is much easier.

We use the following fault model. A faulty thread in the critical section immediately exits the critical section. There may
be a period when reading its communication variables gives arbitrary values. Eventually, however, all its communication
variables are reset to false. We allow the thread to reenter the protocol. This final possibility is not in Lamport’s fault
model [18].

The code for failure recovery is given in Fig. 3. The recovery consists of resets of the communication variables, followed by
two await loops. These loops serve to guarantee that the thread that has failed, say p, does not reenter with 2p + e ∈ copy.q
for any e ∈ Bit and any thread q. The first loop ensures that any thread q with 2p +e ∈ copy.q has set its flag turn[2q +nx.q].
Thread p waits in the second loop for these flags to be reset.

3. The model and the repertoire

We need a formal model to argue the correctness of the algorithm: its safety, its progress, and its time complexity. The
basic model is described in Section 3.1. unity logic is introduced in Section 3.2. In Section 3.3, we present bounded unity,
our variation with a form of concurrent time complexity. Atomicity is discussed in Section 3.4. Nonatomic shared variables
are introduced in Section 3.5.

62 W.H. Hesselink / Science of Computer Programming 102 (2015) 57–75
recovering thread(p) :
39 dw[p] := false ; cc[p] := false ;
41 turn[2p] := false ; turn[2p + 1] := false ;
43 for all thr ∈ Thread do 44 await ¬dw[thr] end ;
45 for all k ∈ Range do 46 await ¬turn[k] end ; goto 21 .

Fig. 3. Failure recovery.

3.1. The basic model

Our basic model for concurrent algorithms with shared memory is a formal version of unity [9]. There is a set of threads
(processes) that can do steps. The state of the system is given by the values of all shared and private variables. The state
space X of the system is the set of all states. It is the Cartesian product of a shared state space and the private state spaces
of the threads. If P is a predicate on the state space X , it can also be regarded as the subset of X where P holds. We can
therefore write P ⊆ Q to mean that every state that satisfies P also satisfies Q (i.e. that P implies Q). Let start be the
initial predicate, i.e., the set of initial states.

For thread p, relation step(p) is defined as the set of the pairs (x, y) of states such that in state x thread p can do a
step of the algorithm that results in state y. Relation step is defined as the union of the relations step(p) for all threads
p, together with the identity relation of the state space. An execution is defined to be an infinite sequence xs of states
with xs0 ∈ start, and (xsn, xsn+1) ∈ step for all n ∈ N. A predicate P is an invariant if and only if it contains all states of all
executions. We write X0 ⊆ X for the intersection of all invariants that we have obtained for the algorithm.

An execution fragment of length n ≥ 0 is a nonempty finite sequence (xs0 . . . xsn) in X0 such that (xsi, xsi+1) ∈ step for
all i with 0 ≤ i < n. Two execution fragments can be concatenated when the final state of the first fragment equals the
initial state of the second fragment.

Let the steps of the threads be partitioned in forward steps which serve the goal of the algorithm, and environment steps
that model the task of the algorithm or possible obstructions. Relation fwd(p) ⊆ step(p) is defined to be the set of forward
steps of thread p. Thread p is therefore enabled in state x if and only if there is a state y with (x, y) ∈ fwd(p). Enabledness
of thread p is expressed by ena(p):

x ∈ ena(p) ≡ (∃y : (x, y) ∈ fwd(p)
)
.

An occurrence of thread p in an execution fragment (xs0 . . . xsn) is a number i with 0 ≤ i < n, and (xsi, xsi+1) ∈ fwd(p)

or xsi /∈ ena(p). The execution fragment is called a round if it contains an occurrence of every thread. In other words, in a
round, every thread is scheduled at least once, and is either executed or found to be disabled.

Progress of the algorithm will be proved under the assumption that all threads do enough forward steps unless they
are disabled. To put it more precisely, progress will be proved for any execution fragment that contains a concatenation of
sufficiently many rounds.

3.2. UNITY logic

unity logic is designed to prove progress in the form of leads-to relations between predicates. P leads to Q means
that, for every execution fragment (xs0 . . . xsn) with xs0 ∈ P and sufficiently many rounds, there is a number k with xsk ∈
Q . unity logic is designed to prove this by assertional means, i.e., by only using states and step relations, and without
considering executions or rounds.

Example. For a mutual exclusion algorithm as described in Section 2.1, one may want to assert that every thread p that
has entered the Doorway will eventually reach the critical section CS. In unity, this is expressed by (p in Doorway) leads to
(p in CS). �

unity logic begins with defining two relations, co and co!, between predicates:

P co Q ≡ ∀(x, y) ∈ step : x ∈ P ⇒ y ∈ Q ,

P co! Q ≡ ∃r : P ⊆ ena(r)

∧ (∀(x, y) ∈ fwd(r) : x ∈ P ⇒ y ∈ Q
)
.

P co Q means that every step that starts in P ends in Q . According to co!, there is a specific thread r that is able to
establish Q .

unity logic [9,22] is based on the relations unless and ensures defined by:

P unless Q ≡ (P ∧ ¬Q ∧ X0) co (P ∨ Q),

P ensures Q ≡ (P unless Q) ∧ (
(P ∧ ¬Q ∧ X0) co! Q

)
.

W.H. Hesselink / Science of Computer Programming 102 (2015) 57–75 63
unity’s leads-to relation → is defined inductively by the three rules:

• P ensures Q implies P → Q .
• Relation → is transitive.
• For any family (Pi | i ∈ I), if Pi → Q for all i ∈ I , then (∃ i ∈ I : Pi) → Q .

It is easy to see that P → Q implies that “P leads to Q ” as it is described above. In fact, it is equivalent, as is well known,
e.g., see [13] and the references given there.

Remark. The books [9,22] define unless and ensures without mentioning a set X0. Instead, they allow invariants to be
regarded as axioms, wherever one might need them. This is justified for a design methodology. For verification with a proof
assistant, it is safer to refrain from introducing axioms when this can be avoided.

3.3. Bounded unity

In bounded unity, the leads-to property is quantified by counting the number of rounds, see Section 3.1.
For predicates P and Q , we say that P leads to Q within k rounds (notation P Lt〈k〉 Q), if every execution fragment that

starts with a state in P and that contains a concatenation of k rounds, contains a state in Q . The number k is called the
progress bound of the leads-to property.

It is relatively easy to prove the following rules:

• P ⊆ Q implies P Lt〈k〉 Q , for any k ≥ 0.
• P ensures Q implies P Lt〈1〉 Q .
• If P Lt〈k〉 Q and Q Lt〈m〉 R then P Lt〈k + m〉 R .
• For any family (Pi)i∈I , if Pi Lt〈k〉 Q for all i ∈ I , then (

⋃
i∈I P i) Lt〈k〉 Q .

These rules are called the subset rule, the ensures rule, transitivity, and the disjunction rule, respectively.
We also have the Progress–Safety–Progress rule [9, p. 65]:

(PSP) If P Lt〈k〉 Q and A unless M , then (P ∧ A) Lt〈k〉 ((Q ∧ A) ∨ M).

A progress proof with unity can often be converted into a proof with bounded unity. The bounds give an indication of
the concurrent complexity.

