

 University of Groningen

Timed Concurrent Constraint Programming for Analysing Biological Systems
Gutierrez, Julian; Pérez, Jorge A.; Rueda, Camilo; Valencia, Frank D.

Published in:
Electronic Notes in Theoretical Computer Science

DOI:
10.1016/j.entcs.2007.05.012

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2007

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Gutierrez, J., Pérez, J. A., Rueda, C., & Valencia, F. D. (2007). Timed Concurrent Constraint Programming
for Analysing Biological Systems. Electronic Notes in Theoretical Computer Science, 171(2), 117-137.
https://doi.org/10.1016/j.entcs.2007.05.012

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 19-11-2022

https://doi.org/10.1016/j.entcs.2007.05.012
https://research.rug.nl/en/publications/f95b262a-6f00-49a6-8afa-629fe0dcca8a
https://doi.org/10.1016/j.entcs.2007.05.012

Timed Concurrent Constraint Programming

for Analysing Biological Systems

Julian Gutiérreza, Jorge A. Péreza, Camilo Ruedaa and

Frank D. Valenciab

a Department of Science and Engineering of Computing
Pontificia Universidad Javeriana, Cali, Colombia

b CNRS and LIX, École Polytechnique, Palaiseau, France

Abstract

In this paper we present our first approach to model and verify biological systems using ntcc, a concurrent
constraint process calculus. We argue that the partial information constructs in ntcc can provide a suitable
language for such systems. We also illustrate how ntcc may provide a unified framework for the analysis
of biological systems, as they can be described, simulated and verified using the elements provided by the
calculus.

Keywords: Process Calculi, Verification of Biological Systems, Partial Information, Concurrent
Constraint Programming (CCP)

1 Introduction

Partial information arises naturally in the description of biological systems. It

is possible to distinguish two main kinds of partial information when modeling

those systems: quantitative and behavioral. While partial quantitative information

usually involves incomplete information on the state of the system (e.g., the set of

possible values that a variable can take), partial behavioral information refers to the

uncertainty associated to behavior of interactions (e.g., the unknown relative speeds

on which two systems interact). Finding precise ways of expressing these kinds

of partial information can help to better understand complex pattern behaviors,

frequent in biological systems.

Partial information is a central feature of Concurrent Constraint Programming

(CCP) [19], a well-established formalism for concurrency. In CCP, processes interact

with each other by telling and asking partial information represented as constraints

(e.g., x < 42). Perhaps the most appealing and distinctive feature of CCP is that it

combines the traditional operational view of process calculi with a declarative one

Electronic Notes in Theoretical Computer Science 171 (2007) 117–137

1571-0661 © 2007 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2007.05.012
Open access under CC BY-NC-ND license.

http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

based upon logic. In other words, the process terms can be viewed at the same

time as computing agents and logic formulas. This combination allows CCP to

benefit from the large body of techniques of both process calculi and logic. For

these reasons CCP can be a convenient framework to describe and reason about

biological systems.

In this paper we propose ntcc [14], a timed process calculus based on CCP, as

a suitable language for analyzing biological systems. In ntcc the above-mentioned

kinds of partial information are naturally captured. On the one hand, partial quant-

itative information is captured by the notion of constraint system, a structure that

gives coherence and defines (logic) inference capabilities over constraints. Since

constraint systems are parametric to ntcc, by choosing the appropriate constraint

system(s) several kinds of conditions, at different levels of detail, can be stated.

This could be particularly useful in the description of quantitative information. For

instance, one could think of a constraint system over differential equations inter-

acting with others over, say, integers or real intervals. On the other hand, partial

behavioral information is represented by non-deterministic and asynchronous op-

erators available in ntcc. The interplay of these operators in the discrete time

of ntcc allows to explicitly describe and reason about the uncertainty in the time

occurrence of many biological phenomena.

Furthermore, ntcc provides reasoning techniques to prove that a given process

P satisfy a given property F . In fact, the calculus offers a linear-temporal specific-

ation logic and its corresponding proof system in which reachability analysis can

be formally carried out. Reachability analysis is central in the biological context.

Consider, for instance, bacterial transcription: it can be seen as a reachability ana-

lysis problem in which one wants to know if there is a gene expression possible in a

given gene regulatory network.

We shall take advantage of these features by modeling biological systems as

processes and their properties as linear-temporal formulas, all in a single framework.

That is, ntcc provides a description language for biological systems that is tightly

related to powerful reasoning techniques. An additional advantage of using ntcc for

the study of biological systems consists in the possibilities of turning this theoretical

framework into software tools. As a matter of fact, the AVISPA Research Group 1

(of which the authors are members) has recently built a prototype tool [2, 3] that

admits the description of biological systems expressed as ntcc processes and allows

to observe their behavior over time.

The main contribution of this paper is presenting ntcc as a unified framework

for the study of biological systems involving partial information and showing how

its constructs naturally capture many biological phenomena. More specifically, we

propose the use of constraint systems to represent partial quantitative information

and the modeling of partial behavioral information as non-deterministic and asyn-

chronous ntcc processes. We take the Sodium-Potassium pump [20], a mechanism

that influence active transport in eukaryote cells, as a compelling example of the

applicability of our approach. In fact, we will use the inference system to give a

1 URL: http://avispa.puj.edu.co

J. Gutiérrez et al. / Electronic Notes in Theoretical Computer Science 171 (2007) 117–137118

http://avispa.puj.edu.co

proof of the occurrence of a general malfunction of the pump in the presence of an

unpredictable, malicious agent.

Related Work

The use of certain process calculi, such as the π-calculus [17, 18], BioAmbients

[16], the Brane calculus [7], Beta binders [15] and the κ-calculus [8], as description

languages for Biology has been studied in recent years. This “language approach”

for the analysis of biological systems however, has payed little attention to reasoning

techniques based on linear-temporal logic such as those available in ntcc. Other

constraint-based calculi have been studied in the biological context. For instance,

in [5, 10,4], the hcc calculus [11] is used to study dynamic systems. However, since

hcc does not provide non-deterministic/asynchronous operators, representing partial

behavioral information turns out to be difficult. Only in one of such works ([5]),

the logic nature of hcc is exploited, using a model-checking approach for qualitative

validation of biological systems. No proof system or similar procedures are used,

though. Other works involving the use of logic in the biological context are [1]

and [6]. On the one hand, [1] proposes the use of hybrid automata to model and

analyze the behavior of biological systems. Supporting tools such as Simpathica [13],

allow to query such models using a temporal logic language. On the other hand,

in [6] a rule-based language for describing biological systems is proposed. Reasoning

techniques include three independent semantic structures (each one with associated

logics), which are used depending on the desired level of detail. We believe that by

the appropriate use of constraint systems in the description of systems, analysis at

several levels of detail are possible, preserving the same unified framework.

Structure of this document

The ntcc process calculus is described next: the intuitions given above, re-

garding the use of ntcc for the modeling and verification of biological systems, are

thoroughly explained. Section 3 summarizes the main results concerning specifica-

tion and verification for ntcc processes. They will be used in Section 4 where the

Sodium-Potassium pump is presented. In that section, we propose an ntcc model

of such a system as well as verify a non-trivial property of this model, using the

above-mentioned inference system. Section 5 concludes.

