

 University of Groningen

12th SC@RUG 2015 proceedings
Smedinga, Reinder; Biehl, Michael; Kramer, Femke

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Smedinga, R., Biehl, M., & Kramer, F. (Eds.) (2015). 12th SC@RUG 2015 proceedings: Student
Colloquium 2014-2015. Rijksuniversiteit Groningen. Universiteitsbibliotheek.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-11-2019

https://www.rug.nl/research/portal/en/publications/12th-scrug-2015-proceedings(d37271d1-dbd9-4325-96a7-c24ded13f79e).html

faculty of mathematics
and natural sciences

computing science

SC@RUG 2015 proceedings

Rein Smedinga, Michael Biehl and

Femke Kramer (editors)

12th SC@RUG
2014-2015

1
2

th
 S

C
@

R
U

G
 2

0
1

4
-2

0
1

5

www.rug.nl/research/jbi

faculty of mathematics
and natural sciences

computing science

123348 omslag sc@rug proceedings.indd 3 12-05-15 08:55

SC@RUG 2015 proceedings

Rein Smedinga
Michael Biehl
Femke Kramer

editors

2015
Groningen

ISBN (e-pub pdf): 978-90-367-7941-8
ISBN (book): 978-90-367-7942-5

Publisher: Bibliotheek der R.U.
Title: 12th SC@RUG proceedings 2014-2015
Computing Science, University of Groningen

NUR-code: 980

SC@RUG 2015 proceedings

About SC@RUG 2015

Introduction
SC@RUG (or student colloquium in full) is a course

that master students in computing science follow in the first
year of their master study at the University of Groningen.

SC@RUG was organized as a conference for the
twelfth time in the academic year 2014-2015. Students
wrote a paper, participated in the review process, gave a
presentation and chaired a session during the conference.

The organizers Rein Smedinga, Michael Biehl and
Femke Kramer would like to thank all colleagues who co-
operated in this SC@RUG by collecting sets of papers to
be used by the students and by being an expert reviewer
during the review process. They also would like to thank
Agnes Engbersen for her very inspiring workshops on pre-
sentation techniques and speech skills and Michael Wilkin-
son for giving lectures on how to write scientific papers.

Organizational matters
SC@RUG 2015 was organized as follows. Students

were expected to work in teams of two. The student teams
could choose between different sets of papers, that were
made available through the digital learning environment of
the university, Nestor. Each set of papers consisted of about
three papers about the same subject (within Computing Sci-
ence). Some sets of papers contained conflicting opinions.
Students were instructed to write a survey paper about this
subject including the different approaches in the given pa-
pers. The paper should compare the theory in each of the
papers in the set and include their own conclusions about
the subject. Of course, own research was encouraged.
Two teams proposed their own subject.

After submission of the papers, each student was as-
signed one paper to review using a standard review form.
The staff member who had provided the set of papers was
also asked to fill in such a form. Thus, each paper was re-
viewed three times (twice by peer reviewers and once by
the expert reviewer). Each review form was made available
to the authors of the paper through Nestor.

All papers could be rewritten and resubmitted, inde-
pendent of the conclusions from the review. After resub-
mission each reviewer was asked to re-review the same pa-
per and to conclude whether the paper had improved. Re-
reviewers could accept or reject a paper. All accepted pa-
pers can be found in these proceedings.

In her lectures about communication in science, Femke
Kramer explained how researchers communicate their find-
ings during conferences by delivering a compelling sto-
ryline supported with cleverly designed images. Lectures
on how to write a scientific paper were given by Michael

Wilkinson and a workshop on reviewing was offered by
Femke Kramer.

Agnes Engbersen gave workshops on presentation tech-
niques and speech skills that were very well appreciated by
the participants. She used the 2 minute madness presenta-
tion as a starting point for improvements.

Rein Smedinga was the overall coordinator, took care
of the administration and served as the main manager of
Nestor.

Students were asked to give a short presentation
halfway through the period. The aim of this so-called two-
minute madness was to advertise the full presentation and
at the same time offer the speakers the opportunity to prac-
tice speaking in front of an audience.

The conference itself was organized by the students
themselves. In fact half of the group was asked to fully or-
ganize the day (i.e., prepare the time tables, invite people,
look for sponsoring and a keynote speaker, etc.). The other
half acted as a chair and discussion leader during one of the
presentations. The audience graded both the presentation
and the chairing and leading the discussion.

The gradings of the draft and final paper were weighted
marks of the review of the corresponding staff member
(50%) and the two students reviews (each 25%).

Students were graded on the writing process, the re-
view process and on the presentation. Writing and rewrit-
ing counted for 35% (here we used the grades given by the
reviewers), the review process itself for 15% and the pre-
sentation for 50% (including 10% for being a chair or dis-
cussion leader during the conference and another 10% for
the 2 minute madness presentation). For the grading of the
presentations we used the assessments from the audience
and calculated the average of these.

In this edition of SC@RUG students were videotaped
during their 2 minute madness presentation and during the
conference itself using the new video recording facilities
of the University and with thanks to the CIT crew (special
thanks to Adri Mathlener for providing and operating a mo-
bile recording kit during the conference). The recordings
were published on Nestor for self reflection.

On 8 April 2015, the actual conference took place.
Each paper was presented by both authors. We had a to-
tal of 12 student presentations this day.

3

About SC@RUG 2015

Sponsoring
The student organizers invited two keynote speakers

and both the corresponding companies sponsored the event
as well by providing lunch and drinks afterwards and payed
for the additional costs like programme leaflets and such.
We are very grateful to

• Procam Talent Wings
• Capgemini Consulting Nederland
• Quintor Groningen

for sponsoring this event.

Thanks
We could not have achieved the ambitious goasl of this

course without the invaluable help of the following expert
reviewers:

• Fatimah Alsaif
• Michael Biehl
• Frank Blaauw
• Ilche Georgievski
• Andrea Pagini
• Alex Telea
• Michael Wilkinson

and all other staff members who provided topics and pro-
vided sets of papers.
Also, the organizers would like to thank the Graduate
school of Science for making it possible to publish these
proceedings and sponsoring the awards for best presenta-
tions and best paper for this conference.
Rein Smedinga
Michael Biehl
Femke Kramer

4

SC@RUG 2015 proceedings

Since the tenth SC@RUG in 2013 we added a new
element: the awards for best presentation, best paper and
best 2 minute madness. Therefore, from that edition on,

we will have a Hall of Fame:

Best 2 minute madness presentation awards

2015
Diederik Greveling and Michael LeKander:

Comparing adaptive gradient descent learning rate
methods

2014
Arjen Zijlstra and Marc Holterman:

Tracking communities in dynamic social networks
2013

Robert Witte and Christiaan Arnoldus:
Heterogeneous CPU-GPU task scheduling

Best presentation awards

2015
Diederik Greveling and Michael LeKander:

Comparing adaptive gradient descent learning rate
methods

Johannes Kruiger and Maarten Terpstra:
Hooking up forces to produce aesthetically pleasing graph

layouts
2014

Diederik Lemkes and Laurence de Jong:
Pyschopathology network analysis

2013
Jelle Nauta and Sander Feringa,

Image inpainting

Best paper awards

2015
Jasper de Boer and Mathieu Kalksma:

Choosing between optical flow algorithms for UAV
position change measurement

2014
Lukas de Boer and Jan Veldthuis:

A review of seamless image cloning techniques
2013

Harm de Vries and Herbert Kruitbosch:
Verification of SAX assumption: time series values are

distributed normally

5

Contents

6

Contents

1 A Comparison of Cloud Computing Services in Smart Learning Systems
Guntur Dharma Putra 8

2 Natural interaction from a graph theory perspective
Julien van der Land and Jorrit Idsardi 14

3 Comparison of Decision-making Approaches in Smart Spaces
Joris Schaefers and Toon Albers 18

4 Comparing Adaptive Gradient Descent Learning Rate Methods
Diederik Greveling and Michael LeKander 24

5 A Comparison of Combination Schemes for Multiclass Classification Using Binary Support Vector Ma-
chines
R. van Veen and L.E.N. Baakman 30