Example. Consider a system with three shared variables b, c : Bit, n : N, and three atomic commands, regarded as forward
steps, to be executed repeatedly:

[] b= 0 → b := 1 ; c := 1 − c
[] c= 0 → n := n+ b ; b := 0
[] c= 1 → n := n+ b ; b := 0 .

The state space X here is the Cartesian product Bit2 × N. We take X0 = X . The three commands prescribe the relations
fwd(p) with p = 0, 1, 2. Their guards are the enabling conditions. It is easy to verify the three ensures properties (for any
k ∈N):

(b= 0 ∧ n≥ k) ensures (b= 1 ∧ n≥ k),
(b= 1 ∧ c= 0 ∧ n≥ k) ensures (n≥ k + 1),
(b= 1 ∧ c= 1 ∧ n≥ k) ensures (n≥ k + 1).

The ensures rule and the disjunction rule enable us to derive:

(b= 1 ∧ n≥ k) Lt〈1〉 (n≥ k + 1).

Using transitivity and again the disjunction rule, we obtain

(n≥ k) Lt〈2〉 (n≥ k + 1).

By transitivity and induction, we thus obtain progress in the form

(n≥ k) Lt〈2 · m〉 (n≥ k + m).

64 W.H. Hesselink / Science of Computer Programming 102 (2015) 57–75
Now consider the variation in which we replace the guard b = 0 in the first alternative by true. Then the second and
third ensures properties are no longer valid: the first alternative can be executed too often and the other two alternatives
need never be executed because they are never henceforth continuously enabled. It follows that n can remain constant.
This variation shows the importance of the proof obligation to indicate (in co!) an enabled “progressive” step that remains
enabled at least until some “progressive” step has been taken. �
3.4. Atomicity

In concurrency, the atomic commands of the threads can be interleaved in arbitrary ways. It is therefore important to
specify the grain of atomicity of the commands. According to the principle of single critical reference, e.g., [23, (3.1)], [4, p. 273],
an atomic command reads or writes at most one shared variable (not both), unless it is specifically provided as a call to
the operating system (e.g., a semaphore operation). Actions on private variables can be added to atomic commands because
they never lead to interference.

This principle sets the default. The present paper follows the principle completely. In general, we choose the atomicity
of the commands as coarse as allowed by the principle. The reason for this is that an algorithm requires more, and more
complicated invariants when its grain of atomicity is refined.

Every transition of the transition system corresponds to an atomic command that has a unique label. The control state
of thread p is given by the program counter pc.p, which takes values in the set of labels and determines which command
is to be executed next. We thus use the labels to indicate the grain of atomicity that is used in our transition system. In
other words, in the transition system, control is never at an unlabeled semicolon.

We use a pseudocode with a standard syntax for simple commands, with := for the assignment, if then (else) end
for the conditional command and while do endwhile for the conditional repetition. In the pseudocode, every command
implicitly modifies pc to jump to the next label unless specified otherwise.

Every repetition consists of a test for termination and a body that ends with a backward jump to the test. Consequently,
control is repeatedly at the test. If the body including the test is a single atomic command, control does not leave the test
until termination of the repetition. In this way, a labeled command can be a complete repetition, but only the steps of the
repetition are atomic. For example, the labeled command

� : while B do S endwhile; T

is modeled as

� : if B then S; goto � else T endif.

In other words, in this single atomic command, B is inspected and either S or T is executed once. In the first case control
stays at �. Otherwise control goes to the next label.

A thread can be explicitly disabled by a command of the form

� : await B; S.

This command can only be executed when B holds. Execution of it means execution of S followed by a jump to the next
label. The command is disabled when B is false.

3.5. Nonatomic shared variables

The algorithms of [21,5,15] truly solve mutual exclusion, in the sense that they do not rely on atomic access of the
shared variables (which can be seen as mutual exclusion at a lower level). We thus have to accommodate nonatomic shared
variables in our model of executions with atomic steps.

In this paper, every shared variable is an output variable, i.e., there is at most one thread that can write it. Lamport [20]
distinguishes two kinds of nonatomic output variables: safe ones and regular ones.

An output variable is called safe if a read not concurrent with a write obtains the correct value, while a read concurrent
with a write may obtain an arbitrary value of the correct type. Concurrent writes do not occur, because the variable is
written by at most one thread. A variable is called regular if it is safe and a read concurrent with a write can only obtain
the old value or the value that is being written. In this paper, all shared variables are only assumed to be safe.

We use the formal model for safe variables of [1]. A read action of a shared variable x into a private variable v is written
v := x. It can be regarded as atomic because it does not influence the shared state. For a safe shared variable, we need to
indicate that reading during a write action can return any value. We therefore denote a write action of a private expression
E into a safe shared variable x by

� : x := (flickering) E. (0)

We model this by a nondeterministic choice

� : (x := arbitrary; goto � [] x := E
)
. (1)

W.H. Hesselink / Science of Computer Programming 102 (2015) 57–75 65
thread (p : Thread) =
21 predec[p] := central ; turnset := Range ;
22 dw[p] := (flickering) true ;
23 while exists k ∈ turnset do

copy[k] := turn[k] ; turnset[k] := false
endwhile ;
cnt := shacnt ; shacnt := shacnt+ 1 ;

24 turn[2p + nx] := (flickering) true ; central[p] := true ;
25 dw[p] := (flickering) false ;
26 while exists kk ∈ Range with copy[kk] do
27 await ¬turn[kk] ; copy[kk] := false

endwhile ;
28 cc[p] := (flickering) true ; lower := {q | q < p} ;
29 if exists thr ∈ lower then

if ¬cc[thr] then lower[thr] := false; goto 29
else

30 cc[p] := (flickering) false ;
31 await ¬cc[thr] ; goto 28

endif
else higher := {q | p < q} endif ;

32 while exists thr ∈ higher do
33 await ¬cc[thr] ; higher[thr] := false

endwhile ;
34 turn[2p + nx] := (flickering) false ; nx := 1 − nx ; dwset := Thread ;
35 while exists thr ∈ dwset do
36 await ¬dw[thr] ; dwset[thr] := false

endwhile ;
37 CS ; central[p] := false ;

for all q do predec[q][p] := false end ;
38 cc[p] := (flickering) false ; inc := inc + 1 ; goto 21 .

Fig. 4. History extension of the algorithm.

In other words, command (0) is modeled in (1) as a repetition of arbitrary assignments to x that ends with the actual
assignment of E to x. The value of x during the repetition is indeterminate. We declare the assignment x := arbitrary to be
an environment step, while the final assignment x := E is a forward step. This ensures that the repetition terminates within
one round.

4. Transition system and verification of safety

In order to verify the algorithm, we reduce it to a transition system. In Section 4.1, we extend the algorithm of Fig. 2
with control information and history variables. We also pin down the atomic steps. The meanings of failures, fault steps,
and fault recovery are treated in Section 4.2.