2 ntcc as a Calculus for Describing Biological Systems

In this section we present the ntcc process calculus and, by means of examples,

show how it can be an appropriate language for modeling biological phenomena.

For the sake of space, some formal details are elided from this presentation; an

in-depth description of ntcc is given in [14].

Let us start with an intuitive description of reactive computation in ntcc. In

ntcc, time is conceptually divided into discrete intervals (or time units). In a

particular time unit, a process P gets an input (an item of information represented

as a constraint) c from the environment, it executes with this input as the initial

J. Gutiérrez et al. / Electronic Notes in Theoretical Computer Science 171 (2007) 117–137 119

store, and when it reaches its resting point, it outputs the resulting store d to the

environment. The resting point determines a residual process Q, which is then

executed in the next time unit. Information is not automatically transferred from

one time unit to the following.

In CCP, a fundamental notion is that of a constraint system. Intuitively, a con-

straint system provides a signature from which constraints can be constructed, and

an entailment relation which specifies the inter-dependencies among them. More

formally, a constraint system is a pair (Σ,Δ) where Σ is a signature of function

and predicate symbols, and Δ is a decidable theory over Σ. Given a constraint sys-

tem (Σ,Δ), let (Σ,V,S) be its underlying first-order language, where V is a set of

variables x, y, . . ., and S is the set of logic symbols ¬,∧,∨,⇒,∃,∀, true and false.

Constraints c, d, . . . are formulas over this first-order language. We say that c entails

d in Δ, written c |= d, iff c ⇒ d is true in all models of Δ. For operational reasons,

we shall require |= to be decidable. Henceforth, C denotes the set of constraints in

the underlying constraint system.

A widely known constraint system is FD [12]. In FD variables are assumed

to range over finite domains and, in addition to equality, we may have predicates

that restrict the possible values of a variable to some finite set. More formally,

FD[n] (n > 0) is the constraint system where Σ is given by the constant symbols

0, . . . , n−1 as well as by the equality =, and Δ is given by the axioms of equational

theory x = x, x = y ⇒ y = x, x = y ∧ y = z ⇒ x = z, and v = w ⇒ false for each

two different constants v,w ∈ Σ. Intuitively FD[n] provides a theory of variables

ranging over a finite domain of values {0, . . . , n − 1} with syntactic equality over

these values.

2.1 Process Syntax

Processes P , Q, . . .∈ Proc are built from constraints c ∈ C and variables x ∈ V in

the underlying constraint system by:

P,Q, . . . ::= tell(c) |
∑
i∈I

when ci do Pi | P ‖ Q | local x in P

| next (P) | unless c nextP | � P | !P

Below we provide some intuitions regarding the behavior of ntcc processes.

Including and Querying (Partial) Information

Process tell(c), the simplest operation to express partial information, includes a

constraint c into the current store, thus making it available to other processes in

the same time interval.

In the biological context, tell operations allow to represent at least two kinds

of partial information statements: so-called ground rules and state definition state-

ments. The first ones precisely state certain conditions that apply during the life of

the biological system. A clear advantage here w.r.t. other calculi for biology is that

J. Gutiérrez et al. / Electronic Notes in Theoretical Computer Science 171 (2007) 117–137120

these conditions can be expressed by exploiting the available (possibly incomplete)

knowledge.

Example 2.1 Let process M = tell(l < pHin < u) represent a rule establishing

the acceptable levels of internal pH for some system. It establishes that such a

level must fall into some real interval (here given by variables l and u) during the

whole experiment or simulation; the exact value of pHin in each time unit could be

unknown.

Remarkably, the declarative flavor in this kind of statements could favor the

definition of essential properties in (biological) models. Complementary to ground

rules, state definition statements refers to those constraints intended to define the

exact values for the variables in the system. This is particularly useful when one

exactly knows the set of possible states for the system at a given time; series of such

statements (for different time units) thus constitute a detailed view of the behavior

of the system. In the context of Example 2.1, M ′ = tell(pHin = f(pHold, k))

is a process defining the value for the variable pHin in the current time unit. It

associates such a value with a function f applied to a variable and a constant k.

Guarded operations of the form when c do P are complementary to tell opera-

tions and constitute the basic means for querying (or asking) information about the

state of a system. Intuitively, a when c do P process queries the current constraint

store: if the guard c is present in such a store then the execution of P is enabled.

The “presence” of c depends on the inference capabilities associated with the store.

That is, a particular constraint could not be explicitly present in the store, but it

could be inferred from the available information.

From this description, it is straightforward to interpret when operations as a

way of formally expressing the required preconditions for establishing a particu-

lar state of the system. The behavior of the system can be precisely stated in

this way. Returning to Example 2.1, one could express that when the level of pH

reaches a threshold, then the interval for valid values for pHin should reduce, i.e.,

when pHin > l ∗ 2 do tell(u = u − k1).

Non-deterministic Choices

Non-determinism is a valuable way of representing several possible courses of ac-

tion from the same initial state without providing any information on how one

of such courses is selected. In ntcc, non-deterministic behavior is obtained by

generalizing processes of the form when c do P : a guarded-choice summation∑
i∈I when ci do Pi, where I is a finite set of indexes, represents a process that, in

the current time interval, must non-deterministically choose one of the Pj (j ∈ I)

whose corresponding constraint cj is entailed by the store. The chosen altern-

ative, if any, precludes the others. If no choice is possible then the summation

is precluded. We use
∑

i∈I Pi as an abbreviation for the “blind-choice” process∑
i∈I when true do Pi. We use skip as an abbreviation of the empty summation

and “+” for binary summations.

In the biological context, the combination of guarded choices and partial inform-

J. Gutiérrez et al. / Electronic Notes in Theoretical Computer Science 171 (2007) 117–137 121

ation represents an appropriate mechanism to formalize the inherent unpredictability

in system interactions. In this sense, non-determinism is one way of explicitly rep-

resenting partial behavioral information. The following example illustrates these

ideas.

Example 2.2 Process P below is an abstract model of a biological system: in the

presence of a certain amount of ATP (i.e., energy) the system releases an enzyme;

in the case some ATP is present and the conditions of some electrochemical gradient

are appropriate, it emits a positive signal:

when ATP > 0 do tell(releaseEnzyme = 1)

P = +

when ATP > 0 ∧ elecGradient = 1 do tell(emitSignal = 1).

The evolution of P depends on the information in the current store. The simplest

case is with the (empty) store true: P cannot add any further information. In the

store d = (ATP ≥ 50), P causes the store to become d∧ (releaseEnzyme = 1) since

in the first alternative it holds that (ATP ≥ 50) |= (ATP > 0) and the guard of

the second alternative does not entail from d. The interesting case is when both

guards in P are enabled; as in the store e = (ATP > 0) ∧ (elecGradient = 1).

