

 University of Groningen

A Sequent Calculus for Urn Logic
French, Rohan

Published in:
Journal of Logic, Language and Information

DOI:
10.1007/s10849-015-9216-5

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
French, R. (2015). A Sequent Calculus for Urn Logic. Journal of Logic, Language and Information, 24(2),
131-147. https://doi.org/10.1007/s10849-015-9216-5

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-11-2019

https://doi.org/10.1007/s10849-015-9216-5
https://www.rug.nl/research/portal/en/publications/a-sequent-calculus-for-urn-logic(e5a604e9-a174-4b7d-9428-e9ebfbaed118).html

J Log Lang Inf (2015) 24:131–147
DOI 10.1007/s10849-015-9216-5

A Sequent Calculus for Urn Logic

Rohan French1

Published online: 9 April 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Approximately speaking, an urnmodel for first-order logic is amodelwhere
the domain of quantification changes depending on the values of variables which have
been bound by quantifiers previously. In this paper we introduce a model-changing
semantics for urn-models, and then give a sequent calculus for urn logic by introducing
formulas which can be read as saying that “after the individuals a1, . . . , an have been
drawn, A is the case”.

Keywords Urn logic · Sequent calculus ·Non-standard quantification · Proof theory

1 Introduction

Urn logic is a generalisation of first-order logic introduced in Rantala (1975). The idea
behind urn logic is to think of the domain of quantification in a way reminiscent of the
eponymous urns of balls used in probability theory. The metaphor here is to think of
quantifying over objects in a domain as being analogous to drawing balls from an urn.
Typically in first-order logic what we are doing is always quantifying over the same
objects—our domain stays fixed every time we ‘draw’ from the domain. But, just as
we can alter the contents of the urn based uponwhat we’ve drawn from it (for example,
by simply not replacing it, or by putting more objects back into the urn of a kind based
on what we’ve drawn out), we can also think about models for the quantifiers where
the domain of quantification changes in the course of evaluating a formula.

B Rohan French
rohan.french@gmail.com

1 Faculty of Philosophy, University of Groningen, Oude Boteringestraat 52, 9712 GL Groningen,
The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10849-015-9216-5&domain=pdf

132 R. French

Hintikka (1975) argues that urn models can be used to give a satisfactory model
theoretic account of impossible worlds (and thus deal with issues of logical omni-
science). Hintikka’s idea is, when giving our first-order epistemic logic, to have two
kinds of worlds—invariant, and almost-invariant worlds—the invariant ones being
those which are used for determining logical truths, and all worlds (invariant and
almost-invariant alike) being used in the interpretation of the epistemic operators.
These almost-invariant worlds are envisaged as being urn models where the domain
from which we can ‘draw’ is constant up until we have made n draws, the n being
determined by the agent’s cognitive capacities. We will dwell no further on this poten-
tial application, outlined by Hintikka, of the notion of an urn model. Instead our focus
will be largely technical (although we will mention another potential application at
the end of the next section).

Relatively little work has been done on urn logic—notable exceptions being Cress-
well (1982) and Olin (1978). In Cresswell (1982) a ‘classical analogue’ of Rantala’s
urn logic is investigated, using a modification of the standard Tarskian semantics for
first-order logic as opposed to the game-theoretic semantics used by Rantala. Using
these semantics Cresswell gives a Henkin-style completeness proof for a range of urn
logics with various constraints placed upon how we can draw individuals from the
domain. Olin (1978), also using a classical version of urn Logic, has investigated the
model-theory of urnmodels,with particular attention to issues concerning satisfiability
and categoricity.

Our plan here is as follows. In Sect. 2 we will describe the (standard/Tarskian)
semantics for urn logic which we will be using, and comparing it to the semantic
treatments given by Rantala, Cresswell and Olin. We will then proceed in Sect. 3
to give a sequent calculus for urn logic obtained by ‘decorating’ formulas so as
to give us a way to keep track of changes in the domain. We then prove this
sequent calculus to be sound and complete w.r.t. the semantics described in Sect. 2
before going on to show how to extend our sequent calculus in Sect. 5 so that it
is sound and complete w.r.t. the class of urn models which Rantala is concerned
with.

2 Semantics for Urn Logic

The language of urn logic is just the standard language of first-order logicwithout iden-
tity or individual constants. The restriction to first-order languages without individual
constants is (aside from some minor complications discussed in Sect. 5.2) entirely for
expository ease—unless noted all results here will hold for languages which contain
individual constants. We will think of our models for urn logic in a similar vein to
Cresswell, taking our models to be triples 〈U, D, V 〉 whereU is a non-empty set (the
initial domain), V is a standard first-order interpretation, and D is a function from
sequences of objects from U to subsets of U . We do this mostly so that we can talk
about domains in the standard way: the value of D on a sequence 〈a1, . . . , an〉 being
the effective domain for the next quantification after 〈a1, . . . , an〉 have been ‘drawn’.
In order for a structure 〈U, D, V 〉 to be an urn model we will also require that it
satisfies the following condition.

123

A Sequent Calculus for Urn Logic 133

(Draw): D (〈a1, . . . , an〉) �= ∅ ⇒ an ∈ D (〈a1, . . . , an−1〉) .

So our official definition of an urn model here will be that a structure 〈U, D, V 〉 is an
urn model iff U is a non-empty set, V is a function which assigns subsets of Un to
n-place primitive predicates, and D is a function from sequences of objects for U to
subset of U which satisfies the condition (Draw) above. In his discussion, Rantala
places two further constraints upon the class of models 〈U, D, V 〉 he is concerned
with, which we will discuss further in Sect. 5.

The semantic discussion of urn logic inRantala (1975) is amodification of the game-
theoretic semantics for first-order logic from Hintikka (1979). Rather than working
within the framework of game-theoretic semantics, though, we will instead work
within a more familiar looking semantic framework, somewhat reminiscent of that
used in Cresswell (1982) and Olin (1978). Rantala’s reasons (Rantala 1975, p. 351)
for using the game-theoretic semantics is so that we can have a ‘model-changing’
semantics in the sense discussed in Sect. 4 of Humberstone (2008), the semantics
for urn logic not requiring any of the independent-choice style phenomena which
game-theoretic semantics is particularly amenable to.