The verification of the safety of the inner algorithm is done in Section 4.3. In Section 4.4, we specify and verify the FCFS
property. In preparation for the proof of deadlock freedom and progress, we present in Section 4.5 the dichotomy between
forward steps and environment steps of the algorithm, we analyze disabledness, and define immediate deadlock. Absence
of immediate deadlock is proved in Section 4.6. Section 4.7 presents and proves some invariants needed in this proof or
later.

4.1. The history extension of the algorithm

In order to prove its correctness, we extend the algorithm by making implicit control information explicit, and by adding
some history variables. We use the same labels as in Fig. 2. The result is the algorithm of Fig. 4. We have removed NCS
here, because it is superfluous and distracting. We have added “(flickering)” in the assignments to the safe shared vari-
ables.

In Fig. 2, the for loops at the commands 23, 29–31, 32–33, 35–36 are not meant to be performed atomically, and the
loop variables k, thr can be chosen in arbitrary order. We therefore need to extend the state with the sets of values of k and
thr that have yet to be treated in the loops. We thus introduce private variables:

turnset : set of Range ,
lower,higher,dwset : set of Thread .

These sets are initially all empty.
We introduce a private variable kk for the value chosen in command 26, because this value is used in command 27 and

it will occur in some invariants.

66 W.H. Hesselink / Science of Computer Programming 102 (2015) 57–75
failing thread(p) :
failure step from any location �= 39:

turnset := copy := ∅ ;
lower := higher := ∅ ;
central[p] := false ; predec[p] := ∅ ;
for all q do predec[q][p] := false end ;
inc := inc + (p in {40 . . . 42} ? 1 : 0) ;
nx := 0 ; goto 39 .

39 choose dw[p],cc[p],turn[2p],turn[2p + 1] in B ;
goto 39 .

39 dw[p] := (flickering) false ;
40 cc[p] := (flickering) false ;
41 turn[2p] := (flickering) false ;
42 turn[2p + 1] := (flickering) false ;

dwset := Thread ; inc := inc + 1 ;
43 while exists thr ∈ dwset do
44 await ¬dw[thr] ; dwset[thr] := false

endwhile ; turnset := Range ;
45 while exists kk ∈ turnset do
46 await ¬turn[kk] ; turnset[kk] := false ;

endwhile ; goto 21 .

Fig. 5. Failure and recovery.

For the proof of FCFS, we introduce shared history variables:

central : set of Thread ,
predec : array[Thread] of set of Thread ,
shacnt : N ,

with initially central= ∅, predec[p] = ∅ for all threads p. In Section 4.6, we discuss the history variables shacnt and
cnt.p that occur in command 23. The private history variable inc is introduced in Section 5.3. The history variables can be
modified atomically because they are not used in the algorithm, but only in the proof.

Every line number of Fig. 4 stands for an atomic command. In this way, the algorithm satisfies the principle of sin-
gle critical reference (see Section 3.4), because we can ignore the inspections and modifications of the history variables
central, predec, and shacnt. For example, in line 23, if turnset.p is nonempty, turn[k] is inspected for a single value
of k, and control goes back to line 23. If turnset.p is empty, the history variables cnt.p and shacnt are inspected and
modified, and control goes to line 24.

4.2. Failure and fault recovery

The extension of Fig. 3 with control information and history variables is given in Fig. 5. We make failure explicit by
adding a failure step for thread p from any location �= 39 to the fault location 39. For the sake of the invariants, all relevant
private variables of p are reset to default values. The same holds for the history variables central[p] and predec[q][p]
for all threads q.

When thread p is at label 39, reading of its communication variables can give arbitrary Boolean values. This is modeled
by means of a fault step of p that modifies these variables arbitrarily. The failure recovery in the lines 39–46 is in line with
Fig. 3. The modifications of inc.p are discussed Section 5.3.

4.3. The inner algorithm to guarantee mutual exclusion

We turn to the verification, first of mutual exclusion. Mutual exclusion (MX) at the critical section CS (line 37) is implied
by the invariant:

MX: q in {34 . . . 37} ∧ r in {34 . . . 37} ⇒ q = r.

Note that, by postulating such an invariant, we implicitly mean that it holds for all values of the free variables (q, r, . . .).
In order to prove MX, we first claim the invariant

Iq0: q in {29,32 . . . 37} ⇒ cc[q].
Indeed, it is straightforward to prove that predicate Iq0 is inductive: it holds initially (because then thread q is at 21) and
is preserved in every step. We use “q”s in the names of invariants to ease proof refactoring as described in [15].

W.H. Hesselink / Science of Computer Programming 102 (2015) 57–75 67
Now predicate MX is implied by the new invariants:

Iq1: q in {32 . . .} ⇒ lower.q = ∅,
Iq2: q in {34 . . .} ⇒ higher.q = ∅,
Iq3: q in {29,32 . . . 37} ∧ r in {29,32 . . . 37} ∧ q < r

⇒ q ∈ lower.r ∨ q at 29 ∨ r ∈ higher.q.

Indeed, if q < r and both are in {34 . . . 37}, then the sets lower.r and higher.q are empty by Iq1 and Iq2. Therefore, Iq3 gives
a contradiction, proving MX.

The predicates Iq1 and Iq2 are inductive because of the termination conditions of the loops at 29 and 32.
Preservation of Iq3 is proved as follows. Assume that some thread p does a step that falsifies Iq3. Then q < r, and the

step of thread p makes the antecedent of Iq3 true or the consequent false. The antecedent is only made true when p equals
q or r and executes line 28, in which case it makes the consequent of Iq3 true as well. Thread p makes the consequent
of Iq3 false only at the lines 29 and 33 by removing t = thr.p from lower.p or higher.p with t = q or t = r. Then we have
¬cc[t], so that thread t is not in {29, 32 . . . 37} by Iq0, implying that the antecedent of Iq3 is false. This proves that Iq3 is
preserved. We thus have:

Theorem 1. The algorithm satisfies mutual exclusion MX.

4.4. The outer algorithm guarantees FCFS

Recall that FCFS means that, if thread p enters Doorway while thread q is in Waiting, thread p will not enter CS before q
does.

In order to verify this, we ensure, in Fig. 4, that the history variable central satisfies the invariant

Kq0: r ∈ central ≡ r in {25 . . . 37}.

Therefore, in command 21, thread p receives in its history variable predec[p] the set of all predecessors. A predecessor q
is only removed from predec[p], when q executes line 37, and thus leaves the critical section. Therefore FCFS is implied
by

FCFS: q in {34 . . . 37} ⇒ predec[q] = ∅.

In order to prove the invariant FCFS, we need some other invariants. For these invariants, it is convenient to interpret
the Boolean arrays turn, turnset.p and copy.p for threads p, as sets of pairs (q, e) with q ∈ Thread and e ∈ Bit, according to
the formulas:

(q, e) ∈ turn≡ turn[2q + e],
(q, e) ∈ turnset.p ≡ turnset.p[2q + e],
(q, e) ∈ copy.p ≡ copy.p[2q + e]. (2)

In this way, they become well-defined sets because every index k ∈ Range has a unique expression k = 2q + e with q ∈
Thread and e ∈ Bit.