6 Hyperconnectivity and Hyperconnected Filters
Rogchert Zijlstra and Bart Marinissen 36

7 Comparing COSFIRE Filters with Neural Networks in Visual Pattern Recognition
Sweta Singh and Niels Kluiter 41

8 Similarity metrics for psychological symptom graphs
J.D. van Leusen and S.F. de Bruijn 47

9 An overview of different techniques and tools to visualize software
Erik Jager and Stephan Boomker 52

10 A survey of big data architectures for smart cities
Bram Musters and Euaggelos Karountzos 57

11 Hooking up forces to produce aesthetically pleasing graph layouts
Johannes F. Kruiger and Maarten L. Terpstra 63

12 Choosing between optical flow algorithms for UAV position change measurement
Jasper de Boer and Mathieu Kalksma 69

A Comparison of Cloud Computing Services in Smart Learning
Systems

Guntur Dharma Putra

Abstract—Smart learning system is a form of e-learning service that is enhanced to be smarter and more efficient using context-
aware technologies, which are based on the users behavior. Cloud computing services offer some advantages in its implementation
to smart learning systems, for example, increased cost savings and also improved efficiency and convenience of educational services.
The rationale behind this paper is to compare and discuss the existence or lack of existing approaches regarding the implementation
of cloud computing services in smart learning systems. This is done by surveying the state of the art in the area, and illustrating the
requirements of context-aware smart learning systems with regard to some important factors: context-awareness, security, ontology,
multi-device support, and flexibility. This paper discusses four different approaches in smart learning systems and cloud computing
services: smart cloud computing, elastic model, web 3.0, and content-oriented approach. The result shows that smart cloud comput-
ing is the approach that covers all important factors mentioned before. This paper is also eager to help investigating the work that
have been done before for cloud computing services in smart learning systems and to show the possible requirements for the future
smart learning systems.

Index Terms—e-learning, smart learning services, cloud computing, context-aware, Internet enabled learning.

1 INTRODUCTION

The rapid enhancement of digital technology is creating not only new
possibilities but also new challenges. The current society is being re-
defined by the advancement of technologies in almost every field of
human being. Nowadays, e-learning and cloud computing are emerg-
ing as the complex paradigm of modern education with reduced invest-
ment for teachers and educators. E-learning is electronic and Internet
based learning, using Internet technology to design, implement, select,
manage, support and extend learning. E-learning will not replace tra-
ditional educational methods, but will greatly improve the efficiency
of higher education [1].

An increasing number of universities and educational institutions
in the USA and UK are adopting cloud computing not only for incre-
menting cost savings but also for improving the efficiency and conve-
nience of educational services [2]. The cloud computing systems have
been implemented for e-learning services. However, most of the cur-
rent cloud-based education systems are focusing on delivering learning
materials rather than supporting and establishing an integrated cloud-
based educational service environment.

Smart learning (s-learning) is a new paradigm of learning. The con-
cept of s-learning acts as an important role in the creation of an effi-
cient learning environment that offers personalized contents. It also
supplies students with a nice communication environment and thou-
sands of resources. However, the existing learning infrastructure is
still not complete. For instance, it does not allocate necessary com-
puting resources for s-learning systems dynamically [3]. Today, the
majority of s-learning systems have some problems in interfacing and
sharing data with other systems. This might lead to duplication of data
and low utilization of resources. To overcome this problem, it is ad-
vised to use cloud computing to support resource management. The
cloud computing environment has the needed foundation for the in-
tegration of platform and technology. It combines teaching resources
distributed over various locations by utilizing existing conditions as
much as possible to meet the demands of the teaching activities.

In this paper, some approaches of cloud computing in s-learning
systems are discussed and evaluated. The evaluation of cloud com-
puting in a s-learning system approach is based on several studies
that attempted to define factors that drive successful online education
[4, 5, 6]. Those works stated that there are some factors that push an
e-learning system to be successful. The result showed that the factors

• Guntur Dharma Putra is a Master Student Computing Science at the RuG,
e-mail: g.d.putra@student.rug.nl.

are learner’s computer anxiety, instructor attitude towards e-Learning,
e-Learning course flexibility, e-Learning course quality, perceived use-
fulness, perceived ease of use, student collaboration, and diversity in
assessments are the critical factors affecting learner’s perceived satis-
faction. However, our study only tries to investigate the technical im-
plementation of cloud computing without the involvement of students,
instructors, or courses. Thus, from this reference, the only factor that
is possible to be used is only flexibility of the system. Furthermore,
in order to evaluate the approaches deeper, we add some more factors
that are relevant with s-learning system, such as context-awareness,
security, multi-device support, and ontology utilization.

The rest of this review paper is organized as follows. Section 2
starts with general introduction into the difference between conven-
tional e-learning and s-learning. Section 3 elaborates the relation of
cloud computing in educational systems. Section 3 also includes the
necessity of implementing cloud computing services and cloud-based
applications in educational systems. Section 4 describes the current
approaches that has been carried out according to the context of the
study. Section 5 provides a discussion about the approaches that are
mentioned in section 4. Finally, concluding remarks and future works
are drawn in section 6.

2 E-LEARNING AND S-LEARNING

There are several terminologies that refer to a learning environment
with electronic devices, computers, or Internet. A study tried to inves-
tigate these terminologies when applied to some particular scenarios
[7]. With around 40 respondents involved in the survey, the result
alleged that definitions found in various articles mirror the conflict-
ing responses provided by the respondents in this study. The findings
showed great differences in the meaning of foundational terms that are
used in the field, but also provide implications internationally for the
referencing, sharing, and the collaboration of results detailed in vary-
ing research studies [7].

Conventionally e-learning provides teaching and learning by com-
puters connected using wire connections and in a lecture-style class-
room setup. Although learners are able to browse and download re-
sources anytime and anywhere through the existing e-learning plat-
form, they were limited to traditional lecture-class setup. Afterwards,
e-learning was developed with the advancements of Internet. Thus,
there are a number of cloud-based applications available in the e-
learning field [8]. However, E-learning will not in any way replace
traditional educational methods. Nevertheless, this will significantly
improve the efficiency of the education [1]. A research has shown e-
learning impact on individual performance. Moreover, the study has

8

offered various suggestions to different communities of practitioners
to improve their performance with regards to the adoption and contin-
ued use of e-learning [9].

S-learning has become an important method of learning during the
recent time [10]. It has been made possible by the new advancements
of Internet and Information Technology. The s-learning has a big role
in creating a nice and personalized learning situation, and also being
well adapted to the current education model wherever possible [3].
Usually, the teaching and learning that e-learning offers is only inside
of a lecture-style classroom with desktop computers. Although stu-
dents are able to download resources and browse through the existing
e-learning platform regardless of time and place, they were still con-
fined to the limits of the classical classroom-setups.

Yet, there is no exact definition of s-learning. Related scholars who
are involved with education business are discussing that the concept
of s-learning should not be limited to just utilizing smart gadgets.
Thus, the government, academics, and the educational industry have
been working on defining s-learning. At the s-learning Korea forum
2010 [11], a concept of s-learning was proposed as follows: first, it
is focused on humans and content more than on devices; second, it is
effective, intelligent tailored-learning based on advanced Information
Technology (IT) infrastructure [10].

The Korean Ministry of Education, Science and Technology
(MEST) defined s-learning as Self-directed, Motivated, Adaptive,
Resource-enriched, and Technology-embedded [12]. More informa-
tion on S.M.A.R.T Learning promoted by MEST is as follows:

• S: Self-Directed, which means that the education system is pro-
gressing toward a self-learning system more than ever. Students’
roles transition from knowledge adopters to knowledge creators.
Also, teachers become facilitators of learning.

• M: Motivated means education becomes experience centered and
involves learning by doing; creative problem solving and individ-
ualized assessment are pursued.

• A: Adaptive means strengthening of the education system’s flex-
ibility and tailoring learning for individual preference and future
careers.

• R: Resource-enriched means that s-learning utilizes rich content
based on open market, cloud education services from both public
and private sectors. In other words, it expands the scope of learn-
ing resources to include collective intelligence, Social Learning.

• T: Technology-embedded means that in the s-learning education
environment, students can learn anywhere, any time through ad-
vance technologies.

3 CLOUD COMPUTING AND EDUCATION

Electronic devices, especially computers, have been playing an impor-
tant role in modern education since the emergence of e-learning. Ed-
ucation also has a close relation with the Internet as many e-learning
platforms or systems are based on on-line applications. An example
of e-learning platform that recently has been addressed a new form
of on-line learning is Massive Open on-line Course or MOOC for
short[13]. Some examples of these MOOCs are edX 1, Coursera2, and
Udacity3. Several universities, such as MIT4 and UC Berkeley5, also
put their teaching materials, ranging from undergraduate to graduate-
level on-line, so that they are openly available and easy to access. A
study asserted that openness and reputation are important for MOOC
providers especially for course offering [14]. Openness and reputa-
tion are ways that MOOC providers can both differentiate themselves
from competitors and enhance an individual’s intention for continued
MOOCs enrollment.