In the semantics for urn logic which we will be using, we will keep our model
fixed, but evaluate formulas for truth relative, not just to a variable assignment as with
standard Tarskian treatments of first-order logic, but also relative to a draw.

Definition 1 Given an urn modelM = 〈U, D, V 〉 a sequence 〈s1, . . . , sn〉 of objects
from U is a draw from M iff (1) s1 ∈ D(∅) and (2) si+1 ∈ D(〈s1, . . . , si 〉) for all
1 ≤ i ≤ n − 1.

One of the effects of the condition (Draw) is that whenever the domain determined
by a sequence s is non-empty, then s is automatically a draw.

Definition 2 An assignment ν is an x-variant of μ iff ν(y) = μ(y) for all variables
y except (possibly) x .

Our fundamental notion, then, will be truth of a formula ϕ in an urn model M =
〈U, D, V 〉 relative to an assignment μ and a draw s, which we will write as M, s |	
ϕ[μ]. Throughout we will use s · t to denote the concatenation of s with t .

M, s |	 Fx1 . . . xn [μ] ⇐⇒ 〈μ(x1), . . . μ(xn)〉 ∈ V (F).

M, s |	 ¬ϕ [μ] ⇐⇒ M, s �|	 ϕ [μ].
M, s |	 ϕ ∧ ψ [μ] ⇐⇒ M, s |	 ϕ [μ] and M, s |	 ψ [μ].
M, s |	 ∀xϕ [μ] ⇐⇒ M, s · ν(x) |	 ϕ[ν]

for all x-variants ν ofμ s.t.

ν(x) ∈ D(s).

To give the reader an example of the way in which the urn semantics for first-order
logic differs from the standard semantics for the quantifiers, consider the following
classically valid formula:

(∀y)((∀x)Fx → Fy
)
.

123

134 R. French

This formula is not valid in the semantics outlined above—where we take a sentence
to be valid whenever it is true in a model w.r.t. the empty sequence of draws. To see
this consider the following simple urn model 〈U, D, V 〉.
– U = {a, b}.
– D(∅) = {a, b}, D(a) = {b}, D(b) = {a}, and D(s) = U for all sequences of
length 2 or more.

– V (F) = {a}.
Now to see that the above formula is false in this urn model note that we can assign
b to y, forcing us to consider whether M, 〈b〉 |	 ∀xFx → Fy[μ], but we know
that M, 〈b〉 �|	 Fy[μ], as μ(y) = b, so in order for the above formula to be true we
must have M, 〈b〉 �|	 ∀xFx[μ]. But as D(b) = {a}, and a ∈ V (F) it follows that
M, 〈b〉 |	 ∀xFx[μ], and thus the above formula is invalid.

The above example also shows howour semantics differs from that of Cresswell and
Olin. According to our semantics the truth of a quantified formula like ∃xϕ in a model
is evaluated relative to a sequence of ‘draws’ from the domain which, when we are
considering sentences, will be determined by the values which have been assigned to
variables which do not occur in the formula under consideration. By contrast, (again
considering sentences) Cresswell and Olin evaluate formulas relative to the effect
which such assigning has had upon the formula being evaluated, having the relevant
domain of quantification be determined by the values assigned to the free variables
in the formula in question. In the above case, for example, Cresswell and Olin would
evaluate ∀xFx relative to D(∅) (and consequently judge the above formula as valid).

2.1 Globally and Locally Determined Domains

This difference between the approach we are taking here, and that taken by Cresswell
and Olin corresponds quite neatly to the distinction between the strongly and weakly
exclusive interpretation of the quantifiers discussed in (Hintikka 1956, p. 230) and
given a proof-theoretic treatment in Wehmeier (2004, 2009). The following termi-
nology is more suggestive, though: call any semantics for the quantifiers where the
domain quantified over is a non-constant function of the formula under investiga-
tion one with locally determined domains. Similarly, we will call any semantics for
the quantifiers in which the domain quantified over is a non-constant function of the
broader sentential-context in which the quantified expression occurs one with glob-
ally determined domains.1 So the strongly-exclusive interpretation of the quantifiers
(discussed in Wehmeier (2009)) is one where we have globally determined domains,

1 Rather than limiting ourselves to sentential-context determining the domain (so that the broader formula in
which a quantified expression is embedded determines the relevant domain) we could instead let the domain
simply be determined by some context of assessment c, which is only in part determined by the sentential-
context. On this approach we can give a pleasant account of (semantically) restricted quantification. For
example suppose c was a context in which the speaker has just opened the fridge—a context which makes
the fridge’s contents especially salient—and consider the utterance of a sentence such as “There’s no beer”
relative to this context. Then we could think of this as being of the form ¬∃xBeer(x) with the quantifier
ranging over the domain determined by c—namely the contents of the fridge. We will consider another
similar example below.

123

A Sequent Calculus for Urn Logic 135

and the weakly-exclusive interpretation (discussed inWehmeier (2004)) one where we
have locally determined domains. In the case of the semantics for urn logic discussed
above, the semantics used by Cresswell and Olin is one with local domain determina-
tion, and that used by Rantala and myself one with global domain determination.

One issue which globally determined domains allows us to get clearer on is the
status of what is called the ‘Binding Assumption’ in Stanley (2000). Approximately
speaking, this is the assumption that if a part α of a clause semantically binds another
part β of that clause, then this binding must show up in the logical form of the two
clauses with a variable being bound in α which is a constituent of β. For example,
consider the following sentences (both of which are variants of sentences from Stanley
(2000)).

(�) In all of John’s classes he fails three students.
(�′) Whatever office you go to, the supervisor is always unavailable.

The most straightforward reading of (�) is one where in each of John’s classes x he
fails three students in x , but the logical form which most closely mirrors its surface
form is something like the following (where ‘∃�=’ is an abbreviation for ‘there exist
distinct...’).

∀x(John-Class(x) → ∃�=tuv(Student(t) ∧ Student(u) ∧ Student(v)

∧ Fail(t) ∧ Fail(u) ∧ Fail(v))).