We postulate the invariants:

Kq1: r ∈ predec[q] ⇒ (r,nx.r) ∈ turnset.q ∪ copy.q ∨ r in {34 . . . 37},
Kq2: turnset.q = ∅ ∨ q in {22,23,43 . . . 46},
Kq3: copy.q = ∅ ∨ q in {23 . . . 27},
Kq4: r ∈ predec[q] ⇒ q �= r.

It is clear that these four predicates together with MX imply FCFS.
It is easy to see that the predicates Kq2 and Kq3 hold initially, are preserved under every step of q, and also under every

step of a thread �= q. They are therefore inductive, and hence invariants. Predicate Kq4 holds initially because predec[q] is
empty. It is threatened only at line 21. It is preserved at line 21 because of Kq0.

Predicate Kq1 holds initially because predec[q] is empty. It is threatened only by the steps 23, 27, 46, and the failure
step, because of the modifications of turnset.q, copy.q, and nx.r. Step 21 is harmless because (r, nx.r) ∈ turnset.q becomes
true. Kq1 is preserved by the threatening steps because of Kq0 and the additional invariants:

Kq5: predec[q] ⊆ central,
Kq6: r in {25 . . . 33} ⇒ (r,nx.r) ∈ turn,
Nq4: q in {38 . . .} ⇒ predec[q] = ∅.

The predicates Kq5 and Kq6 are easily seen to be invariant. Preservation of Nq4 at line 37 follows from FCFS.

68 W.H. Hesselink / Science of Computer Programming 102 (2015) 57–75
4.5. Forward steps and environment steps

We prepare the proof of progress by first proving absence of immediate deadlock as defined below. For this purpose, we
partition the steps of a thread p in forward steps and environment steps, see Section 3.1.

We define a step of p to be an environment step if it is the step from line 21 to 22, a flickering step in which pc.p
remains unchanged, a failure step to label 39, or a fault step at line 39. All other steps of p are forward steps of p. The
reader may verify that the forward steps are the steps that begin with p not at line 21 and that modify pc.p or the loop
variable turnset.p. The step of 21 is called an environment step because it is the request for access to the critical section.
The flickering steps and the failure and fault steps do not belong to the algorithm, but are part of the environment that the
algorithm has to accommodate. In other words, the environment steps define the problem while the forward steps form the
solution.

The relation fwd(p) thus consists of the pairs of states (x, y) such that, in state x, thread p can do a forward step that
establishes state y. The set Env consists of the pairs (x, y) such that some thread has an environment step that leads from
x to y. The step relation of the algorithm is

step = 1X ∪ Env ∪
⋃

p

fwd(p).

We thus use the setting of Section 3.1. The set X0 is the conjunction (intersection) of all invariants. Applying the defini-
tion in Section 3.1 to the present algorithm, we get

ena(p) ≡ p in {22 . . . 46}
∧ (

p in {27,46} ⇒ turn[kk.p])

∧ (
p in {31,33} ⇒ cc[thr.p])

∧ (
p in {36,44} ⇒ dw[thr.p]).

Note that, by the definition of fwd, thread p is disabled when it is idle (at line 21). When it is at a flickering location like 22
or 39, thread p is not disabled because it can go to the next label in the actual assignment, which is a forward step.

We define a state to be in immediate deadlock when there are competing threads and none of these can do a forward
step. Absence of immediate deadlock is a safety property.

4.6. The proof of absence of immediate deadlock

For the first step of the proof of absence of immediate deadlock, we claim the easy invariants:

Lq7: q in {21 . . . 46},
Lq0: dw[q] ⇒ q in {22 . . . 25,39},
Lq1: cc[q] ⇒ q in {28 . . . 30} ∪ {32 . . . 40},
Lq2: q at 33 ⇒ thr.q ∈ higher.q,
Lq3: r ∈ higher.q ⇒ q < r.

Indeed, they are inductive: they hold initially and are preserved in every step. Note that Lq0 and Lq1 are implications, not
equivalences: due to flickering, dw[q] can be true when q is at 22, and it can be false when q is at 25 (etc.).

Lemma 1. Assume that all threads are not enabled. Then all threads are at lines 21 or 27 or 46.

Proof. By Lq7 and condition ena, all threads are at one of the lines 21, 27, 31, 33, 36, 44, or 46. By Lq0, it follows that
dw[q] is false for all threads. It follows that there are no threads at lines 36 and 44. If there are threads q for which cc[q]
holds, all of these are at 33 because of the invariant Lq1. Let q1 be the highest number q with cc[q]. Then q1 is a thread at
line 33, and it is not enabled. It therefore satisfies cc[t1] for t1 = thr.q1. By the invariants Lq2 and Lq3, we have q1 < t1. As
cc[t1] holds, this contradicts the maximality of q1 with cc[q1]. This implies that ¬ cc[q] holds for all threads q.

It follows that no thread can be at 31 or 33. This proves that all threads are at 21, 27, or 46. �
In view of Lemma 1, the main danger of immediate deadlock is at line 27, at the interplay between turn and copy.p.

Absence of immediate deadlock thus relies on the order in which different competing threads conclude their loop at line 23
where copy.p gets its value.

To argue about this order, we have introduced the private integer history variables cnt.p for all threads p, and the
shared history variable shacnt. These variables are updated in the final step of loop 23 as given in Fig. 4. We initialize
shacnt := 1 and cnt.p := 0 for all threads p. These variables can be unbounded, and can be modified in one atomic
command, because they are only history variables.

The remainder of the proof of absence of immediate deadlock relies on the invariants:

W.H. Hesselink / Science of Computer Programming 102 (2015) 57–75 69
Lq4: q at 27 ⇒ kk.q ∈ copy.q,
Lq5: (q, e) ∈ turn ⇒ (q in {24 . . . 34} ∧ nx.q = e)

∨ q in {39 . . . 41} ∨ (q at 42 ∧ e = 1),
Lq6: q in {24 . . .} ∧ (r,nx.r) ∈ copy.q ∧ r in {. . .38} ⇒ cnt.r < cnt.q.

Indeed, predicates Lq4 and Lq5 are easily seen to be inductive. Note that, due to flickering of turn, (q, e) ∈ turn can be
true when q is at 24, and false when q is at 34.

Since the private variable cnt is set to the shared variable shacnt in the step towards 24, the consequent of Lq6
expresses that the most recent step of thread q towards 24 is later than the most recent step of r towards 24. We postpone
the proof of Lq6 because it is more difficult. We first prove that these invariants imply absence of deadlock:

Theorem 2. Immediate deadlock does not occur.

Proof. Assume that none of the threads can do a forward step, and that there are competing threads. Then, by Lemma 1,
all threads are at 21, 27, or 46. Therefore every competing thread q is at 27 or 46 and has turn[kk.q] because of ena(q).
Therefore Lq5 implies that there are threads at label 27.

Let q0 be the thread at 27 with the smallest value for cnt.q. Write kk.q0 = 2r + e with r ∈ Thread and e ∈ Bit. Then we
have (r, e) ∈ turn and (r, e) ∈ copy.q0 by Lq4. By Lq5, thread r is in {24 . . . 34} and e = nx.r. It follows that r is at 27. By
Lq6, we have cnt.r < cnt.q0. This contradicts minimality of cnt.q0. This proves that there are no competing threads at all. �
4.7. Remaining invariants

We still have to prove invariance of Lq6. For this purpose, we need some more invariants. We present them in a bottom-
up fashion. We first claim the easy inductive invariants:

Mq0: cnt.r < shacnt,
Mq1: q in {23,24} ⇒ dw[q].