This section describes the close relation between cloud comput-
ing and educational field, especially e-learning and s-learning. Cloud

1https://www.edx.org/
2https://www.coursera.org/
3https://www.udacity.com/https://www.coursera.org/
4http://ocw.mit.edu/
5http://webcast.berkeley.edu/

computing that introduces efficient scale mechanism can let construc-
tion of e-learning systems be entrusted to suppliers and provide a new
mode for e-learning [15].

3.1 Benefits of Cloud Computing in Educational System
A study by Bouyer et al. [16] alleged that cloud computing is reducing
the difference between on campus education and distance education.
Still there are some limitations of e-learning for lab based education
due to computation power. Fortunately cloud computing is the tech-
nology that is able to offer distinguished services in three layers. Cloud
computing enables students to access the knowledge by distributed e-
learning resources in a public, private, or hybrid cloud types. Because
of using cloud computing systems for deploying a modern education
environment, universities and other educational organizations have to
take into account various things, such as cost and accelerate delivery
of learning services, quick learning, and privacy issues.

Cloud computing also owns several important benefits for educa-
tion [16]. Those important advantages are quick delivery of various
services, cost minimization, risk reduction, security enhancements, re-
shaping teaching, and collaboration expansion.

3.2 Cloud-Based Application in Education Systems
A definition of cloud computing declares that it is a technology that
provides users with information resources by using the Internet as a
medium. Users can make use of information resources such as ap-
plication software or storage space from the cloud without needing to
download them beforehand. Users only have to pay per usage charges
for resources they used. The concept of cloud computing is a com-
bination of distributed computing, grid computing, utility computing,
and so on [8]. When a particular user requests a service from cloud
server, the server immediately provides the requested services to the
user based on the request details. This implies that the server has the
ability to complete the user’s request personally. These features allow
the users to use the service only the amount they need at their desired
time and pay according to the usage proportionally.

Several researchers have presented their approach to implement
cloud computing in educational systems. For example, Casquero et al.
[17] presented a framework based on iGoogle and using the Google
Apps platform for the development of a network of cooperative per-
sonal learning environments. They discussed the integration of insti-
tutional and external services in order to provide customized support
to faculty members in their daily activities. They take the advantage
of Google’s framework as a testbed for the research, implementation
and testing of their educational purpose services as well.

Even though much work has been carried out with regard to adopt-
ing cloud computing for educational systems, further studies need to
be conducted to develop more diverse forms of cloud-based educa-
tion systems, in more innovative and efficient ways [18]. Meanwhile,
most of the existing cloud-based education systems are concentrating
on delivering and sharing of learning materials and teaching activi-
ties, rather than constructing and supporting an integrated, total cloud-
based educational environment.

4 CLOUD COMPUTING IN SMART LEARNING SYSTEM AP-
PROACHES

There are several approaches for implementing cloud computing in a
smart learning environment. This study has evaluated several recent
approaches [10, 8, 18, 2, 19]. Those approaches are categorized into
certain categories: smart cloud computing, elastic model, cloud and
Web 3.0, and content oriented approach.

4.1 Smart Cloud Computing
Smart Cloud Computing (SCC) has the capability to provide a s-
learning environment by using elastic computing for 4S model. Elastic
4S is carried out through an intelligent learning engine that consists of
four service rules - Smart Pull, Smart Prospect, Smart Content and
Smart Push. SCC offers system standardization and describes how to
manage it properly. A conventional e-learning system is only capa-
ble to display a single content on a single device or multiple contents

SC@RUG 2015 proceedings

9

Fig. 1. SCC Architecture [8].

on one device. The SCC can deliver s-learning to the users so they
can use multiple devices to render multi learning contents. The SCC
uses context-aware sensing, a sensing process that will extract user’s
preference, to provide personalized contents. Sensing is carried out
through the location and Internet Protocol (IP) address of each device.
Furthermore, the architecture of the model is shown in Figure 1 [8].

Figure 1 shows how the SCC provides s-learning to the user. The
proposed system utilizes Elastic 4S based on information obtained
from the user. The information from users contain information about
the user themselves and device they are using, received by context-
aware sensors. Context-aware monitoring monitors user requests and
the kind of devices that the user is currently using. SCC provides user-
aware services based on elastic 4S by utilizing the information col-
lected by the sensors. Elastic 4S is carried out through an intelligent
learning engine that consists of four service rules - Smart Pull, Smart
Prospect, Smart Content and Smart Push. The definition of Elastic 4S
(E4S) is described as follows:

{E4Si}= {(Spulli,Sprosi,Sconi,Spushi)},1≤ i≤ N (1)

where:

Spulli: Smart pull analyze the extractable content from the sens-
ing information.

Sprosi: Smart prospect description of the content for target de-
vices and delivery time.

Sconi: Smart content connection establishment between server
and target devices.

Spushi: Smart push synchronized delivery of contents to target
devices.

As shown in the definition, E4S pulls the sensing data and analyzes
the contents that are possible to be extracted. The context-aware mod-
ule will only extract the intended information based on sensing data.
The system then will prospect what contents are appropriate based on
the sensing data and finally push the content to specified users.

The system also offers context-aware services, since Context-aware
is important [20]. Context-aware is also a key point in s-learning. An-
other research also contributed to implement context-aware services in
educational system [21]. However, cloud computing was not used, as
this study only focuses on context-aware in classroom setups only.

4.2 Elastic Model
A study conducted by Kim et al. [10] proposed the elastic conductor
that performs provisioning and scheduling for the decision of smart
activities. The provisioning and scheduling are performed through an
inference engine that uses the rules based on three attributes: an object
id for user context, a predicate relationship for user behavior, and a

Fig. 2. Elastic conductor architecture [10].

value for thinking. The elastic conductor is utilized in Platform as a
Service (PaaS) cloud type as a smart activity.

The elastic conductor is able to generate user interface configura-
tions as well, for instance, personalized views and content rendering.
These processing tasks consist of four smarts concept: behavior sens-
ing, behavior matching, synchronization and push for displays multi-
contents on the multi-device. This system does the sensing of context-
awareness through the location and IP address of each device. The
architecture of the model is show in Figure 2.

Figure 2 shows how the conductor delivers s-learning to the user.
Information of the user includes the information about the user it-
self and the device, which is received by context-awareness sensors.
Context-awareness monitors user requests and the kind of devices that
the user is currently using. By using the information collected by the
sensors, the conductor pulls the sensing information and analyses the
extractable contents. The behavior sensing concept acts as an informa-
tion filter that extracts only the intended information from sensing data
and stores it in the user-behavior context Data Base (DB). There can
be multiple contexts in sensing data, which depends on the services
available in the learning management system.

To provide the s-learning service to each unique user, the behavior
sensing concept has to automatically deduce the real situation of the
user. The behavior sensing is the process of extracting user’s behavior
information through a variety of sensors to filter information from the
sensing information. The filtered information is analyzed to figure out
user’s behavior patterns. This patterns consist of set of user preference,
GPS and value of terminal MAC-ID.

The filtered process in behavior sensing is defined with the rating
function as:

R : Ua×Ui×T ×L×D→ Rating (2)

where Ua is user action, Ui is user interest, L is location, T is time,
D is device, Rating is the information of rating. The Ua dimension is
defined as Uuser⊆Uaction⊆Urequest ⊆ Learning ob ject | title and
consist of a set of user situation. Similarly, the Ui dimensions are de-
fined as User⊆Uinterests⊆Uneeds⊆Uexpertise | experience. The
L is defined as Location⊆ Homes⊆ Street ⊆Company. The T is de-
fined as Time ⊆ Month ⊆ Day ⊆ Morning ⊆ Lunch ⊆ A f ternoon ⊆
Evening. Finally, the D dimension can be defined as Device ⊆
Terminal MAC ID ⊆ Application type. Visually, ratings R on the
filtered process is can be stored in a multidimensional cube.

The double cube is stored rating R(Ua,Ui,T,L,D) for the filtered
proves Ua×Ui×T ×L×D, where the five tables define the sets of
user action, interest, location, time and device associated with Action,
Interest, Time x Location and Device dimensions respectively.

