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Abstract.
Background: Overlapping cerebrospinal fluid biomarkers (CSF) levels between Alzheimer’s disease (AD) and non-AD patients
decrease differential diagnostic accuracy of the AD core CSF biomarkers. Amyloid-� (A�) isoforms might improve the AD
versus non-AD differential diagnosis.
Objective: To determine the added diagnostic value of A� isoforms, A�1-37, A�1-38, and A�1-40, as compared to the AD CSF
biomarkers A�1-42, T-tau, and P-tau181P.
Methods: CSF from patients with dementia due to AD (n = 50), non-AD dementias (n = 50), mild cognitive impairment due to
AD (n = 50) and non-demented controls (n = 50) was analyzed with a prototype multiplex assay using MSD detection technology.
The non-AD group consisted of frontotemporal dementia (FTD; n = 17), dementia with Lewy bodies (DLB; n = 17), and vascular
dementia (n = 16).
Results: A�1-37 and A�1-38 increased accuracy to differentiate AD from FTD or DLB. A�1-37, A�1-38, and A�1-40 levels
correlated with Mini-Mental State Examination scores and disease duration in dementia due to AD. The A�1-42/A�1-40 ratio
improved diagnostic performance of A�1-42 in most differential diagnostic situations. A�1-42 levels were lower in APOE �4
carriers compared to non-carriers.
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Conclusions: A� isoforms help to differentiate AD from FTD and DLB. A� isoforms increase diagnostic performance of
A�1-42. In contrast to A�1-42, A� isoforms seem to be correlated with disease severity in AD. Adding the A� isoforms to the
current biomarker panel could enhance diagnostic accuracy.

Keywords: Alzheimer’s disease, amyloid, biological markers, cerebrospinal fluid, diagnosis, differential, mild cognitive impair-
ment

INTRODUCTION

Amyloid plaques, one of the major neuropatholog-
ical hallmarks of Alzheimer’s disease (AD), mainly
consist of aggregates of carboxyterminally elongated
forms of amyloid-� (A�) peptides [1], resulting from
cleavage of the transmembrane amyloid-� protein pre-
cursor by �- and �-secretases [2]. The most abundant
A� peptides in cerebrospinal fluid (CSF) are A�1-38,
A�1-40, and A�1-42 [3], of which A�1-42 is the most
pathological in AD as it is most prone to aggregation
into A� plaques [4].

The combined assessment of CSF A�1-42, total tau
protein (T-tau), and tau phosphorylated at threonine
181 (P-tau181P) increases diagnostic certainty for AD
[5]. Compared to controls, the AD CSF biomarker
profile consists of decreased A�1-42 and increased T-
tau and/or P-tau181P concentrations. However, when
compared to non-AD dementias, these differences are
less pronounced as the concentrations in patients with
non-AD dementias are generally intermediate between
those found in controls and AD patients, indicating an
overlap between AD and non-AD patients [6].

Determining CSF A� isoforms might improve the
AD versus non-AD differential diagnosis, as some
evidence exists that A�1-42/A�1-40 or A�1-42/A�1-38
ratios improve discriminating AD from non-AD
dementias in comparison to A�1-42 alone [7, 8].
Indeed, several studies have shown the CSF levels
of A�1-38 are decreased in frontotemporal dementia
(FTD) as compared to AD and non-demented controls
[9, 10]. Using the A�1-42/A�1-38 ratio, FTD could be
differentiated from AD with a sensitivity and speci-
ficity of 82% [9]. As AD pathology is common in
dementia with Lewy bodies (DLB) and the presence
of senile plaques in DLB patients is associated with
low CSF A�1-42 concentrations, the determination of
CSF A�1-42 levels is of limited value for discriminat-
ing AD and DLB [11]. However, it has been shown
that the ratios of A�1-42/A�1-37 and A�1-42/A�1-38
can differentiate between AD and DLB [12, 13].

In this study, the A� isoforms A�1-37, A�1-38,
A�1-40, and A�1-42 were analyzed and four research
questions were explored: 1) Do A� isoforms
correlate with disease severity in AD?; 2) Do the

A� isoforms levels differ between apolipoprotein E
(APOE) �4 carriers and non-carriers?; 3) Does the ratio
of A�1-42/A�1-40 increase the diagnostic performance
of A�1-42 alone?; 4) What is the added diagnostic value
of the A� isoforms?

