
 

 

 University of Groningen

A modular design of incremental Lyapunov functions for microgrid control with power sharing
De Persis, C.; Monshizadeh, N.

Published in:
2016 European Control Conference, ECC 2016

DOI:
10.1109/ECC.2016.7810502

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
De Persis, C., & Monshizadeh, N. (2017). A modular design of incremental Lyapunov functions for
microgrid control with power sharing. 2016 European Control Conference, ECC 2016, 1501-1506.
https://doi.org/10.1109/ECC.2016.7810502

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 24-02-2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Groningen

https://core.ac.uk/display/232485465?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/ECC.2016.7810502
https://www.rug.nl/research/portal/en/publications/a-modular-design-of-incremental-lyapunov-functions-for-microgrid-control-with-power-sharing(7036a1e5-588d-490e-9c4e-9e09f20643fd).html
https://doi.org/10.1109/ECC.2016.7810502


ar
X

iv
:1

51
0.

05
81

1v
1 

 [m
at

h.
O

C
]  

20
 O

ct
 2

01
5

1

A modular design of incremental Lyapunov
functions for microgrid control with power sharing

C. De Persis and N. Monshizadeh

Abstract—In this paper we contribute a theoretical framework
that sheds a new light on the problem of microgrid analysis
and control. The starting point is an energy function comprising
the kinetic energy associated with the elements that emulate the
rotating machinery and terms taking into account the reactive
power stored in the lines and dissipated on shunt elements.
We then shape this energy function with the addition of an
adjustable voltage-dependent term, and construct incremental
storage functions satisfying suitable dissipation inequalities. Our
choice of the voltage-dependent term depends on the voltage
dynamics/controller under investigation. Several microgrids dy-
namics that have similarities or coincide with dynamics already
considered in the literature are captured in our incremental
energy analysis framework. The twist with respect to existing
results is that our incremental storage functions allow for a
large signal analysis of the coupled microgrid obviating the need
for simplifying linearization techniques and for the restrictive
decoupling assumption in which the frequency dynamics is fully
separated from the voltage one. A complete Lyapunov stability
analysis of the various systems is carried out along with a
discussion on their active and reactive power sharing properties.

I. I NTRODUCTION

Microgrids have been envisioned as one of the leading
technologies to increase the penetration of renewable energies
in the power market. A thorough discussion of the techno-
logical, physical and control-theoretic aspects of microgrids is
provided in many interesting comprehensive works, including
[44], [43], [18], [2], [28].

Power electronics allows inverter in the microgrids to emu-
late desired dynamic behavior. This is an essential featuresince
when the microgrid is in grid forming mode, inverters have to
inject active and reactive power in order to supply the loads
in a shared manner and maintain the desired frequency and
voltage values at the nodes. Hence, much work has focused
on the design of dynamics for the inverters that achieve
these desired properties and this effort has involved both
practitioners and theorists, all providing a myriad of solutions,
whose performance has been tested mainly numerically and
experimentally.

The main obstacle however remains a systematic design of
the microgrid controllers that achieve the desired properties
in terms of frequency and voltage regulation with power
sharing. The difficulty lies in the complex structure of these
systems, comprising dynamical models of inverters and loads
that are physically interconnected via exchange of active
and reactive power. In quasi steady state working conditions,
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these quantities are sinusoidal terms depending on the voltage
phasor relative phases. As a result, mathematical models of
microgrids reduce to high-order oscillators interconnected via
sinusoidal coupling. Moreover the coupling weights dependon
the voltage magnitudes, which obey extra coupled dynamics.
Two additional features complicate the situation: the presence
of loads typically leads to differential-algebraic modelsand
the presence of unmeasured loads requires controllers thatcan
deal with such uncertainty.

To deal with the complexity of these dynamical models a
common assumption is to decouple frequency and voltage dy-
namics thus to enable a separate analysis of the two dynamics.
Once separated, the two dynamics are simpler to analyze and
the presence of algebraic constraints can be investigated.In
this case, a common tool to infer stability results is to rely
on small signal arguments that focus on a linearized model
of the system; see e.g. [34]. Results that deal with the fully
coupled system are also available ([29], [41], [24]). In this
case, the results mainly concern network-reduced models with
primary control, namely stability rather than stabilization of
the equilibrium solution. Furthermore, lossy transmission lines
can also be studied ([13], [41], [4], [41], [24], and also [9]).

In spite of these many advances, what is still missing is a
comprehensive approach to deal with the analysis and control
design for microgrids. In this paper we provide a contribution
in this direction. The starting point is the energy function
associated with the system, a combination of kinetic and
potential energy. Relying on an extended notion of incremental
dissipativity, a variety of shifted Lyapunov functions whose
critical points have desired features are constructed. The
construction is inspired by works in the control of networksin
the presence of disturbances, which makes use of incremental
passivity and internal model controllers ([36], [5], [23]). The
Lyapunov functions that we design encompass several micro-
grid dynamics that have appeared in the literature, including
the conventional droop controller ([44], [29]), the quadratic
droop controller [34], and the reactive power consensus dy-
namics ([30]). Our analysis, however, suggests suitable modifi-
cations (such as a suitable voltage-dependent weighting ofthe
reactive power consensus dynamics of [30]) and inspires new
controllers, such as the so-called reactive current controller.
Our approach has two additional distinguishing features: we
do not need to assume decoupled dynamics and we perform
a large signal analysis.
Our contribution also expands the knowledge on the use
of energy functions in the context of microgrids. Although
energy functions have played a substantial role to deal with
quite accurate models of power systems ([39], [10], [8]), our
approach based on the incremental dissipativity notion sheds

http://arxiv.org/abs/1510.05811v1


2

a new light into the construction of these energy functions,
allow us to cover a wider range of microgrid dynamics, and
paves the way for the design of dynamic controllers, following
the combination of passivity techniques and internal model
principles as in [5]. We refer the reader to e.g. [25], [12] for
seminal work on passivity-based control of power networks.

In this paper we focus on network reduced models of
microgrids ([29], [41], [24], [35]). These models are typically
criticized for not providing an explicit characterizationof the
loads ([34]). Focusing on network reduced models allows us
to reduce the technical complexity of the arguments and to
provide an elegant analysis. However, one of the advantages
of the use of the energy functions is that they remain effective
also with network preserved models ([39]). In fact, a prelimi-
nary investigation not reported in this manuscript for the sake
of brevity shows that the presented results extend to the case
of network preserved models. A full investigation of this case
will be reported elsewhere.

The outline of the paper is as follows. In Section II, details
on the model under consideration are provided. In Section III
the design of incremental energy functions is carried out and
incremental dissipativity of various models of microgridsas-
sociated with different voltage dynamics/controllers is shown.
A few technical conditions on these energy functions are
discussed in Section IV, and a decentralized test to check
them is also provided. Based on the results of these sections,
attractivity of the prescribed synchronous solution and voltage
stability is presented in Section V, along with a discussion
on power sharing properties of the proposed controllers. A
few accessory results on power sharing in the presence of ho-
mogeneous transmission lines are also presented. Concluding
remarks are provided in the last section.