Depending on which process is chosen for execution, the final store could be either

e ∧ (releaseEnzyme = 1) or e ∧ (emitSignal = 1). Based on partial information, P

constitutes a succinct representation of an unpredictable behavior.

Communication

Process P ‖ Q represents the parallel composition of P and Q. In one time unit P

and Q operate concurrently, “communicating” via the common store by adding and

querying information. We use
∏

i∈I Pi, where I is a finite set of indexes, to denote

the parallel composition of all Pi.

Example 2.3 Assume process P as in the Example 2.2 and the following process

Q:

when releaseEnzyme = 1 do tell(promoteReaction = 1)

Q = +

when emitSignal = 1 do tell(promoteReaction = 0).

Informally, Q promotes a reaction to occur once the presence of an enzyme has

been detected and opposes to such a reaction if a particular signaling process

has been activated. The parallel composition P ‖ Q in the store e = (ATP >

0) ∧ (elecGradient = 1) behaves as follows. Since the choice in P guarantees the

presence of either releaseEnzime = 1 or emitSignal = 1, process P ‖ Q would cause

the store to become either e ∧ (releaseEnzyme = 1) ∧ (promoteReaction = 1) or

e ∧ (emitSignal = 1) ∧ (promoteReaction = 0).

J. Gutiérrez et al. / Electronic Notes in Theoretical Computer Science 171 (2007) 117–137122

Local Information

In ntcc, as in most process calculi, there is a construct that restricts the interface

through which a process can interact with each other, thus allowing for the modeling

of local behavior. Processes of the form local x in P behave like P , except that all

the information on x produced by P can only be seen by P and the information on

x produced by other processes cannot be seen by P .

In addition to the conventional spirit of this kind of operators, in the context of

partial information, local information may represent a valuable help in the analysis

of systems. When performing overall analyzes of complex systems, local variables

may help to “hide” the behavior of such components that are irrelevant in the

interactions to be analyzed.

Example 2.4 Consider a complex system (e.g., a cell) represented by a process

C. Assume that the definition of C involves a set of variables X = {x1, x2, . . . , xn}
which represent some features of interest. In this way, in a “standalone” analysis of

C, variables in X would give a comprehensive view of its behavior over time.

Assume now that we are interested in a process T consisting in the interaction

of a large number of identical cells, i.e., T = C1 ‖ . . . ‖ Cm. In this case, as the

focus of the analysis has moved from a local level (a single cell) to a global one

(a tissue), it is necessary to abstract from the behavior induced by those variables

in each Xi (associated with Ci) that do not participate in the interaction that

is being modeled. Let Xi ⊃ X∗
i = {x∗

1, x
∗
2, . . . , x

∗
n} be the set containing those

“irrelevant” variables 2 . Therefore, each cell Ci could be better represented as

Ci
∗ = local x∗

1, x
∗
2, . . . , x

∗
n in Ci

3 , and the process T ∗ = C1
∗ ‖ . . . ‖ Cm

∗ would

represent cells’ interaction.

Note that the internal structure of each cell remains unchanged by this hiding.

Further, from an operational point of view, such a hiding is required to preserve

the coherence in the values observed from P : an inconsistency may arise as each Ci

can assign a different value to each xi.

From the example, it is possible to observe how the interplay of hiding and the

notion of partial information may allow to analyze systems at different levels of

detail.

Basic Timed Behavior

ntcc provides two basic time operators: next (P) and unless c next (P). Let

us analyze them separately. next (P) represents the activation of P in the next

time interval. Hence, a move of next (P) is a unit-delay of P . next (P) can be

also considered as the simplest way of expressing the dynamical behavior over time.

This is fundamental in ntcc, since information is not automatically transferred

from one time interval to the next. Building up on next (P), it is easy to think

2 Note that X∗

i should not contain the same variables that Xi since this would represent that every cell is
isolated from each other.
3 Notation local x1, . . . , xn in P abbreviates the process local x1 in (local x2 in (. . . (local xn in P) . . .)).

J. Gutiérrez et al. / Electronic Notes in Theoretical Computer Science 171 (2007) 117–137 123

in more sophisticated delay constructs: we use nextn (P) as an abbreviation for

next (next (. . .next (P)) . . .)), where next is repeated n times.

In the context of partial information, to be able of reasoning about absence of

information is both important and necessary. Although sometimes it is possible to

predict some of the possible future states for a system, usually there is a strong

need of expressing unexpected behavior. In this kind of scenarios, processes of the

form unless c nextP may come in handy: P will be activated only if c cannot be

inferred from the current store. The “unless” processes thus add (weak) time-outs

to the calculus, i.e., they wait one time unit for a piece of information c to be present

and if it is not, they trigger activity in the next time interval. To illustrate this

consider the example below.

Example 2.5 Process R = when a do P1+when b do P2+when c do P3 models

the prediction of three possible evolutions for a system (i.e., P1, P2 and P3). Notice

that since they might be just a small part of a complex behavior that is partially

understood, a considerable amount of uncertainty has not been included. Defining

a process R∗ = R ‖ unless (a ∨ b ∨ c) nextS would ensure that in the case of a

stimuli different from a, b or c occurs, a consistent default state in the system (here

represented by S) will be preserved.

Definitions following this style of modeling not only allow more complete models

but also permit to exploit the advantages of counting with partial information in a

safe manner.

Asynchrony

The � operator allows to express asynchronous behavior through the time intervals.

Process �P represents an arbitrary long but finite delay for the activation of P . For

example, the process D = �tell(enzymeReleased = 1) could represent the eventual

presence of a particular enzyme in the environment, but without providing an upper

bound on when such a thing will actually occur.

This kind of asynchronous behavior therefore constitutes another instance of

partial behavioral information: in addition to the partial information on the vari-

ables that are part of the state of the system (and that is expressed by the operators

discussed above), the � operator allows to express partial information on the time

units where processes are executed. This is particularly interesting when describ-

ing (biological) processes that interact at unknown relative speeds. For instance, a

process D ‖ S (with D defined as above) could represent a flexible representation of

the interaction between a system S (which may require the presence of the enzyme)

and the process which ensures the arrival of such an enzyme.

The partial information spirit of the asynchronous behavior in ntcc is strengthened

by the following derived operator, expressing bounded eventuality :

�[n,m] P = nextn (P) + nextn+1 (P) + · · · + nextm−1 (P) + nextm (P).

This operator thus represents an additional amount of temporal (partial) inform-

J. Gutiérrez et al. / Electronic Notes in Theoretical Computer Science 171 (2007) 117–137124

ation, as it ensures that P will be activated at some point within the time units

in the closed interval of naturals [n,m]. As in the original operator, there is no

additional information of when this restricted eventuality will take place.

Persistent Behavior

Somehow opposed to the eventual behavior enforced by asynchronous behavior,

persistent (or infinite) behavior serves to express conditions that are valid during

every possible state of the system. The replication operator !P represents P ‖
next (P) ‖ next2(P) ‖ . . ., i.e. unboundedly many copies of P but one at a time.