The potential diagnostic accuracy of the A�
peptides, A�1-37, A�1-38, A�1-40, and A�1-42, was
assessed for differential dementia diagnoses as well as
for early AD diagnosis. In addition, in order to evaluate
the added value of the A� isoforms, their diagnos-
tic values were compared to the diagnostic values of
A�1-42, T-tau, and P-tau181P.

METHODS

Study population

Samples from patients and controls were selected
from the Biobank of the Institute Born-Bunge. Only
samples from patients recruited in the Memory Clinic
and Department of Neurology of Hospital Network
Antwerp (ZNA) were selected to avoid inter-center
variability due to possible differences in pre-analytical
steps. Patients with dementia due to AD (n = 50),
mild cognitive impairment (MCI) due to AD (n = 50),
and patients with non-AD dementias (n = 50) were
included. The non-AD group consisted of 17 patients
with FTD, 17 DLB patients, and 16 patients with vas-
cular dementia (VaD).

Patients with MCI and dementia due to AD were
diagnosed according to the NIA-AA criteria [14, 15],
with at least intermediate probability of AD etiology
(based on the CSF biomarkers or hippocampal volume
on MRI). MCI due to AD and dementia due to AD will
hereafter be referred to as ‘MCI’ and ‘AD’, respec-
tively. FTD, DLB, and VaD were diagnosed according
to the criteria described by Neary et al. [16], the clin-
ical diagnostic criteria of McKeith et al. [17], and the
NINDS-AIREN criteria [18], respectively.

The control group consisted of cognitively healthy
elderly (n = 35) in whom cognitive deterioration was
ruled out by means of neuropsychological screening.
Cognitively healthy elderly also fulfilled the follow-
ing inclusion criteria: 1) no neurological or psychiatric
antecedents and 2) no central nervous system disease
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following extensive clinical examination. The control
group also consisted of patients with neurological dis-
eases in whom neurodegenerative disorders were ruled
out by means of an extensive neurological work-up
(n = 15). The study was approved by the local ethics
committee (University Hospital Antwerp) and all sub-
jects gave their written informed consent.

CSF sampling

Lumbar puncture (LP), CSF sampling and handling
have been performed according to a standard protocol
[19]. CSF samples were stored at −80◦C until analysis.

CSF biomarker analyses

CSF biomarker analyses of A�1-42, T-tau, and
P-tau181P were performed using commercially avail-
able single parameter ELISA kits (INNOTEST®,
Fujirebio Europe, Ghent, Belgium) at the BIODEM
lab as previously described [20]. CSF biomarker anal-
yses of A�1-37, A�1-38, and A�1-40 were performed
at QPS Netherlands BV (Groningen, The Nether-
lands) with a prototype multiplex assay developed by
Janssen Research and Development that uses Meso
Scale Discovery (MSD) detection technology as pre-
viously described [21].

Briefly, the multiplex assay involved a sandwich
immunoassay with electrochemoluminescence detec-
tion. Standards of human A�1-37, A�1-38, and A�1-40
(AnaSpec, San Jose, USA) were dissolved in dimethyl-
sulphoxide at 0.1 mg/mL and stored at −80◦C. For use
in the assay, peptides were further diluted in casein
buffer (0.1% casein in PBS). Purified monoclonal
antibodies specific for A�1-37 (JRD/A�37/3), A�1-38
(J&JPRD/A�38/5), and A�1-40 (JRF/cA�40/28) were
coated on MSD 4-plex 96-well plates on spatially dis-
tinct spots. Plates were blocked with casein buffer for
1–4 h at room temperature. After washing, standards,
quality control samples, and 1/2 prediluted CSF sam-
ples were incubated overnight at 4◦C together with
MSD SULFO-TAGTM-labeled human-specific detec-
tion antibody JRF/A�N/25. JRF/A�N/25 detects an
end-specific epitope of A� leading to the detection
of full-length A� peptides (A�1-x). After overnight
incubation, plates were washed, after which 2x Read
Buffer (MSD) was added according to the manu-
facturer’s recommendations and plates were read on
MSD Sector Imager 6000. A�1-37, A�1-38, and A�1-40
concentrations were determined by interpolation from
the standard curve using MSD Workbench software
and 4 parameter logistic model with 1/Y2 weighting

function. All calibration standards and CSF samples
were analyzed in duplicate. Only mean values with
a replicate well coefficient of variation (CV) of less
than or equal to 20.0% were accepted. The samples
of the different diagnostic groups were tested random-
ized over multiple plates. The means for the interplate
CV for the quality control samples were less than
12% for all analytes. The upper and lower limit of
quantification, determined as the highest and lowest
calibrator concentration for which overall CV and bias
were ≤25.0%, was 4.57 pg/mL and 10 000 pg/mL,
respectively, for all measured A� peptides.