We next claim a complicated invariant that expresses that the contents of copy.q are not “too outdated” when thread q
is in {23, 24}:

Mq2: q in {23,24} ∧ (r, e) ∈ copy.q ∧ e �= nx.r ∧ r ∈ {. . .38}
⇒ r in {35,36} ∧ q ∈ dwset.r.

The second conjunct of the consequent of Mq2 is included because it helps in the proof of invariance of the first conjunct.
Predicate Mq2 holds initially because then q is at 21. It is threatened only at the lines 22, 23, and 36. It is preserved at
line 22 because Kq3 implies that copy.q is empty at line 22. It is preserved at line 23 by the update copy.q[k] := turn[k]
because of Lq5. It is preserved at line 36 because of Mq1.

We further delimit the outdatedness of copy.q in the invariant:

Mq3: (r, e) ∈ copy.q ∧ r in {22 . . . 34} ⇒ e = nx.r ∨ q ∈ predec[r].
Predicate Mq3 holds initially because copy.q is empty. It is threatened at the lines 21, 23, and 37. It is preserved by the
update copy.q := turn[k] in line 23 because of Lq5. It is preserved by the modification of predec in line 37 because Kq3
implies that q is not at 37.

Preservation of Mq3 when thread r leaves line 21 is more complicated. At this point, predec[r] gets the new value
central. The antecedent of Mq3 implies by Kq3 and Mq2 that thread q is in {25 . . . 26}. Therefore, by Kq0, we have
q ∈ central.

The invariants Mq3 and FCFS together imply the derived invariant:

Mq3A: r at 34 ∧ (r, e) ∈ copy.q ⇒ e = nx.r.

We next claim the invariant:

Mq4: (r,nx.r) ∈ copy.q ⇒ r in {24 . . . 34,39 . . .}.

Predicate Mq4 holds initially because then copy.q is empty. It is threatened at lines 23 and 34. It is preserved by the update
copy.q[k] := turn[k] in line 23 because of Lq5. It is preserved by the modification of nx.r in line 34 because of Mq3A.

We can finally prove the predicate Lq6 is an invariant. It holds initially because then q is at line 21. It is threatened at
lines 23 and 34. At line 23, it is preserved under the step to line 24 by thread q because of Mq0, and by the step to line 24
of r because of Mq4. It is preserved at line 34 because of Mq3A.

In the proofs of Lq6, Mq2, Mq4, we silently ignored the step from line 45 to line 21. For this step, we need the additional
invariant

70 W.H. Hesselink / Science of Computer Programming 102 (2015) 57–75
Rq0: (r, e) ∈ copy.q ∧ r in {45,46} ⇒ (q,nx.q) ∈ turnset.r.

Preservation of Rq0 is proved by means of the invariants

Rq1: (r, e) ∈ copy.q ∧ r in {43 . . .} ⇒ (q,nx.q) ∈ turn ∨ q ∈ dwset.r,
Rq2: q in {45,46} ⇒ dwset.q = ∅,
Rq3: (r, e) ∈ copy.q ∧ r in {43 . . .} ∧ q in {. . .24} ⇒ q ∈ dwset.r.

This concludes the proof of the invariance of Lq6 and hence of Theorem 2. Note that Rq0 indicates the need for the loop at
45–46, while Rq3 indicates the need for the loop at 43–44.

We conclude with some invariants needed in the proof of progress in Section 5:

Nq0: q in {30,31} ⇒ thr.q ∈ lower.q,
Nq1: r ∈ lower.q ⇒ r < q,
Nq2: q at 36 ⇒ thr.q ∈ dwset.q,
Nq3: turnset.q ∩ copy.q = ∅.

The first three are obvious. Preservation of Nq3 at line 21 follows from Kq3.

5. Liveness: throughput and lockout freedom

In the algorithm of Fig. 2, some thread, say p, can be forced repeatedly to jump back from 31 to 28, perhaps only because
some thread q < p is doing a flickering assignment to cc[q]. Therefore, even though we have proved absence of immediate
deadlock, we still need a careful proof of liveness.

5.1. Preparation

In fact, the assumption of weak fairness is not enough to prove liveness because there are two obstructions. Firstly, when
some thread q infinitely often fails, its value cc[q] can remain flickering eternally. Then, even strong fairness is not enough
to imply progress for a thread r > q in the cycle 28–31 because thread r can be sent back to line 28 infinitely often.

We can evade this obstruction by assuming that the number of failures is bounded. We prefer however to give a more
quantitative relationship between the number of failures, the number of successful returns to the noncritical section, and
the forward steps of the algorithm.

The second obstruction is that, if a thread q is in the recovery phase 43–46 waiting at line 44 for the flag dw[r] or at
line 46 for the flag turn[2r + e], the responsible thread r may make unbounded progress and repeatedly set and reset
the flag thread q is waiting for. Weak fairness therefore allows thread q to remain waiting indefinitely. Strong fairness at
the lines 44 and 46, however, implies that thread q eventually passes the flag. We could try and adapt the algorithm by
checking the unbounded progress of thread r, but this would almost certainly require an additional shared bit, and it would
complicate the algorithm unnecessarily. In view of this second scenario, we exclude the recovery phase 43–46 from our
progress considerations.

In order to measure general progress, we give every thread q a private variable inc.q that holds the number of times
thread q has completed its main loop or the first part of fault recovery, or that it fails in the fragment 40–42. This variable
is therefore incremented in line 38 of Fig. 4 and line 42 of Fig. 5, and under conditions in the failure step itself. General
progress is measured by the sum Inc = ∑

q inc.q.
In order to show that Inc grows, and to relate the speed of growing with the forward steps of the algorithm, we introduce

a more precise measure of progress, which is, roughly speaking, proportional to the number of forward steps.
The speed of progress of a concurrent system can depend on congestion. We quantify this for the present algorithm as

follows. Let us bound the congestion by assuming that the number of concurrently competing threads has a fixed upper
bound K with K ≤ N . We use the derived constants KN3 = K · (N + 3) and A = KN3 + 12 · N + 21. KN3 appears in the next
section, A is used in Section 5.3.

5.2. Trap and cycle

In order to analyze progress for threads in 28–31, we define the set-valued state functions trap and cycle by

trap = {
q

∣∣ q at 31 ∧ thr.q in {32 . . . 37}},
cycle = {

q
∣∣ q in {28 . . . 31} ∧ q /∈ trap

}
.

If thread q is in trap, it has cc[thr.q] because of Iq0. Thread q therefore only exits from trap when thr.q moves to line 38, or
when q or thr.q fails and goes to line 39. To eliminate these cases, we define the step relation:

threshold(p) = {
(x, y)

∣∣ x.pc.p ≤ 37 ∧ y.pc.p ∈ {38,39}}.

W.H. Hesselink / Science of Computer Programming 102 (2015) 57–75 71
Then any inclusion q ∈ trap is kept valid in any step which is not a threshold step.