For example, the rating R(303,1302,2,ASP1) = 7 means that for
the action with action ID 303, the user’s interest learning object is in-
terest ID 1302 and using this item mainly Time ID 5 in the Location
Company, rating was specified during in the device ID ASP1. In other
words, the user uses the application (ID 1302) every afternoon by us-
ing a smart phone at the street. So that filtered data is the basis for

A Comparison of Cloud Computing Services in Smart Learning Systems – Guntur Dharma Putra

10

Fig. 3. Windows Azure provides compute and storage services for intel-
ligent e-learning in the cloud [19].

creating user behavior database (DB) for providing s-learning service.
According to following classification the situation is determined and
then the user behavior database will be created.

4.3 Cloud and Web 3.0
Nasr et al. [19] proposed an approach of e-learning system that is
supported by Platform as a Service (Paas), Infrastructure as a Service
(Iaas), and Web 3.0. This work is basically using a cloud computing
platform provided by Microsoft, which is known as Windows Azure6.
As described in this paper, Windows Azure has several important parts
such as a computing part, a storage part, a fabric controller, and a
Content Delivery Network (CDN). The parts are depicted in Figure 3.

An intelligent e-learning system based on an integration between
cloud computing and web 3.0 is developed in this approach in order to
enhance the efficiency of a learning environment. This proposed sys-
tem also provide an up-to-date, self-regulated, stability, QoS(Quality
of Service) guaranteed system. However, this system is highly depen-
dent with the Windows Azure platform.

4.4 Content Oriented
A research carried out by Jeong et al. [2, 18] proposed a content-
oriented smart education system based on cloud computing that inte-
grates a number of features required for implementing a cloud-based
educational media service environment. The objective is to develop
an integrated education content service system based on cloud com-
puting to deliver and share a variety of enhanced forms of educa-
tional content. This proposed approach developed six main features
as its foundation. Firstly, by establishing a private cloud platform to
install and operate a cloud-based educational media service environ-
ment. Secondly, developing a common file format enabling manipula-
tion of various forms of media content on multiple platforms. Thirdly,
implementing an authoring tool, allowing teachers to create various
types of smart media content, including text, images, sound, and video.
Fourthly, developing a content viewer to display media content on di-
verse types of devices through a multi-platform based design. Fifth,
implementing an inference engine to provide students with customized
individual learning content by analyzing their learning and content us-
age patterns. Sixth, including a security system to encrypt data and to
control user access for dependable smart media content services.

Figure 4 presents the proposed cloud-based education system for
smart media content services. The proposed system enables delivery
and sharing of a variety of enhanced educational content by integrating
a number of features required for the deployment of a cloud-based
educational media service environment. Figure 2 shows the proposed
system with its six main features required for deploying cloud-based
educational content service.

In detail, this proposed system has six main features, those are
cloud platform, common file format, authoring tool, content viewer,
inference engine, and security system. Private cloud platform pro-
vides an infrastructure for the implementation of a cloud-based educa-
tional media service environment by applying several cloud comput-
ing technologies, such as data synchronization, virtualization, service

6http://azure.microsoft.com/

Fig. 4. Architecture of the proposed cloud-based education system for
smart content services [18].

provisioning, and multi-sharing services. Common file format is also
developed in order to be able to manipulate various types of media
content on multiple device platforms based on an XML document for-
mat with HTML5, eXtensible 3-Dimensional (X3D), and JavaScript.
Authoring tool allows teachers to create many types of smart media
content ranging from text, images, sound, and video. Then, the content
viewer is developed to display media on multiple platforms and infer-
ence engines will provide students with personalized learning content
by analyzing their preferences, learning styles, and content usage pat-
terns. Finally, a security system is included to encrypt data and control
privileged user access.

5 COMPARISON OF APPROACHES

Some benefits of cloud computing in education are drawn in a study by
Gonzalez et al. [22]. Those advantages are a wealth of online applica-
tions to support education, flexible creation of learning environments,
support for mobile learning, computing-intensive support for teaching,
learning, and evaluation, scalability of learning systems and applica-
tions, costs saving in hardware, cost saving in software.

This study tries to evaluate the above mentioned approach of
cloud computing in s-learning systems based on several studies that
attempted to define factors that drive successful online education
[4, 5, 6]. That works alleged that there are some factors that push an
e-learning system to be successful. The result showed that the factors
are learner’s computer anxiety, instructor attitude toward e-Learning,
e-Learning course flexibility, e-Learning course quality, perceived use-
fulness, perceived ease of use, student collaboration, and diversity in
assessments are the critical factors affecting learner’s perceived satis-

Fig. 5. Infrastructure of the proposed system with its six main features
[18].

SC@RUG 2015 proceedings

11

faction. However, since our study only tries to investigate the technical
implementation of cloud computing without the involvement of stu-
dents, instructors, or courses, the only factor that is possible to be used
is flexibility. Furthermore, in order to evaluate the approaches deeper,
we add some more factors that are relevant with s-learning systems,
such as context-awareness, security, multi-media support, and ontol-
ogy utilization.

Kim et al. presented a s-learning service that is based on SCC.
As mentioned above, this approach offers s-learning services through
4S model, which are smart pull, smart prospect, smart content, and
smart push. Security is also covered in this approach, although it
is just securing user’s personal information through some security
setting without data encryption. SCC also manages to implement
context-awareness by utilizing context-aware sensors. The context-
aware module considers the characteristics of each user individually,
such as learners’ knowledge interests, needs, expertise, and experi-
ences. Thus it can provide highly customized and relevant learning
services to each user. Each cloud type (Iaas, Paas, Saas) is covered
using smart cloud approach. Furthermore, no specific platforms are
used in this approach, this will lead to a good flexibility. Semantic
description based on UVA (Universal Video Adaptation) are used to
provide accurate and meaningful information for the fusion content
(content-database). The paper also managed to show the implemen-
tation with four fusion media, which includes video, audio, Microsoft
Power Point presentation, and text.

Elastic Model (EM) [10] focuses to meet users’ need intelligently.
The approach is slightly similar with the SCC because EM also use
the four smart concept to cloud service. This proposed system also
support multiple devices just as SCC approach. Furthermore, this sys-
tem is independent from any platform and this makes this approach
flexibile to be implemented. Security factor is also slightly described
to secure each user’s personal information using some security setting
e.g. user’s schedule and location. This approach also utilizes context-
aware by implementing behavior sensing to provide s-learning service
to each individual user. However, there are no ontological approaches
explained in the paper.

The approach from Nasr et al. [19] integrates cloud computing as
a platform with the help of Web 3.0 to build an intelligent learning
system. This is done by utilizing Windows Azure as the platform for
the system. The system also proposed ontology based model. For im-
plementing the knowledge the leaning resources have to be described
by means of meta-data. This is also a resource for contextual learning.
Security system in this approach is fully covered in Windows Azure
platform that obviously has the enterprise level security system. How-
ever, this approach does not mention any description in multi device
support and since this system depends on Windows Azure platform to
be developed, this system is more likely to have less flexibility.

Content-oriented approach [18] makes use of cloud computing in
smart education systems and integrates a number of features that will
enable a school to deliver and share a variety of enhanced forms of ed-
ucational content including text, images, videos, and even 3D or even
virtual scenes. Thus, this approach has a rich amount of contents and
does support multimedia content. Moreover, this content-oriented ap-
proach also supports multiple-devices with multiple screen sizes and
features. This concept also offers a security system. The author men-
tioned that security is needed not only to encrypt data and control priv-
ileged user access but also to protect and solve network problems in
the cloud. An inference engine is utilized to provide students with
personalized learning content by analyzing their preferences, learn-
ing styles, and content usage patterns. This proposed system does not
use an ontological approach to model the educational database or user
preference. However, this system offers flexibility as it utilizes XML
for data and document exchange and it also develops Common File
Format to be able to manipulate various types of media content on
multiple device platforms. Although this approach seems to have a
comprehensive concept of cloud computing in s-learning systems, this
proposed concept has not been fully implemented yet.

To sum up the above discussion, Table 1 depicts the four approaches
in summary. As seen in Table 1, we can conclude that SCC has all

Table 1. Comparison between the existing cloud computing services
implementation in s-learning system.

SCC EM Web 3.0 Content-oriented
Security 3 3 3 3
Context-awareness 3 3 3 3
Multi-device support 3 3 − 3
Ontology 3 − 3 −
Flexibility 3 3 − 3

factors that the author wants to assess. Some other approaches lack in
one or two factor and there are no approach that lacks three or more
factors.