Disease severity in AD

Disease severity of AD was estimated by Mini-
Mental State Examination (MMSE) scores and disease
duration. MMSE tests were always performed 3
months before or after LP. If available, the yearly
change in MMSE, i.e., the difference between the ear-
liest MMSE score and the most recent one divided by
their time interval, was also reported. Disease duration
was considered as the difference between age at onset
and age at LP.

APOE genotyping

The isolation of genomic DNA from peripheral
blood lymphocytes was performed at the Genetic Ser-
vice Facility (http://www.vibgeneticservicefacility.be)
of the VIB Department of Molecular Genetics on
a Magtration® System 8Lx. robotic platform. SNPs
in APOE (rs429358 and rs7412, determining the
�2/�3/�4 polymorphism) were genotyped by Sanger
sequencing.

Statistical analyses

Statistical analyses were performed using SPSS 20.
First, a Kolmogorov-Smirnov test was performed to
check for normal distribution. Since most variables
did not follow a normal distribution, non-parametric
tests were used. To compare gender distribution and
APOE carrier status across the groups a Chi-square
test was performed. A Kruskal-Wallis test was used to
compare biomarker data over all groups. Subsequently,
Mann-Whitney U tests were performed to compare
groups separately. To assess correlations, Spearman’s
Rho correlation tests were performed. Receiver oper-
ating characteristic (ROC) curve analyses were used to
obtain area under the curve (AUC) values and to define
optimal cut-off values to discriminate MCI and AD

http://www.vibgeneticservicefacility.be
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from all other groups. The cut-off values were deter-
mined by calculating the maximal sum of sensitivity
and specificity (i.e., maximizing the Youden index).
In order to compare AUC values, DeLong tests were
performed by using the pROC package [22] in the sta-
tistical software package R (R Core Team). Correction
for multiple testing was not performed due to the small
study population and the explorative nature of this
study.

RESULTS

Study population: Demographic, clinical, and
biomarker data

One AD patient and one MCI patient were excluded
from statistical analyses because of all their A� iso-
forms concentrations being below the lowest range.
The groups were not age- and gender-matched. Table 1
summarizes demographic, clinical, and biomarker data
for all groups.

Correlation with MMSE

In the MCI group, none of the correlations were sig-
nificant (Table 2). However, in the AD group, A�1-37,
A�1-38, and A�1-40 correlated moderately with MMSE
scores. Yearly change in MMSE correlated signifi-
cantly but weakly (p < 0.05) with A�1-42 in the MCI
group.

Correlation with disease duration

In the AD population, the correlations of A�1-38,
A�1-40, and A�1-42/A�1-40 with disease duration were
weak but significant (Table 2).

Effect of APOE �4

The A� isoforms levels were compared between
subjects carrying one or two �4 alleles (n = 58) and non-
carriers (n = 86) (Table 3). A�1-42 was significantly
lower in �4 carriers (p < 0.001), while A�1-37, A�1-38,
and A�1-40 were not significantly different.

In the MCI and AD populations separately none
of the biomarkers differed significantly between �4
carriers and non-carriers. However, when combining
both diagnostic groups, A�1-42 was significantly lower
in carriers than non-carriers (p < 0.05). This was also
found in the non-AD group (p < 0.05).

Diagnostic accuracy

The ROC curve analysis results of the best per-
forming biomarkers are summarized in Table 4, while
the remaining data are given in the Supplementary
Material.

AD versus MCI

A�1-42, T-tau, and P-tau181P did not differentiate
between MCI and AD, keeping in mind these analytes
were used to define these groups. The AUC values of
the A� isoforms were below 0.800 (Supplementary
Table 1).