II. M ICROGRID MODEL AND THE SYNCHRONOUS

SOLUTION

We consider the following network-reduced model of a
microgrid

θ̇ = ω

TP ω̇ = −(ω − ω∗)−KP (P − P ∗) + uP

TQV̇ = f(V,Q, uQ)

(1)

whereθ ∈ T
N is the vector of voltage angles,ω ∈ R

N is the
frequency,P ∈ R

N is the active power vector,Q ∈ R
N is the

reactive power vector, andV ∈ R
N
>0

is the vector of voltage
magnitudes. The matricesTP , TV , andKP are diagonal and
positive definite. The vectorsω∗ andP ∗ denote the frequency
and active power setpoints, respectively. The vectorP ∗ also
models active power loads at the buses ([24, Section 2.4]). The
vectoruQ is an additional input. The functionf accounts for
the voltage dynamics/controller and is decided later.

The model (1) with an appropriate selection off encom-
passes various models of network-reduced microgrids in the
literature, including conventional droop controllers, quadratic
droop controllers, and consensus based reactive power control
schemes ([44], [33], [29], [34], [30]). We refer the reader to
[31] for a compelling derivation of microgrid models from first
principles. Our goal here is to provide a unifying framework

for analysis of the microgrid model (1) for different types of
voltage controllers, and study frequency regulation, voltage
stability, and active as well as reactive power sharing. A key
point of our approach is that it does not rely on simplifying and
often restrictive premises such as the decoupling assumption
and linear approximations. First, we look at the microgrid
model (1) in more detail.

Active and reactive power.The active powerPi is given by

Pi =
∑

j∈Ni

BijViVj sin θij , θij := θi − θj (2)

and the reactive power by

Qi = BiiV
2

i −
∑

j∈Ni

BijViVj cos θij , θij := θi − θj . (3)

Note that hereBii = B̂ii+
∑

j∈Ni
Bij , whereBij = Bji > 0

is the susceptance at edge{i, j} and B̂ii ≥ 0 is the shunt
susceptance at nodei1. Hence,Bii ≥

∑

j∈Ni
Bij for all i.

It is useful to have compact representations of both active
and reactive power. SettingΓ(V ) = diag(γ1(V ), . . . , γM (V )),
γk(V ) = ViVjBij , with k ∈ {1, 2, . . . ,M} being the index
corresponding to the edge{i, j} (in short, k ∼ {i, j}), the
vector of the active power at all the nodes writes as

P = DΓ(V )sin(DT θ).

whereD = [dik] is the incidence matrix of the graph describ-
ing the interconnection structure of the network, and the vector
sin(·) is defined element-wise. Let us now introduce the vector
A0 = col(B11, . . . , BNN ). Since |dik| cos(dikθi + djkθj) =
cos(θi − θj), the vector of reactive power at the nodes takes
the form

Q = [V ][A0]V − |D|Γ(V )cos(DT θ),

where [v] represents the diagonal matrix associated to the
vector v, and |D| is obtained by replacing each elementdij
of D with |dij |. 2

Other compact representation is useful as well. To this end,
introduce the symmetric matrix

A(cos(DT θ)) =










0 B12 cos θ12 . . . B1N cos θ1N
B21 cos θ21 0 . . . B2N cos θ2N

...
...

. . .
...

BN1 cos θN1 BN2 cos θN2 . . . 0











,

1This shunt susceptance can model a purely inductive load co-located at the
inverter i. See [30, Remark II.3] for a discussion on purely inductive loads.

2In fact, denoted byη the vector DT θ, the entry ij of the matrix
|D|Γ(V )cos(DT θ) writes as

[|D|Γ(V )cos(DT θ)]ij =

M
∑

k=1

|dik|γk(V ) cos(ηk)

=
∑

k∼{i,j}

|dik|ViVjBij cos(dikθi + djkθj)

=
∑

j∈Ni

ViVjBij cos(θi − θj)
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where again we are exploiting the identitycos(dikθi +
djkθj) = cos(θi − θj). The vectorQ becomes

Q = [V ][A0]V − [V ]A(cos(DT θ))V
= [V ]([A0]−A(cos(DT θ)))V
=: [V ]A(cos(DT θ))V.

(4)

As a consequence of the conditionBii ≥
∑

j∈Ni
Bij for all i,

provided that at least one of the shunt susceptancesB̂ii is non-
zero (which is the standing assumption throughout the paper),
the symmetric matrixA(cos(DT θ)) has all strictly positive
eigenvalues and hence is a positive definite matrix. Note that
the matrixA can be interpreted as a weighted adjacency matrix
of the graph, whereasA is associated with a loopy Laplacian
matrix.

To pursue our analysis, we demonstrate an incremental
dissipativity properties of the various microgrid models,with
respect to a “synchronous solution”. The notion of dissipativity
adopted in this paper is introduced next, and synchronous
solutions will be identified afterwards.

Definition 1. Systemẋ = f(x, u), y = h(x), x ∈ X , X the
state space,y, u ∈ R

m, is incrementally cyclo-dissipative with
state-dependent supply rates(x, u, y) and with respect to a
given input-state-output triple(u, x, y), if there exist a contin-
uously differentiable functionS : X → R, and state-dependent
positive semi-definite3 matricesW,R : X → R

m×m, such
that for all x ∈ X , u ∈ R

m and y = h(x), y = h(x)

∂S
∂x

f(x, u) +
∂S
∂x

f(x, u) ≤ s(x, u − u, y − y)

with
s(x, u, y) = −yTW (x)y + yTR(x)u. (5)

We remark that at this point the functionS is not required to
be non-negative nor bounded from below and that the weight
matricesW,R are allowed to be state dependent. The use of
the qualifier “cyclo” in the definition above stresses the former
feature ([40]).

Remark 1. In case the matricesW andR are state indepen-
dent, some notable special cases of Definition 1 are obtained
as follows:

i) W ≥ 0, R = I, S ≥ 0 (incremental passivity)
ii) W > 0, R = I, S ≥ 0 (output-strict incremental

passivity)
iii) W ≥ 0, R = I (cyclo-incremental passivity)
iv) W > 0, R = I (output-strict cyclo-incremental passivity).

The synchronous solution.Given the constant vectorsuP and
uQ, the synchronous solution is defined as the triple

(θ(t), ω(t), V (t)) = (θ, ω, V ),

whereθ = 1ω0t+ θ0, the vectorsθ0, V ∈ R
N
>0

are constant,
the scalarω0 is constant,ω = 1ω0, and where

0 = −(ω − ω∗)−KP (P − P ∗) + uP

0 = f(V ,Q, uQ) .
(6)

3A state-dependent matrixM : X → R
m×m is positive semi-definite if

yTM(x)y ≥ 0 for all x ∈ X and for all y ∈ R
m. If M is positive semi-

definite andyTM(x)y = 0 ⇔ y = 0 thenM is called positive definite.

Observe thatη := DT θ = DT θ0, andDTω = 0. Hence,Q
is constant asV andη are constant. An incremental model of
the dynamical system with respect to the synchronous solution
can be written as follows

d

dt
(θ − θ) = (ω − ω)

TP

d

dt
(ω − ω) = −(ω − ω)−KP (P − P ) + (uP − uP )

TQ

d

dt
(V − V ) = f(V,Q, u)− f(V ,Q, uQ).

III. D ESIGN OF INCREMENTAL ENERGY FUNCTIONS

A crucial step for the Lyapunov based analysis of the
coupled nonlinear model (1) is constructing a storage function.
To this end, we exploit the following energy-based function

U(θ, ω, V ) =
1

2
ωTK−1

P TPω −
∑

{i,j}∈E

ViVjBij cos θij

+
1

2

N
∑

i=1

BiiV
2

i .