Similarly, the most forward reading of (�′) is that where for every office x which
you go to, the supervisor of x is always unavailable, but the straightforward logical
form of this sentence similarly does not exhibit the required kind of syntactic binding.
Concerning cases like these Stanley says the following.

In each of the cases we have discussed, the domain of the second quantified
expression varies with the values introduced by the initial quantifier expression.
Therefore, givenwhat we have been assuming about the relation between seman-
tic binding and syntactic binding outlined above [i.e. the BindingAssumption], it
follows that there are bindable variables in the logical form of sentences contain-
ing quantifier expressions whose values are quantifier domains. (Stanley 2000,
p. 421)

What this argument tells us, then, is that due to the fact that in order for sentences
like (�) and (�′) to be given the straightforward truth conditions mentioned above the
outer quantified expression must semantically bind the inner quantified expression.
According to Stanley’s Binding Assumption this can only be so if the outer quantified
expression binds variables which are otherwise free in the inner quantified expression,
and thus the true logical form of sentences like (�) and (�′) must contain such bound
variables, unlike the surface form given above.

Quantifiers with globally determined domains, like the urn quantifiers we will be
investigating here, give us the technicalmachinery to undermine part of the plausibility
of the Binding Assumption. If our quantifiers are to work just like standard Tarskian
quantifiers then the only way for there to be semantic binding of quantifier expressions
is, as the Binding Assumption tells us, by having free-variables in the semantically

123

136 R. French

bound expression being syntactically bound by the expression which is doing the
binding. If the only treatment of quantifiers we are countenancing is the Tarskian one
then the Binding Assumption seems warranted, but in the presence of alternative ways
of registering semantic binding without having syntactic binding this warrant is at
least somewhat weakened.

To see that we can do without the Binding Assumption, note that if we were to
use quantifiers with globally determined domains then we could get the correct inter-
pretation for (�) using its surface logical form. For example, we will end up with the
semantically bound reading of (�) whenever, for all a ∈ D(∅) ∩ ||John-Class|| we
have D(a) ∩ ||Student|| = ||InClass(a)||, where ||F || is the extension of the pred-
icate F . Here the predicate InClass, which is implicit in the standard interpretation
of (�), is used implicitly the semantically restrict our domain of quantification. We
might think of the process of domain determination on this picture as being a top-
down pragmatic process, based on an assessment of speaker intent and features of the
conversational context.

This kind of semantic (as opposed to syntactic) binding also has the additional
advantage of allowing us to accommodate deviant interpretations of (�) in a relatively
straightforward manner. For example, suppose John finds teaching so stressful that
for each class he teaches he finds that the only way he can unwind is by failing three
students, and that he is thoroughly unconcerned which classes the students are in. In
such a situation we can imagine an (understandably) confused interlocutor engaging
with someone who has just uttered (�) querying whether John fails three students
from each class he teaches and being told “No, John just gets very stressed and can
only get relief by failing students. He’s not overly concerned which class they’re in!”.
Inappropriate behaviour for a teacher, perhaps, but a perfectly legitimate reading of
(�) all the same.

Our aim is not to necessarily endorse such a view here, but mostly to illustrate
how being clearer about the various options we have for interpreting the quantifiers
provides us with greater flexibility in giving the semantics of natural language without
having to postulate additional bindable variables or hidden constituents.

3 A Sequent Calculus for Urn Logic

In this section we will provide a sequent calculus which is sound and complete w.r.t.
the class of all urn models. To do this we will find it useful to modify the standard
language of first-order logic as follows. Suppose that L is the set of wffs for a first-
order language without identity. Then the wffs of LU are all the formulas of L , as well
as any formula of the form

〈t1, . . . , tn〉:A

where 〈t1, . . . , tn〉 is a sequence of terms from L , and A is a wff from L . The idea
behind this change to our object language is to read formulas like that inset above as
saying that “after the objects denoted by t1, . . . , tn are drawn, A”, to modify Rantala’s
turn of phrase.

123

A Sequent Calculus for Urn Logic 137

3.1 The System UC

Let us define the following sequent calculus, which we will call UC (mnemonic for
‘UrnCalculus’). Formally speaking our sequents are pairs ofmultisets of LU -formulas
〈Γ,Δ〉, which we will write as Γ � Δ. Throughout we will use s and u as variables
over sequences of terms, A and B as L-formulas. We will also occasionally find it
useful to use α and β as schematic letters for LU -formulas. Throughout t and u be
schematic for terms, and a be schematic for free-variables (variously, in both cases,
with and without subscripts). Where s is the sequence 〈s1, . . . , sn〉 we will write s · t
to denote the sequence 〈s1, . . . , sn, t〉.
Axioms: All of the axiomatic sequents for UC are of the following form:

Γ, s : Ft1 . . . tn � s′:Ft1 . . . tn,Δ

where s and s′ are sequences of terms from L , and t1, . . . , tn are terms, and F is an
n-ary atomic predicate of L .

Operational Rules: UC has the following operational rules for the connectives ¬,
∧ and ∀.

Γ � s : A,Δ

Γ, s : ¬A � Δ
(¬L)

Γ, s : A � Δ

Γ � s : ¬A,Δ
(¬R)

Γ, s : A, s : B � Δ

Γ, s : A ∧ B � Δ
(∧L)

Γ � s : A,Δ Γ � s : B,Δ

Γ � s : A ∧ B,Δ
(∧R)

Γ, s · t : A(t) � Δ

Γ, s : ∀x A(x) � Δ
(∀L)

Γ � Δ, s · a : A(a)

Γ � Δ, s : ∀x A(x)
(∀R)

where for some B and some (possibly empty) term sequence s′ we have s · t · s′ : B ∈
Γ ∪ Δ in (∀L), and a does not appear in Γ ∪ Δ ∪ {s : ∀x A(x)} in (∀R).

Structural Rules: The system UC has the following standard structural rules.