AD and MCI versus controls

The biomarkers performing best when compar-
ing AD patients and controls were A�1-42/T-tau and
A�1-42/P-tau181P. A�1-42/A�1-40 performed compa-
rably to A�1-42 for discriminating AD from controls
(Table 5; Supplementary Table 2).

The biomarkers performing best when compar-
ing MCI patients and controls were A�1-42/T-tau
and A�1-42/A�1-40. A�1-42/A�1-40 as well as
A�1-42/A�1-37 significantly increased the perfor-
mance of A�1-42 alone to discriminate MCI and
controls (Table 5; Supplementary Table 2).

AD and MCI versus non-AD

The best performing biomarkers when comparing
AD patients and non-AD dementias were the A�1-42/T-
tau and A�1-42/P-tau181P ratios. The AUC values
of the A�1-42/A�1-38 and A�1-42/A�1-37 ratios
reached the 0.800 threshold and were significantly
higher than the AUC of A�1-42 alone (Table 5; Sup-
plementary Table 3).

When comparing MCI with non-AD dementia
patients, the best performing biomarkers were P-
tau181P and A�1-42/A�1-40. A�1-42/A�1-38 and
A�1-42/A�1-37 also significantly increased the power
of A�1-42 to discriminate between MCI and non-AD
(Table 5; Supplementary Table 3).

AD and MCI versus FTD

The best biomarkers to distinguish AD and FTD
were A�1-42/A�1-37 and the relative value of A�1-42,
i.e., the ratio of A�1-42 to the sum of all A� isoforms
(Supplementary Table 4). All ratios increased the per-
formance of A�1-42 significantly (Table 5).
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Table 2
Correlation of the levels of the A� isoforms with MMSE scores, yearly MMSE score change and disease duration in the MCI and AD populations

A�1-37 A�1-38 A�1-40 A�1-42 A�1-42/A�1-40

Correlation with MMSE scores
MCI population
Correlation Coefficient 0.207 0.150 0.248 0.066 –0.047
p-value 0.182 0.338 0.109 0.672 0.765
n 43 43 43 43 43
AD population
Correlation Coefficient 0.520 0.431 0.450 0.264 –0.214
p-value 0.000 0.003 0.002 0.073 0.148
n 47 47 47 47 47
Correlation with yearly change in MMSE scores
MCI population
Correlation Coefficient 0.239 0.231 0.099 0.362 0.187
p-value 0.148 0.162 0.554 0.026 0.261
n 38 38 38 38 38
AD population
Correlation Coefficient −0.135 −0.158 −0.047 −0.197 −0.106
p-value 0.405 0.330 0.772 0.223 0.514
n 40 40 40 40 40
Correlation with disease duration
MCI population
Correlation Coefficient −0.063 0.031 0.013 0.032 −0.023
p-value 0.670 0.832 0.930 0.827 0.878
n 49 49 49 49 49
AD population
Correlation Coefficient 0.255 0.370 0.388 0.034 −0.397
p-value 0.077 0.009 0.006 0.816 0.005
n 49 49 49 49 49

Median change in MMSE over time in the AD group was −1.2 (−3.8–(−0.3)) over a median time interval of 2.7 years (1.3–4.5). In the MCI
population, the median MMSE change was −3.6 (−1.8–(−0.5)) over a median time interval of 3.6 years (2.4–5.8). AD, Alzheimer’s disease;
MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination.

Table 3
Comparison of the A� isoforms between APOE �4 carriers and non-carriers

n A�1-37 (pg/mL) A�1-38 (pg/mL) A�1-40 (pg/mL) A�1-42 (pg/mL)

