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A modular design of incremental Lyapunov
functions for microgrid control with power sharing

C. De Persis and N. Monshizadeh

Abstract—In this paper we contribute a theoretical framework these quantities are sinusoidal terms depending on thegelt
that sheds a new light on the problem of microgrid analysis phasor relative phases. As a result, mathematical models of
and control. The starting point is an energy function comprsing  yicrogrids reduce to high-order oscillators interconadatia

the kinetic energy associated with the elements that emulatthe . idal l M th i iahts d d
rotating machinery and terms taking into account the reactve SNuS0ldal coupling. Moreover the coupling weights depem

power stored in the lines and dissipated on shunt elements. the voltage magnitudes, which obey extra coupled dynamics.
We then shape this energy function with the addition of an Two additional features complicate the situation: the gnes
adjustable voltage-dependent term, and construct increm®al  of loads typically leads to differential-algebraic modeisd

storage functions satisfying suitable dissipation inequdies. Our 4~ presence of unmeasured loads requires controllersahat
choice of the voltage-dependent term depends on the VO|tagedeaI with such uncertainty

dynamics/controller under investigation. Several microgids dy- - . )
namics that have similarities or coincide with dynamics aleady ~ To deal with the complexity of these dynamical models a

considered in the literature are captured in our incrementd common assumption is to decouple frequency and voltage dy-
energy analysis framework. The twist with respect to exisig namics thus to enable a separate analysis of the two dynamics
results is that our incremental storage functions allow for a Once separated, the two dynamics are simpler to analyze and

large signal analysis of the coupled microgrid obviating tle need . . . .
for simplifying linearization techniques and for the restrictive the presence of algebraic constraints can be investigated.

decoup”ng assumption in which the frequency dynamics is ﬂﬂy this case, a common tool to infer Stablllty results is to rely
separated from the voltage one. A complete Lyapunov stabty on small signal arguments that focus on a linearized model
analysis of the various systems is carried out along with a of the system; see e.d. [34]. Results that deal with the fully
discussion on their active and reactive power sharing propeies. coupled system are also available {[29],1[41].1[24]). Insthi
case, the results mainly concern network-reduced modés wi
primary control, namely stability rather than stabilinatiof
I. INTRODUCTION the equilibrium solution. Furthermore, lossy transmisdines
) _ o _can also be studied[([13], [41],1[4], [41], [R4], and al§0)[9]
Microgrids have been envisioned as one of the leading|y gpite of these many advances, what is still missing is a
technologies to increase the penetration of renewabl@ser comprehensive approach to deal with the analysis and dontro
in the power market. A thorough discussion of the techn@gsign for microgrids. In this paper we provide a contribati
logical, physical and control-theoretic aspects of micid®is iy this direction. The starting point is the energy function
provided in many interesting comprehensive works, inalgdi gssociated with the system, a combination of kinetic and
[44], [43], [18], [2], [28]. potential energy. Relying on an extended notion of incretalen
Powe_r electronic_s allows_invert_er_in the micrqgrids to eMyissipativity, a variety of shifted Lyapunov functions vefeo
late desired dynamic behavior. This is an essential featooe  ¢yitical points have desired features are constructed. The
when the microgrid is in grid forming mode, inverters have tgonstruction is inspired by works in the control of netwoirks
inject active and reactive power in order to supply the loagge presence of disturbances, which makes use of incrementa
in a shared manner and maintain the desired frequency %sivity and internal model controller§ ([3€]] [SI. [23])he
voltage values at the nodes. Hence, much work has focuggdpunov functions that we design encompass several micro-
on the design of dynamics for the inverters that achieygig dynamics that have appeared in the literature, inolydi
these desired properties and this effort has involved bgHk conventional droop controller ([44]. [29]), the quaitra
practitioners and theorists, all providing a myriad of $olns, droop controller[[34], and the reactive power consensus dy-
whosg performance has been tested mainly numerically angics ([30)). our analysis, however, suggests suitabldifino
experimentally. cations (such as a suitable voltage-dependent weightitigeof
The main obstacle however remains a systematic designi@fctive power consensus dynamics[of [30]) and inspires new
the microgrid controllers that achieve the desired prégert controllers, such as the so-called reactive current cbetro
in terms of frequency and voltage regulation with powefyyr approach has two additional distinguishing features: w
sharing. The difficulty lies in the complex structure of #esyg not need to assume decoupled dynamics and we perform
systems, comprising dynamical models of inverters andsoag large signal analysis.
that are physically interconnected via exchange of actiy§,r contribution also expands the knowledge on the use
and reactive power. In quasi steady state working conditioyf energy functions in the context of microgrids. Although

_ _ _ _energy functions have played a substantial role to deal with
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a new light into the construction of these energy functionfgr analysis of the microgrid modell(1) for different typek o

allow us to cover a wider range of microgrid dynamics, anebltage controllers, and study frequency regulation, agst

paves the way for the design of dynamic controllers, folloyvi stability, and active as well as reactive power sharing. % ke

the combination of passivity techniques and internal modgbint of our approach is that it does not rely on simplifyimgla

principles as in[[5]. We refer the reader to elg.![25],/[12] fooften restrictive premises such as the decoupling assampti

seminal work on passivity-based control of power networksand linear approximations. First, we look at the microgrid
In this paper we focus on network reduced models ofiodel [1) in more detail.

microgrids ([29], [41], [24], [[35]). These models are typlly  active and reactive poweThe active power; is given by

criticized for not providing an explicit characterizatiof the

loads ([34]). Focusing on network reduced models allows us P, = Z B;;jViV;sin®;;, 05 :=60; —0; (2)

to reduce the technical complexity of the arguments and to JEN;

provide an elegant analysis. However, one of the advanta

of the use of the energy functions is that they remain effecti

also with network preserved models ([39)). In fact, a prélim @, = B;;V;? — Z BijViVjcosbij, 60ij:=0; —6;. (3)

nary investigation not reported in this manuscript for thkes JEN:

of brevity shows that the presented results extend to the cas R

of network preserved models. A full investigation of thisea Note that here3;; = Bi; + 3 c v, Bij, whereB;; = Bj; > 0

will be reported elsewhere. is the susceptance at edge j} and B;; > 0 is the shunt
The outline of the paper is as follows. In Sectioh II, detailsusceptance at nodé Hence,B;; > 3"\, Bi; for all i.