Moreover, in order to deliver an effective and successful s-learning
system, intuitive user interface and an out of the box user experience
that will make the system easier to be used might be factors that has
to be keep in mind since it is mentioned in [4] that ease of use is one
factor that drives a successful learning system. Moreover, the author
suggests that adaptation of cloud computing in s-learning systems can
be considered as successful if it is able to prevent duplication of data
and can manage computing resources efficiently.

6 CONCLUDING REMARKS

Cloud computing services offer several advantages in its implemen-
tation to e-learning system, such as increased cost savings and also
improved efficiency and convenience of educational services. Further-
more, e-learning services can be also enhanced to be smarter and more
efficient using context-aware technologies as context-aware services
that are based on the users behavior. This paper has compared and re-
viewed several researches and articles about cloud computing services
in smart learning environments in terms of context-awareness, secu-
rity, ontology, multi-device support, and flexibility. These factors are
drawn out from a research that tried to determine factors that drive the
successfulness of e-learning. The result showed that SCC is the only
approach, which is able to cover all factors used in assessment.

Further studies with regard to cloud computing services in smart
learning systems should consider security as an important issue as
users’ information are stored in the system. Encryption can be taken
into account for improving the security of the system and to protect
personal data from any unwanted access. The comprehensive surveys
are needed to be undertaken in order to assess the capability and the
usefulness of the system. Moreover, a benchmark about how system
runs will show the benefits and how efficient cloud computing has
made the smart learning system. To sum up, further studies, which
take more variables into account, will need to be undertaken.

ACKNOWLEDGEMENTS

The author would like to thank the expert reviewer, Fatimah Alsaif, for
the valuable help and suggestions on reviewing this paper. Also, the
other peer reviewers, Mathieu Kalksma and Stephan Boomker, who
have provided a lot of useful feedbacks that really helped during the
rewriting process.

REFERENCES

[1] Monisha Singh Sudhir Kumar Sharma, Nidhi Goyal. Distance
Education Technologies: Using E-learning System and Cloud
Computing. International Journal of Computer Science and In-
formation Technologies, 5(2):1451–1454, 2014.

[2] Ji-Seong Jeong, Mihye Kim, and Kwan-Hee Yoo. A Cloud based
Smart Education System for e-Learning Content Services. Ad-
vanced Science and Technolohy Letters (ASTL), 25:131, 2013.

[3] L Uden, I T Wangsa, and E Damiani. The future of E-learning:
E-learning ecosystem, 2007.

[4] Pei-Chen Sun, Ray J. Tsai, Glenn Finger, Yueh-Yang Chen, and
Dowming Yeh. What drives a successful e-Learning? An empir-

A Comparison of Cloud Computing Services in Smart Learning Systems – Guntur Dharma Putra

12

ical investigation of the critical factors influencing learner satis-
faction. Computers & Education, 50(4):1183–1202, May 2008.

[5] B Fetaji and M Fetaji. E-Learning Indicators Methodology Ap-
proach in Designing Successful e-Learning, 2007.

[6] N Laily, A Kurniawati, and I A Puspita. Critical success fac-
tor for e-learning implementation in Institut Teknologi Telkom
Bandung using Structural Equation Modeling, 2013.

[7] Joi L. Moore, Camille Dickson-Deane, and Krista Galyen. e-
Learning, online learning, and distance learning environments:
Are they the same? The Internet and Higher Education,
14(2):129–135, March 2011.

[8] Svetlana Kim, Su-Mi Song, and Yong-Ik Yoon. Smart Learn-
ing Services Based on Smart Cloud Computing. Sensors,
11(8):7835–7850, 2011.

[9] Soheila Mohammadyari and Harminder Singh. Understanding
the effect of e-learning on individual performance: The role of
digital literacy. Computers & Education, 82:11–25, November
2014.

[10] S Kim and Yongik Yoon. Elastic Service Model for Smart Learn-
ing Based on Cloud Environment, 2013.

[11] Taisiya Kim, JiYeon Cho, and BongGyou Lee. Evolution to
Smart Learning in Public Education: A Case Study of Korean
Public Education. In Tobias Ley, Mikko Ruohonen, Mart Laan-
pere, and Arthur Tatnall, editors, Open and Social Technologies
for Networked Learning SE - 18, volume 395 of IFIP Advances
in Information and Communication Technology, pages 170–178.
Springer Berlin Heidelberg, 2013.

[12] MEST: Ministry of Education, Science and Technology of the
Republic of Korea, Smart education promotion strategy, Presi-
dents Council on National ICT Strategies, 2011.

[13] Anoush Margaryan, Manuela Bianco, and Allison Littlejohn. In-
structional Quality of Massive Open Online Courses (MOOCs).
Computers & Education, 80:77–83, August 2014.

[14] Khaled M. Alraimi, Hangjung Zo, and Andrew P. Ciganek. Un-
derstanding the MOOCs continuance: The role of openness and
reputation. Computers & Education, 80:28–38, August 2014.

[15] Xiao Laisheng and Wang Zhengxia. Cloud Computing: A New
Business Paradigm for E-learning, 2011.

[16] Asgarali Bouyer and Bahman Arasteh. The Necessity of Using
Cloud Computing in Educational System. Procedia - Social and
Behavioral Sciences, 143:581–585, August 2014.

[17] Oskar Casquero, Javier Portillo, Ramón Ovelar, Jesús Romo, and
Manuel Benito. igoogle and gadgets as a platform for integrating
institutional and external services. Mash-Up Personal Learning
Environments (MUPPLE08), page 37, 2008.

[18] Ji-Seong Jeong, Mihye Kim, and Kwan-Hee Yoo. A Content
Oriented Smart Education System based on Cloud Computing.
International Journal of Multimedia & Ubiquitous Engineering,
8(6), 2013.

[19] Mona Nasr and Shimaa Ouf. A proposed smart E-Learning
system using cloud computing services: PaaS, IaaS and Web
3.0. International Journal of Emerging Technologies in Learning
(iJET), 7(3):19–24, 2012.

[20] A R Pratama, Widyawan, and G D Putra. An infrastructure-less
occupant context-recognition in energy efficient building, 2014.

[21] K Scott and R Benlamri. Context-Aware Services for Smart
Learning Spaces, 2010.

[22] José A. González-Martı́nez, Miguel L. Bote-Lorenzo, Eduardo
Gómez-Sánchez, and Rafael Cano-Parra. Cloud computing and
education: A state-of-the-art survey. Computers & Education,
80:132–151, September 2014.

SC@RUG 2015 proceedings

13

Natural interaction from a graph theory perspective

Julien van der Land, Jorrit Idsardi

Abstract— This paper surveys the usage of graph theory in a natural world context. We highlight several studies that have used
graph theory and provide an in depth view on how these studies have used graph theory within their application domain. Specifically
the studies that were examined cover the following topics; termite nests, landscape connectivity, trophic relationships, and protein
structures. We found that the application of graph theory within the natural domain was varied and that graph theory is often used in
these studies to gain insight into the complex systems that are found in this domain. During the survey we identified two cases where
in graph theory is used; gaining insight into the underlying data that a graph represents and, using graphs for visualization purposes.
These two cases can of course be used together as is the case with the insect nests studies and, landscape connectivity.

1 INTRODUCTION

In this paper we describe complex systems in the natural world from
a graph theory perspective. Graph theory has been used in the field
of biology to create insight into many different aspects of the natural
world. The following topics were examined in this survey;

• The dynamics and equilibria of ecological predator-prey
networks[4].

• Mapping the topological structure of termite nests[5].

• Creating insight into food-web structures[2]

• The application of graph theory for for protein structures [10]

Animal inter- and intraspecies interactions are often analyzed using
food-webs, when these interactions concern the predation relations
between different species. Layout characteristics that insect nests
exhibit, can be interesting to study due to the properties found within
these nests. Many animals/insects display certain patterns in terms of
migration routes or other environmental features. Insight into these
routes/features allow preservation authorities to map the interactions
between different habitats for the preservation of species. Lastly
protein structures are extremely complex and in order to study these
structures, graph-theory is used to predict protein folding in order
to gain insights into the stability of proteins and, more importantly,
function.

The application of graph theory allows us to model interac-
tions/networks within a mathematical construct. Graphs are a
combination of vertexes and edges, where in vertexes are connected
by edges. Depending on the context vertexes can be used to model
chambers within a insect nests or animal habitats, edges can be
used to model pathways between the chambers in insect nests or
migration routes that link habitats. Extending this analogy to trophic
relationships between species, it can also be animals eating other
animals. The vertexes would then be animals and the edges be the
predator-prey relationship. Finally, graph theory can also be used to
represent the structure of proteins, using several meanings for the
vertexes and edges.