All groups
Non-carrier 86 691 (497–894) 2,111 (1,456–2,804) 6,669 (4,426–8,585) 578 (433–824)
Carrier 58 707 (556–943) 2,186 (1,607–2,831) 6,251 (5,018–8,664) 469 (378–548)
p-value 0.273 0.489 0.824 0.000
AD population
Non-carrier 19 593 (518–882) 1,934 (1,488–2,575) 5,497 (4,329–7,230) 500 (417–600)
Carrier 25 701 (591–888) 2,018 (1,797–2,631) 5,928 (5,018–7,580) 443 (321–508)
p-value 0.118 0.678 0.337 0.110
MCI population
Non-carrier 24 865 (648–1,081) 2,661 (2,069–3,410) 8,650 (7,004–11,292) 520 (421–621)
Carrier 16 951 (698–1,119) 2,756 (2,268–3,605) 8,553 (7,671–10,104) 495 (330–577)
p-value 0.629 0.679 0.679 0.263
Combination MCI and AD
Non-carrier 43 742 (536–980) 2,427 (1,644–3,267) 7,230 (5,326–9,535) 513 (417–606)
Carrier 41 727 (637–971) 2,300 (1,856–2,880) 6,843 (5,403–8,956) 462 (321–541)
p-value 0.579 0.961 0.690 0.040
Non-AD population
Non-carrier 35 562 (414–768) 1,679 (1,108–2,576) 5,388 (3,821–7,667) 714 (509–915)
Carrier 14 558 (369–866) 1,715 (1,225–2,543) 5,120 (3,348–8,005) 502 (397–584)
p-value 0.982 0.965 0.912 0.026

All data are median values with 25th and 75th quartiles between brackets, except for N. AD, Alzheimer’s disease; Non-AD, dementia not due
to Alzheimer’s disease; MCI, mild cognitive impairment.
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Table 4
Best performing biomarkers for all differential diagnostic situations based on ROC curve analyses

AD versus controls MCI versus controls

AUC cut-off sens [%] spec [%] AUC cut-off sens [%] spec [%]

A�1-42/T-tau 0.968 <1.708 93.9 92.0 A�1-42/T-tau 0.922 <1.861 83.7 90.0
A�1-42/P-tau181P 0.930 <10.122 91.8 86.0 A�1-42/A�1-40 0.924 <0.1024 91.8 84.0

AD versus non-AD MCI versus non-AD

A�1-42/T-tau 0.842 <1.420 87.8 76.0 P-tau181P 0.857 >57.50 pg/mL 89.8 74.0
A�1-42/P-tau181P 0.840 <9.440 87.8 72.0 A�1-42/A�1-40 0.845 <0.1022 91.8 62.0

AD versus FTD MCI versus FTD

Relative A�1-42 0.831 <0.0768 91.8 58.8 Relative A�1-42 0.875 <0.0491 67.3 94.1
A�1-42/A�1-37 0.851 <0.7351 69.4 94.1 A�1-42/A�1-40 0.882 <0.0944 85.7 75.0

AD versus VaD MCI versus VaD

A�1-42/T-tau 0.902 <1.589 89.8 87.5 P-tau181P 0.881 >59.90 pg/mL 85.7 81.3
A�1-42/P-tau181P 0.912 <8.096 79.6 93.8 A�1-42/P-tau181P 0.860 <8.092 67.3 93.8

AD versus DLB MCI versus DLB

A�1-42/A�1-38 0.843 <0.3957 95.9 70.6 P-tau181P 0.855 >49.50 pg/mL 95.9 76.5
A�1-42/T-tau 0.838 <1.222 83.7 76.5 A�1-38 0.855 >1850.00 pg/mL 87.8 70.6

AD, Alzheimer’s disease; MCI, mild cognitive impairment; AUC, area under the curve; sens, sensitivity; spec, specificity.

Table 5
Significance levels (p-values) of the AUC value comparisons of the A� isoforms ratios with A�1-42 alone

Differential A�1-42/A�1-40 A�1-42/A�1-38 A�1-42/A�1-37
diagnosis

AD versus controls 0.857 0.688 0.918
MCI versus controls 0.002 0.102 0.049
AD versus non-AD 0.113 0.049 0.016
MCI versus non-AD 0.000 0.000 0.000
AD versus FTD 0.025 0.039 0.008
MCI versus FTD 0.000 0.002 0.001
AD versus VaD 0.979 0.899 0.899
MCI versus VaD 0.034 0.133 0.103
AD versus DLB 0.392 0.058 0.061
MCI versus DLB 0.009 0.002 0.002

DeLong tests were performed by using the pROC package in the statistical software package R to compare the AUC values.
AUC, area under the curve; AD, Alzheimer’s disease; Non-AD, dementia not due to Alzheimer’s disease; MCI, mild cognitive
impairment; FTD, frontotemporal dementia; VaD, vascular dementia; DLB, dementia with Lewy bodies.