on the model under consideration are provided. In Se€fibn It is useful to have compact representations of both active

the design of incremental energy functions is carried oat aAnd reactive power. Settif(V') = diag(y1(V), ..., var(V)),

incremental dissipativity of various models of microgriss- 7x(V) = ViV;B;, with k € {1,2,..., M} being the index

sociated with different voltage dynamics/controllershiswn. corresponding to the edgg,j} (in short, &k ~ {i,j}), the

A few technical conditions on these energy functions amgctor of the active power at all the nodes writes as

discussed in Section 1V, and a decentralized test to check .

them is also provided. Based on the results of these segtions P = DU(V)sin(D"9).

attractivity of the prescribed synchronous solution anliag® \where D = [d;;] is the incidence matrix of the graph describ-

stability is presented in Sectidn] V, along with a discussigRg the interconnection structure of the network, and thetare

on power sharing properties of the proposed controllers. dy,(.) is defined element-wise. Let us now introduce the vector

¥ the reactive power by

few accessory results on power sharing in the presence of hg- — ¢ol(B,,, ..., Byy). Since |di| cos(dixbi + d;6;) =
mogeneous transmission lines are also presented. Congludiys(g, — 0,), the vector of reactive power at the nodes takes
remarks are provided in the last section. the form

_ T
II. MICROGRID MODEL AND THE SYNCHRONOUS Q = [V][4o]V — |DIT(V)cos(D™ ),

SOLUTION where [v] represents the diagonal matrix associated to the
We consider the following network-reduced model of sectorw, andlDé is obtained by replacing each elemefy
microgrid of D with [d;;|.
. Other compact representation is useful as well. To this end,
0 = w introduce the symmetric matrix
Tpw = —(w—w*)—Kp(P—P*)—i—up (1)
TQV = f(V,Q,uqQ) A(COS(DTH)) =
0 Blg COS 912 e BIN COS 91]\/
whered € TV is the vector of voltage angles, € RY is the By cos 09, 0 ... Byncosfon

frequency,P € RY is the active power vectof) € R is the . . , : ;

reactive power vector, and € RY is the vector of voltage : : '

magnitudes. The matriceEp, Ty,, and Kp are diagonal and BnicosOni Bnacosfnz ... 0

positive definite. The vectots™ and P* denote the frequency _ _

and active power setpoints, respectively. The ve®@bralso . This §hunt susceptance can model a purely inductive Ioaqaaleq at the
. . inverter . See|[30, Remark 11.3] for a discussion on purely inductivads.

models active power loads at the buses([24, Section 2.88. T 2 fact, denoted by the vector D76, the entryij of the matrix

vectorug is an additional input. The functiofi accounts for |D|T'(V)cos(DT6) writes as

the voltage dynamics/controller and is decided later. Ny
The model [(IL) with an appropriate selection pfencom- |DIT(V)cos(DTO));; = Z \dsi|ve (V) cos(mi)
passes various models of network-reduced microgrids in the i
literature, including conventional droop controllers aquatic = Z |d;1|ViV; Bij cos(dix0; + djx0;)
droop controllers, and consensus based reactive powermtont ket{iij}
schemes ([44],133],.129],134],130]). We refer the reader t - Z ViV; By cos(6; — 0;)
[31] for a compelling derivation of microgrid models fromdiir JEN;

principles. Our goal here is to provide a unifying framework



where again we are exploiting the identios(dix0; + Observe thatj := D70 = D"¢°, and D@ = 0. Hence,Q
djrf;) = cos(6; — 0;). The vectorQ becomes is constant a3~ and7 are constant. An incremental model of
the dynamical system with respect to the synchronous soluti

Q = [V][Ao]V - [V]A(cos(D"0))V :
—  [V]([4o] — A(cos(DT0))V @) can b(; written as follows
= [V]A(cos(DT0))V. 20-0) = (-
As a consequence of the conditiéh; > Yo iEN: Bi-z' for all 4, d

provided that at least one of the shunt susceptaBgeis non- TPE(W —w) = —(w-w) - Kp(P-P)+ (up—Tp)

zero (which is the standing assumption throughout the paper_ d — — = _

the symmetric matrix4(cos(D70)) has all strictly positive ez (V-V) = f(V,Qu) - f(V,Q,uq).

eigenvalues and hence is a positive definite matrix. Note tha

the matrixA can be interpreted as a weighted adjacency matrix

of the graph, wheread is associated with a loopy Laplacian ~ !I!- DESIGN OF INCREMENTAL ENERGY FUNCTIONS
matrix. A crucial step for the Lyapunov based analysis of the

To pursue our analysis, we demonstrate an incremer&upled nonlinear model(1) is constructing a storage fanct
dissipativity properties of the various microgrid modeigth ~ TO this end, we exploit the following energy-based function

respect to a “synchronous solution”. The notion of dis$yitgt 1 7.
adopted in this paper is introduced next, and synchronou& (¢:w,V) = Jw Kp Tpw— Z ViV;jBij cos 0y
solutions will be identified afterwards. N {i.j}ek
1
Definition 1. Systemi = f(x,u),y = h(z), z € X, X the +5 > B2
state spacey, u € R™, is incrementally cyclo-dissipative with i=1 @

state-dependent supply ratéz, u,y) and with respect to a
given input-state-output tripléz, z, 7)), if there exist a contin-
uously differentiable functiof : X — R, and state-dependent
positive semi-definitd matricesW, R : X — R™*™,  such
that for allz € X, uw € R™ andy = h(x), 7 = h(T)

Notice that the first term represents the kinetic energy, the
second one the reactive power stored in the links and the
third one the power associated with the shunt componend. Als
notice that the last two sums together Write%agﬁil Q.. The
compact expression df is therefore

oS oS
- — (. < -y —1
oo f(@u) + = f(@,7) < s(e,u—T,y - 7) U0,w,V) = %MTK;TPMJF %]FQ
with 1 7 1op T
s(x,u,y) _ —yTW(,T)y—f—yTR(SC)’U, (5) = iw KP TPW+§V .A(COS(D 9))‘/,

o . . (8)
We remark_that at this point the functi¢his not required to_ where we have exploited](4). Since we are interested in
be non-negative nor bounded from below and that the weight incremental passivity of the system with respect to the
matricesIV, R are allowed to be state dependent. The use Qfnchronous solution, an incremental storage functiontisi

the qualifier “cyclo” in the definition above stresses therfer  j,ceq. First, we compute the gradient of the storage fumctio
feature ([40]).