Lemma 2. Let cycle be nonempty and let r be the least element of cycle. Assume that the algorithm takes a step which is not a threshold
step, nor a forward step from 26 to 28 or from 29 to 32. Then thread r remains the least element of cycle or thread r enters trap.

Proof. First assume that the step is done by a thread p �= r. We have that thread p does not enter cycle, because it is not
a step from 26 to 28, and it is not a step from trap to cycle because it is not a threshold step. Therefore, the set cycle does
not grow. It follows that thread r remains its least element unless it leaves cycle. Thread r does not leave cycle by the step
from 29 to 32. The only alternative is that r enters trap. �

In the setting of the lemma, assume that thread r chooses an element thr.r in line 28. Then the invariants Nq0 and Nq1
imply thr.r < r so that thr.r /∈ cycle. If moreover cc[thr.r] holds, Lq1 implies that thr.r is in 32–37. It follows that the forward
steps of thread r either move r into trap, or make lower.r empty and move r toward line 32. We quantify this by means of
the function

cvf(r) = (r at 28 ? 2

: r at 29 ? r + 3 − #lower.r

: r at 30 ∧ thr.q in {32 . . . 37} ? r + 3

: pc.r − 30),

where #S stands for the number of elements of the set S . Note that 0 ≤ cvf(r) < N + 3 whenever r ∈ cycle.
In the measure Cvf of the cycle, we combine the number of elements of trap (multiplied by N + 3) and the value of cvf

at the least thread in cycle. The latter value is taken to be 0 when cycle is empty. We take Cvf = 0 if nexit does not hold,
where nexit is the condition

nexit ≡ (∀q : q notin {38 . . . 42}).
All this culminates in the definition:

Cvf = (
nexit ?

(N + 3) · #trap + (
cycle �= ∅ ? cvf

(
min(cycle)

) : 0
)

: 0
)
.

As trap and cycle are disjoint sets with together at most K elements, we have 0 ≤ Cvf < KN3. The value of Cvf changes only
in cycle steps and in the steps from 26 to 28, or 29 to 32, or when the truth value of nexit changes.

5.3. Throughput

We first introduce a threadwise measure avf that is only modified by steps of thread q, and that ignores the steps in
28–31 and 43–46:

avf(q) = A · inc.q + (
q in {22 . . . 42} ? bvf(q) : 0

)
, where

bvf(q) = (
pc.q ≤ 27 ? pc.q − 21

: pc.q ≤ 31 ? N + 8 : 2 · N + pc.q − 23
)

+ 3 · (pc.q > 21 ? 2 · N − #turnset.q : 0) − 2 · #copy.q

+ 2 · (pc.q ≥ 32 ? N − #higher.q : 0)

+ 2 · (pc.q ≥ 35 ? N − #dwset.q : 0)

+ (pc.q ≥ 38 ? KN3 : 0).

Roughly speaking, bvf(q) is the distance of the current state of q from the latest idle state, and A is an upper bound for
the distance from an idle state to the next idle state. Therefore avf(q) is an estimate of the distance from the beginning of
the process to its current state. Indeed, using Lq7 and Nq3, we prove that 0 ≤ bvf(q) < A. It follows that A · inc.q ≤ avf(q) <
A · (inc.q + 1).

The number avf(q) never decreases, and it increases under most forward steps of q. As avf(q) does not increase under
all forward steps of q, we partition the class of forward steps in three parts. The forward steps from locations in 43–46 are
called reentrant steps. The forward steps at the lines 28, 30, 31, and the steps from line 29 to lines 28 or 29 are called cycle
steps. We define the remaining forward steps to be noncycle steps.

72 W.H. Hesselink / Science of Computer Programming 102 (2015) 57–75
The number avf(q) increases in all noncycle steps of q. At the lines 27, 33, 36, this follows from the invariants Lq4,
Lq2, Nq2, respectively. The number avf(q) increases with N + 3 when thread q jumps from 26 to 28 or from 29 to 32. It
increases with at least KN3 + 1 when q executes line 37, or a failure step from any line �= 38. These bigger incrementations
are brought in to compensate changes in the measure for the cycle to be introduced below.

As our first target is the throughput of the algorithm, we form the sum Avf = ∑
q avf(q). This sum never decreases

because its summands never decrease. It increases in all noncycle steps of any thread. It increases with N + 3 when some
thread jumps from 26 to 28 or from 29 to 32. It increases with at least KN3 + 1 when some thread executes line 37 or fails
from any line �= 38.

We define the global measure by Gvf = Avf + Cvf. The first result is that progress of Inc is proportional to progress of
Gvf:

A · Inc ≤ Gvf ≤ A · (Inc + N). (3)

This result is based on the invariants Lq7, Kq2, Kq3, and Nq3.
The next result is that Gvf never decreases. At line 37, Gvf increases because Avf increases with KN3 and Cvf < KN3. In

a jump from 26 to 28 or from 29 to 32, Gvf increases, because Avf increases with N + 3, while cvf(r) < N + 3 and #trap
remains constant. It follows that Gvf increases in every noncycle step.

On the other hand, if nexit holds, cycle is nonempty, and r is the least element of cycle, then any cycle step of thread r
also increases Gvf. Note that this includes the step from line 30 to 31 when thread r exits cycle and enters trap. Here we
use the factor N + 3 in the definition of Cvf, because min(cycle) changes. In the step of line 29, we use that r is the least
thread of cycle together with the invariants Lq1, Nq0, and Nq1. Using all this, we prove the first unity proposition

r = min(cycle) ∧ nexit ∧ k ≤ Gvf ensures k + 1 ≤ Gvf.

Note that, in such a formula, we use universal quantification over all free variables, e.g., in this case over r and k.
Using the ensures rule and the disjunction rule of Section 3.3, we obtain

cycle �= ∅ ∧ nexit ∧ k ≤ Gvf Lt〈1〉 k + 1 ≤ Gvf. (4)

We now come back to the progress by noncycle steps. For this purpose, we introduce a predicate Aen(q) (avf-enabling)
with three crucial properties: firstly, it implies that a noncycle step of thread q is enabled; secondly, the only steps that
invalidate Aen(q) are steps of thread q itself which increment avf(q); thirdly, it is insensitive to flickering steps. Predicate
Aen(q) is defined by

Aen(q) : q in {22 . . . 27} ∪ {32 . . . 42}
∧ (q at 27 ⇒ ¬turn[kk.q] ∧ kk1.q notin {24,34} ∧ nexit)
∧ (q at 33 ⇒ ¬cc[thr.q] ∧ thr.q /∈ cycle ∧ nexit)
∧ (q at 36 ⇒ thr.q notin {22 . . . 25,39}),

where kk1.q is the thread that owns the pair kk.q.
By the above results, using Lq0 at line 36, we have

Aen(q) ∧ k ≤ Gvf ensures k + 1 ≤ Gvf. (5)

As above, this implies
(∃q : Aen(q)

) ∧ k ≤ Gvf Lt〈1〉 k + 1 ≤ Gvf. (6)

We do not expect progress when all threads are idle or reentrant. We thus define

AI ≡ (∀q : pc.q /∈ {22 . . . 42}).
We claim:

¬AI ≡ (cycle �= ∅ ∧ nexit) ∨ (∃q : Aen(q)
)
. (7)

In fact, it is easy to see that the right-hand side implies the left-hand side. Conversely, assume that the right-hand side is
false. Using the definition of Aen, this implies that there are no threads in {22 . . . 26}. Consequently, there are no threads in
{34 . . . 38}, and no threads at 32. In particular nexit holds. Therefore cycle is empty. If there is a thread at 33, let q be the
greatest thread at 33; then ¬ Aen(q) implies that cc[thr.q] holds while cycle is empty. Using Lq1, Lq2, and Lq3, we obtain
a contradiction with the maximality of q. This shows that all threads are at 21 or in {27 . . . 31}. This implies that trap is
empty. Consequently, all threads are at 21 or at 27. If there are threads at 27, let q the thread at 27 with the least value of
cnt.q. From this one derives a contradiction with the invariants Lq4, Lq5, Lq6 in the same way as in the proof of Theorem 2.