As such, persistent behavior is an appropriate way of enforcing conditions stating

ground rules of the systems of interest.

A process illustrating this kind of behavior is D′ = ! tell(enzymeReleased = 1),

the persistent version of the enzyme-related signal. D′ simply represents the fact

that in every future time unit the constraint it involves will be available. Persist-

ent behavior can also be understood as a mechanism that allows to move from

static descriptions or conditions (valid only in one state of the system) to dynamic

statements that are always valid.

As in the asynchronous case, it is possible to derive a bounded version of the

persistent operator:

![n,m] P = nextn (P) ‖ nextn+1 (P) ‖ · · · ‖ nextm−1 (P) ‖ nextm (P).

This operator represents the fact that P is always active during all the time units

in the interval [n,m]. As its eventual counterpart, this derived operator (known

as bounded invariance) may come in handy when certain additional information

regarding the (persistent) execution of P is available.

2.2 Operational Semantics

The intuitive behavior for ntcc processes described above is formalized by means of

a structural operational semantics (SOS) that considers transitions between process-

store configurations of the form 〈P, c〉 with stores represented as constraints. The

transitions of the SOS are given by the relations −→ and =⇒. They are formally

defined in Appendix A. Intuitively, the internal transition 〈P, d〉 −→ 〈P ′, d′〉 should

be read as “P with store d reduces, in one internal step, to P ′ with store d′ ”. The

observable transition P
(c,d)

====⇒ R should be read as “P on input c, reduces in

one time unit to R and outputs d”. The observable transitions are obtained from

terminating sequences of internal transitions.

Let us now consider an infinite sequence of observable transitions (or run)

P = P1
(s1,r1)
====⇒ P2

(s2,r2)
====⇒ P3

(s3,r3)
====⇒ This sequence can be interpreted as an

interaction between the system P and an environment. At a time unit i, the envir-

onment provides a stimulus si and Pi produces ri as a response. If α = s1.s2.s3 . . .

and α′ = r1.r2.r3 . . ., then the above interaction is represented as P
(α,α′)

====⇒ω.

J. Gutiérrez et al. / Electronic Notes in Theoretical Computer Science 171 (2007) 117–137 125

Alternatively, if α = true
ω, we can interpret the run as an interaction among

the parallel components in P without the influence of an external environment

(i.e., each component is part of the environment of the others). In this case α is

called the empty input sequence and α′ is regarded as a timed observation of such

an interaction in P . We will say that the strongest postcondition of a process P ,

denoted sp(P), denotes the set of all infinite sequences that P can possibly output.

More precisely, sp(P) = {α′ | for some α : P
(α,α′)

====⇒ω}.

3 Specification and Verification for ntcc Processes

In this section we summarize some results regarding to Linear Temporal Logic (LTL)

associated to ntcc. This particular LTL expresses properties over sequences of con-

straints and we shall refer to it as CLTL. A sound, partially complete proof system

for this logic is also described. Further details of this logic (including decidability

results) can be found in [14,21].

The importance of the strong relationship between CLTL and ntcc is that

a logic-based methodology for verification of properties of biological systems can

be adopted, in addition to the observational approach that is induced by the op-

erational semantics given above. That is, simulations of an ntcc process (i.e., its

timed observations) could be complemented by proofs of essential properties (stated

as temporal formulas).

We begin giving the syntax of LTL formulas and then interpret them with the

CLTL semantics. The formulas F,G, ... ∈ F are built from constraints c ∈ C and

variables x ∈ V in the underlying constraint system by:

F,G, . . . := c | ˙true | ˙false | F ∧̇G | F ∨̇G | ¬̇F | ∃̇x F | ◦F | �F | ♦F

The constraint c (i.e., a first-order formula in the constraint system) represents

a state formula. The dotted symbols represent the usual (temporal) Boolean and

existential operators. The dotted notation is needed as in CLTL these operators do

not always coincide with those in the constraint system. The symbols ◦, �, and ♦
denote the LTL modalities next, always and eventually. We use F ⇒̇G for ¬̇F ∨̇G.

Below we give the formulas a CLTL semantics. We first introduce some notation

and the notion of x-variant. Intuitively, d is an x-variant of c iff they are the same

except for the information about x. More formally, given a sequence α = c1.c2. . . .,

we use ∃xα to denote the sequence ∃xc1∃xc2 We shall use α(i) to denote the

i − th element of α.

Definition 3.1 [x-variant] A constraint d is an x-variant of c iff ∃xc = ∃xd. Sim-

ilarly α′ is an x-variant of α iff ∃xα = ∃xα
′.

Definition 3.2 [CLTL Semantics] We say that α satisfies (or that it is a model

J. Gutiérrez et al. / Electronic Notes in Theoretical Computer Science 171 (2007) 117–137126

of) F in CLTL , written α |=CLTL F , iff 〈α, 1〉 |=CLTL F , where:

〈α, i〉 |=CLTL ˙true 〈α, i〉 �|=CLTL ˙false

〈α, i〉 |=CLTL c iff α(i) |= c

〈α, i〉 |=CLTL ¬̇F iff 〈α, i〉 �|=CLTL F

〈α, i〉 |=CLTL F ∧̇G iff 〈α, i〉 |=CLTL F and 〈α, i〉 |=CLTL G

〈α, i〉 |=CLTL F ∨̇G iff 〈α, i〉 |=CLTL F or 〈α, i〉 |=CLTL G

〈α, i〉 |=CLTL ◦F iff 〈α, i + 1〉 |=CLTL F

〈α, i〉 |=CLTL �F iff for all j ≥ i 〈α, j〉 |=CLTL F

〈α, i〉 |=CLTL ♦F iff there is a j ≥ i such that 〈α, j〉 |=CLTL F

〈α, i〉 |=CLTL ∃̇x F iff there is an x-variant α′ of α such that 〈α′, i〉 |=CLTL F.

Define [[F]]={α |α |=CLTL F}. F is CLTL valid iff [[F]] = Cω, and CLTL satisfiable

iff [[F]] �= ∅.

Process Verification.

Intuitively, P |=CLTL F iff every sequence that P can possibly output, on inputs

from arbitrary environments, satisfies F .

Definition 3.3 We say that a process P satisfies F , written P |=CLTL F , iff

sp(P) ⊆ [[F]].

Example 3.4 Assume R = � tell(c) and F = ♦c. Then R |=CLTL F as in every se-

quence output by R there must be an e entailing c. Also P = tell(c)+tell(d) |=CLTL

c ∨ d and P |=CLTL c ∨̇ d as every e output by P entails either c or d. Notice, how-

ever, that Q = tell(c ∨ d) |=CLTL c ∨ d but Q �|=CLTL (c ∨̇ d) in general, since Q

can output an e which certainly entails c∨ d and still entails neither c nor d —take

c = (x = 42), d = (x �= 42) and e = c ∨ d. Therefore, c ∨̇ d distinguishes P from Q.