as follows:
Remark 1. In case the matriced” and R are state indepen- ou 1 ou .
dent, some notable special cases of Definilibn 1 are obtained 3, — Kp Tpw, 00, - Z By ViV sin(8y;),
as follows: U JEN:
i) W >0, R=1,8 >0 (incremental passivity) oy, = BiVi - > Bi;Vjcosbi;.
i) W > 0, R = I, § > 0 (output-strict incremental ’ JEN:
passivity) Hence
i) W >0, R=1 (cyclo-incremental passivity) oU
iv) W >0, R = I (output-strict cyclo-incremental passivity). 55 = = DT(V)sin(D"9),
The synchronous solutio&iven the constant vectorsp and ov- V]71Q = [Ao]V — [V]7Y|D|T(V)cos(DT0) .
Ug, the synchronous solution is defined as the triple ov ) o .
_ In the equality above, we are implicitly assuming that each
(0(t),w(t), V(1) = (0,w,V), component of the voltage vector never crosses zero. In fact,
wheref = 1.t + 6°, the vectorg®, V € RY, are constant, We shall assume the following:
the scalaw.’ is constantw = 1w°, and where Assumption 1. There exists a subset of the state space
0 = —(@—w)—Kp(P—P*) +Tp 6 TV x RN x RY, that is forward invariant along the solutions
0 = AV.Q.7). © om.

3 , _ o . Conditions under which this assumption is fulfilled will be
A state-dependent matridd : X — R™*™ is positive semi-definite if

yTM(x)y > 0 for all x € X and for ally € R™. If M is positive semi- proyided later in the paper. o .
definite andy” M (z)y = 0 < y = 0 then M is called positive definite. ~ Notice that the voltage dynamics identified lfyhas not yet



been taken into account in the functibh Therefore, to cope

with different voltage dynamics (or controllers) we add tueo

component, namely? ('), and define
SO,w,V)=U0,w,V)+ H(V). 9)

We rest our analysis on the following foundational incretaén
storage function

_ . as|” _
S(G,W,V): S(G,w,V)—S(G,w,V)— % (9_9)
os/T oS . _
- 5| w-m- 52 -7
B B (10)
where we use the conventional notation
OF OF _ oF " OF _ .
Dz _—%(ff)a O _—(%(3@))

Bearing in mind [(ID) and(11), we notice that

a8(0,w,V) _ oU U
00 00 00
= DI(V)sin(DT9) — DT'(V)sin(D79),
os(,w, V)  oU oU| 4 _
T e ow| KpTrl—®)
oS(0,w,V) U O
ov TV av
OH 0H

—1 Y 1-1)
VITe-VIT'Q+ 55— oy | -
The above identities show that the critical points®bccur
for w = w and P = P which is a desired property. The critical
point of S with respect to thd” coordinate is determined by
the choice ofH which depends on the voltage dynamics.
To establish the incremental dissipativity property, wian

for a functionF : X — R. Note thatS can be decomposedduce the output variables

as
S=U+H (11)
where
_ ou 1T _
UB,w,V)y= UO,w,V)-U(0,w,V) 50 0-0)
U™ eulT . _
and
— oHIT _
HV) = HV)-HV)- 55| (V-7)

Observe that as the synchronous solution satisfies
N(DT), then

ou |

55| (DT(V)sin(DT8))T (0 — 9)

(DT(V)sin(DT6°))7 (6 — 6°)

(0 —0)

i.e. the term does not depend explicitly anThis observation
will be useful when differentiating the incremental furocti

by ¢.

Also note that
U _oU U g
v v av,_m @-ve

Moreover, the terms id{(6,w, V) which explicitly depends
onw write as

1 1
§wTK;1pr - inKlngpw ~ 0 'Kp'Tp(w — )

= (0~ B) K5 Tp(w ~ ).
Hence, the explicit expression of is
Ub..V) = 4w - 2)" Kp ' Tp(w - )
+1VT A(cos(DT0))V — 1V A(cos(DTE))V
—(DT(V)sin(D"9))" (0 - 0) - Q[V]~H(V - V)

y = col(yp, yq) (12)
with
oS oS
_ —1 _ —1 _ —1
yP_TP %_KP w, yQ_TQ Wv
and input variables
u = col(up, ug). (13)

In what follows, we differentiate among different voltage
controllers and adjust the analysis accordingly by tunihg

A. Conventional droop controller
The conventional droop controllers are obtained by setting

fin (@) as
fV,Q,uq) = =V — KoQ +uq

where Ko = [kg] is a diagonal matrix with positive droop
coefficients on its diagonal. Note that, is added for the
sake of generality and one can 3gf = ug = KoQ* + V*
for nominal constant vectorg™* and Q* to obtain the well
known expression of conventional droop controllers, see e.
[44]. For this choice off, we pick the functionH in (@) as
([291, [37])

(14)

H(V)=1"KqV — 'In(V), (15)

with ¢ € RY. This term has two interesting features. First, it
makes the incremental storage functi®madially unbounded
with respect tol/ on the positive orthant. Moreover, it shifts
the critical points ofS as desired. In particular, bearing in
mind (11), we have

AUWB,w, V) + H(V))

- VI7'Q - V1@ + g

—V] te—kg + [V] e,

which, lettingzzg, € RY, and setting: = @ + K,'V, yields

= VIR VIR + KM

VI KQ (K@ - Q) +V V).