Γ � Δ

Γ � s : A,Δ
(Weakening−R)

Γ � Δ

Γ, s : A � Δ
(Weakening−L)

Γ � s : A, s : A,Δ

Γ � s : A,Δ
(Contraction−R)

Γ, s : A, s : A � Δ

Γ, s : A � Δ
(Contraction−L)

It also have the following variation on the standard (Cut) rule:

Γ � s : A,Δ Γ, s : A � Δ

Γ � Δ
(dCut)

provided that for some formula B ∈ L and some term sequence s′ we have s · s′ : B ∈
Γ ∪ Δ.

Urn- Rules: Let ϕ be a quantifier-free formula.

Γ, s : ϕ � Δ

Γ, s · t : ϕ � Δ
(Draw-L)

Γ � s : ϕ,Δ

Γ � s · t : ϕ,Δ
(Draw-R)

123

138 R. French

Consider the following example of a sequent derivation in this system.

a : Fa, 〈a, b〉 : Fb � 〈a, b〉 : Fa a : Fa, 〈a, b〉 : Fb � 〈a, b〉 : Fb
a : Fa, 〈a, b〉 : Fb � 〈a, b〉 : Fa ∧ Fb

(∧R)

a : Fa, a : ∀y(Fy) � 〈a, b〉 : Fa ∧ Fb
(∀L)

a : Fa ∧ ∀y(Fy) � 〈a, b〉 : Fa ∧ Fb
(∧L)

a : Fa ∧ ∀y(Fx) � a : ∀y(Fa ∧ Fy)
(∀R)

∀x(Fx ∧ ∀y(Fx)) � a : ∀y(Fa ∧ Fy)
(∀L)

∀x(Fx ∧ ∀y(Fx)) � ∀x∀y(Fx ∧ Fy)
(∀R)

3.2 Soundness

Let us abbreviate the claim that s is a draw fromMbywritingdrawM(s). Furthermore
wewill occasionally writeμ(s)whereμ is a variable assignment and s is a sequence of
terms from L , understanding that as being the result of applying thevariable assignment
to each member of the sequence in turn (e.g. μ(〈a, b〉) = 〈μ(a), μ(b)〉).
Definition 3 Let 〈s1, . . . , sn〉 : A be a formula from LU . Then we will say that
M �+ 〈s1, . . . , sn〉 : A[μ] whenever:

drawM(〈μ(s1), . . . , μ(sn)〉) & M, 〈μ(s1), . . . , μ(sn)〉 |	 A[μ].

Let us say that M �− 〈s1, . . . , sn〉 : A[μ] whenever:

drawM(〈μ(s1), . . . , μ(sn)〉) & M, 〈μ(s1), . . . , μ(sn)〉 �|	 A[μ].

Definition 4 Say that a sequent Γ � Δ fails in an Urn-Model M on an assignment μ
whenever for all α ∈ Γ we haveM �+ α[μ] and for all β ∈ Δwe haveM �− β[μ].
Otherwise we will say that it holds in M on μ and write M |	 Γ � Δ[μ].
We will often find it convenient to write M �+ Γ [μ] (or M �− Γ [μ]) for some
set of formulas Γ , which should be understood as meaning that M �+ α[μ] (resp.
M �− α[μ]) for all formulas α ∈ Γ , in which case the above definition tells us that a
sequent fails in a modelM on an assignment μ whenever we haveM �+ Γ [μ] and
M �− Δ[μ].

We will occasionally find the following lemma useful to appeal to in what follows.

Lemma 1 For all quantifier-free formulas ϕ, all models M = 〈U, D, V 〉, variable
assignments μ, and all draws s, and u from M we have the following:

M, s |	 ϕ[μ] if and only ifM, u |	 ϕ[μ]

Proposition 1 (Soundness) If Γ � Δ is derivable in UC then, for all models M and
assignments μ, we have M |	 Γ � Δ[μ].

123

A Sequent Calculus for Urn Logic 139

Proof What we want to show is that if a sequent Γ �Δ is derivable inUC then, for all
modelsM and all assignments mu we have either it is not the case thatM �+ Γ [μ]
or it is not the case that M �− Δ[μ]—i.e. that a sequent is derivable if it holds in
all models. Put more explicitly, the consequent of this conditional means that, for all
models M and all assignments μ that either we have M ��+ α for some α ∈ Γ or
M ��− β for some β ∈ Δ.

To prove this we will show that the axioms hold in all models, and show that each
of the rules preserve the property of holding in a model (in particular by showing that
if the conclusion of a rule fails in a model on an assignment, then (one of its) premise
sequents also fails in a model on an assignment. Thus, given that the axioms hold in
all models, and the rules preserve the property of holding in a model it follows by a
simple induction on the length of derivations that if a sequent is derivable then it holds
in all models, as desired.

Axiom Case: Suppose that Γ �Δ is an axiom. Then we have some formula Ft1 . . . tn
and some term sequences s and s′ s.t. s : Ft1 . . . tn ∈ Γ and s′ : Ft1 . . . tn ∈ Δ. If
we have either s or s′ fail to be a draw then we’re done, as this will mean that either
M ��+ s : Ft1 . . . tn[μ] or M ��− s′ : Ft1 . . . tn[μ]. So suppose that we have both
drawM(s) and drawM(s′). It follows now that either (1)M, s |	 Ft1 . . . tn[μ] or
(2)M, s �|	 Ft1 . . . tn[μ]. If (1) then we haveM, s′ |	 Ft1 . . . tn[μ] by Lemma 1, and
soM ��− s′ : Ft1 . . . tn[μ]. The case for (2) follows similarly.