This paper is organized in the following manner; In section 2 we
examine the application of graph theory in studies related to insect
nests. In section 3 we examine how graph theory is used to study
the connectivity of fragmented animal habitats. Section 4 details the

• Julien van der Land with University of Groningnen,
E-mail:J.van.der.land.2@rug.nl.

• Jorrit Idsardi with University of Groningnen, E-mail:
J.Idsardi@student.rug.nl

application of graph theory in studies that examine the trophic rela-
tionships between species. Finally 5 details how graph theory is used
when studying protein folding and protein interactions. In section 6
we discuss our findings during our examinations of the subjects.

2 INSECT NESTS

The structure of insect nests can be expressed quite naturally as a
graph. In particular termite nests have been studied quite closely by
[5] and [9]. In [9] Valverde et al. attempts to prove that insect nest
networks are optimal. They do this by proving that termite nests are
close to the percolation threshold. This is the threshold where large
connected components either exist or not. This means that termites
build efficient connections spanning the entire nest at low cost.

To analyze the termite nests, 3D scans of 6 different nests from dif-
ferent locations were used. Because the hallways between chambers
are quite a bit smaller than the chambers the process of converting the
nests to a 3D graph representation could be automated. This was done
by scanning the nests with a medical scanner and then automatically
creating a 3D graph model in which chambers are represented as
vertexes and hallways as edges. The result of this process can be seen
in figure 1.

After analysis of the 6 nests, Valverde et al. created a model that
generates graphs similar to the nests. The model does the following:
it starts with a fully connected 3D lattice, consisting of S2H nodes, in
which all neighboring nodes are 1 distance away from each other. S
stands for the breadth and width in nodes on a layer. H is the amount
of vertical layers of the model. Some links are removed until only a
certain amount of links are left. The removal is link is done at random
using the following algorithm:

1. Select a random node

2. Select a random link connected to the node select at step 1

3. Remove remove the link according to the probability p(q)

4. Iterate over steps 1-3 until the following criteria; 2(S− 1)SH p
horizontal links left, and S2(H − 1)q vertical links left. p is the
survival probability of horizontal links. q is the survival proba-
bility of vertical links. When p > q, the structure is layered

Nodes are then displaced a small distance in a random direction
and finally, nodes that are too close are merged in to one node. After
running an evolutionary algorithm on the original nests, metrics
for acceptable forms, links and size were determined. the numbers
were then put into the model. Valverde et al. found that their model
produces graphs similar to real termite nests. They then measured
statistics regarding the efficiency and found that termite nests allow for
maximizing network functionality while minimizing its connectivity.

14

Perna et al.[5] investigated the sparseness of the termite network as
there is no additional cost in adding more connections between rooms.
Also of note is fact that nodes that have a lot of connections are far
from the external walls of the nest (see figure 2). [5] Perna et al.
found that chambers adjacent to the external wall usually only had one
edge to the internal chambers. They propose that the reason, that outer
chambers are connected by only one edge, is a defensive evolution,
as the hallways are about the size of a soldier termite. This allows
the termites to close off the external chamber and thereby stopping the
entire invasion in their nest.

Fig. 1. (A) a termite nest and (b) the spatial 3D graph of that nest.
Courtesy of [9].

Fig. 2. Same nest as in figure 1. Red nodes are nodes at an exterior
wall, white nodes are interior. Courtesy of [5].

3 LANDSCAPE CONNECTIVITY

In the field of biology, graph theory is used to measure landscape
connectivity between high quality habitat patches on a given land-
scape. This is interesting for biologists because the measuring of the
connectivity of these patches can aid in the preservation of animal
species. Fortin et al. [3] writes that obstructions between high quality
habitats reduce gene flow, which in turn increases inbreeding. Gene
flow is the propagation of genes between different animal habitats for
a certain species.

Cushman et al. [1] details that different features in a landscape
have a certain resistance to movement for animals. Cushman et al. [1]

specifically looked at the gene flow of blacks bears within a 3000km2

area in northern Idaho. Cushman et al. [1] found that landscape
coverage impacts gene flow. Specifically Cushman et al [1] found that
forest cover had a positive influence on gene flow. Areas with low
forest cover and, roads were found to reduce gene flow. Cushman et
al.[1] also found that areas with middle elevation levels are most opti-
mal for gene flow. Gene flow resistance was found to increase at high
and low elevation levels. In addition to that, Fortin et al. [3] also notes
that these obstructions and unconnected habitat areas increase species
invasion. From this we can conclude the connectivity of habitats
is impacted by the features of the landscape between different habitats.

Within biology there is a lot of interest in maintaining landscape
connectivity so that species can move between different habitats in
such a way that gene flow positively impacted. These habits are often
spaced out in a mosaic of patches[3]. This connectivity is important to
keep the population of a species varied enough. In order to determine
the connectivity between these habitats Fortin et al.[3] uses spatial
graph algorithms by considering the structural configuration of high
quality habitat patches (nodes) and the Euclidean distance between
them(links) [3].

The links between these nodes may not represents the actual path
that the species take while migrating between habitats due to the land-
scape which may impede a species movement [3]. As such [3] uses
Delaunay tessellation to form a minimum planar graph.

Fig. 3. Landscape connectivity from [3].

Figure 3 shows the connectivity between different habitats, on the
left images shows the connectivity between habitats using euclidean
distance. The right images hows connectivity based on species, taking
into account dispersal ability, which results in least-cost paths.

Another paper that uses graph theory to describe habitat connec-
tivity is Rayfield et al.[6]. In this paper graph theory is used to pro-
vide an efficient measure of potential connectivity pathways in hetero-
geneous landscapes. In Rayfield et al[6] spatially explicit least-cost
habitat graphs are used to evaluate how matrix and spatial configura-
tions influence the assessment of habitat connectivity [6]. Rayfield et
al.[6] does this by generating artificial landscapes with qualities rang-
ing from low to high. The area and degree of the fragmentation of the
landscapes is controlled in a factorial experiment. Rayfield et al. [6]
found that the highest sensitivity, to relative costs of landcover, was in
landscapes with fragmentation of 20% - 50%. Rayfield et al.[6] sug-
gests several methods for identifying low-cost routes between pairs of
habitat patches.

4 FOOD WEBS

Trophic levels are an hierarchical ordering of organisms classified into
5 different categories as shown in figure 4. This classification allows us

SC@RUG 2015 proceedings

15

to determine the place of animals along the food-chain. What follows
is a short description of these trophic levels

1. Producer: Plant and Algae, the lowest level of the trophic pyra-
mid.

2. Primary consumer: Animals(Herbivores) that consume produc-
ers.

3. Secondary consumer: Carnivores that only feed on primary con-
sumers.

4. Tertiary consumer: Carnivores that feed and secondary and, pos-
sibly primary. consumers

5. Quaternary consumers: Animals that feed on tertiary and, lower
trophic level animals. Quaternary consumers have no natural en-
emies.

Fig. 4. Trophic levels

A food web is a web of animals connected to each other. The con-
nections are directed and mean that the two connected animals have
a trophic relationship. A trophic relationship is the relationship be-
tween animals where one animal eats the other. In figure 5 we seen
an example of a food web represented as a directed graph. In this fig-
ure trophic relationships between animals(nodes) are represented by
directed edges and should be read as m is consumed by n and n is
consumed by o.

Fig. 5. An example of a food web from [4].

In biology graph theory is used to analyze different characteristics
of food-webs such as whether a food-web is in equilibrium or to ana-
lyze the connectivity between predator-prey species. The application
of food-webs is varied and can be used to, for example, manage the
population of fish species within fishing communities. For the most
part, however, food-webs are used to create insights into questions re-
lating directly or indirectly to population dynamics.

Within the food-web context, there are some different categories of
food-webs:

• Connection web - All the food resources that consumers con-
sume.

• Energy flow web - Quantizes the energy between resources and
consumers.

• Functional web - Shows interactions between species, specifi-
cally to determine population levels and, growth or decline of
organisms within a ecological system.

Connection webs are normally represented by directed graphs. The
direction of the links between nodes indicate which species is the con-
sumer and which species is a resource(consumers eat resources). The
energy web shows relations between the trophic levels of different
species, an energy web can, for example, show that a certain species
consume more energy because it’s lower in trophic pyramid.