Noting that C. Reactive current controller

0=-V—-KqgQ+1g The frequency dynamics of the inverters in microgrids
typically mimics that of the synchronous generators knogn a
we have the swing equation This facilitates the interface of inverters
oS i . B and generators in the grid. To enhance such interface, aridde
o Vi Kq (=1QV +uq —ug). to mimic the voltage dynamics of the synchronous generators
as well. Motivated by this, we consider the voltage conémll
Hence, 95 identified by
ToV = ~KolVlzy +uq ~To. (16) (V,Q,uq) = =[V]7'Q + ug. (21)

In the following subsections we will derive analogous iderFhis controller aims at regulating the ratio of reactive pow
tities and then use those for concluding incremental cyclover voltage amplitudes, which can be interpreted as “neact

dissipativity of the system. current” ([21]). For this controller, we set

H=0 (22)
B. Quadratic droop controller meaning thatS = U and no adaption of the storage function

Another voltage dynamics proposed in the literature is needed. Clearly, we have
associated with the quadratic droop controllers_of [34]iclth oS  ou . N
can be expressed 43 (1) with Vo ViImQ-[Vl—Q
F(V,Q,u0) = —KoQ — [VI(V — ug), (17) and it is easy to observe that
. oS _

where againK = [kq] collects the droop coefficients. The ToV = v +ug —uq (23)

quadratic droop controllers in_[34] is obtained by settin

ug = V* for some constant vectdr*. Notice however the

difference: while [34] focuses on a network preserved micr

grid model in which the equation above models the inverter

dynamics and are decoupled from the frequency dynamils, Consensus based controller

here a fully coupled network reduced model is considered. In this subsection, we consider another controller which
Moreover, note that the scaling matfix] distinguishes this aims at achieving proportional power sharing.

case from the conventional droop controller. For this case, -

adapt the storage functiaf by sert)ting 1V, Quq) = ~[VIKqLoKqQ + [Viug (24)

\%hereﬂQ = [V]~'Q is again the feedforward input guaran-
(t)eeing the preservation of the steady state.

whereK g = [kg] is a diagonal matrix andl, is the Laplacian
H(V) = EVTK;V. (18) matrix of a communication graph which is assumed to be
2 undirected and connected. This controller is a variatiothat
Recall thatS = U/ + H. Note thatS is defined on the whole of [30] in which voltage dynamics are scaled by the voltages a
TV x RY x RY and not onTV x RY x RZ,. The resulting the inverters, namelfy’], the reactive powe® is notassumed
function S can be interpreted as a performance criterion inta be independent of the phase variallesnd an additional
similar vein as the cost function i [34]. Clearly we have inputug is introduced. Assuming thadfy = I for simplicity,
we chooseH as

oS _ N — _ — _ T
o = WVITQ-[VITR+ KGNV -V).  (19) H(V) = —c"InV (25)
: wherec is a constant vector. Then, we have
Noting that 55
0=-KoQ — [V](V —1g) rran VIT'Q-VI'Q -V te+ V] te.
we have By settingc = Q, this reduces to
VI™'Q = —K5'(V —1gq). aS _ _
@ = =Q-Q). (26)
Substituting the latter intd_(19) yields Moreover, defining
oS _ o _ —
v = VIT'Q+ K,'V — Kj'ug ig = KqLoKoQ, (27)
= [VIT'KG (KQ + VIV — [V]ug) the dynamics
= V'K (~TQV + [V]ug — [V]u ~
VIR eV Ve = Vi) V = ~[VIKqLaKqQ + Vlug 28)
Hence,

can be rewritten as

TV = ~KqlV]oo + Viug ~Ta).  (20)  V=-[VIKoLaKalVloo + Vi(ug ~Tig).  (29)



E. Incremental dissipativity of microgrid models

In this subsection, we show how the candidate storaged_sz (w—w)TTPKlglw
functions introduced before allow us to infer incremental

dissipativity of the microgrids under the various coneed. ~ +(DT(V)sin(D”()) — DI'(V)sin(D76°))76 + (88

)
ov
Theorem 1. Assume that the feasibility conditiq) admits = (v —©)"Kz'(—(w — @) — Kp(P — P) + (up — up))
a solution and let Assumptidd 1 hold. Then sys@hnwith . T _ . TQONT(, . —
output [@2), input (I3), and, respectively, HDIL(V)sin(D7(0)) — DI(V)sin(D76%)" (w — @)

1%

oS . 1 oS
- (VT KoV + ug — i)
1) f(V,Q, enb : v’ e oV
2; ;EVZ UQ; ng by; = (w-0)TKp'(~(w—©) — Kp(P —P) + (up —1p))
,Q,ug) given by (@), K e o

P-P)Tw-w Tr=lp ]=—

3) f(V,Q,up) given by(@I), +(as )7 ( )= (577)"Tg KalVlo
90 11 B

4) f(V,Q,uq) given by(@24), +(8V) T (uq — Q)

where the chain of equalities hold because of the feagibilit
is incrementally cyclo-dissipative with respect to the -sym:ondition and[(1B). Hence

chronous solutior(#, @, V), with
_ _ de__ ~(w-2)"'Kpt(w-o) + (w—-2)"Kp'(up —Tp)
1) incremental  storage function S  defined by dt

: oS oS S | 1
(IZI),@),@),(IE) and supply rate [{5) with weight (6V)TT IKQ[V]W (6V) TQ (ug — Q).
matrices (31)
— (KP 0 ) . (I O) . Observe now that by definition
N0 ToKg[V] 0 I a8 98 9S|”
ov. .oV 9V
2) incremental storage function § defined by
@),@),@0),(I8) and supply rate [{5) with weightand that 25| represents the output componeift at the
matrices synchronous solution. Hence equalify(32) at the top of the
next page can be established.
W(V) = (KP 0 ) We conclude incremental cyclo-dissipativity of systel, (1)
0 ToKqlV] @2), (I3), 1) as claimed.
I 0 2. If in the chain of equalities deflnln%—S above, we use
R(V) = (0 [V]) ; @) instead of[(16), we obtain that
3) incremental  storage  function S  defined by —5 = (w-w)TKp'(w-w)+ (w— E)TK’l(uP —p)
@),0),(@0),22) and supply rate [[5) with weight 88 88 88 _
W= (Kp 0 ) R— (I O) . which shows incremental cyclo-dissipativity of system, (1)
0 To 0 I (12), (13), (1)

3. For this case, adopting the equalify](23) results in the
4) incremental  storage  function & defined by equality

(@.09),(@0),(25) and supply rate [{5) with weight d

matrices 28 =—(w-3)"Kp'(w-) + (0 —0)" Kp' (up —Tp)
T
WV:( ) —(55)" T, + o5 To ' (ug —Tg),
W) 0 [VIKgLoKg[V] v’ @ av T av @ (34)
I 0 from which incremental cyclo-dissipativity of](1), (12[13),
R) = (o m) @) holds.