We now cover some representative cases of the rules.
¬-cases: For (¬L) suppose that we have Γ, s : ¬A � Δ failing in some modelM on
an assignment μ. That is we haveM �+ Γ [μ],M �+ s : ¬A[μ] andM �− Δ[μ].
As we have M �+ s : ¬A[μ] it follows that drawM(μ(s)) and M, μ(s) |	 ¬A,
and hence that M, μ(s) �|	 A, from which it follows that M �− s : A[μ], resulting
in Γ � s : A,Δ failing in M on μ as desired. For (¬R) suppose that we have
Γ � Δ, s : ¬A failing in some model M on an assignment μ. That is, we have
M �+ Γ [μ],M �− s : ¬A[μ] andM �− Δ[μ]. FromM �− s : ¬A[μ] it follows
that drawM(μ(s)) and M, μ(s) �|	 ¬A[μ], and hence that M, μ(s) |	 A[μ] from
which it follows that M �+ s A[μ], resulting in Γ, s : A � Δ failing in M on μ as
desired.
∀-cases: For (∀L) suppose that we have Γ, s : ∀x A(x) � Δ failing in a model M on
an assignment μ. That is to say, we have M �+ Γ [μ], M �+ s : ∀x A(x)[μ] and
M �− Δ[μ]. As we have M �+ s : ∀x A(x)[μ] it follows that drawM(μ(s)) and
M, μ(s) |	 ∀x A(x)[μ]. So for all e ∈ D(s) we haveM, μ(s) · e |	 A(x)[μ′] where
μ′ is an x-variant of μ for which μ(x) = e. Now by the side condition for the rule
we know that for some formula B and (possibly empty) term sequence s′ we have
s · t · s′ : B ∈ Γ ∪ Δ from which it follows that drawM(μ(s · t · s′)), and thus that
drawM(μ(s · t)) by the (Draw) condition. Thus, letting μ′(x) = μ(t) it follows that
M, μ(s · x) |	 A(x)[μ′]. As μ′ is an x-variant of μ it follows thatM �+ Γ [μ′] and
M �− Δ[μ′]. Further, as μ′(x) = μ′(t) we haveM �+ s · t : A(t)[μ′], from which
we have Γ, s · t : A(t) � Δ failing inM on μ′ as desired.

For (∀R) suppose that we have Γ � Δ, s : ∀x A(x) failing in some model M
on an assignment μ. That is to say, we have M �+ Γ [μ], M �− s : ∀x A(x)[μ]
and M �− Δ[μ]. It follows, then, that drawM(μ(s)) and that there is an object

123

140 R. French

e ∈ D(μ(s)) s.t. M, μ(s) · e �|	 A(x)[μ′] where μ′ is an x-variant of μ for which
μ(x) = e. Given that, by the side condition on (∀R), the term a does not occur
in Γ , Δ or s : ∀x A(x) we can simply let our variable assignment assign e to a
in which case we have M, μ′(s) · a �|	 A(a)[μ′]–which given drawM(μ(s · a))

gives us M �− s · a : A(a)[μ′]. Further, as μ′ is an x-variant of μ it follows that
M �+ Γ [μ′] and M �− Δ[μ′] from which it follows that Γ � Δ, s · a : A(a) fails
inM on μ′ as desired.
(Draw)-cases: For the case of (Draw-L) suppose that Γ, s · t : ϕ � Δ fails in some
model M on an assignment μ, that is to say that we have M �+ Γ [μ], M �+
s · t : ϕ[μ] and M �− Δ[μ]. It follows directly that drawM(s · t) and hence
that drawM(s) by the (Draw) condition, and that M, s · t |	 ϕ[μ]. Thus applying
Lemma 1 it follows that M, s |	 ϕ[μ], and so M �+ s : ϕ[μ] as desired. The case
for (Draw-R) follows similarly.
(dCut)-case: For the case of the rule of (dCut) suppose that the sequent Γ �Δ fails in
the model M on an assignment μ—i.e. that M �+ Γ [μ], M �− Δ[μ], and further
that for some formula B and term sequent s′ we have s ·s′ : B ∈ Γ ∪Δ. From the above
it follows by the (Draw) condition that drawM(μ(s)) and so eitherM, μ(s) |	 A[μ]
or M, μ(s) �|	 A[μ]—i.e. that either M �+ s : A[μ] or M �− s : A[μ], meaning
that one of the sequents Γ � Δ, s : A or Γ, s : A � Δ must fail in M on the variable
assignment μ, as desired. ��

4 Completeness

What we are going to do here is to construct a reduction tree. We will use reduction
trees a few times in what is to follow so we will define the procedure in general terms
here so that we can use it in the completeness proofs below. Our presentation below
is largely a generalisation of that given in Takeuti (1987).

4.1 Reduction Rules

The first concept we will need is that of a reduction rule, which is a rule which tells us
how we can extend our reduction tree. For example, the reduction rule for (¬R) has
the following form.

(¬R-Red) :
Γ, s : A � Δ, s : ¬A

Γ � Δ, s : ¬A

Weapply this rule to a formula s : ¬A appearing on the RHS of the sequent turnstile by
extending our reduction tree by the addition of the node (or in the case ofmulti-premise
rules, nodes) above.

Unlike the reduction rules which one might commonly see in completeness proofs
for the classical sequent calculus (like that in Takeuti (1987)), some of our reduction
rules can only be applied under certain circumstances. For example, the reduction rule
for (∀L) is of the following form.

123

A Sequent Calculus for Urn Logic 141

(∀L-Red):
Γ, s · t : A(t), s : ∀x A(x) � Δ

Γ, s : ∀x A(x) � Δ

where for some B and some s′ we have s · t · s′ : B ∈ Γ ∪ Δ

What this means is that in order for us to apply this rule to a formula s : ∀x A(x)
appearing on the LHS of the sequent turnstile we require that there be some formula
of the appropriate form appearing somewhere in the sequent. If the side conditions to
a reduction rule are not met, then we do not extend the branch.

We will now explain how we can use reduction rules to construct a reduction tree.
This is a tree, each node of which is a sequent. If the tip of a branch in the reduction
tree is an axiom then we will say that that branch is closed, otherwise it is open.

Definition 5 Given a sequent S = Γ � Δ, and a set R of reduction rules the R-
reduction tree of S is the tree formed by the following iterative procedure.

– Stage 0 At stage 0 we begin with Γ � Δ as the root node of the tree.
– Stage n + 1 At stage n + 1 we apply all of the reduction procedures in R in the
order given as many times as possible to every formula introduced at an earlier
stage which occurs in the tip of an open branch.

The tree which results of applying this procedure ω-many times is the R-reduction
tree of S.

Theorem 1 (Completeness) Let S = Γ � Δ be a sequent. Then either there is a
(dCut)-free proof of S, or there is an urn model in which S fails.