The A�1-42/A�1-40 ratio was the best biomarker
to distinguish MCI and FTD. A�1-40, A�1-42/A�1-38,
and A�1-42/A�1-37 also performed well, with all ratios
significantly increasing the performance of A�1-42
(Table 5; Supplementary Table 4).

AD and MCI versus VaD

The best biomarkers to distinguish AD and VaD
were A�1-42/T-tau and A�1-42/P-tau181P, comparable
to the AD versus controls situation. The diagnos-
tic accuracy of A�1-42 was not increased by ratios
with the other A� isoforms (Table 5; Supplementary
Table 5).

The best performing biomarker when dif-
ferentiating MCI and VaD was P-tau181P. The
A�1-42/A�1-40 ratio increased the diagnostic accuracy

of A�1-42 significantly (Table 5; Supplementary
Table 5).

AD and MCI versus DLB

The best biomarkers to differentiate between
AD and DLB were A�1-42/A�1-38 and A�1-42/
T-tau (Supplementary Table 6). Similar performances
were found for T-tau, A�1-42/A�1-37, P-tau181P, and
A�1-38/A�1-40. The diagnostic accuracy of A�1-42
was not increased by any isoform ratio (Table 5).

The best performing biomarkers to differentiate
MCI and DLB were P-tau181P and A�1-38. The
A�1-42/A�1-38 ratio and A�1-37 performed simi-
larly. The performance of A�1-42 was substantially
increased by the ratios with the other A� isoforms
(Table 5; Supplementary Table 6).
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DISCUSSION

This study was set up to investigate the potential
diagnostic value of the A� peptides, A�1-37, A�1-38,
and A�1-40, for differential dementia diagnosis as well
as for early AD diagnosis. In addition, in order to
evaluate the added value of the A� isoforms, their diag-
nostic values were compared to the diagnostic values
of A�1-42, T-tau, and P-tau181P.

The four research questions posed in this study
will be further discussed in this section. The
research questions regarding diagnostic performance
of A�1-42/A�1-40 and with regard to the added value
of the A� isoforms are combined in the subsection
‘Diagnostic performance’ as they largely coincide.

Correlation with disease severity in AD

When assessing the correlation of the A� isoforms
as well as the A�1-42/A�1-40 ratio with MMSE scores
and disease duration, significant weak to moderate cor-
relations were found in the AD population, except for
the A�1-42/A�1-40 ratio. On the other hand, no signif-
icant correlations in the MCI population were found.
Similar results were found by Mulugeta et al. [13],
though they had to combine all investigated patients in
order to find significant correlations. Our results imply
there might be a correlation of the A� isoforms with
disease severity in AD and the A� isoforms could have
a prognostic value in AD. However, this needs further
investigation in larger, independent cohorts before any
conclusions can be drawn.

Difference between APOE �4 carriers and
non-carriers

The A� isoforms, A�1-37, A�1-38, and A�1-40, were
not different between �4 carriers and non-carriers. The
levels of A�1-42 were always lower in �4 carriers as
compared to non-carriers, although this difference was
not always significant. In the AD and MCI groups
separately, none of the biomarkers were significantly
different between carriers and non-carriers. However,
when combining both AD and MCI groups, there was
a significant difference in the level of A�1-42 between
carriers and non-carriers, which could be a confirma-
tion of results found in a study on autopsy-confirmed
AD patients [23]. This change in significance could
be caused by the higher power when combining both
groups. In the pooled non-AD population a significant
difference was found in levels of A�1-42. This differ-
ence might be explained by the fact that �4 is a risk

factor for AD co-pathology in the brain of non-AD
dementias as well [11].

Diagnostic performance

A�1-42, T-tau, and P-tau181P did not differentiate
between MCI and AD. This was to be expected, since
both groups have AD and these biomarkers have almost
reachedtheirmaximalincreaseordecreaseinMCI,only
changing minimally with disease evolution as from the
MCI stage. Interestingly, comparable differences were
found regarding the A� isoforms when comparing MCI
andADwithcontrolsandthenon-ADgroups.Thisonce
morepointstothecommonADpathophysiologyinMCI
and AD groups. Based on the ROC analyses, the A�
isoforms were able to differentiate between MCI and
ADgroups,althoughtheAUCvalueswerebelow0.800.
This might be explained by the moderate correlation
of the A� isoforms with disease severity. Both results
might point to changes of these isoforms with AD pro-
gression, in contrast to A�1-42 that remains stable.