4, Finally, in view of [29),

Proof: 1. Recall that T 1 _ T 1 _
ES— —(w—w)'Kp (w—wW)+ (w—w) Kp (up —up)

oS _ _ 0 0 0
oo = Kp'Tp(w - ), —(§)T[V]KQLQKQ[V]£ + (%)T[V](UQ - ﬂ@(és)
?92 = DI'(V)sin(D"6) — DI'(V)sin(D"6°) = (P — P).  which implies incremental cyclo-dissipativity &f (1), 1413),
(30) (2.

Then [ |



(32)

IV. FROM CYCLO-DISSIPATIVITY TO DISSIPATIVITY Hence, as a consequence, from the proof of Theddem 1, we
énfer that

d
E577(DT9,W, V)

~(w-®)TKp! (w - ) + (w - @) Kp" (up — Tp)

oS ;o DST  OS"

The dissipation inequalities proven before can be exmloit
to study the stability of the synchronous solution. Theorem
has been established in terms of cyclo-dissipativity elath
than dissipativity, i.e. without imposing lower boundedsie
of the storage functios. However, in order to conclude the T ~
attractivity of the synchronous solution we ask for incremaé _(W) X(V)W + (W) Y (V)(uq ~ 1q),
dissipativity of the system, and require the storage famcto (38)
posses a strict minimum at the point of interest. To this ered, Where X (V) = T, 'Kq[V], T, or [V]K,'LoKg'[V] and
investigate conditions under which the Hessian of the gwraY (V) = T,',T;,'[V],[V] depending on the voltage con-
function S is positive definite at the point of interest, whictroller adopted.
in this case is identified by the synchronous solution.

It is not difficult to observe that due to the rotational irfaaice
of # variables, the existence ofsdrict minimum for S cannot

Remark 2. An alternative way to get rid of the rotational

invariance is to set the voltage angle of one node of the
o X ) network as the reference, and rest the analysis on the réduce
be anticipated. To clear this obstacle, we notice that tlas@h order system, seé [29] for more details. Another way, is to

gngles@ appear as relative terms, i&'_,ej’ in (7) and.thus express the dynamics of the system using dire¢ilyw, V)
In S as well asS. To make this observation more explicit, W& ariables, similarly as in [38]. However, we do not adopsthi
write approach here in order to better contrast our results witaret
in the literature on oscillator synchronization that arestho

working with (6, w, V') coordinates[[14],[132],[[27][[20]. =

U,w,V)=U"DT0,w,V)

where
To proceed with the analysis, first note that

1 1
U'(n,w,V) = §WTK;1TPW + §VTA(COS(77))V.

In a similar vein, we define

U(n,w, V) =U"n,w,V)—U"1,w,V)
oun |t . oun|t _.oun|” —_
- 5—77 (n—17)— O (w—w) - Va (V=V)
(36)
to have

UB,w, V) =U"(DT0,w,V).

Note that with a little abuse of the notation, we replacby
DT§ when computing("(DT0,w, V) from (38). Now, as the

function in (I1) does not depend dhvariables, we define

ST, w, V) =U"(n,w, V) +H(V)
to have

SO,w,V)=8"(DT0,w,V). (37)

Notice that while the solution of interest 6(0, w, V) is given
by the synchronous solutioff, , V), that of S (n,w, V) is

identified by (D76,@, V). It turns out that working with the
latter is more convenient, mainly due to the absence of the

rotational symmetry in the variabld3”' 6.

For a later purpose, also notice that, byl (37), the time dévie
of S along the solution$f, w, V) is equal to that 05" along
(DT9,w,V), namely

d
—S"(D1 Vv
YtS (D*6,w,V).

d
55(9, w, V)

n _
PR T)  r(w)sing) - (V)sinG).  (39)
oS"(n,w,V) 0S80,w,V) 0S"(n,w,V) 05(0,w,V)
Ow Ow ov ov (40)

wheren = DT9. Hence,(7,, V) is a critical point ofS".
Next, we compute the Hessian as

o5
o(n,w, V)2
I'(V)[cos(n)] 0 *
0 K:'Tp 0
VIZHDIE(V)[sin(m)] 0 A(cos(n)) + %
(41)

Clearly, the matrix above is positive definite if and only if
[ I'(V)[cos(n)] [sin(n)]F(V)IDIT[V]*l]

. . 02H > 0.
(V1D fsinG)] Ateost) + 575 |
(242)
. . : . 9°H
Notice that in all the previously studied cases, the maé%
is diagonal. In particular,

0°H . PH

e Ko+ [V]7[d], 572 Q> 3
0°H 0°H ,

gvz =0 vz~ V177l



for conventional droop, quadratic droop, reactive curant- and the resulting (gradient) system becomes
troller, and consensus based protocol, respectively. Netw, b — S n vy By sin(0; — 0), i=1,2,....N
2 . ) .o
gvlg — [h(V)]. (44) vij = —(Bijcos(t; —0;) —vij), {i,j} € FE,
) ~which arises in oscillator networks with so-called plastic
and a(V)) = col(hi(V;)). Then, the following result, which coypling strength {[27],[120],[122]) and in the context of
establishes decentralized conditions for checking thétipes flocking with state dependent sensing {[27].1[16].1[32])- Al

definiteness of the Hessian, can be proven: though stability analysis of equilibria have been carried o
Proposition 1. Let V € RY, and7 € (—Z, Z)™. If for all for these systems, the investigation of the methods prapose
i=1.2 N, ” 272 in this paper in those contexts is still unexplored and deser
U o, attention.
. V, sin?(m —
mi; = B+ Z Bie (1 - L2 @k))+hi(vi) >0,
km{i0}EE Vi cos(Ty) V. ATTRACTIVITY OF THE SYNCHRONOUS SOLUTION
(45) In this section, we establish the attractivity of the syn-
and chronous solution, which amounts to the frequency reguiati
_ V; 9, (@ = w*) with optimal properties. Moreover, we investigate
Mii > Z Big |eos(T)| { 1+ V. tan(7) |, (46) voltage stability and reactive power sharing in the aforeme
kn{iL}eE ! tioned voltage controllers.
then ) Recall from [6) that for the synchronous solution we have
0°5" _
A, V)E| > 0. (47) 0 = —Kp(DT(V)sin(DTH%) — P*) + up. (48)
Proof: The proof is given in the appendix. m Among all possible vectorgp satisfying the above, we look