Depending on the interactions between species, the vulnerabilities
and traits of a species may be taken into account when linking con-
sumers and resources as indicated by [7]. Naturally food-webs are
dynamic webs that can change with time as different species interact
with each other. Population-dynamical food-web models[7] show this
trophic interaction over time. Population-dynamical food-web are pa-
rameterized by using sub-models such as [7]:

• functional and numerical response of consumers to varying re-
source abundance.

• non-trophic losses (due to death or metabolic losses)

• populations dynamics of basal species.

Given the complexity of food-webs, a distinction has to be made
between patterns in empirical data and models that can explain and
reproduce sets of patterns [7] found in food-webs. Because natural
food webs are so complex, a trade-off has to made between accuracy
of the food-web and its completeness. As such trophic links between
species are often inferred, rather than measured from the natural world.

5 PROTEIN STRUCTURE

Graph theory is used in the study of proteins[10] to understand many
different topics of the protein. Among these topics are:

• Fold and pattern identification

• Testing of folding rules

• Functionality and structurally important motif recognition

• Identification of clusters important for function, structure and
folding

• Identification of proteins with similar folds

• Protein dynamics

Because the topics are very different from one another they use differ-
ent definitions for the nodes and edges within a graph. In this section
we will discuss the application of graph theory for each of these topics.

Protein structure comparison: pattern identification There are
a lot of different proteins in nature, but there is a limited number of 3D
structures that they occur in. Learning what certain structures, that
perform a certain function, look like, allows researchers to understand
what a protein does by examining its structure, which is modeled as
a graph. The comparison of graphs is generally an expensive com-
putation although there are some methods of approximation that are
relatively fast and reliable.

Clusters in protein folding and function The interaction of
residues with other residues and the environment, determines the func-
tional structure of the protein. These clusters can be found using the
graph spectral technique. Particular types of clusters are known to
be important for specific functions of the protein. The graph spectral
technique can differentiate between these clusters by setting criterions
corresponding with the type of cluster you are tying to find. Some spe-
cific residues have been identified that correlate closely to the folding
of the protein. Places where the protein interacts with other proteins
can be determined using a combination of graph spectral techniques,
and some the more traditional methods of determining protein interac-
tion sites, with good accuracy.

Natural interaction from a graph theory perspective – Julien van der Land and Jorrit Idsardi

16

Protein dynamics A protein should not only fold, but it should
be able to move as well. How proteins move is currently not fully un-
derstood. Simulating the physics in full of a protein in motion, down
to the molecular level however is possible. This simulation is compu-
tationally expensive, in addition to that for large structures this sim-
ulation is prohibitive. There are ways to simulate the movement of
protein as it can be extracted from the molecular topology. The Gaus-
sian network model is one such a method. Using amino-acids residues
as nodes and, edges that represent the spring-like interactions between
the residues. The graph spectra is then used to extract the interesting
properties from the principle of statistical thermodynamics, which can
be used to determine the movement. Constrained graph theory can
also be used, as it can determine the flexible and rigid substructures of
proteins, which then can be used to determine how a protein moves.

6 DISCUSSION

As section 2 shows, the usage of graph theory in biology is somewhat
new, but it enables researches to find many interesting facts. In case
of the insect nests it gave researchers insight into why it was struc-
tured as it was. It gave researches insight into connections between
nature areas. In the case of food-webs questions of population are
considered.In the case of protein structures, graph theory is used to
determine various structures, folding methods and even functionality
of proteins.

Within biology graph theory is often use in two different cases;

• One wants to gain insight into the underlying data that the graph
represents

• One wants to have a method that allows for visualization pur-
poses of the underlying data

Evidence of this is found in all the studies that were surveyed. For
example in section 2, graph theory is used to represented a insect nest
as a 3 dimensional graph, this 3d graph is then used to gain insight
into the topology of the insect nest. Further evidence is found in
of this is presented in section 4 where graph theory is used to gain
insight into the trophic relationships of species. During our survey
of landscape connectivity, and protein structures we found that graph
theory is used to gain insight into underlying data by representing the
underlying data as a graph.

6.1 Food-webs
In the case of food-webs, there is currently no standard model
available. A generic model could be built and made extendable to the
various usages of food-webs by building it with graph theory in mind.
This generic model can then be used by future researchers, to more
easily build food-webs and for other researchers to better understand
those standardized food-webs.

6.2 Insect nests
The models of the termite nests, were built using different methods.
However Valverde et al.[9] could have used Perna et al.[5] model for
generating random termite nests. Currently there exists no standard
or preferred method to generate spatial 3D graph from insects
nests. Defining such a standard method would aid researchers when
analyzing insects nests because both Valverde et al[9] and Perna et
al[5] spend significant effort on generating the graph models that
represent a insect nest.

6.3 Protein structure
Protein structure has many models, which use graphs, but in those
graphs the nodes and edges have a different meaning. Sometimes the
edges of the protein structure graphs are based on similar things but
with different thresholds. It would be nice, if images of those graphs
are always specific about what the nodes and edges are, since the
applications of those graphs do differ depending on those definitions.

6.4 Landscape connectivity
For the landscape connectivity it is difficult to define a single graph
model that can always be applied in every situation. Even though one
could assign fixed resistance values to terrain features such as roads
and forest coverage the impact that these terrain features differs for
different species. This would of course invalidate such an approach.
Current studies into landscape connectivity have so far only examined
connectivity for specific animal species. No general model has been
developed that allows for the optimization for landscape connectiv-
ity for different animal species. In addition it is also unknown which
properties(small world, Scale-free, etc) connected habitats exhibit.

6.5 Relevance
This paper is written as part of a computing science colloquium, but
the relevance may seem far away with all these nature related graphs.
However, there is always something to learn from observing nature
even for computing scientists, as Unger et al[8] prove in their pa-
per about building a search engine for P2P-networks, inspired by the
pheromone trails used by ants. The natural world has had millions of
years of evolution to solve its problems, it is time we use that evolution
to our benefit.

ACKNOWLEDGEMENTS

We would like to acknowledge and thank G.A. Pagani., G.D Putra and,
E. Karountzos for reviewing our paper. In addition to that we would
also like to thank Prof. M. Biehl and, Prof. F. Kramer for supplying
us with valuable lessons while writing this paper.

REFERENCES

[1] S. A. Cushman, K. S. McKelvey, J. Hayden, and M. K. Schwartz. Gene
flow in complex landscapes: testing multiple hypotheses with causal
modeling. The American Naturalist, 168(4):486–499, 2006.

[2] J. A. Dunne, R. J. Williams, and N. D. Martinez. Food-web structure
and network theory: the role of connectance and size. Proceedings of the
National Academy of Sciences, 99(20):12917–12922, 2002.

[3] M.-J. Fortin, P. M. James, A. MacKenzie, S. J. Melles, and B. Rayfield.
Spatial statistics, spatial regression, and graph theory in ecology. Spatial
Statistics, 1:100–109, 2012.

[4] A. Nagurney and L. S. Nagurney. Dynamics and equilibria of ecologi-
cal predator–prey networks as natures supply chains. Transportation Re-
search Part E: Logistics and Transportation Review, 48(1):89–99, 2012.

[5] A. Perna, C. Jost, S. Valverde, J. Gautrais, G. Theraulaz, and P. Kuntz.
The topological fortress of termites. In Bio-Inspired computing and com-
munication, pages 165–173. Springer, 2008.

[6] B. Rayfield, M.-J. Fortin, and A. Fall. The sensitivity of least-cost habitat
graphs to relative cost surface values. Landscape Ecology, 25(4):519–
532, 2010.

[7] A. G. Rossberg. Encyclopedia of theoretical ecology - Food webs. Num-
ber 4. University of California Press, Berkeley, 2012.

[8] H. Unger and M. Wulff. Towards a decentralized search engine for p2p-
network communities. In Parallel, Distributed and Network-Based Pro-
cessing, 2003. Proceedings. Eleventh Euromicro Conference on, pages
492–499. IEEE, 2003.

[9] S. Valverde, B. Corominas-Murtra, A. Perna, P. Kuntz, G. Theraulaz, and
R. V. Solé. Percolation in insect nest networks: Evidence for optimal
wiring. Physical Review E, 79(6):066106, 2009.

[10] S. Vishveshwara, K. V. Brinda, and N. Kannan. Protein structure: Insights
from graph theory. Journal of Theoretical and Computational Chemistry,
01(01):187–211, 2002.