In order to reason about statements of the form P |=CLTL F , ntcc is equipped

with a proof (or inference) system for assertions of the form P � F . The system

is presented in Table 1. We say that P � F iff the assertion P � F has a proof in

the system in Table 1. The assertion P � F is intended to be the “counterpart”

of P |= F in the sense that P � F should approximate P |=CLTL F as closely as

possible (ideally, they should be equivalent). The following proposition from [14]

states the correspondence between |= and �. We say that a process P is locally

independent iff the guards of every non-unary sum in P contains no local variables.

Proposition 3.5 (Soundness) If P � F then P |= F . Furthermore, (Complete-

ness) if P is locally-independent and P |= F then P � F .

Hence the proof system is sound, and also complete for locally independent

processes —which represent a substantial family of ntcc processes. It is worth

noticing that our compelling example is in fact locally independent. Finally, the

following lemma will be useful in derivations (see [14] for further details):

Lemma 3.6 For every process P ,

1. P � ˙true, 2. P �� ˙false, 3.
P � A

P ‖ Q � A
and 4.

P � A P � B

P � A ∧̇B
.

J. Gutiérrez et al. / Electronic Notes in Theoretical Computer Science 171 (2007) 117–137 127

LTELL tell(c)
 c LSUM
∀i ∈ I Pi
 Ai

P
i∈I when ci do Pi

_̇
i∈I

(ci ∧̇Ai) ∨̇
˙̂

i∈I
¬̇ ci

LPAR
P
 A Q
 B

P ‖ Q
 A ∧̇B
LUNL

P
 A

unless c next P
 c ∨̇◦A

LREP
P
 A

!P
 �A
LLOC

P
 A

local x in P
 ∃̇x A

LSTAR
P
 A

�P
 ♦A
LNEXT

P
 A

next (P)
◦A
LCONS

P
 A

P
 B
if A ⇒̇B

Table 1
A proof system for (linear-temporal) properties of ntcc processes

4 Analysing a Biological System in ntcc

In this section we show the use of our approach to model and verify biological

systems using the Sodium-Potassium pump as case study. We first give a short

biological description of the system and propose an ntcc model representing its

behavior. Later, we verify a non-trivial property over this model using the ntcc

reasoning techniques.

4.1 Biological Description

An ion pump is a natural channel connecting the two sides of a membrane. The

function of these pumps is to move ions across the membrane in a process called

transport. Depending on the source of the required energy, the transport can be

either passive or active. In passive transport ions freely move across the membrane

following an electrochemical gradient. As ions move in the direction of the gradient

then the cell does not need to provide energy for the transport. Since in active

transport ions move against the direction of the gradient, the cell has to supply

energy (usually in form of ATP) to accomplish this movement.

In particular, the Sodium-Potassium pump [20] (SP-pump in the sequel) is a

system for active transport of ions in animal eukaryotic cells. It exchanges Sodium

ions inside the cell with Potassium ions outside of it. The pump is composed of

two proteins known as the alpha and beta subunits. The purpose of the pump

is to keep the concentration of sodium inside the cell lower than outside. This

difference of concentrations generates an electrochemical gradient that leads the

passive transport of Sodium ions towards the cytoplasm in the cell. If the pump

does not work well then the gradient becomes weak for transport, thus affecting the

entrance of required substances into the cell.

The pumping process in the SP-pump can be divided in six phases. At the

beginning there is a pump conformation with high affinity for Sodium ions inside

the cell (1). This conformation encourages the binding of three Sodium ions with the

pump. Then the alpha subunit is phosphorylated by ATP hydrolysis (2), leaving

a residual ADP molecule in the cytoplasm. This chemical reaction provides the

J. Gutiérrez et al. / Electronic Notes in Theoretical Computer Science 171 (2007) 117–137128

needed energy for the pumping process. Once this occurs, the pump conformation

changes and then the Sodium ions can leave the cell (3).

At this point, there is a pump conformation with high affinity for Potassium

ions outside the cell (4). This results in the binding of two Potassium ions with

the pump. Hence, the alpha subunit is dephosphorylated (5) and the pump con-

formation returns to the initial state. At this moment Potassium ions can enter the

cell (6). The pumping process is always performed regulating the concentration of

Sodium in the cell.

In parallel to this active transport movement, there is a passive transport move-

ment that allows Potassium and Sodium ions to move against the direction of the

active transport. This complementary movement is induced by an electrochemical

gradient present in the cell.

4.2 An ntcc model of the SP-pump

Here we propose an ntcc model of the SP-pump. We use non-deterministic and

asynchronous behavior for modeling partial behavioral information regarding tem-

poral responses of certain components. Before entering into the detailed description

of the model let us informally describe two encodings for recursive functions and

mutable entities that will allow for cleaner model descriptions. A detailed account

of their definition can be found in [14].

Recursive Definitions It is possible to encode recursive definitions of the form

q(x)
def
= Pq ; where q is the process name and Pq calls q only once and such a call

must be within the scope of a “next”. Moreover, we can rely on the usual intuitions

concerning procedure calls in a programming language.

Cells Using the basic ntcc syntax it is possible to provide cells, a basis for the

specification and analysis of mutable and persistent data structures. A cell can be

thought of as a structure that contains a value, and if tested, it yields this value. A

cell keeps its value over the time units until it is modified. We use notations x : v

and x := v to represent the initialization and the assignment of a cell x with value

v, respectively. Also, we shall use notation x := x + z as an abbreviation of the

assignment x := x′ + z, where x′ is the value of the cell x in the previous time unit

and z is a fixed value. The operation x := x − z can be encoded analogously.

We now enter to describe the ntcc model representing the SP-pump, which is

presented in Figures 1 and 2. Let us first describe the main principles underlying its

modeling. The model assumes a constraint system over finite domains of integers,

considering three places for interaction: inside and outside the cell, and an inter-

mediate place where ions stay before entering or flowing out of the cell (i.e., the

pump). The model involves a series of persistent variables (modeled as cells) that

store useful quantities about the pumping process. Output and input operations of

the pump are then modeled as modifications over variables representing the number

of ions both inside and outside the cell. In particular, variables NaO, NaI , KO and

KI represent the amount of Sodium and Potassium ions placed outside and inside

the cell, respectively. In addition, a certain amount of each kind of ion needed

J. Gutiérrez et al. / Electronic Notes in Theoretical Computer Science 171 (2007) 117–137 129

for the correct functioning of the cell is assumed. Such amounts are denoted by

NaIDEAL and KIDEAL. Finally, the model includes additional variables capturing

other details of the pump: OPump represents the orientation of the pump (either

inside or outside the cell), Alpha denotes the current binding of the alpha subunit

and Pump represents the current content of the pump. These three variables will

be instantiated with constants that can be encoded by integers: for instance, pos-

sible values for Alpha are P, free and null (note the special font style given to

constants). Finally, integer variables ATP and ADP represent the presence of ATP

and ADP inside the cell, respectively.

The model in Figures 1 and 2 reflect the complementary nature of active and

passive transport in the SP-pump, represented as ActiveTrans and PassiveTrans

processes, which are integrated as the NaKPump process. From this process it is

then possible to assume some environment in which the pump is placed. This is the

intuition behind process System. We now proceed to explain in a greater detail the

ideas behind these processes.