N for the one that minimizes the quadratic cost function
Remark 3. The result shows that the two conditiofis](45) and

(49) for positive definiteness are met provided that at thietpo C(up) = lﬂgKlglﬂP

(7,w, V) the relative voltage phase angles are small enough 2

and the voltages magnitudes are approximately the samg. THiis choice is explicitly computed as

is a remarkable property, stating that if the equilibriardérest 17 p*

are characterized by small relative voltage phases andasimi up = —ﬂm : (49)
voltage magnitudes, then they are minima of the incremental P

storage functior5(#, w, V), and equivalentlysolatedminima Then, substituting[{49) intd (48),
of §"(n,w, V). "

— 17 pr
_ * —1

Remark 4. The Hessian of energy functions has always P=P —Kp 11]1TK1;1]1’ (50)
played an important role in stability studies of power natwo .
(see e.g.[[39], and _[29] for a microgrid stability invest-igaor’ component-wise,
tion). Conditions for assessing the positive definitendgb® — ., 1Tp*

i ; ; Pi =P —(kp); ———10s
Hessian of an energy function associated to power networks g PATKGM

have been reported in the literature sincel [39], and used eve -
recently to study e.g. the convexity of the energy functiofnere&r = [kp]. In the case of droop coefficients selected
([L7]). Our conditions however are different and hold fornmo Proportionally ([33], [15], [1], [6], [38]), i.e.

general energy functions. " (kp)i Py = (kp); P,

Remark 5. It is interesting to establish a connection with ex: .
T ) ; > SR for all 7, j, we conclude that

isting studies on oscillator synchronization arising iffetent

contexts. Once again, this connection leverages the udesof t (kp)iP; = (kp); P; (51)
energy function. If the coupling between any pair of notlgs i ) _ i
is represented by a single variable, modeling e.g. a dynamic Whlch_ accounts for the desired active power shgrlng bas_ed on
coupling, instead of the product of the voltage variablgg;, the diagonal elements ok’p as expected. Bearing in mind

then a different model arises. To obtain this, we focus fer t1f20). the fe.asibility condition[{6) reduces to the follogin
sake of simplicity on oscillators without inertia, and reps assumption:

the previous energy functiofl(7) with Assumption 2. There exists constant vectold € RN and
L ) 6° € TV such that
U(G,v) = —= Z Z UijBij COS(@j - 91) + = Z UZ-QJ-. . _ ﬂ]lT
24 % 2 Ses DIr(V)sin(DT6%) = (I — K* m)P (52)
Then 5U and

o, Dol = 00, 0= F(V. [V Alcos(DT6)V.7q).  (59)



Remark 6. Similar to [38, Remark 5] it can be shown that if Proof: The desired synchronous solution in this case is
the assumption above is satisfied then necesskrily RY,. characterized by = w*, up given by [49).¢ = K;lﬂp,
Furthermore, in case the network is a tree, it is easy to sbseand the correspondingy and @ satisfying [6). Define the
that [52) is satisfied if and only if there exists€ RY, such incremental storage functiafy (¢) = 3(£—£)7(£—¢€). Notice
that thaté € im 1. Then

117

rv)y 'ntqy-kKz'———
1T(V) ( PR

)P <1, der =€~ BLoc -8~ (6~ (D)

— “\T ra — N\NT -—1 _
with Dt denoting the left inverse ob. In the case of the = €= L€ =) — (up —Tp) K (w — D).
quadratic voltage droop and consensus based reactive po@bserve that, by settingg = g and bearing in mind’(38),
controllers, explicit expressions of the voltage vecibrcan the equalities[(31),[(33)[(85) anf _{34) can be written in a
be given (see Subsection V-A), in which case the conditiamified manner as
above becomes dependent on the voltage phase vector at thg
equilibrium 6° only. —S"(DT0,w,V) = —(w-©) "K' (w - )

dt
- (asn 95"

. . . . . T
To achieve the optimal inpUt (#9), we consider the following W) X(V)W + (w—o)T Kz (up — Tp)

active power controller [([33]/[15]/[6])
£ = —Lpt+Kp'(w* —w)
up = f
where the matriX. p is the Laplacian matrix of an undirecte
and connected communication graph. For the choice of the

where X is a positive (semi)-definite matrix suitably chosen
(54) according to the underlying voltage dynamics. Now taking
dS” + Cp as the Lyapunov function, we have

Lsny %Cp =—(w-0)"Kp'(w-w)

voltage/reactive power contralg, we setug = Tg where dt 55
g is a constant vector enforcing the setpoint for the voltage oS" TX v os" AT - (55)
dynamics. The role of this setpoint will be made clear in — \ gy ( )W — (=8 Lp(€ 9

Subsectiol_V=A. Then, the main result of this section is as . .
follows: By local strict convexity ofS” + Cp (thanks to [(4]7)), we

can construct a forward invariant compact level set around
Theorem 2. Suppose that Assumptidh 2 and conditl@d), the desired synchronous equilibriuf®”6,w, V) and apply
with @ = w*, hold. Letup be given byB4) andug =g € LaSalle’s invariance principle. Notice in particular thoat this
RY. Then the solutions of]) locally converge to the set of forward invariant setV/ (¢) € RY, for all ¢+ > 0. Then the
points wherev = w* andup = up Withp being the optimal solutions are guaranteed to converge to the largest imtaria

input (@9). Moreover, the following statements hold: set where
(i) For conventional droop controllef14), the vectorsV w = w
and @ locally converge to the constant vectdrsand @ — Lp(c-%)
satisfying . (56)
KqQ+V =1q _ (@) s
0= or) *V%y

(ii)

For quadratic droop controller(@?), the vectorsV and
Q locally converge to the constant vecto¥s and Q
satisfying

KolVIT'Q+V =1

(iii) For reactive current controller(21), the vectorsl’ and

(iv)

Q locally converge to the constant vecto¥d and Q
satisfying

For consensus based reactive power contro{24), the
vectorV locally converges to a constant vectigr and @
converges to a constant vectQr= [V]A(cos(DT6%)V
satisfying B

LoKgQ = Kqug.