(7)
Notice that the first term represents the kinetic energy, the
second one the reactive power stored in the links and the
third one the power associated with the shunt component. Also
notice that the last two sums together write as1

2

∑N
i=1

Qi. The
compact expression ofU is therefore

U(θ, ω, V ) =
1

2
ωTK−1

P TPω +
1

2
1
TQ

=
1

2
ωTK−1

P TPω +
1

2
V TA(cos(DT θ))V,

(8)
where we have exploited (4). Since we are interested in
the incremental passivity of the system with respect to the
synchronous solution, an incremental storage function is intro-
duced. First, we compute the gradient of the storage function
as follows:

∂U

∂ω
= K−1

P TPω,
∂U

∂θi
=

∑

j∈Ni

BijViVj sin(θij),

∂U

∂Vi

= BiiVi −
∑

j∈Ni

BijVj cos θij .

Hence

∂U

∂θ
= P = DΓ(V )sin(DT θ),

∂U

∂V
= [V ]−1Q = [A0]V − [V ]−1|D|Γ(V )cos(DT θ) .

In the equality above, we are implicitly assuming that each
component of the voltage vector never crosses zero. In fact,
we shall assume the following:

Assumption 1. There exists a subsetX of the state space
T
N ×R

N ×R
N
>0

that is forward invariant along the solutions
to (1).

Conditions under which this assumption is fulfilled will be
provided later in the paper.
Notice that the voltage dynamics identified byf has not yet
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been taken into account in the functionU . Therefore, to cope
with different voltage dynamics (or controllers) we add another
component, namelyH(V ), and define

S(θ, ω, V ) = U(θ, ω, V ) +H(V ). (9)

We rest our analysis on the following foundational incremental
storage function

S(θ, ω, V ) = S(θ, ω, V )− S(θ, ω, V )− ∂S

∂θ

∣

∣

∣

∣

T

−
(θ − θ)

− ∂S

∂ω

∣

∣

∣

∣

T

−
(ω − ω)− ∂S

∂V

∣

∣

∣

∣

T

−
(V − V )

(10)
where we use the conventional notation

∂F

∂x

∣

∣

∣

∣

−
=

∂F

∂x
(x),

∂F

∂x

∣

∣

∣

∣

T

−
= (

∂F

∂x
(x))T

for a functionF : X → R. Note thatS can be decomposed
as

S = U +H (11)

where

U(θ, ω, V ) = U(θ, ω, V )− U(θ, ω, V )− ∂U

∂θ

∣

∣

∣

∣

T

−
(θ − θ)

− ∂U

∂ω

∣

∣

∣

∣

T

−
(ω − ω)− ∂U

∂V

∣

∣

∣

∣

T

−
(V − V )

and

H(V ) = H(V )−H(V )− ∂H

∂V

∣

∣

∣

∣

T

−
(V − V ).

Observe that as the synchronous solution satisfiesω ∈
N (DT ), then

∂U

∂θ

∣

∣

∣

∣

T

−
(θ − θ) = (DΓ(V )sin(DT θ))T (θ − θ)

= (DΓ(V )sin(DT θ0))T (θ − θ0)

i.e. the term does not depend explicitly ont. This observation
will be useful when differentiating the incremental function
by t.
Also note that

∂U
∂V

=
∂U

∂V
− ∂U

∂V

∣

∣

∣

∣

−
= [V ]−1Q− [V ]−1Q

Moreover, the terms inU(θ, ω, V ) which explicitly depends
on ω write as

1

2
ωTK−1

P TPω − 1

2
ωTK−1

P TPω − ωTK−1

P TP (ω − ω)

=
1

2
(ω − ω)TK−1

P TP (ω − ω).

Hence, the explicit expression ofU is

U(θ, ω, V ) = 1

2
(ω − ω)TK−1

P TP (ω − ω)

+ 1

2
V TA(cos(DT θ))V − 1

2
V

TA(cos(DT θ))V

−(DΓ(V )sin(DT θ))T (θ − θ)−Q[V ]−1(V − V ).

Bearing in mind (10) and (11), we notice that

∂S(θ, ω, V )

∂θ
=

∂U

∂θ
− ∂U

∂θ

∣

∣

∣

∣

−
= DΓ(V )sin(DT θ)−DΓ(V )sin(DT θ),

∂S(θ, ω, V )

∂ω
=

∂U

∂ω
− ∂U

∂ω

∣

∣

∣

∣

−
= K−1

P TP (ω − ω),

∂S(θ, ω, V )

∂V
=

∂U
∂V

+
∂H
∂V

= [V ]−1Q− [V ]−1Q +
∂H

∂V
− ∂H

∂V

∣

∣

∣

∣

−
.

The above identities show that the critical points ofS occur
for ω = ω andP = P which is a desired property. The critical
point of S with respect to theV coordinate is determined by
the choice ofH which depends on the voltage dynamics.
To establish the incremental dissipativity property, we intro-
duce the output variables

y = col(yP , yQ) (12)

with

yP = T−1

P

∂S

∂ω
= K−1

P ω, yQ = T−1

Q

∂S

∂V
,

and input variables

u = col(uP , uQ). (13)

In what follows, we differentiate among different voltage
controllers and adjust the analysis accordingly by tuningH .

A. Conventional droop controller

The conventional droop controllers are obtained by setting
f in (1) as

f(V,Q, uQ) = −V −KQQ+ uQ (14)

whereKQ = [kQ] is a diagonal matrix with positive droop
coefficients on its diagonal. Note thatuQ is added for the
sake of generality and one can setuQ = uQ = KQQ

∗ + V ∗

for nominal constant vectorsV ∗ and Q∗ to obtain the well
known expression of conventional droop controllers, see e.g.
[44]. For this choice off , we pick the functionH in (9) as
([29], [37])

H(V ) = 1
TKQV − cT ln(V ), (15)

with c ∈ R
N
>0

. This term has two interesting features. First, it
makes the incremental storage functionS radially unbounded
with respect toV on the positive orthant. Moreover, it shifts
the critical points ofS as desired. In particular, bearing in
mind (11), we have

∂(U(θ, ω, V ) +H(V ))

∂V
= [V ]−1Q− [V ]−1Q+ kQ

−[V ]−1c− kQ + [V ]−1c,

which, lettinguQ ∈ R
N
>0

and settingc = Q+K−1

Q V , yields

∂S
∂V

= [V ]−1Q− [V ]−1Q− [V ]−1K−1

Q V +K−1

Q 1

= [V ]−1K−1

Q (KQ(Q −Q) + V − V ).
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Noting that

0 = −V −KQQ+ uQ

we have

∂S
∂V

= [V ]−1K−1

Q (−TQV̇ + uQ − uQ).

Hence,

TQV̇ = −KQ[V ]
∂S
∂V

+ uQ − uQ. (16)

In the following subsections we will derive analogous iden-
tities and then use those for concluding incremental cyclo-
dissipativity of the system.

B. Quadratic droop controller

Another voltage dynamics proposed in the literature is
associated with the quadratic droop controllers of [34], which
can be expressed as (1) with

f(V,Q, uQ) = −KQQ − [V ](V − uQ), (17)

where againKQ = [kQ] collects the droop coefficients. The
quadratic droop controllers in [34] is obtained by setting
uQ = V ∗ for some constant vectorV ∗. Notice however the
difference: while [34] focuses on a network preserved micro-
grid model in which the equation above models the inverter
dynamics and are decoupled from the frequency dynamics,
here a fully coupled network reduced model is considered.