Proof Given a sequent S let RS be the UC-reduction tree of S (Table 1). By the
construction of the reduction tree either the tip of every branch in the tree is an axiom
(in which case it is trivial work to convert the reduction tree into a proof of S) or the
tree has a (potentially infinite) open branch. Letting Γ0 �Δ0 be S we can think of this
branch as being of the form

Γ0 � Δ0, Γ1 � Δ1, . . . , Γn � Δn, . . .

and let � = ∪Γi and� = ∪Δi . We will now use� and� to construct an urn model in
which our sequent S fails. Let us define the modelMS = 〈US , DS , VS〉 as follows.
– US is the set of all terms from LU .
– DS(∅) = {t | for some L-formula A and term sequence s, t · s:A ∈ � ∪ �}
– DS(s) = {t | for some L-formula A and term sequence s′, s · t · s′:A ∈ � ∪ �}
– VS(F) = {〈t1, . . . , tn〉|for some sequence of terms s1, . . . , sn, 〈s1, . . . , sn〉:Ft1

. . . tn ∈ �}
All that remains to be done is to show that MS is an urn model, and that S fails in
MS .
MS is an urn model: It is easy to verify thatMS satisfies the condition (Draw) and
thus is an urn model. Suppose that DS(s · sn) �= ∅. Then there is some b and some
(possibly empty) term sequence s′ s.t. for some formula A we have s · sn · b · s′ : A ∈

123

142 R. French

Table 1 The UC-reduction rules

(¬L-Red):

Γ, s : ¬A � s : A, Δ

Γ, s : ¬A � Δ

(¬R-Red):

Γ, s : A � s : ¬A, Δ

Γ � s : ¬A, Δ

(∧L-Red):

Γ, s : A ∧ B, s : A, s : B � Δ

Γ, s : A ∧ B � Δ

(∧R-Red):

Γ � s : A, s : A ∧ B, Δ Γ � s : B, s : A ∧ B, Δ

Γ � s : A ∧ B, Δ

(∀L-Red):

Γ, s : ∀x A(x), s · t : A(t) � Δ

Γ, s : ∀x A(x) � Δ

where for some B and some s′ we have s · t · s′ : B ∈ Γ ∪ Δ

(∀R-Red):

Γ � Δ, s : ∀x A(x), s · a : A(a)

Γ � Δ, s : ∀x A(x)

where a is the first free variable which does not occur in Γ ∪ Δ ∪ {s : ∀x A(x)}.

(Draw L-Red):

Γ, s · t : ϕ, s : ϕ � Δ

Γ, s · t : ϕ � Δ

where ϕ is quantifier free.

(Draw R-Red):

Γ � s · t : ϕ, s : ϕ, Δ

Γ � s · t : ϕ, Δ

where ϕ is quantifier free.

The reduction rules for UC consist of the following reduction rules applied in the order given (in the case
of (∀R-Red) applying the rule for all applicable terms t)

�∪�. But this also means that there is some term sequence u s.t. s ·sn ·u : A ∈ �∪�,
and so sn ∈ DS(s), as desired.
MS is a counter-model to S: What we need to show here is that:

MS �+ �[i] & MS �− �[i],

where i is the variable assignment s.t. i(x) = x for all variables x .
We proceed by induction on the complexity of formulas, the basis case following

from the definition of VS , the cases for the boolean connectives are standard, the
only case of interest being that of the quantifiers. We begin by noting that, by the
construction of DS that for every L-formula B and term sequence s, if s : B ∈ � ∪ �

then drawMS
(i(s)).

Suppose, then, that s : ∀x A(x) ∈ �. Then by the (∀L-Red) reduction step it follows
that we have

s · t :A(t) ∈ �

for every term t s.t. for some formula B and term sequence s′ we have s · t · s′ : B ∈ �.
By the construction ofMS these are precisely the terms which are in DS(i(s)). So by
the induction hypothesis it follows that MS �+ s · t : A(t)[i] for all t ∈ DS(i(s)),

123

A Sequent Calculus for Urn Logic 143

and thus MS , i(s · t) |	 A(t)[i]. From which it follows that MS �+ s : ∀x A(x)[i]
as desired.

Suppose, now, that s : ∀x A(x) ∈ �. Then by the (∀R-Red) reduction step it
follows that we have

s · a : A(a) ∈ �.

So by the induction hypothesis it follows thatMS �− i(s) ·a : A(a)[i], and thus that
MS , i(s · a) �|	 A(a)[i], from which it follows that MS , i(s) �|	 ∀x A(x)[i], giving
us MS �− s : ∀x A(x)[i], as desired. ��

This gives us the following corollary.

Corollary 1 The rule of (dCut) is eliminable from UC.

5 Rantala’s Conditions

The system described in the previous section is sound and complete relative to the
class of all urn models, as we have defined them above. As noted above, though, this
is not quite the class of urn models which Rantala is concerned with, his models also
satisfying the conditions (Ran1) and (Ran2) below.

(Ran1) : D(∅) = U

(Ran2) : D(〈a1, . . . , an〉) �= ∅ if and only if an ∈ D(〈a1, . . . , an−1〉).

What we will do in this section is to look at extensions of the sequent calculus UC
which are sound and complete w.r.t. models which satisfy the above conditions (or
in the case of (Ran1) a near neighbour thereof). We begin by looking at the sequent
calculus for models which satisfy (Ran2).

5.1 The Condition (Ran2)

In order to capture the logic of Urn models which satisfy (Ran2) we need to extend
our system by the following three rules—two structural, and one additional (∀L)-rule.

Γ, s · a : A(a) � Δ

Γ, s : ∀x A(x) � Δ
(∀L)-Ran2

Γ, s · a : ϕ � Δ

Γ, s : ϕ � Δ
(Ran2L)

Γ � s · a : ϕ,Δ

Γ � s : ϕ,Δ
(Ran2R)

where in all three rules a is an eigenvariable (i.e. a does not occur in the lower sequent
in any of these three reduction rules), and ϕ is a quantifier free formula. Call the
extension of UC by the above rules UCR2.