Moreover, for allt > 0,
17Ky In(V (1) =1"Kg5' In(V) = 17K, In(V(0)).
In casetug = 0, then
VT A(cos(DT6%))\V
17K, '

~ —1
Q=K,'1

Recall thaté € im 1. Hence, on the invariant sef,p¢ = 0
and thus¢ = 1 for somey € R. Note that, by[(B4);y has
to be constant given the fact that= w* and Lp¢ = 0. Also
note that

up = Kp(DI'(V)sin(DT%) — P*)

on the invariant set. Multiplying both sides of the above
equality by 17K " yields yN = —17P*. Therefore,¢ =
%]lllTP*, andup converges to the optimal inpatp given

by (49).

By BI) and [(3B), the matrixX (V') is equal toTy, ' Kq[V]

for both the drog}p controller and quadratic droop controlle

Hence,KQ[V]%iV = 0 from the third equality in[(56). Then,

by (I8) and [(2D), and{40), we obtain th&t = 0 on the
invariant set for these controllers. Similarly thy{34), thatrix

X = Tél for the reactive current controller, which by {23)
results again i/ = 0. Consequently on the invariant set, we
have

0= f(vvaqu)'
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This together with the isolation of the minima{47) proves thsharing for the droop controlled inverters.
statements:), (iz), and (iii) in Thgorenﬂz. 2) Quadratic droop controller From the second statement of
For the consensus based reactive power controller, we h%eeore 2. we obtain that
X (V) = [V]KgLoKg[V] as evident from[(35). Hence, by ’
@)_and the third equality in((56), on the invariant set we (ko)iQ; +V? (o)
obtain that - Y 2~ (o),
LoKqQ = LqoKqQ. (57) QU !
Substituting the above into the corresponding voltage dynaWhiCh again results in a partial reactive power sharing by an
ics (28) yields appropriate choice dfig. Moreover, in this case, the voltage
] variables at steady-state are explicitly given by

V =—[VIKqLqoKqQ + [V]ug _
} ) . V = (I + KgA(cos(DT6°)) g.
Hence, by [(2l7), we hav& = 0 on the invariant set, and

thusV converges to a constant vectidr Then obviouslyQ is  3) Reactive current controlledn this case, the third statement
equal to a constant vector, namély= [V].A(cos(D*¢°))V. of Theorenl2 yields

By (27) and [5V), the vectaR satisfies

~ 1 v, U )z V; @
LoKoQ = K5'o. (58) v, _ (@) Yy Gy
@ Qe (@); 'V, Q,
Recalling thatug = KoLgKqQ (see [2V)), the voltage v
dynamics can be written as The first equality provides the exact reactive current sigari
V= —[V]KoLoKo(Q — Q). whereas the secqnd equality can be mt_erpreted as a mixed
voltage and reactive power sharing condition. Moreoveg, th

Hence, we have voltage variables at steady-state are given by
d _ e — —
E(]1TKQl InV) = 17K, V] [VIKqLoKqo(Q—Q) =0, V = A Y(cos(DT6°))uq.
as1” Lg = 0, which proves that” K, ' In(V) is a conserved
guantity.

Equality [58) andio, — 0 yield 4) Consensus based reactive power controllerthis case, the
quality [58) andiq = 0 yields exact reactive power sharing can be achieved as evident from
Q= aKélll the fourth statement of Theordmh 2, witly = 0. In particular,

f R. In fact R i for th h we have
or somea <€ R. In fact, a« € R, since for the synchronous =~ =~
solution the above writes as (kQ)iQi = (ko); Qs (59)

[V]A(COS(DTHO))V — oK1 which guarantees proportional reactive power sharingraeco
Q ing to the elements of, as desired. Notice that the quantity
Multiplying both sides of the above equality by yields ﬂTKél InV is a conserved quantity in this case. Hence, the
~r T A0S T 1 point of convergence for the voltage variables is primarily
Vi Alcos(DTT))V = ol Ko, determined by the initializatio (0).
thus completing the proof. ]

) B. Power sharing and lossy lines
A. Power sharing
Theoren!2 portrays the asymptotic behavior of the micrgﬁ
grid models discussed in this paper. An immediate intergsti
consequence is the achievemenfrefiuency regulatioyvolt-
age stability andoptimal active power sharinfpr the coupled
nonlinear microgrid mode[{1). Note that active power shgri
is guaranteed by the convergence Bfto P that satisfies
(51). Next, we take a closer look at other consequences
implications of Theorerhl2 for different voltage dynamics.

Under appropriate conditions, power sharing properties of
e consensus based controller are preserved in the peesenc
of lossy transmission lines that are homogeneous, namely
whose impedenceg;; equal|Z;|eV~1%, with ¢ ¢ [0, 3].
Consistently, let us consider the case of shunt componénts a
the buses that are a series interconnection of a resistoamnd
inductor whose impedance is; + v/—1z;;. The active and

Fctive power associated to this shunt element are given by

2 2
1) Conventional droop controllerFrom the first statement of st = pf + /—1¢}, = %7’“ + \/_1%%
Theoren{2, it readily follows that T T T T T T
(kQ)iQ; + Vi  (ug): Assuming homogeneity _Of, th'e ihunt elements, ig.+
(k0);Q; +V;  (WQ); VeTmi = 1% FafeV T o |7, feV Luctens,

) ] where¢ = arctan 7 for all 4, then
Therefore, the ratio on the left hand side of the above can be *

arbitrarily assigned by an appropriate choiceugf, for each A e P V?
i,j € {1,2,...,N}. This results in a partial reactive power i = Pii T V=18 = Z:i|

cos ¢ ++v/—1

vz o
' sin ¢.
2

| Zii
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Active and reactive power exchanged between busssd j Similarly, for the reactive power
are (see e.gl [44].124])