By formula (7) and the disjunction rule, the formulas (4) and (6) imply

¬AI ∧ k ≤ Gvf Lt〈1〉 k + 1 ≤ Gvf.

W.H. Hesselink / Science of Computer Programming 102 (2015) 57–75 73
From this one can derive

k ≤ Gvf Lt〈1〉 AI ∨ k + 1 ≤ Gvf. (8)

Using transitivity, we then obtain

k ≤ Gvf Lt〈n〉 AI ∨ k + n ≤ Gvf. (9)

Substituting k := A · k and n := A · (n + N) in (9) and using formula (3), we get general progress: while there are competing
threads, the measure Inc keeps growing.

Theorem 3. k ≤ Inc Lt〈A · (n + N)〉 AI ∨ k + n ≤ Inc.

5.4. Lockout freedom

For the proof of progress of the individual threads, we partition the competing region in three parts: doorway =
{22 . . . 24}, central = {25 . . . 37}, and line 38.

As we do not expect progress while there is a failing thread, we define

failing ≡ (∃q : q at 39).

To prove progress in the doorway, we use the predicate

U (q,n) : q in doorway ∧ 25 − pc.q + #turnset.q ≤ n.

We then have

U (q,n + 1) ensures U (q,n) ∨ q in central ∨ failing.

As q in doorway is equivalent to U (2 · N + 3), and U (q, 0) is false, by transitivity this implies that

q in doorway Lt〈2 · N + 3〉 q in central ∨ failing. (10)

At line 38, it suffices to note that

q at 38 ensures q at 21 ∨ failing. (11)

The proof of progress from central to line 38 is based on the observation that individual progress is implied by general
progress in conjunction with FCFS. More precisely, we have that, while thread q is in central, another thread r can increment
inc.r, but its progress is bounded because r gets q ∈ predec[r]. We therefore define

cinc(r,q) = inc.r + (
r in {22 . . . 42} ∧ q /∈ predec[r] ? 1 : 0

)
.

The value of cinc(r, q) never decreases. While q is in central, cinc(r, q) does not change unless q goes to line 38 or a failure
occurs. The proof of this uses the invariant Nq4 of Section 4.7. It follows that the sum Cinc(q) = ∑

r cinc(r, q) satisfies, for
any number k,

q in central ∧ Cinc(q) = k unless q at 38 ∨ failing. (12)

On the other hand, we clearly have inc.r ≤ cinc(r, q) ≤ inc.r + 1. As the number of competing threads is bounded by K ,
it follows that Inc ≤ Cinc(q) ≤ Inc + K . We now apply the PSP rule to Theorem 3 with k := k − K and n := K + 1, and
formula (12). As q in central contradicts AI, this yields

q in central ∧ Cinc(q) = k Lt
〈
A · (K + N + 1)

〉
q at 38 ∨ failing. (13)

By disjunction over k, this gives

q in central Lt
〈
A · (K + N + 1)

〉
q at 38 ∨ failing. (14)

Combining this result with the formulas (10) and (11), we finally obtain the main result for individual progress:

Theorem 4. q in {22 . . . 38} Lt〈A · (K + N + 1) + 2 · N + 4〉 q at 21 ∨ failing.

74 W.H. Hesselink / Science of Computer Programming 102 (2015) 57–75
6. Conclusions

The algorithm described here is more elegant than the 5-bits algorithm of [21] and the 4-bits algorithm of [15]. In [21],
the waiting conditions are more complicated, this would add complications to the proof. The differences with the algorithm
of [15] are marginal and do not affect the difficulty of the verification. Indeed, the proofs of safety, i.e., of mutual exclusion,
FCFS, and absence of immediate deadlock, given here are completely analogous to those given in [15].

The proof of progress with unity logic given in Section 5, is just as complicated as the corresponding behavioral proof we
gave in [15]. It does give more information, however, because it enables us to give explicit progress bounds in Theorems 3
and 4. In the behavioral proof of [15], we just go to the limit, and investigate an infinite behavior in which eventually some
thread makes no progress anymore. This leads to a contradiction and thus proves progress, but it gives no indication of the
speed of progress.

As suggested by a referee, it should be possible to prove analogues of Theorems 3 and 4 for most other mutual exclusion
algorithms. For instance, for the tournament algorithm of [7, Section 18.6], we conjecture that Theorem 3 holds with a
constant A proportional to log N , and that Theorem 4 holds with a progress bound proportional to N . A drawback of
bounded unity is that the progress bounds obtained are only upper bounds. It seems to require extensive operational
reasoning and difficult scenarios to obtain lower bounds for the number of rounds needed.

We could not have obtained the results in this paper without the proof assistant PVS [24]. Our proof script is available
at [16]. The manually written part of it has around 1300 lines for the results of Section 4, 300 lines for the rules and
soundness of bounded unity, and 500 lines for Section 5.

Indeed, anyone who needs to verify a concurrent algorithm is strongly advised to use a proof assistant like PVS, Isabelle,
or Coq. In our experience, even the mental effort of pondering about the problem of how to verify such an algorithm with
a proof assistant can uncover flaws in the algorithm. The verification of an algorithm takes a lot of work, but it leads to
improved understanding and confidence. The methods and experiences of using a proof assistant for concurrency verification
were discussed extensively in our paper [14] about Lamport’s Bakery Algorithm. The treatment of progress with bounded
unity in the present paper, however, is more elegant than the approach via temporal logic in [14,15].

Next to the algorithm discussed in this paper, Aravind [5] also proposes a “fair” algorithm, where fairness is meant
with the technical meaning that, if threads q and r are competing concurrently, both have 50% probability of winning the
tie-break. The idea is to give every thread two slots in the range of thread identifiers. We can see that this idea can be
implemented in a sound way, in an algorithm that, in total, use 5 safe shared bits per thread. Aravind [5], however, suggests
in his HF-FCFS algorithm a 4-bit version, which in terms of our version of the algorithm (Fig. 4) requires communication of
the private variables nx.p. We do not see how this can be done in time in a reliable way.