Moreover, note that the scaling matrix[V ] distinguishes this
case from the conventional droop controller. For this case,we
adapt the storage functionS by setting

H(V ) =
1

2
V TK−1

Q V. (18)

Recall thatS = U +H. Note thatS is defined on the whole
T
N × R

N × R
N and not onTN × R

N × R
n
>0

. The resulting
functionS can be interpreted as a performance criterion in a
similar vein as the cost function in [34]. Clearly we have

∂S
∂V

= [V ]−1Q− [V ]−1Q+K−1

Q (V − V ). (19)

Noting that

0 = −KQQ − [V ](V − uQ)

we have

[V ]−1Q = −K−1

Q (V − uQ).

Substituting the latter into (19) yields

∂S
∂V

= [V ]−1Q +K−1

Q V −K−1

Q uQ

= [V ]−1K−1

Q (KQQ+ [V ]V − [V ]uQ)

= [V ]−1K−1

Q (−TQV̇ + [V ]uQ − [V ]uQ)

Hence,

TQV̇ = −KQ[V ]
∂S
∂V

+ [V ](uQ − uQ). (20)

C. Reactive current controller

The frequency dynamics of the inverters in microgrids
typically mimics that of the synchronous generators known as
the swing equation. This facilitates the interface of inverters
and generators in the grid. To enhance such interface, an idea is
to mimic the voltage dynamics of the synchronous generators
as well. Motivated by this, we consider the voltage controller
identified by

f(V,Q, uQ) = −[V ]−1Q+ uQ. (21)

This controller aims at regulating the ratio of reactive power
over voltage amplitudes, which can be interpreted as “reactive
current” ([21]). For this controller, we set

H = 0 (22)

meaning thatS = U and no adaption of the storage function
is needed. Clearly, we have

∂S
∂V

=
∂U
∂V

= [V ]−1Q− [V ]−1Q

and it is easy to observe that

TQV̇ = − ∂S
∂V

+ uQ − ūQ (23)

where ūQ = [V ]−1Q is again the feedforward input guaran-
teeing the preservation of the steady state.

D. Consensus based controller

In this subsection, we consider another controller which
aims at achieving proportional power sharing.

f(V,Q, uQ) = −[V ]KQLQKQQ+ [V ]uQ (24)

whereKQ = [kQ] is a diagonal matrix andLQ is the Laplacian
matrix of a communication graph which is assumed to be
undirected and connected. This controller is a variation ofthat
of [30] in which voltage dynamics are scaled by the voltages at
the inverters, namely[V ], the reactive powerQ is not assumed
to be independent of the phase variablesθ, and an additional
input uQ is introduced. Assuming thatTQ = I for simplicity,
we chooseH as

H(V ) = −cT lnV (25)

wherec is a constant vector. Then, we have

∂S
∂V

= [V ]−1Q− [V ]−1Q− [V ]−1c+ [V ]−1c.

By settingc = Q, this reduces to

∂S
∂V

= [V ]−1(Q−Q). (26)

Moreover, defining

uQ = KQLQKQQ, (27)

the dynamics

V̇ = −[V ]KQLQKQQ+ [V ]uQ (28)

can be rewritten as

V̇ = −[V ]KQLQKQ[V ]
∂S
∂V

+ [V ](uQ − uQ). (29)
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E. Incremental dissipativity of microgrid models

In this subsection, we show how the candidate storage
functions introduced before allow us to infer incremental
dissipativity of the microgrids under the various controllers.

Theorem 1. Assume that the feasibility condition(6) admits
a solution and let Assumption 1 hold. Then system(1) with
output (12), input (13), and, respectively,

1) f(V,Q, uQ) given by(14);

2) f(V,Q, uQ) given by(17);

3) f(V,Q, uQ) given by(21);

4) f(V,Q, uQ) given by(24);

is incrementally cyclo-dissipative with respect to the syn-
chronous solution(θ, ω, V ), with

1) incremental storage function S defined by
(7),(9),(10),(15) and supply rate (5) with weight
matrices

W (V ) =

Å
KP 0

0 TQKQ[V ]

ã
, R =

Å
I 0

0 I

ã
;

2) incremental storage function S defined by
(7),(9),(10),(18) and supply rate (5) with weight
matrices

W (V ) =

Å
KP 0

0 TQKQ[V ]

ã
,

R(V ) =

Å
I 0

0 [V ]

ã
;

3) incremental storage function S defined by
(7),(9),(10),(22) and supply rate (5) with weight
matrices

W =

Å
KP 0

0 TQ

ã
, R =

Å
I 0

0 I

ã
;

4) incremental storage function S defined by
(7),(9),(10),(25) and supply rate (5) with weight
matrices

W (V ) =

Å
KP 0

0 [V ]KQLQKQ[V ]

ã
,

R(V ) =

Å
I 0

0 [V ]

ã
.

Proof: 1. Recall that

∂S
∂ω

= K−1

P TP (ω − ω),

∂S
∂θ

= DΓ(V )sin(DT θ)−DΓ(V )sin(DT θ0) = (P − P ).

(30)
Then

d

dt
S = (ω − ω)TTPK

−1

P ω̇

+(DΓ(V )sin(DT (θ)) −DΓ(V )sin(DT θ0))T θ̇ + (
∂S
∂V

)T V̇

= (ω − ω)TK−1

P (−(ω − ω)−KP (P − P ) + (uP − uP ))

+(DΓ(V )sin(DT (θ)) −DΓ(V )sin(DT θ0))T (ω − ω)

+(
∂S
∂V

)TT−1

Q (−KQ[V ]
∂S
∂V

+ uQ − ūQ)

= (ω − ω)TK−1

P (−(ω − ω)−KP (P − P ) + (uP − uP ))

+(P − P )T (ω − ω)− (
∂S
∂V

)TT−1

Q KQ[V ]
∂S
∂V

+(
∂S
∂V

)TT−1

Q (uQ − ūQ)

where the chain of equalities hold because of the feasibility
condition and (16). Hence

d

dt
S = −(ω − ω)TK−1

P (ω − ω) + (ω − ω)TK−1

P (uP − uP )

−(
∂S
∂V

)TT−1

Q KQ[V ]
∂S
∂V

+ (
∂S
∂V

)TT−1

Q (uQ − ūQ).

(31)
Observe now that by definition

∂S
∂V

=
∂S

∂V
− ∂S

∂V

∣

∣

∣

∣

−

and that ∂S
∂V

∣

∣

−
represents the output component∂S

∂V
at the

synchronous solution. Hence equality (32) at the top of the
next page can be established.
We conclude incremental cyclo-dissipativity of system (1),
(12), (13), (14) as claimed.

2. If in the chain of equalities defining
d

dt
S above, we use

(20) instead of (16), we obtain that

d

dt
S = −(ω − ω)TK−1

P (ω − ω) + (ω − ω)TK−1

P (uP − uP )

−(
∂S
∂V

)TT−1

Q KQ[V ]
∂S
∂V

+ (
∂S
∂V

)TT−1

Q [V ](uQ − uQ)

(33)
which shows incremental cyclo-dissipativity of system (1),
(12), (13), (17).
3. For this case, adopting the equality (23) results in the
equality

d

dt
S = −(ω − ω)TK−1

P (ω − ω) + (ω − ω)TK−1

P (uP − uP )

−(
∂S
∂V

)TT−1

Q

∂S
∂V

+
∂S
∂V

T

T−1

Q (uQ − uQ),

(34)
from which incremental cyclo-dissipativity of (1), (12), (13),
(21) holds.
4. Finally, in view of (29),

d

dt
S = −(ω − ω)TK−1

P (ω − ω) + (ω − ω)TK−1

P (uP − uP )

−(
∂S
∂V

)T [V ]KQLQKQ[V ]
∂S
∂V

+ (
∂S
∂V

)T [V ](uQ − uQ)

(35)
which implies incremental cyclo-dissipativity of (1), (12), (13),
(24).
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d

dt
S = −

Ä
(ω − ω)TK−1

P ( ∂S
∂V

− ∂S
∂V

∣

∣

−)
TT−1

Q

äÅKP 0

0 TQKQ[V ]

ãÇ
K−1

P (ω − ω)
T−1

Q ( ∂S
∂V

− ∂S
∂V

∣

∣

−)

å

+
Ä
(ω − ω)TK−1

P ( ∂S
∂V

− ∂S
∂V

∣

∣

−)
TT−1

Q

äÅI 0

0 I

ãÅ
uP − ūP

uQ − ūQ

ã
.