Active Transport Phases

Process ActiveTrans integrates sub-processes for the six phases described before;

these processes invoke each other. Some processes (i.e., NaPhase1, NaPhase2 and

KPhase1) include possible recursive calls to themselves. This intends to represent

the possibility that the system remains stuck in certain phases in spite of all the

conditions needed to evolve are given. That is, we are trying to model “reversible”

phases, a behavior that is represented by non-deterministic choices. As a result,

those phases could be executed several times therefore delaying system execution in

at least one time unit. Such a delay occurs because the system waits for the presence

of some substances at a specific place of the pump. In fact, those substances could

be available but not in the required place. This non-deterministic and asynchronous

behavior could represent other conditions on component binding, such as an appro-

priate physical contact among elements that (chemically) react with components of

the pump. Similarly, non-deterministic behavior can also represent some kind of

malfunction. For instance, it is possible that in phase NaPhase2 the phosphate

could not bind to the alpha subunit, which would result in a malfunction of the

system that could be directly observed from the evolution of the pump in time.

Passive Transport Phases

Process PassiveTrans defines two sub-processes: one for the entrance of Sodium

ions and another for the output of Potassium ions. It is worth noticing that in the

modeling of these sub-processes we are considering partial behavioral information

on the actual time when the ion movement really occurs, which is represented by a

bounded asynchronous operator.

J. Gutiérrez et al. / Electronic Notes in Theoretical Computer Science 171 (2007) 117–137130

NaPhase1
def
= when (NaI > NaIDEAL ∨ KI < KIDEAL) ∧ Pump = Empty ∧ OPump = In do

(next (NaI := NaI − 3 ‖ Pump := Na ‖ tell(unchangedK = 1) ‖ NaPhase2) +

next (NaPhase1 ‖ tell(unchangedK = 1) ‖ tell(unchangedNa = 1)))

NaPhase2
def
= when Pump = Na ∧ Alpha = free ∧ ATP > 0 do

(next (OPump := Out ‖ Alpha := P ‖ ADP := 1 ‖

tell(unchangedK = 1) ‖ tell(unchangedNa = 1) ‖ NaPhase3)

+ next (NaPhase2 ‖ tell(unchangedK = 1) ‖ tell(unchangedNa = 1)))

NaPhase3
def
= when Pump = Na ∧ OPump = Out do

next (NaO := NaO + 3 ‖ Pump := Empty ‖ tell(unchangedK = 1) ‖ KPhase1)

KPhase1
def
= when Pump = Empty ∧ OPump = Out do

(next (Pump := K ‖ KO := KO − 2 ‖ tell(unchangedNa = 1) ‖ KPhase2) +

next (KPhase1 ‖ tell(unchangedK = 1) ‖ tell(unchangedNa = 1)))

KPhase2
def
= when Alpha = P ∧ Pump = K do

next (OPump := In ‖ ADP := 0 ‖ Alpha := free ‖

tell(unchangedK = 1) ‖ tell(unchangedNa = 1) ‖ KPhase3)

KPhase3
def
= when Pump = K ∧ OPump = In do

next (KI := KI + 2 ‖ Pump := Empty ‖ tell(unchangedNa = 1) ‖ NaPhase1)

ActiveTrans
def
= NaPhase1

Figure 1. An ntcc model for the Sodium-Potassium pump (Part 1 of 2)

Additional Processes

The integration of the above processes as the NakPump process is straightforward.

There is an additional process (i.e., Control) which governs the global behavior of

the pump w.r.t. the equilibrium of the ions amounts; in the case an equilibrium on

the amount of one of the ions is reached, a general system malfunction (denoted

as death = 1) is established. As the other processes, the structure of this control

process makes it possible the inclusion of additional features. Process Start, which

receives a group of six parameters (denoted as σ1...6), is self-explanatory.

A remarkable feature of our model is that it can be parameterized with actual

quantitative values extracted from experimentation. In our model ion concentra-

tions depend on parameters which make it more accurate; more detailed models

involving other biological components (such as, e.g., the electrochemical gradients

governing the dynamics of the passive transport and the magnitude of forces re-

lated with the physical contact between ions and the pump) would then require the

inclusion of more sophisticated numerical parameters. In this sense, considering a

constraint system over real numbers would not only allow to include more soph-

isticated conditions but also would allow to perform analyzes at different levels of

detail.

J. Gutiérrez et al. / Electronic Notes in Theoretical Computer Science 171 (2007) 117–137 131

PassiveNa
def
= unless NaO = NaI next

(next5 (PassiveNa) ‖

�[0,5](unless unchangedNa = 1 next (NaI := NaI + 3 ‖ NaO := NaO − 3) ‖

when unchangedNa = 1 do (NaI := NaI + 3 ‖ NaO := NaO − 3)))

PassiveK
def
= unless KO = KI next

(next5 (PassiveK) ‖

�[0,5](unless unchangedK = 1 next (KI := KI − 2 ‖ KO := KO + 2) ‖

when unchangedK = 1 do (KI := KI − 2 ‖ KO := KO + 2)))

PassiveTrans
def
= PassiveNa ‖ PassiveK

Control
def
= ! (when NaI = NaO do tell(equilNa = 1) ‖

when KI = KO do tell(equilK = 1) ‖

when equilNa = 1 ∨ equilK = 1 ∨ M do !(tell(death = 1)))

Start(σ1...6)
def
= !(tell(ATP > 0) ‖ tell(NaIDEAL = σ5) ‖ tell(KIDEAL = σ6))

ADP : 0 ‖ Alpha : free ‖ OPump : In ‖ Pump : Empty ‖

NaI : σ1 ‖ NaO : σ2 ‖ KI : σ3 ‖ KO : σ4

NaKPump
def
= local NaI , NaO , KI , KO, Alpha, ADP,Pump, OPump in

Start(σ1...6) ‖ ActiveTrans ‖ PassiveTrans ‖ Control

System
def
= NaKPump ‖ Environment

Figure 2. An ntcc model for the Sodium-Potassium pump (Part 2 of 2)

4.3 Proving Properties About Biological Models: A logic-based approach

In this section we give a non-trivial biological example of the reasoning capabilities of

ntcc. In particular, the example deals with an inhibition process over the SP-pump.

This inhibition may represent both a drug and a disease: to prevent circulatory

problems, certain medicines induce a partial inhibition of the pump to augment the

strength of heart’s contractions, thus improving blood circulation. On the other

hand, certain substances may cause a complete inhibition process over the pump,

therefore causing the death of the cell.

The inhibition process example also allows us to take advantage of the flexibility

of the presented model. We will assume a (malicious) drug that is present in the

environment surrounding the pump. The goal of this drug is to take control of

the alpha subunit, thus preventing the phosphate from inducing a conformational

change in the pump. In turn, this obstruction will lead to a complete inhibition

of the active transport mechanism enforced by the pump. We express this in our

model by specifying the Environment process as follows:

Environment
def
= Drug (1)

where Drug
def
= �[m,n] when Alpha = free do !Alpha := null (with n > m).