When comparing MCI and AD and controls, analyz-
ing A� isoforms has an added value, as A�1-42/A�1-40
performedslightlybetterascompared toA�1-42 fordis-
criminating AD from controls and substantially better
fordiscriminatingMCIandcontrols.However,sincethe
AUC value of A�1-42/A�1-40 is comparable or lower
than those of A�1-42/T-tau and A�1-42/P-tau181P, the
addeddiagnosticvalueof theA� isoforms isconsidered
to be limited.

According to our in-house validated A�1-42 cut-off
to discriminate AD from cognitively healthy elderly
(638.5 pg/mL), five patients had normal A�1-42 levels.
However, their A�1-42/A�1-40 ratio was decreased as
compared to controls, although this difference was not
significant (p > 0.05), probably due to the small num-
ber of patients. We hypothesize that the A�1-42/A�1-40
ratio has a diagnostic value in AD patients having nor-
mal values of A�1-42, since the A�1-42/A�1-40 ratio
is decreased in these patients as compared to controls
[24, 25], which should be further investigated in larger
cohorts.

Given our results for AD versus FTD, analyzing
A�1-37 has an added diagnostic value. It should also be
noted our results for A�1-38 are comparable to those
of Gabelle et al. [10]. However, in contrast to Gabelle
et al. [10], we found no added value of A�1-38 for the
differential diagnosis of AD and FTD given the rela-
tively low AUC (not exceeding 0.800). In addition, we
found similar sensitivity but lower specificity values
for A�1-42/A�1-38 as Bibl et al. [9] for discriminating
AD and FTD.
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To differentiate AD and VaD, the core AD biomark-
ers performed best. The A�1-42/A�1-40 ratio increased
the diagnostic accuracy of A�1-42 alone, pointing
to a diagnostic value of the A� isoforms. However,
since the AUC values were not higher than those of
A�1-42/T-tau and A�1-42/P-tau181P in the AD versus
VaD situation and P-tau181P and A�1-42/P-tau181P in
the MCI versus VaD situation, the added diagnostic
value is limited.

As the AUC value of A�1-42/A�1-38 when compar-
ing AD and DLB was only a little higher than the AUC
value of A�1-42/T-tau, the added diagnostic value of
A�1-38 is only limited. This also held true for MCI
and DLB, as the best performing biomarkers P-tau181P
and A�1-38 had equal AUC values. The performance
of A�1-42/A�1-38 confirmed earlier findings [12, 13].
Although these previous studies pointed to a disease
specific peptide pattern, our study shows that the added
diagnostic value of such a pattern is questionable.

Regarding the pooled non-AD group, the A� iso-
forms had no added diagnostic value, which is probably
due to the fact this group is a combination of three
pathophysiologically different disorders and the A�
isoformsmightbehavedifferentlyinthesedifferentneu-
rodegenerative disorders. Although the ratios of A�1-42
increasedthediscriminativepowerofA�1-42,analyzing
A� isoforms did not have an added value for differenti-
ating MCI or AD from pooled non-AD dementias as the
routine biomarkers still performed better.

In summary, the diagnostic performance of A�1-42
increased when calculating the A�1-42/A�1-40 ratio.
This was the case when comparing the AD groups
with FTD and when comparing MCI with non-AD in
general, but also FTD, DLB, and VaD separately and
controls. Furthermore it was shown there is an added
diagnostic value of the A� isoforms for differentiating
AD and FTD. The added diagnostic value was only lim-
ited when comparing the AD groups with VaD, DLB,
and controls. Rather, altered A�1-42/A�1-40 ratios in
CSF might be specific for AD since both peptides are
representative for the two possible cleavage routes of
the protease �-secretase [26].

The present findings should be replicated and con-
firmed in a larger and independent cohort of patients,
including autopsy-confirmed cases.

CONCLUSION

In conclusion, the A� isoforms could help in some
differential diagnostic situations. Adding the A� iso-
forms to the current biomarker panel could enhance

diagnostic accuracy. This is the case for discriminat-
ing AD from FTD and MCI from all other diagnoses
and to diagnose AD in patients with normal A�1-42
levels. In contrast to A�1-42, A� isoforms seem to be
correlated with disease severity in AD.
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