(32)

IV. FROM CYCLO-DISSIPATIVITY TO DISSIPATIVITY

The dissipation inequalities proven before can be exploited
to study the stability of the synchronous solution. Theorem
1 has been established in terms of cyclo-dissipativity rather
than dissipativity, i.e. without imposing lower boundedness
of the storage functionS. However, in order to conclude the
attractivity of the synchronous solution we ask for incremental
dissipativity of the system, and require the storage function to
posses a strict minimum at the point of interest. To this end,we
investigate conditions under which the Hessian of the storage
function S is positive definite at the point of interest, which
in this case is identified by the synchronous solution.
It is not difficult to observe that due to the rotational invariance
of θ variables, the existence of astrict minimum forS cannot
be anticipated. To clear this obstacle, we notice that the phase
anglesθ appear as relative terms, i.e.θi − θj , in (7) and thus
in S as well asS. To make this observation more explicit, we
write

U(θ, ω, V ) = Uη(DT θ, ω, V )

where

Uη(η, ω, V ) =
1

2
ωTK−1

P TPω +
1

2
V TA(cos(η))V.

In a similar vein, we define

Uη(η, ω, V ) = Uη(η, ω, V )− Uη(η, ω, V )

− ∂Uη

∂η

∣

∣

∣

∣

T

−
(η − η)− ∂Uη

∂ω

∣

∣

∣

∣

T

−
(ω − ω)− ∂Uη

∂V

∣

∣

∣

∣

T

−
(V − V )

(36)
to have

U(θ, ω, V ) = Uη(DT θ, ω, V ).

Note that with a little abuse of the notation, we replaceη by
DT θ when computingUη(DT θ, ω, V ) from (36). Now, as the
functionH in (11) does not depend onθ variables, we define

Sη(η, ω, V ) = Uη(η, ω, V ) +H(V )

to have
S(θ, ω, V ) = Sη(DT θ, ω, V ). (37)

Notice that while the solution of interest ofS(θ, ω, V ) is given
by the synchronous solution(θ, ω, V ), that ofSη(η, ω, V ) is
identified by(DT θ, ω, V ). It turns out that working with the
latter is more convenient, mainly due to the absence of the
rotational symmetry in the variablesDT θ.
For a later purpose, also notice that, by (37), the time derivative
of S along the solutions(θ, ω, V ) is equal to that ofSη along
(DT θ, ω, V ), namely

d

dt
S(θ, ω, V ) =

d

dt
Sη(DT θ, ω, V ).

Hence, as a consequence, from the proof of Theorem 1, we
infer that

d

dt
Sη(DT θ, ω, V )

= −(ω − ω)TK−1

P (ω − ω) + (ω − ω)TK−1

P (uP − uP )

−(
∂Sη

∂V
)TX(V )

∂Sη

∂V
+ (

∂Sη

∂V
)TY (V )(uQ − ūQ),

(38)
whereX(V ) = T−1

Q KQ[V ], T−1

Q or [V ]K−1

Q LQK
−1

Q [V ] and
Y (V ) = T−1

Q , T−1

Q [V ], [V ] depending on the voltage con-
troller adopted.

Remark 2. An alternative way to get rid of the rotational
invariance is to set the voltage angle of one node of the
network as the reference, and rest the analysis on the reduced
order system, see [29] for more details. Another way, is to
express the dynamics of the system using directly(η, ω, V )
variables, similarly as in [38]. However, we do not adopt this
approach here in order to better contrast our results with others
in the literature on oscillator synchronization that are mostly
working with (θ, ω, V ) coordinates [14], [32], [27], [20]. �

To proceed with the analysis, first note that

∂Sη(η, ω, V )

∂η
= Γ(V )sin(η)− Γ(V )sin(η), (39)

∂Sη(η, ω, V )

∂ω
=

∂S(θ, ω, V )

∂ω
,
∂Sη(η, ω, V )

∂V
=

∂S(θ, ω, V )

∂V
,

(40)
whereη = DT θ. Hence,(η, ω, V ) is a critical point ofSη.
Next, we compute the Hessian as

∂2Sη

∂(η, ω, V )2
=













Γ(V )[cos(η)] 0 ∗
0 K−1

P TP 0

[V ]−1|D|Γ(V )[sin(η)] 0 A(cos(η)) +
∂2H
∂V 2













.

(41)
Clearly, the matrix above is positive definite if and only if






Γ(V )[cos(η)] [sin(η)]Γ(V )|D|T [V ]−1

[V ]−1|D|Γ(V )[sin(η)] A(cos(η)) +
∂2H

∂V 2






> 0.

(42)

Notice that in all the previously studied cases, the matrix
∂2H

∂V 2

is diagonal. In particular,

∂2H

∂V 2
= KQ + [V ]−2[c],

∂2H

∂V 2
= K−1

Q ,

∂2H

∂V 2
= 0,

∂2H

∂V 2
= [V ]−2[c],

(43)



8

for conventional droop, quadratic droop, reactive currentcon-
troller, and consensus based protocol, respectively. Now,let

∂2H

∂V 2
:= [h(V )]. (44)

and h(V ) = col(hi(Vi)). Then, the following result, which
establishes decentralized conditions for checking the positive
definiteness of the Hessian, can be proven:

Proposition 1. Let V ∈ R
N
>0

and η ∈ (−π
2
, π
2
)m. If for all

i = 1, 2, . . . , N ,

mii := B̂ii+
∑

k∼{i,ℓ}∈E

Biℓ

Ç
1− V ℓ

V i

sin2(ηk)

cos(ηk)

å
+hi(V i) > 0,

(45)
and

mii >
∑

k∼{i,ℓ}∈E

Biℓ |cos(ηk)|
Ç
1 +

V i

V j

tan2(ηk)

å
, (46)

then
∂2Sη

∂(η, ω, V )2

∣

∣

∣

∣

−
> 0. (47)

Proof: The proof is given in the appendix.

Remark 3. The result shows that the two conditions (45) and
(46) for positive definiteness are met provided that at the point
(η, ω, V ) the relative voltage phase angles are small enough
and the voltages magnitudes are approximately the same. This
is a remarkable property, stating that if the equilibria of interest
are characterized by small relative voltage phases and similar
voltage magnitudes, then they are minima of the incremental
storage functionS(θ, ω, V ), and equivalentlyisolatedminima
of Sη(η, ω, V ). �

Remark 4. The Hessian of energy functions has always
played an important role in stability studies of power networks
(see e.g. [39], and [29] for a microgrid stability investiga-
tion). Conditions for assessing the positive definiteness of the
Hessian of an energy function associated to power networks
have been reported in the literature since [39], and used even
recently to study e.g. the convexity of the energy function
([17]). Our conditions however are different and hold for more
general energy functions. �

Remark 5. It is interesting to establish a connection with ex-
isting studies on oscillator synchronization arising in different
contexts. Once again, this connection leverages the use of the
energy function. If the coupling between any pair of nodesi, j

is represented by a single variablevij , modeling e.g. a dynamic
coupling, instead of the product of the voltage variablesViVj ,
then a different model arises. To obtain this, we focus for the
sake of simplicity on oscillators without inertia, and replace
the previous energy function (7) with

U(θ, v) = −1

2

N
∑

i=1

∑

j∈Ni

vijBij cos(θj − θi) +
1

2

∑

{i,j}∈E

v2ij .