é)vf = —Picoso+ 61 sin ¢
pg-zv—fcosgb— ViV cos¢cos€i-+wsin¢sin9i- (kp)j— (kqg)j =~ .
Y12y |Zij] T 1Zy] ’ = - Pjcos ¢+ =Z==Q;sin¢
k(kP)i (kQ)i
and = EkQ;J (—Pjcos¢+ aj sin @)
2 /- /. Q)i
qu = Vi sin ¢ — ViV sin ¢ cos 6;; — Vil cos ¢ sin 0;; (k@) e
|Zi51 |Zi51 |Zi51 = ko) Qj-
Then the total active and reactive power “supplied” by the
inverter to the network is equal to The previous arguments can be formalized as follows:
Pf = SN pfj +pf = Proposition 2. Suppose that Assumptio_rﬂ 2 with
vivy s QauQ) = _[Y]KQLQKQQ and condition (41),
[sing  cosg] { ) 2 e, a1 om0 v,v, } with @ = w* and B;;, B;; replaced by |Z;|™',|Z;;|™*,
VIR + e, TT) T Dojen T2 < s respectively, hold. Let» be given byE4). Then the solutions
¢ y ¢ of (1) locally converge to the set of points where= w* and
Qi =2 jen: Gy T %i = up = up With Tp being the optimal inpu@3). Moreover,
[— cos ¢ sin d>] |: ZZjENi VZT—TVJJEQM ViV :| for a” ! Z O,
VR D ien, TB5T) ~ Djen, T2 ©080id ~
el S T SN 1] 17K, In(V(1) =17 K" In(V) = 17 K" In(V(0)).
Bearing in mind [(R),[{B), we observe that
P! p; Finally, P*, Q¢ converge to constant Vectors , Q' that satisfy
i g . —
where (kp)iDy = (kp); B, (63)
Ry = | e o (k)@ = (ko) @),
" |—cos¢ sing]’

provided that[(6R) holds.
Hence, under the conditions of Theor&ifl the closed-loop

system in which the voltage is controlled via a reactive powe

consensus scheme, namely C. Dynamic extension

0 = w . . . .
. . , . Another interesting feature is that thanks to the increalent
Tro = —(w- “*) - Kp(P* Smf —Qfcosé — P) +up passivity property the static controllar, = 7, can be
L= —lw-wn) - KIZ,(P -P )j?LP extended to a dynamic controller. To see this note that the
oV = [VIKqQLoKq(P'cos¢ + Q' sing) incremental input-output pair, associated with, appears in
= [VIKqLoKq@Q (61) the time derivative of the storage functidf as
defined by means of the measured active and reactive power 98"
P* Q' in the presence of lossy lines and shunt elements, and (uq — EQ)TRw-

where P, Q, P*, Q" are related via[{80) andp is defined as
in (49), guarantees convergence Bfand @ to respectively Clearly this term is vanished by applying the feedforwaralin
P and(Q satisfying [51) and(89). The implementation of the., = ug. But an alternative way to compensate for this term
dynamics [(611),[(60) requires the knowledge of the parametsrto introduce the dynamic controller
¢, which is assumed to be available.
Let us assume that ' 08
A R

(k) _ (ha): o 9
A ) (62) ug = A

(kp);  (kQ);
Then, by relation[{80) at steady state, Then, denoting the steady state value\dfy A, the incremen-
tal storage functio€g = 3 (A — X)T(X — )) satisfies

¢

P, = FiSilfl¢—|—§icosq5
(kp)j—= . (kQ)j ~ d o DS oS
(kp); L7500+ gy, @ c0s® 5Ca =~ =N"Rem = —(ug — )" R>
kp)j—=t
- Ekgj Pj- Therefore, the same convergence analysis can be constructe

based on the storage functiéfi+Cp+Cq, and thus the result
“In these conditions, whenever relevant, the susceptaBggsB;; should of Theoreni 2 extends to the case of dynamic voltage/reactive
be replaced byZ;;| =1, |Z;;| . power controller[(GK).



12

VI. CONCLUSIONS from which

1 2 L Ty-11.
We have presented a systematic design of incremental [[ [DIE(V)[sin(n)] [cos(n)} IDITIVI™ s

Lyapunov functions for the analysis and the design of ndtwor Vosin?(m) . . .
reduced models of microgrids. Our results encompass egisti Z Bievm if i=y
ones and lift restrictive conditions, thus providing a pdwke ={ k~{i f}eE ! 1Tk

framework where microgrid control problems can be naturall V; sin?(ny,) it i
cast. The method deals with the fully nonlinear model of JV cos(n) J:
microgrios and no .Iinearization is corr.ied out. . On the other hand, fom ~ {i, j} € E

Two major extensions can be envisioned. The first one is

the investigation of similar techniques for network-presel [A(cos(n)) + [R(V)]];;

models of microgrids. Early results show that this is felasib .

and will be further expanded in a follow-up publication. The Bi;i + Z Big+ hi(Vi), if i=j
second one is how to use the obtained incremental passivity = ke~{il}eE )
property to interconnect the microgrid with dynamic con- —Bi; COS(nm) if i?’éj

Examples of these controllers are discussed_in [35] but magyt is for each = 1,2,..., N,

others can be proposed and investigated.

N .2
A more general question is how the set-up we have proposed A _ o - Vi sin® (n)
can be extended to deal with other control problems that " Bui + Z ,Bg + (Vi) Z BZEVZ- cos(n)
=171 kN{’L L}eE
are formulated in the microgrid literature. Furthermotteg t Vp sin? ()
proposed controllers exchange information over a communi- = Bu+ Z B <1 _ Yesm Uk) ) + hi(V;) > 0.
cation network and would be interesting to assess the impact ko {i 0} B Vi cos(n)

of the communication layer on the results. In that regarﬂrotme that this holds true because of condition (45). Assum
the use of Lyapunov functions is instrumental in advancin

such research, since powerful Lyapunov-based technmp:eszgso that, for eachi =1,2,..., N,

the design of complex networked cyber-physical systems are V; sm2(9k)
already available (see e.@. [11]). Mii > Z Big |cos(m) + V; cos(0r)
k~{il}eE
Vi
= Z Big|cos(ng)] (1 + v tanQ(nk)) ,
APPENDIX k~{i}eE 7

which is condition [(46). Then by Gershgorin theorem all the
eigenvalues of the matri¥ (n, V') have strictly positive real
noarts and the Hessian is positive definite.

Proof of Propositiol IL.For the sake of notational simplicity,
in this proof we omit the bar from all/,6. Note that by
assumptionl’(V')[cos(n)] is nonsingular. Then the Hessia
is positive definite, or equivalently_(42) holds, if and orily
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