Note that the actual time unit where Drug will be active is undetermined, because of

the uncertainty induced by the � operator. It is important to remark that although

J. Gutiérrez et al. / Electronic Notes in Theoretical Computer Science 171 (2007) 117–137132

Drug is the only component explicitly described in the Environment process, other

components or systems can be easily included in its definition. In other words,

we are focusing on the drug-related part of Environment. We will also denote by

Drug′ the process obtained from the execution of Drug at a time m ≤ j ≤ n (i.e.,

Drug′
def
= !Alpha := null) .

By inhibiting the active transport capabilities of the pump, the cell will reach an

equilibrium between the internal and external concentrations of Sodium. Such an

equilibrium, that causes the death of the cell, is not reversible and will occur in an

undetermined future. These facts suggest us the following assertion to be verified:

NaKPump ‖ Drug � ♦� death = 1 (2)

where death = 1 represents the death of the cell. Intuitively, we want to form-

ally verify that in the presence of the drug described above the cell will die in an

undetermined future, with no chance of returning to a previous state.

The complete inhibition of the active transport mechanism can be seen directly

on the model. At a certain stage of the process (just after NaPhase1), the alpha

subunit will be empty, ready for a binding with some substance (P in the “healthy”

case). The inclusion of Drug in the environment adds a new alternative of execu-

tion, as both NaPhase2 and Drug have the chance of binding the subunit (with P

and null, respectively). In this (implicit) non-deterministic choice, we assume the

success of the drug in binding the alpha subunit. Note that this choice precludes

the active transport processes from the execution of the system. Therefore, at that

point, we can regard the system as the following processes:

Control ‖ PassiveNa ‖ Drug′ ‖ RestOfSystem′ (3)

where RestOfSystem′ def
= PassiveK ‖ !(tell(ATP > 0) ‖ tell(NaIDEAL = σ5) ‖

tell(KIDEAL = σ6)). As a result, assertion (2) can be expressed as

Control ‖ PassiveNa ‖ Drug′ ‖ RestOfSystem � ♦� death = 1. (4)

In order to prove (4), we will restrict our attention to the interaction among

Control, PassiveNa and Drug′. Intuitively, due to the absence of the active trans-

port mechanism the passive transport will introduce sodium ions into the cell until

reaching an equilibrium (i.e., NaI = NaO). Once that occurs, Control (that has

been awaiting the equilibrium) emits equilNa = 1 to the environment. Such a

signal is enough to determine the death of the cell.

The proof proceeds as follows. Let us first assume the following abbreviations

for processes and guards:

G1 = (G2 ∨ G3 ∨ M) G2 = (equilNa = 1) G3 = (equilK = 1)

G4 = (NaI = NaO) G5 = (KI = KO) A
def
= when G1 do ! tell(death = 1)

B
def
= when G4 do tell(G2) C

def
= when G5 do tell(G3)

J. Gutiérrez et al. / Electronic Notes in Theoretical Computer Science 171 (2007) 117–137 133

Consequently, and because of the replicated definition of Control, we have

Control
def
= ! A ‖ ! B ‖ ! C.

The following proposition represents an intuition derived from the definition of

PassiveNa and Drug′.

Proposition 4.1 PassiveNa ‖ Drug′ � ♦G4.

Once Drug′ is present in the system and sets the state of Alpha to null for

every future time unit, process ActiveTrans does not modify anymore neither NaI

or NaO. As a consequence, process PassiveNa decrements NaO and increments

NaI until they have the same value (i.e., NaI = NaO). This will take some time

units, depending on the value of NaI and NaO when Drug′ be active in the system.

This behavior can also be verified applying the rules in the operational semantics

of ntcc.

Finally, using the proof system in Table 1, it is possible to derive a proof for (4).

Let us first derive !(B ‖ C) � �(G4 ⇒̇G2) (Proposition 4.2):

B
 (G4 ∧̇G2) ∨̇ ¬̇G4
LSUM

B
 G4 ⇒̇G2
LCONS

C
 (G5 ∧̇G3) ∨̇ ¬̇G5
LSUM

C
 G5 ⇒̇G3
LCONS

B ‖ C
 (G4 ⇒̇G2) ∧̇(G5 ⇒̇G3)
LPAR

B ‖ C
 G4 ⇒̇G2
LCONS

!(B ‖ C)
 �(G4 ⇒̇G2)
LREP

With the above result, we can perform the following deductions. Let us first

state an auxiliar derivation:

D =
!(B ‖ C)
 �(G4 ⇒̇G2)

Prop. 4.2
PassiveNa ‖ Drug′
 ♦G4

Prop. 4.1

!(B ‖ C) ‖ PassiveNa ‖ Drug′
 �(G4 ⇒̇G2) ∧̇ ♦G4
LPAR

!(B ‖ C) ‖ PassiveNa ‖ Drug′
 ♦G2
LCONS

We then get the following derivation

A
 (G1 ∧̇� death = 1) ∨̇ ¬̇G1
LSUM

A
 G1 ⇒̇� death = 1
LCONS

!A
 �(G1 ⇒̇� death = 1)
LREP

!A
 �((G2 ∨̇G3 ∨̇M) ⇒̇� death = 1)
LCONS

!A
 �(G2 ⇒̇� death = 1)
LCONS

D

!A ‖!B ‖!C ‖ PassiveNa ‖ Drug′
 �(G2 ⇒̇� death = 1) ∧̇ ♦G2
LPAR

Control ‖ PassiveNa ‖ Drug′
 ♦� death = 1
LCONS

Finally, using item 3 in Lemma 1, we obtain

Control ‖ PassiveNa ‖ Drug′ ‖ RestOfSystem � ♦� death = 1

hence proving the desired property.

J. Gutiérrez et al. / Electronic Notes in Theoretical Computer Science 171 (2007) 117–137134

Notice how the partial information constructs helped to better describe the be-

havior of the SP-pump. They allow for flexible and extensible system specifications.

Moreover, since the associated temporal logic naturally captures the spirit of these

constructs, the essential properties to be verified can also involve partial information

in an explicit way.

5 Concluding Remarks

In this paper we have proposed ntcc, a process calculus based on constraints, as

a suitable language for modeling and verifying biological systems. We have shown

how process constructs in ntcc naturally capture two kinds of partial information:

quantitative and behavioral. Descriptions of many biological phenomena that are

only partially understood could greatly benefit from the use of these kinds of partial

information provided by ntcc.

Furthermore, ntcc provides a single, unified framework where it is possible to

both model and reason about biological systems. This approach was illustrated by

modeling an ion transport mechanism and verifying one non-trivial property of such

a model. While the use of partial behavioral information statements was crucial to

describe and reason about a possible system failure, partial quantitative information

statements provided flexibility in the modeling process.

References

[1] M. Antoniotti, C. Piazza, A. Policriti, M. Simeoni, and B. Mishra. Taming the complexity of biochemical
models through bisimulation and collapsing: theory and practice. Theor. Comput. Sci., 325(1):45–67,
2004.