Then
∂U

∂vij
= −Bij cos(θj − θi) + vij ,

and the resulting (gradient) system becomes

θ̇i =
∑

j∈Ni
vijBij sin(θj − θi), i = 1, 2, . . . , N

v̇ij = −(Bij cos(θj − θi)− vij), {i, j} ∈ E,

which arises in oscillator networks with so-called plastic
coupling strength ([27], [20], [22]) and in the context of
flocking with state dependent sensing ([27], [16], [32]). Al-
though stability analysis of equilibria have been carried out
for these systems, the investigation of the methods proposed
in this paper in those contexts is still unexplored and deserves
attention.

V. ATTRACTIVITY OF THE SYNCHRONOUS SOLUTION

In this section, we establish the attractivity of the syn-
chronous solution, which amounts to the frequency regulation
(ω = ω∗) with optimal properties. Moreover, we investigate
voltage stability and reactive power sharing in the aforemen-
tioned voltage controllers.
Recall from (6) that for the synchronous solution we have

0 = −KP (DΓ(V )sin(DT θ0)− P ∗) + uP . (48)

Among all possible vectorsuP satisfying the above, we look
for the one that minimizes the quadratic cost function

C(uP ) =
1

2
uT
PK

−1

P uP

This choice is explicitly computed as

uP = −1
1
TP ∗

1TK−1

P 1
. (49)

Then, substituting (49) into (48),

P = P ∗ −K−1

P 1
1
TP ∗

1TK−1

P 1
, (50)

or, component-wise,

P i = P ∗
i − (kP )

−1

i

1
TP ∗

1TK−1

P 1
,

whereKP = [kP ]. In the case of droop coefficients selected
proportionally ([33], [15], [1], [6], [38]), i.e.

(kP )iP
∗
i = (kP )jP

∗
j ,

for all i, j, we conclude that

(kP )iP i = (kP )jP j (51)

which accounts for the desired active power sharing based on
the diagonal elements ofKP as expected. Bearing in mind
(50), the feasibility condition (6) reduces to the following
assumption:

Assumption 2. There exists constant vectorsV ∈ RN and
θ0 ∈ T

N such that

DΓ(V )sin(DT θ0) = (I −K−1

P

11
T

1TK−1

P 1
)P ∗ (52)

and
0 = f(V , [V ]A(cos(DT θ0))V , uQ). (53)
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Remark 6. Similar to [38, Remark 5] it can be shown that if
the assumption above is satisfied then necessarilyV ∈ R

N
>0

.
Furthermore, in case the network is a tree, it is easy to observe
that (52) is satisfied if and only if there existsV ∈ R

N
>0

such
that

‖Γ(V )−1D†(I −K−1

P

11
T

1TK−1

P 1
)P ∗‖∞ < 1,

with D† denoting the left inverse ofD. In the case of the
quadratic voltage droop and consensus based reactive power
controllers, explicit expressions of the voltage vectorV can
be given (see Subsection V-A), in which case the condition
above becomes dependent on the voltage phase vector at the
equilibrium θ0 only.

To achieve the optimal input (49), we consider the following
active power controller ([33], [15], [6])

ξ̇ = −LP ξ +K−1

P (ω∗ − ω)
uP = ξ

(54)

where the matrixLP is the Laplacian matrix of an undirected
and connected communication graph. For the choice of the
voltage/reactive power controluQ, we setuQ = uQ where
uQ is a constant vector enforcing the setpoint for the voltage
dynamics. The role of this setpoint will be made clear in
Subsection V-A. Then, the main result of this section is as
follows:

Theorem 2. Suppose that Assumption 2 and condition(47),
with ω = ω∗, hold. LetuP be given by(54) anduQ = uQ ∈
R

N . Then the solutions of(1) locally converge to the set of
points whereω = ω∗ anduP = uP with uP being the optimal
input (49). Moreover, the following statements hold:

(i) For conventional droop controller(14), the vectorsV
andQ locally converge to the constant vectorsV andQ

satisfying
KQQ+ V = uQ

(ii) For quadratic droop controller(17), the vectorsV and
Q locally converge to the constant vectorsV and Q

satisfying
KQ[V ]−1Q+ V = uQ

(iii) For reactive current controller(21), the vectorsV and
Q locally converge to the constant vectorsV and Q

satisfying
[V ]−1Q = uQ

(iv) For consensus based reactive power controller(24), the
vectorV locally converges to a constant vector‹V , andQ
converges to a constant vector‹Q = [‹V ]A(cos(DT θ0)‹V
satisfying

LQKQ
‹Q = KQuQ.

Moreover, for allt ≥ 0,

1
TK−1

Q ln(V (t)) =1
TK−1

Q ln(‹V ) = 1
TK−1

Q ln(V (0)).

In caseuQ = 0, then

‹Q = K−1

Q 1

‹V TA(cos(DT θ0))‹V
1TK−1

Q 1
.

Proof: The desired synchronous solution in this case is
characterized byω = ω∗, uP given by (49),ξ = K−1

P uP ,
and the correspondingV and Q satisfying (6). Define the
incremental storage functionCP (ξ) = 1

2
(ξ−ξ)T (ξ−ξ). Notice

that ξ ∈ im1. Then

d

dt
CP = −(ξ − ξ)TLP (ξ − ξ)− (ξ − ξ)T (ω − ω)

= −(ξ − ξ)TLP (ξ − ξ)− (uP − uP )
TK−1

P (ω − ω).

Observe that, by settinguQ = uQ and bearing in mind (38),
the equalities (31), (33), (35) and (34) can be written in a
unified manner as

d

dt
Sη(DT θ, ω, V ) = −(ω − ω)TK−1

P (ω − ω)

−
Å
∂Sη

∂V

ãT
X(V )

∂Sη

∂V
+ (ω − ω)TK−1

P (uP − uP )

whereX is a positive (semi)-definite matrix suitably chosen
according to the underlying voltage dynamics. Now taking
Sη + CP as the Lyapunov function, we have

d

dt
Sη +

d

dt
CP = −(ω − ω)TK−1

P (ω − ω)

−
Å
∂Sη

∂V

ãT
X(V )

∂Sη

∂V
− (ξ − ξ)TLP (ξ − ξ).

(55)

By local strict convexity ofSη + CP (thanks to (47)), we
can construct a forward invariant compact level set around
the desired synchronous equilibrium(DT θ, ω, V ) and apply
LaSalle’s invariance principle. Notice in particular thaton this
forward invariant setV (t) ∈ R

N
>0

for all t ≥ 0. Then the
solutions are guaranteed to converge to the largest invariant
set where

ω = ω

0 = LP (ξ − ξ)

0 =

Å
∂Sη

∂V

ãT
X(V )

∂Sη

∂V

(56)

Recall thatξ ∈ im1. Hence, on the invariant set,LP ξ = 0
and thusξ = γ1 for someγ ∈ R. Note that, by (54),γ has
to be constant given the fact thatω = ω∗ andLP ξ = 0. Also
note that

uP = KP (DΓ(V )sin(DT θ0)− P ∗)

on the invariant set. Multiplying both sides of the above
equality by1TK−1

P yields γN = −1
TP ∗. Therefore,ξ =

1

N
11

TP ∗, anduP converges to the optimal inputuP given
by (49).
By (31) and (33), the matrixX(V ) is equal toT−1

Q KQ[V ]
for both the droop controller and quadratic droop controller.