These three rules force every draw to always be extendable. To see this first note
that all three rules are sound in urn models which satisfy (Ran2).

Proposition 2 UCR2 is sound for the class of all urn models which satisfy (Ran2).

123

144 R. French

Proof For (∀L)-Ran2 suppose that we have M �+ s : ∀x A(x)[μ]— i.e. that
drawM(μ(s)) and M, μ(s) |	 ∀x A(x)[μ]. From drawM(μ(s)) we get that there
must be some object e ∈ D(μ(s)) by (Ran2). So we can simply let μ(a) = e and
thus we have M, μ(s · a) |	 A(a)[μ] as desired.

For the (Ran2L) case suppose that we have M �+ s : ϕ[μ]. Then we have that
μ(s) is a draw from M and thus, by (Ran2) that there is some object μ(s) · b is
also a draw. Given that we also have M, μ(s) |	 ϕ[μ] it follows by Lemma 1 that
M, μ(s · a) |	 ϕ[μ] where μ(a) = e, yielding M �+ s · a : ϕ[μ] as desired. The
case of (Ran2R) follows similarly. ��
Lemma 2 Suppose that S is a UCR2-unprovable sequent and that R is a reduction
tree for S for which the UCR2 (and hence UC) reduction rules have been applied,
and that

Γ0 � Δ0, . . . , Γn � Δn, . . .

is an open branch in R (there is guaranteed to be such a branch as the sequent is
unprovable). Then for all i , if s : A ∈ Γi ∪ Δi then for some j , there is a quantifier-
free formula ϕA and a sequence of terms s′ s.t. ss′ : ϕA ∈ Γ j ∪ Δ j .

Proof We prove something stronger, namely that for every formula A there is some
such atomic formula (or formulas) ϕA s.t. for some sequence of terms s′ we have
ss′ : ϕA ∈ Γ j ∪ Δ j .

To prove this we show that for every formula s : A ∈ Γk ∪Δk , there is a formula B
of lower complexity such that, for some sequence of terms s′, ss′ : B ∈ Γk∪Δk .To see
this note that the reduction steps for UC guarantee that at each stage we can produce
a formula of the required kind whenever the main connective of A is not a quantifier.
In the case where the main connective of A is ∀ either we can produce the appropriate
formula using (∀R-Red), or using (∀L-Red) (if the conditions are met), or (and here
is where we require UCR2) we can produce it using (∀L-Ran2-Red). ��
Proposition 3 UCR2 is complete for the class of all urnmodels which satisfy (Ran2).

Proof The proof is just like that of Theorem 1, except that we now create a UCR2
reduction tree for our sequent S (Table 2). To verify that this results in a countermodel
to S which satisfies condition (Ran2) suppose that sn+1 ∈ DS(〈s1, . . . , sn〉). Then by
the construction of MS there must be some formula of the form 〈s1, . . . , sn+1〉 · s′ :
B ∈ � ∪ �. If any such formula has a non-empty sequence s′ then we are done, so
suppose that all such formulas are of the form 〈s1, . . . , sn+1〉 : B. Such a formula
must have been in the tree at some stage k, and so we know by Lemma 2 that there is
some later stage at which we have some sequence of terms s′′ and some quantifier-free
formula ϕ s.t. 〈s1, . . . , sn+1〉 · s′′ : ϕ ∈ � ∪ �. Again, if s′′ is non-empty then we are
done, so suppose it is empty. Then by (depending on whether it is in � or �) either
the (Ran2-L-Red) or (Ran2-R-Red) reductions we know that, for some term a that
〈s1, . . . , sn+1〉 · a : ϕ ∈ � ∪ �, and so by construction ofMS we have that for some
term a, a ∈ DS(〈s1, . . . , sn+1〉), as desired. ��

123

A Sequent Calculus for Urn Logic 145

Table 2 The UCR2-reduction rules

(∀L-Ran2-Red):

Γ, s : ∀x A(x), s · a : A(a) � Δ

Γ, s : ∀x A(x) � Δ

where a is the first free variable which does not occur in Γ ∪ Δ ∪ {s : ∀x A(x)}.

(Ran2L-Red):

Γ, s : ϕ, s · a : ϕ � Δ

Γ, s : ϕ � Δ

where a is the first free variable which does not occur in Γ ∪ Δ ∪ {s : ϕ}, and ϕ is quantifier free.

(Ran2R-Red):

Γ � s : ϕ, s · a : ϕ, Δ

Γ � s : ϕ, Δ

where a is the first free variable which does not occur in Γ ∪ Δ ∪ {s : ϕ}, and ϕ is quantifier free.

The reduction rules for UCR2 consist of all the reduction rules for UC followed by the reduction rules
given below, with the rules given below being applied after all the UC reduction rules, in the order given
below

5.2 (Ran1) and Almost-Rantala Models

What we will do in this section is to describe a system, which we will call UCRant-
which agrees with the system described by Rantala when every formula which occurs
in a sequent is a sentence.2 In fact,UCRant- is a slightly stronger system, being sound
and complete w.r.t. the class of all urn models which satisfy both (Ran2) as well as
the following condition:

(
Ran1′) : t ∈ D(s) ⇒ t ∈ D(∅).

This condition makes each D(s) be a subset of D(∅). Let us call urn models which
satisfy (Ran1′) and (Ran2) almost-Rantala models, and those which satisfy (Ran1)
and (Ran2) Rantala models. It is relatively simple to see that any almost-Rantala
modelM = 〈U, D, V 〉 can be transformed into a Rantala modelMr = 〈Ur , D, V r 〉
where Ur is the union of all D(s), where s is a sequence of objects from D(∅),
and where Vr is just V restricted to Ur in the obvious way. These two models are
equivalent in the sense that for all LU -formulas α (recalling that these formulas do
not contain individual constants) and all assignments μ which are restricted toUr we
haveM |	 α[μ] iffMr |	 α[μ]. In particular this means that for all LU -formulas of
the form ∅ : A where A is a sentence we haveM |	 ∅ : A[μ] iffMr |	 ∅ : A[μ] for
all assignments μ, and so almost-Rantala and Rantala models agree on all sentences
when our language does not contain individual constants.