[2] A. Arbeláez, J. Gutiérrez, C. Olarte, and C. Rueda. A Generic Framework to Model, Simulate and
Verify Genetic Regulatory Networks. In Proc. of 32nd Latin-American Conference on Informatics
(CLEI 2006), 2006. Santiago, Chile.

[3] AVISPA Research Group. ntccSim: A simulation tool for timed concurrent processes, 2006. Available
at http://avispa.puj.edu.co .

[4] A. Bockmayr and A. Courtois. Using hybrid concurrent constraint programming to model dynamic
biological systems. In Peter J. Stuckey, editor, ICLP, volume 2401 of LNCS, pages 85–99. Springer,
2002.

[5] A. Bockmayr, A. Courtois, D. Eveillard, and M. Vezain. Building and Analysing an Integrative Model
of HIV-1 RNA Alternative Splicing. In Danos and Schächter [9], pages 43–57.

[6] L. Calzone, N. Chabrier-Rivier, F. Fages, and S. Soliman. Machine learning biochemical networks from
temporal logic properties. Transactions on Computational Systems Biology, 2006. CMSB’05 Special
Issue (to appear).

[7] L. Cardelli. Brane Calculi. In Danos and Schächter [9], pages 257–278.

[8] V. Danos and C. Laneve. Formal molecular biology. Theor. Comput. Sci., 325(1):69–110, 2004.

[9] V. Danos and V. Schächter, editors. Computational Methods in Systems Biology, International
Conference CMSB 2004, Paris, France, May 26-28, 2004, Revised Selected Papers, volume 3082 of
LNCS. Springer, 2005.

[10] D. Eveillard, D. Ropers, H. de Jong, C. Branlant, and A. Bockmayr. A multi-scale constraint
programming model of alternative splicing regulation. Theor. Comput. Sci., 325(1):3–24, 2004.

[11] V. Gupta, R. Jagadeesan, V. A. Saraswat, and D. G. Bobrow. Programming in hybrid constraint
languages. In P. J. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors, Hybrid Systems, volume 999
of LNCS, pages 226–251. Springer, 1994.

J. Gutiérrez et al. / Electronic Notes in Theoretical Computer Science 171 (2007) 117–137 135

http://avispa.puj.edu.co

[12] P. Van Hentenryck, V. Saraswat, and Y. Deville. Design, Implementation, and Evaluation of the
Constraint Language cc(FD). In Constraint Programming, volume 910 of LNCS, pages 293–316.
Springer, 1994.

[13] B. Mishra, M. Antoniotti, S. Paxia, and N. Ugel. Simpathica: A Computational Systems Biology Tool
within the Valis Bioinformatics Environment. In E. Eiles and A. Kriete, editors, Computational Systems
Biology. Elsevier, 2005.

[14] M. Nielsen, C. Palamidessi, and F. Valencia. Temporal Concurrent Constraint Programming:
Denotation, Logic and Applications. Nordic Journal of Computing, 9:145–188, 2002.

[15] C. Priami and P. Quaglia. Beta Binders for Biological Interactions. In Danos and Schächter [9], pages
20–33.

[16] A. Regev, E. M. Panina, W. Silverman, L. Cardelli, and E. Shapiro. Bioambients: an abstraction for
biological compartments. Theor. Comput. Sci., 325(1):141–167, 2004.

[17] A. Regev and E. Shapiro. Cells as Computation. Nature, 419:343, September 2002.

[18] A. Regev and E. Shapiro. Modelling in Molecular Biology, chapter The π-calculus as an abstraction
for biomolecular systems, pages 219–266. Natural Computing Series. Springer, 2004.

[19] V. Saraswat, M. Rinard, and P. Panangaden. The semantic foundations of concurrent constraint
programming. In POPL ’91, pages 333–352, Jan 1991.

[20] G. Scheiner-Bobis. The sodium pump: Its molecular properties and mechanics of ion transport. Euro.
J. Biochem., 269:2424–2433, 2002.

[21] F. Valencia. Decidability of Infinite-State Timed CCP Process and First-Order LTL. Theor. Comput.
Sci., 330(3):577–607, 2005.

J. Gutiérrez et al. / Electronic Notes in Theoretical Computer Science 171 (2007) 117–137136

A ntcc Operational Semantics

TELL
〈tell(c), d〉 −→ 〈skip, d ∧ c〉

SUM
d |= cj j ∈ I

˙P
i∈I when ci do Pi, d

¸
−→ 〈Pj , d〉

PAR
〈P, c〉 −→ 〈P ′, d〉

〈P ‖ Q, c〉 −→ 〈P ′ ‖ Q, d〉
LOC

〈P, c ∧ ∃xd〉 −→ 〈P ′, c′〉

〈(localx, c) P, d〉 −→ 〈(localx, c′) P ′, d ∧ ∃xc′〉

UNL
〈unless c nextP, d〉 −→ 〈skip, d〉

if d |= c

REP
〈! P, d〉 −→ 〈P ‖ next ! P, d〉

STAR
〈� P, d〉 −→ 〈next nP, d〉

if n ≥ 0

STR
γ1 −→ γ2

γ′

1 −→ γ′

2

if γ1 ≡ γ′

1 and γ2 ≡ γ′

2

OBS
〈P, c〉 −→∗ 〈Q, d〉 �−→

P
(c,d)

====⇒ R

if R ≡ F (Q)

Table A.1
Rules for internal reduction −→ (upper part) and observable reduction =⇒ (lower part). γ �−→ in OBS

holds iff for no γ′, γ −→ γ′.

Note that ≡ (structural congruence) is the smallest congruence satisfying: (1)

P ‖ skip ≡ P , (2) P ‖ Q ≡ Q ‖ P , and (3) P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R.

In rule OBS, the process R to be executed in the next time interval is equivalent

to F (Q), the “future” of Q.

Definition A.1 [Future Function] Let F : Proc ⇀ Proc be defined by

F (Q) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

skip if Q =
∑

i∈I when ci do Qi

F (Q1) ‖ F (Q2) if Q = Q1 ‖ Q2

(local x)F (R) if Q = (local x, c)R

R if Q = nextR or Q = unless c nextR

Intuitively, F (Q) is obtained by removing from Q summations that did not

trigger activity and any local information which has been stored in Q, and by

“unfolding” the sub-terms within “next” and “unless” expressions. Notice that F

does not need to be total since whenever we need to apply F to a Q (OBS in

Table A.1), every tell(c), �R and !R in Q will occur within a “next” or “unless”

expression.

J. Gutiérrez et al. / Electronic Notes in Theoretical Computer Science 171 (2007) 117–137 137

	Introduction
	ntcc as a Calculus for Describing Biological Systems
	Process Syntax
	Operational Semantics

	Specification and Verification for ntcc Processes
	Analysing a Biological System in ntcc
	Biological Description
	An ntcc model of the SP-pump
	Proving Properties About Biological Models: A logic-based approach

	Concluding Remarks
	References
	ntcc Operational Semantics