Hence,KQ[V ]
∂Sη

∂V
= 0 from the third equality in (56). Then,

by (16) and (20), and (40), we obtain thatV̇ = 0 on the
invariant set for these controllers. Similarly by (34), thematrix
X = T−1

Q for the reactive current controller, which by (23)
results again inV̇ = 0. Consequently on the invariant set, we
have

0 = f(V ,Q, uQ).
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This together with the isolation of the minima (47) proves the
statements(i), (ii), and(iii) in Theorem 2.

For the consensus based reactive power controller, we have
X(V ) = [V ]KQLQKQ[V ] as evident from (35). Hence, by
(26) and the third equality in (56), on the invariant set we
obtain that

LQKQQ = LQKQQ. (57)

Substituting the above into the corresponding voltage dynam-
ics (28) yields

V̇ = −[V ]KQLQKQQ+ [V ]uQ

Hence, by (27), we havėV = 0 on the invariant set, and
thusV converges to a constant vector‹V . Then obviouslyQ is
equal to a constant vector, namely‹Q = [‹V ]A(cos(DT θ0))‹V .
By (27) and (57), the vector‹Q satisfies

LQKQ
‹Q = K−1

Q uQ. (58)

Recalling thatuQ = KQLQKQQ (see (27)), the voltage
dynamics can be written as

V̇ = −[V ]KQLQKQ(Q−Q).

Hence, we have

d

dt
(1TK−1

Q lnV ) = 1
TK−1

Q [V ]−1[V ]KQLQKQ(Q−Q) = 0,

as1TLQ = 0, which proves that1TK−1

Q ln(V ) is a conserved
quantity.
Equality (58) anduQ = 0 yields

‹Q = αK−1

Q 1

for someα ∈ R. In fact,α ∈ R>0, since for the synchronous
solution the above writes as

[‹V ]A(cos(DT θ0))‹V = αK−1

Q 1.

Multiplying both sides of the above equality by1T yields

‹V TA(cos(DT θ0))‹V = α1TK−1

Q 1,

thus completing the proof.

A. Power sharing

Theorem 2 portrays the asymptotic behavior of the micro-
grid models discussed in this paper. An immediate interesting
consequence is the achievement offrequency regulation, volt-
age stability, andoptimal active power sharingfor the coupled
nonlinear microgrid model (1). Note that active power sharing
is guaranteed by the convergence ofP to P that satisfies
(51). Next, we take a closer look at other consequences and
implications of Theorem 2 for different voltage dynamics.

1) Conventional droop controller: From the first statement of
Theorem 2, it readily follows that

(kQ)iQi + V i

(kQ)jQj + V j

=
(uQ)i
(uQ)j

.

Therefore, the ratio on the left hand side of the above can be
arbitrarily assigned by an appropriate choice ofuQ, for each
i, j ∈ {1, 2, . . . , N}. This results in a partial reactive power

sharing for the droop controlled inverters.

2) Quadratic droop controller: From the second statement of
Theorem 2, we obtain that

(kQ)iQi + V
2

i

(kQ)jQj + V
2

j

=
(uQ)i
(uQ)j

.

which again results in a partial reactive power sharing by an
appropriate choice ofuQ. Moreover, in this case, the voltage
variables at steady-state are explicitly given by

V = (I +KQA(cos(DT θ0))−1uQ.

3) Reactive current controller: In this case, the third statement
of Theorem 2 yields

Qi

V i

Qj

V j

=
(uQ)i
(uQ)j

= (
V j

V i

) (
Qi

Qj

).

The first equality provides the exact reactive current sharing,
whereas the second equality can be interpreted as a mixed
voltage and reactive power sharing condition. Moreover, the
voltage variables at steady-state are given by

V = A−1(cos(DT θ0))uQ.

4) Consensus based reactive power controller: In this case, the
exact reactive power sharing can be achieved as evident from
the fourth statement of Theorem 2, withuQ = 0. In particular,
we have

(kQ)i‹Qi = (kQ)j‹Qj, (59)

which guarantees proportional reactive power sharing accord-
ing to the elements ofkQ as desired. Notice that the quantity
1
TK−1

Q lnV is a conserved quantity in this case. Hence, the
point of convergence for the voltage variables is primarily
determined by the initializationV (0).

B. Power sharing and lossy lines

Under appropriate conditions, power sharing properties of
the consensus based controller are preserved in the presence
of lossy transmission lines that are homogeneous, namely
whose impedencesZij equal |Zij |e

√−1φ, with φ ∈ [0, π
2
].

Consistently, let us consider the case of shunt components at
the buses that are a series interconnection of a resistor andan
inductor whose impedance isrii +

√
−1xii. The active and

reactive power associated to this shunt element are given by

sℓii = pℓii +
√
−1qℓii =

V 2

i

r2ii + x2

ii

rii +
√
−1

V 2

i

r2ii + x2

ii

xii

Assuming homogeneity of the shunt elements, i.e.rii +√
−1xii =

√

r2ii + x2

iie
√−1 arctan

xii
rii = |Zii|e

√−1 arctanφ,
whereφ = arctan xii

rii
for all i, then

sℓii = pℓii +
√
−1qℓii =

V 2

i

|Zii|
cosφ+

√
−1

V 2

i

|Zii|
sinφ.
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Active and reactive power exchanged between busesi and j

are (see e.g. [44], [24])

pℓij =
V 2

i

|Zij |
cosφ− ViVj

|Zij |
cosφ cos θij +

ViVj

|Zij |
sinφ sin θij

and

qℓij =
V 2

i

|Zij |
sinφ− ViVj

|Zij |
sinφ cos θij −

ViVj

|Zij |
cosφ sin θij

Then the total active and reactive power “supplied” by the
inverter to the network is equal to

P ℓ
i =

∑

j∈Ni
pℓij + pℓii =

[sinφ cosφ]

ñ
∑

j∈Ni

ViVj

|Zij |
sin θij

V 2
i

( 1
|Zii|

+
∑

j∈Ni

1
|Zij |

) −
∑

j∈Ni

ViVj

|Zij |
cos θij

ô

Qℓ
i =

∑

j∈Ni
qℓij + qℓii =

[− cosφ sinφ]

ñ
∑

j∈Ni

ViVj

|Zij |
sin θij

V 2
i

( 1
|Zii|

+
∑

j∈Ni

1
|Zij |

) −
∑

j∈Ni

ViVj

|Zij |
cos θij

ô

Bearing in mind (2), (3), we observe that
ï
P ℓ
i

Qℓ
i

ò
= R(φ)

ï
Pi

Qi

ò
(60)

where

R(φ) =

ï
sinφ cosφ

− cosφ sinφ

ò
.