References

[1] J.H. Anderson, M.G. Gouda, Atomic semantics of nonatomic programs, Inf. Process. Lett. 28 (1988) 99–103.
[2] J.H. Anderson, Y.J. Kim, T. Herman, Shared-memory mutual exclusion: major research trends since 1986, Distrib. Comput. 16 (2003) 75–110.
[3] G.R. Andrews, Foundations of Multithreaded, Parallel, and Distributed Programming, Addison–Wesley, Reading, etc., 2000.
[4] K.R. Apt, F.S. de Boer, E.-R. Olderog, Verification of Sequential and Concurrent Programs, Springer, New York, 2009.
[5] A. Aravind, Simple, space-efficient, and fairness improved FCFS mutual exclusion algorithms, J. Parallel Distrib. Comput. 73 (2013) 1029–1038.
[6] A.A. Aravind, W.H. Hesselink, Nonatomic dual bakery algorithm with bounded tokens, Acta Inform. 48 (2011) 67–96.
[7] P.A. Buhr, D. Dice, W.H. Hesselink, High-performance N-thread software solutions for mutual exclusion, Concurr. Comput. (2014) 1–51,

http://dx.doi.org/10.1002/cpe.3263.
[8] J.E. Burns, Complexity of communication among asynchronous parallel processes, Ph.D. thesis, School of Information and Computer Science, Georgia

Institute of Technology, 1981.
[9] K.M. Chandy, J. Misra, Parallel Program Design, A Foundation, Addison–Wesley, 1988.

[10] E.W. Dijkstra, Solution of a problem in concurrent programming control, Commun. ACM 8 (1965) 569.
[11] E.W. Dijkstra, Co-operating sequential processes, in: F. Genuys (Ed.), Programming Languages (NATO Advanced Study Institute), Academic Press, London,

etc., 1968, pp. 43–112. Also EWD123, 1965.
[12] W.H. Hesselink, Progress under bounded fairness, Distrib. Comput. 12 (1998) 197–207.
[13] W.H. Hesselink, Complete assertional proof rules for progress under weak and strong fairness, Sci. Comput. Program. 78 (2013) 1521–1537,

http://dx.doi.org/10.1016/j.scico.2012.10.013.
[14] W.H. Hesselink, Mechanical verification of Lamport’s bakery algorithm, Sci. Comput. Program. 78 (2013) 1622–1638.
[15] W.H. Hesselink, Verifying a simplification of mutual exclusion by Lycklama–Hadzilacos, Acta Inform. 50 (2013) 297–329.
[16] W.H. Hesselink, Mutual exclusion by Lycklama–Hadzilacos, and Aravind, PVS scripts, http://wimhesselink.nl/mechver/mx4bits, 2014.
[17] T. Inoue, T. Hironaka, T. Sasaki, S. Fukae, T. Koide, H.J. Mattausch, Evaluation of bank-based multiport memory architecture with blocking network,

Electron. Commun. Jpn. 89 (2006) 498–510.
[18] L. Lamport, A new solution of Dijkstra’s concurrent programming problem, Commun. ACM 17 (1974) 453–455.
[19] L. Lamport, The mutual exclusion problem – part I: a theory of interprocess communication, part II: statement and solutions, J. ACM 33 (1986)

313–348.
[20] L. Lamport, On interprocess communication. Parts I and II, Distrib. Comput. 1 (1986) 77–101.
[21] E.A. Lycklama, V. Hadzilacos, A first-come-first-served mutual-exclusion algorithm with small communication variables, ACM Trans. Program. Lang.

Syst. 13 (1991) 558–576.
[22] J. Misra, A Discipline of Multiprogramming: Programming Theory for Distributed Applications, Springer, New York, 2001.

http://refhub.elsevier.com/S0167-6423(15)00009-X/bib416E473838s1
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib414B543033s1
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib416E643030s1
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib4164424F3039s1
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib4172613133s1
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib776868343330s1
http://dx.doi.org/10.1002/cpe.3263
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib4275723831s1
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib4275723831s1
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib43684D3838s1
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib44696A3635s1
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib44696A363862s1
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib44696A363862s1
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib776868313834s1
http://dx.doi.org/10.1016/j.scico.2012.10.013
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib776868343437s1
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib776868343432s1
http://wimhesselink.nl/mechver/mx4bits
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib4948533036s1
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib4948533036s1
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib4C616D3734s1
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib4C616D38366D78s1
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib4C616D38366D78s1
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib4C616D3836s1
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib4C79483931s1
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib4C79483931s1
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib4D69733031s1

W.H. Hesselink / Science of Computer Programming 102 (2015) 57–75 75
[23] S. Owicki, D. Gries, An axiomatic proof technique for parallel programs, Acta Inform. 6 (1976) 319–340.
[24] S. Owre, N. Shankar, J.M. Rushby, D.W.J. Stringer-Calvert, PVS version 2.4, system guide, prover guide, PVS language reference, http://pvs.csl.sri.com,

2001.
[25] M. Raynal, Algorithms for Mutual Exclusion, MIT Press, 1986.
[26] W.-T. Shiue, C. Chakrabarti, Multi-module multi-port memory design for low power embedded systems, Des. Autom. Embed. Syst. 9 (2004) 235–261.
[27] G. Taubenfeld, Synchronization Algorithms and Concurrent Programming, Pearson Education/Prentice Hall, 2006.
[28] W. Zuo, Z. Qi, L. Jiaxing, An intelligent multi-port memory, in: Proc. of the IEEE Intl. Symp. on Information Technology Application Workshops, 2008,

pp. 251–254.

http://refhub.elsevier.com/S0167-6423(15)00009-X/bib4F7747723736s1
http://pvs.csl.sri.com
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib5261793836s1
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib5368433034s1
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib5461753036s1
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib5A514A3038s1
http://refhub.elsevier.com/S0167-6423(15)00009-X/bib5A514A3038s1

	Mutual exclusion by four shared bits with not more than quadratic complexity
	1 Introduction
	1.1 Overview
	1.2 Mutual exclusion
	1.3 Mutual exclusion by Lycklama-Hadzilacos-Aravind
	1.4 Concurrent time complexity
	1.5 Veriﬁcation

	2 Mutual exclusion with four bits
	2.1 Mutual exclusion described
	2.2 The algorithm of Lycklama-Hadzilacos-Aravind
	2.3 Mutual exclusion implemented
	2.4 Design for FCFS
	2.5 Fault tolerance

	3 The model and the repertoire
	3.1 The basic model
	3.2 UNITY logic
	3.3 Bounded unity
	3.4 Atomicity
	3.5 Nonatomic shared variables

	4 Transition system and veriﬁcation of safety
	4.1 The history extension of the algorithm
	4.2 Failure and fault recovery
	4.3 The inner algorithm to guarantee mutual exclusion
	4.4 The outer algorithm guarantees FCFS
	4.5 Forward steps and environment steps
	4.6 The proof of absence of immediate deadlock
	4.7 Remaining invariants

	5 Liveness: throughput and lockout freedom
	5.1 Preparation
	5.2 Trap and cycle
	5.3 Throughput
	5.4 Lockout freedom

	6 Conclusions
	References