Let UCRant- be the result of adding the following rules to UCR2.

Γ, t : ϕ � Δ

Γ, s · t · u : ϕ � Δ
(Ran1′-L)

Γ � t : ϕ,Δ

Γ � s · t · u : ϕ,Δ
(Ran1′-L)

2 It is important to recall at this point that the languages under consideration here do not contain individual
constants. Up until now this has simply been a matter of convenience of exposition, here it matters.

123

146 R. French

Table 3 The UCRANT−-reduction rules

(Ran1′-L)-Red:

Γ, s · t · u : ϕ, t : ϕ � Δ

Γ, s · t · u : ϕ � Δ

where ϕ is quantifier free.

(Ran1′-R)-Red:

Γ � s · t · u : ϕ, t : ϕ, Δ

Γ � s · t · u : ϕ, Δ

where ϕ is quantifier free.

The reduction rules for UCRANT− consist of all the reduction rules for UCR2 followed by the reduction
rules given below, with the rules given below being applied after all the UCR2 reduction rules, in the order
given below

What we will now show is that the system UCRant- is sound and complete w.r.t.
the class of all almost-Rantala models. Note that our proofs below do not show that
the result of adding the above rules to UC forces it to satisfy (Ran1′), as our proofs
make heavy use of Lemma 2.

Proposition 4 UCRant- is sound for the class of all urn models which satisfy both
(Ran1′) and (Ran2).

Proof What needs to be shown is that (Ran1′-L) and (Ran1′-R) are sound in models
which satisfy (Ran1′). We treat just the cases of the left rule here (the right rule
following similarly).

Suppose that a conclusion of an application of (Ran1′-L) were to fail in a model
M on an assignment μ. Then in particular we would have thatM �+ s · t · u : ϕ[μ],
and so drawM(μ(s · t · u)). and M, μ(s · t · u) |	 ϕ[μ]. By (Draw) it follows that
μ(t) ∈ D(s) and so by (Ran1′) that μ(t) ∈ D(∅), and thus that μ(t) is a draw from
M. Then by Lemma 1 it follows that M, μ(t) |	 ϕ[μ] and thus M �+ t : ϕ[μ] as
desired. ��
Proposition 5 UCRant- is complete for the class of all urn models which satisfy
(Ran1′) and (Ran2).

Proof The proof is just like that of Theorem1, except thatwe nowcreate aUCRANT−
reduction tree for our sequent S (Table 3). That this results in a countermodel to S
which satisfies condition (Ran2) follows as in Proposition 3. All that remains to be
shown is that the resulting countermodel satisfies (Ran1′).

Suppose, then, that t ∈ DS(s) for some sequence s. Thenby the construction ofMS
it follows that for some formula B and sequence of terms s′ wehave s ·t ·s′ : B ∈ �∪�.
Then by Lemma 2 there is some sequence of terms u and variable free formula ϕ s.t.
s · t · s′ · u : ϕ ∈ � ∪ �. So by either (Ran1′-L)-Red or (Ran1′-R)-Red it follows
that t : ϕ ∈ � ∪ �, and so by the construction of DS that t ∈ DS(∅) as desired. ��

6 Conclusion

One of the things which we have endeavoured to do here in our proof theoretic inves-
tigation of urn logic is to provide the first steps towards a more general framework

123

A Sequent Calculus for Urn Logic 147

for thinking about the quantifiers more generally. In particular the alterations to the
language we made in Sect. 3 were made specifically in order to induce extra structure
into our formulas (and thus into our sequents) which we could adjust without altering
the operational rules for our quantifiers in order to validate further inferences. Our
approach here has been directed specifically at the goal of giving a proof theoretic
characterisation of urn logic, rather than a general investigation of this approach to
the proof theory of the quantifiers, the more general study having to wait until another
occasion.

Acknowledgments I would like to thank Dave Ripley, Greg Restall and Lloyd Humberstone for their
helpful comments and suggestions. I’m also grateful to an anonymous referee fro this journal who provided
a number of invaluable comments, and noticed a rather serious (but thankfully repairable) problem in an
earlier version of this paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

Cresswell, M. (1982). Urn models: A classical exposition. Studia Logica, 41, 109–130.
Hintikka, J. (1956). Identity, variables, and impredicative definitions. Journal of Symbolic Logic, 21, 225–

245.
Hintikka, J. (1975). Impossible possible worlds vindicated. Journal of Philosophical Logic, 4, 475–484.
Hintikka, J. (1979). Quantifiers in logic and quantifiers in natural language. In E. Saarinen (Ed.), Game-

theoretical semantics (pp. 27–47). Dordrecht: D. Reidel Publishing Co.
Humberstone, L. (2008). Can every modifier be treated as a sentence modifier? Philosophical Perspectives,

22, 241–275.
Olin, P. (1978). Urn models and categoricity. Journal of Philosophical Logic, 7, 331–345.
Rantala, V. (1975). Urn models: A new kind of non-standard model for first-order logic. Journal of Philo-

sophical Logic, 4, 445–474.
Stanley, J. (2000). Context and logical form. Linguistics and Philosophy, 23, 391–434.
Takeuti, G. (1987). Proof theory. Amsterdam: North-Holland.
Wehmeier, K. (2004). Wittgensteinian predicate logic. Notre Dame Journal of Formal Logic, 45(1), 1–11.
Wehmeier, K. (2009). On ramsey’s ‘silly delusion’ regarding tractatus 5.53. In G. Primiero & S. Rahman

(Eds.), Acts of knowledge-history, philosophy and logic (pp. 353–368). London: College Publications.

123

	A Sequent Calculus for Urn Logic
	Abstract
	1 Introduction
	2 Semantics for Urn Logic
	2.1 Globally and Locally Determined Domains

	3 A Sequent Calculus for Urn Logic
	3.1 The System UC
	3.2 Soundness

	4 Completeness
	4.1 Reduction Rules

	5 Rantala's Conditions
	5.1 The Condition (Ran2)
	5.2 (Ran1) and Almost-Rantala Models

	6 Conclusion
	Acknowledgments
	References