Hence, under the conditions of Theorem 2,4 the closed-loop
system in which the voltage is controlled via a reactive power
consensus scheme, namely

θ̇ = ω

TP ω̇ = −(ω − ω∗)−KP (P
ℓ sinφ−Qℓ cosφ− P ∗) + uP

= −(ω − ω∗)−KP (P − P ∗) + uP

TQV̇ = [V ]KQLQKQ(P
ℓ cosφ+Qℓ sinφ)

= [V ]KQLQKQQ
(61)

defined by means of the measured active and reactive power
P ℓ, Qℓ in the presence of lossy lines and shunt elements, and
whereP,Q, P ℓ, Qℓ are related via (60) anduP is defined as
in (49), guarantees convergence ofP andQ to respectively
P and‹Q satisfying (51) and (59). The implementation of the
dynamics (61), (60) requires the knowledge of the parameter
φ, which is assumed to be available.
Let us assume that

(kP )i
(kP )j

=
(kQ)i
(kQ)j

, ∀i, j. (62)

Then, by relation (60) at steady state,

P
ℓ

i = P i sinφ+ ‹Qi cosφ

=
(kP )j
(kP )i

P j sinφ+
(kQ)j
(kQ)i

‹Qj cosφ

=
(kP )j
(kP )i

P
ℓ

j .

4In these conditions, whenever relevant, the susceptancesB̂ii, Bij should
be replaced by|Zii|−1, |Zij |−1.

Similarly, for the reactive power

‹Qℓ
i = −P i cosφ+ ‹Qi sinφ

= − (kP )j
(kP )i

P j cosφ+
(kQ)j
(kQ)i

‹Qj sinφ

=
(kQ)j
(kQ)i

(−P j cosφ+ ‹Qj sinφ)

=
(kQ)j
(kQ)i

‹Qℓ
j.

The previous arguments can be formalized as follows:

Proposition 2. Suppose that Assumption 2 with
f(V,Q, uQ) = −[V ]KQLQKQQ and condition (47),
with ω = ω∗ and B̂ii, Bij replaced by |Zii|−1, |Zij |−1,
respectively, hold. LetuP be given by(54). Then the solutions
of (61) locally converge to the set of points whereω = ω∗ and
uP = uP with uP being the optimal input(49). Moreover,
for all t ≥ 0,

1
TK−1

Q ln(V (t)) =1
TK−1

Q ln(‹V ) = 1
TK−1

Q ln(V (0)).

Finally,P ℓ, Qℓ converge to constant vectorsP
ℓ
, ‹Qℓ that satisfy

(kP )iP
ℓ

i = (kP )jP
ℓ

j

(kQ)i‹Qℓ
i = (kQ)j‹Qℓ

j,
(63)

provided that (62) holds.

C. Dynamic extension

Another interesting feature is that thanks to the incremental
passivity property the static controlleruQ = uQ can be
extended to a dynamic controller. To see this note that the
incremental input-output pair, associated withuQ, appears in
the time derivative of the storage functionSη as

(uQ − uQ)
TR

∂Sη

∂V
.

Clearly this term is vanished by applying the feedforward input
uQ = uQ. But an alternative way to compensate for this term
is to introduce the dynamic controller

λ̇ = −R
∂Sη

∂V
uQ = λ

(64)

Then, denoting the steady state value ofλ by λ, the incremen-
tal storage functionCQ = 1

2
(λ− λ)T (λ− λ) satisfies

d

dt
CQ = −(λ− λ)TR

∂S
∂V

= −(uQ − uQ)
TR

∂Sη

∂V

Therefore, the same convergence analysis can be constructed
based on the storage functionSη+CP+CQ, and thus the result
of Theorem 2 extends to the case of dynamic voltage/reactive
power controller (64).
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VI. CONCLUSIONS

We have presented a systematic design of incremental
Lyapunov functions for the analysis and the design of network-
reduced models of microgrids. Our results encompass existing
ones and lift restrictive conditions, thus providing a powerful
framework where microgrid control problems can be naturally
cast. The method deals with the fully nonlinear model of
microgrids and no linearization is carried out.
Two major extensions can be envisioned. The first one is
the investigation of similar techniques for network-preserved
models of microgrids. Early results show that this is feasible
and will be further expanded in a follow-up publication. The
second one is how to use the obtained incremental passivity
property to interconnect the microgrid with dynamic con-
trollers and obtain a better understanding of voltage control.
Examples of these controllers are discussed in [35] but many
others can be proposed and investigated.
A more general question is how the set-up we have proposed
can be extended to deal with other control problems that
are formulated in the microgrid literature. Furthermore, the
proposed controllers exchange information over a communi-
cation network and would be interesting to assess the impact
of the communication layer on the results. In that regard,
the use of Lyapunov functions is instrumental in advancing
such research, since powerful Lyapunov-based techniques for
the design of complex networked cyber-physical systems are
already available (see e.g. [11]).

APPENDIX

Proof of Proposition 1.For the sake of notational simplicity,
in this proof we omit the bar from allV, θ. Note that by
assumptionΓ(V )[cos(η)] is nonsingular. Then the Hessian
is positive definite, or equivalently (42) holds, if and onlyif
Γ(V )[cos(η)] and

Ψ(η, V ) := A(cos(η)) + [h(V )]− [V ]−1|D|Γ(V )[sin(η)]2·
·[cos(η)]−1|D|T [V ]−1 > 0.

Introduce the diagonal weight matrix

W (V, η) := Γ(V )[sin(η)]2[cos(η)]−1.

For eachk ∼ {i, j} ∈ E, its kth diagonal element is

Wk(Vi, Vj , ηk) := BijViVj

sin2(ηk)

cos(ηk)
.

Furthermore, it can be verified that

[

|D|Γ(V )[sin(η)]2[cos(η)
]−1 |D|T ]ij

=



















∑

k∼{i,ℓ}∈E

BiℓViVℓ

sin2(ηk)

cos(ηk)
if i = j

BijViVj

sin2(ηk)

cos(ηk)
if i 6= j,

from which
[

[V ]−1|D|Γ(V )[sin(η)]2[cos(η)
]−1 |D|T [V ]−1]ij

=



















∑

k∼{i,ℓ}∈E

Biℓ

Vℓ

Vi

sin2(ηk)

cos(ηk)
if i = j

Bij

Vi

Vj

sin2(ηk)

cos(ηk)
if i 6= j.

On the other hand, form ∼ {i, j} ∈ E,

[A(cos(η)) + [h(V )]]ij

=







B̂ii +
∑

k∼{i,ℓ}∈E

Biℓ + hi(Vi), if i = j

−Bij cos(ηm), if i 6= j.

Suppose that each diagonal entry of matrixΨ(η, V ) is positive,
that is for eachi = 1, 2, . . . , N ,

mii := B̂ii +

N
∑

ℓ=1,ℓ 6=i

Biℓ + hi(Vi)−
∑

k∼{i,ℓ}∈E

Biℓ

Vℓ

Vi

sin2(ηk)

cos(ηk)

= B̂ii +
∑

k∼{i,ℓ}∈E

Biℓ

Ç
1− Vℓ

Vi

sin2(ηk)

cos(ηk)

å
+ hi(Vi) > 0.

Notice that this holds true because of condition (45). Assume
also that, for eachi = 1, 2, . . . , N ,

mii >
∑

k∼{i,ℓ}∈E

Biℓ

∣

∣

∣

∣

∣

cos(ηk) +
Vi

Vj

sin2(θk)

cos(θk)

∣

∣

∣

∣

∣

=
∑

k∼{i,ℓ}∈E

Biℓ |cos(ηk)|
Å
1 +

Vi

Vj

tan2(ηk)

ã
,

which is condition (46). Then by Gershgorin theorem all the
eigenvalues of the matrixΨ(η, V ) have strictly positive real
parts and the Hessian is positive definite.
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