SC@RUG 2015 proceedings

17

A Comparison of Decision-making Approaches in Smart Spaces

Joris Schaefers, Toon Albers

Abstract—Smart spaces can make autonomous decisions in order to minimize the interactions the user has to make with their
environment, by adapting the environment to their needs and preferences. By controlling certain parts of the environment that people
live in, smart spaces try to optimize the comfort and safety of the inhabitants, while at the same time trying to minimize costs like
power consumption and user interaction. This way, the productivity of the users will be increased, because they can focus on tasks
that are more important to them.
In our research we compare different approaches behind smart spaces, these are rule-based approaches, planning algorithms and
learning algorithms. We first describe these methods and in order to clearly understand how each approach works, some notable
implementations of the approaches will also be discussed. Finally we compare them based on the expectations users have of a smart
space and the ease of implementation of the methods. The comparison will provide insight into the applicability of each automation
approach and shows that an approach should be chosen based on the needs of a system on a case-by-case basis. We found that
rule based approaches are best if you require an easy to produce and easy to adjust smart space. Approaches using a planning
algorithms are also very adjustable and perform well on providing safety to the smart space. The learning algorithms also provide
safety and are the easiest approach to integrate.

Index Terms—Smart spaces, decision-making, automated control.

1 INTRODUCTION

Smart spaces are environments that are monitored and controlled by
computers. They can make autonomous decisions in order to mini-
mize the interactions the user has to make with their environment by
adapting it to their needs and preferences. Their goal is often to make
the life of the user as efficient as possible, by for example performing
certain actions on behalf of the user, or by managing climate controls
to keep the energy bills low. Providing safety is often also seen as
a major feature. By controlling certain parts of the environment that
people live in, smart spaces try to optimize the comfort and safety of
the inhabitants, while at the same time trying to minimize costs like
power consumption and user interaction.

Consider the following example of an inhabitant of a smart home.
When the alarm clock goes off, the room is still dark so the user turns
on the lights. If it is light outside the user opens the curtains and
in order to save power should turn off the room lights again. Some
automation can be performed by allowing the user to open the curtains
from their bed or by using preprogrammed timers. However, smart
spaces can simplify this process by being configured or learning to do
the right thing at the right time. For example, they can automatically
choose to open the curtains when the alarm clock goes off and if there
is sufficient outdoor light. This way the user has to do even less work.

Pragnell, Spence and Moore [21] state that the demand for smart
homes and smart spaces is steadily growing. Especially so as the tech-
nology matures. However, increased maturity of smart spaces also
results in increased complexity of the underlying systems. This makes
research on this topic very interesting.

Smart spaces aim to perform actions automatically and dynamically
based on what the user actually wants. Timed actions are not always
sufficient because timers have to be set and reset to perform actions at
the right time and they cannot sense nor react on situations happening
in the home. There are a few approaches that enable smart space be-
haviour, namely rule-based, planning, and learning approaches. How-
ever, there is not a lot of published research that compares these meth-
ods and thus it can be difficult to choose an appropriate method when
designing a smart space. In this paper we compare the aforementioned
approaches in order to provide insight into their applicability.

• Joris Schaefers is a MSc. Computing Science student at University of
Groningen, E-mail: j.schaefers@student.rug.nl.

• Toon Albers is a MSc. Computing Science student at University of
Groningen, E-mail: t.albers.2@student.rug.nl.

We start by describing our methodology and looking at the expec-
tations users have of smart spaces, which can be used to compare dif-
ferent smart-space approaches. This is followed by the description of
the three decision-making approaches. Afterwards some well-known
smart space implementations will be discussed, as well as a project
focused on energy management through automation. The described
methods are compared and conclusions are presented.

2 METHOD

In this section we look at the way to compare the different methods of
automation of the smart space discussed in section 3.

A survey was done in 2013 among people 25 years or older with a
moderate income [12]. The results of this survey showed that the most
important reasons for users to use a smart space system are (in order
of importance):

1. Security and safety
2. (Remote) control
3. Convenience
4. Energy management

A survey by Pragnell et al. [21] obtained similar results. The main
reason for using a smart space, people said, was to have more security
and safety. The surveys show that people mostly think about fire de-
tection and gas leak detection. Controlling and remotely controlling
the space are also often wanted as features. The next item is conve-
nience. When thinking about convenience, the survey shows that the
main feature people seek is climate control and lighting control. The
last item is energy management. Users want to save power and money
by, for example, only turning on lights in rooms that are occupied.

Apart from the expectations users have of the system it is also nec-
essary to look at factors regarding the implementation of the different
automation methods. The comparison is therefore done based on the
following properties:

• Safety: Enhancing the safety of the inhabitants by reducing the
risks in case of danger.

• Control: The ability of controlling the home from a single device
in or out of the house.

• Convenience: How well the home reduces the amount of actions
the inhabitants have to perform.

• Energy management: How applicable the approach is for saving
energy.

• Production: How little effort is required to develop a system.
• Integration: How little effort is required to set up the system in a

new home.

18

• Adjustability: How much the users have the ability to interfere
with the system and adjust the actions the smart space takes.

3 METHODS OF AUTOMATION

There are several ways to automate smart spaces, which are described
by Huber [11]. They distinguish rule-based approaches, planning al-
gorithms and learning algorithms. These approaches will be discussed
in this section.

All methods require telemetry from a number of sensors of the
smart space, and perform actions by instructing actuators, like light
bulbs or automatic curtains. The general architecture of a smart space
[8] is shown in Fig. 1.

Fig. 1. The general architecture of a smart home

The physical layer contains all the physical elements (that is, the
hardware) of the home. The communication layer takes care of all
the necessary communication. This includes giving information to the
users when needed, communicating with external resources and pos-
sibly communicating with other agents as is discussed later in section
4.1. The information layer holds all the information that might be use-
ful in the decision-making process. It gathers, generates and stores
this information. The decision layer decides what actions to be taken
by the agent. These actions get selected based on the information that
is obtained from the other layers. The information flow is bottom-up.
This means sensors in the physical layer communicate their status to
the information layer (through the communication layer). The deci-
sion layer then decides what action to take based on that information.
The handling of the actions the decision layer chooses to do flows top-
down. The information layer is used in deciding what action to take
and then gets updated to include the information about the decision
that has been taken. The chosen actions to execute are then passed to
the communication layer, which will execute the actions on the appro-
priate devices.

The methods discussed in this section are general methods of au-
tomation used by smart spaces. Section 4 discusses several well-
known implementation of smart spaces in which these general meth-
ods are used.

3.1 Rule based decision making
In a rule-based approach, the status of the devices are directly deter-
mined using rules. Rules have the form of ‘if the user enters the house,
then turn on the lights’. Of course, most rules will be much more spe-
cific and complex. For example, lights may not have to be turned on
when there is enough natural light from outside. This approach is de-
scribed schematically in Fig. 2. The user defines rules that the system
should follow using the user interface. The solver knows the rules and
verifies them against the current context of the home to see if actions
needs to be taken. The devices in the smart space, like automatic cur-
tains and lighting, are called actuators. The solver uses these actuators
to satisfy the rules and take the necessary actions.

There are a multitude of ways to implement a rule-based approach.
The rules are mostly defined by a programmer, using a rule-based pro-

gramming language like Jess, Prolog or SWRL [11, 18]. Degeler and
Lazovik [7] provide a way to define rules and execute them efficiently
using a Constraint Satisfaction Problem (CSP). In a CSP, constraints
are defined over variables and the solver tries to find a solution to these
constraint by trying to change these values using the available actua-
tors. When the value of a sensor or the overall availability of a de-
vice changes, the rules need to be re-evaluated. However, it would
be inefficient to evaluate all rules if there are a large number of them.
Degeler and Lazovik use a dependency graph to efficiently find the
rules that are affected by changes. Lu, Li, Jin, Xing and Hao [18]
propose separating the rules of the system from the controlling and
decision-making components into what they call a ‘knowware’ con-
taining only the logic rules. This is done to increase the manageabil-
ity and reusability of the rules, since the rules are separated from the
underlying system they are executed on. However, users will need ex-
perience in the rule-programming languages before they can modify
these rules themselves. A solution to this is found with visual pro-
gramming languages such as Blockly, where users can drag and drop
predefined elements to define rules [9].

Fig. 2. Schema of a rule-based system. Rules are retrieved from a
database and executed according to available sensor data.

3.2 Planning algorithms
Unlike the previous approach, planning algorithms [20, 14] do not use
a simple ‘if this then that’ system, but instead react with a composition
of multiple steps. A schema of this approach is given in Fig. 3. The
planning is done to achieve a goal, which is either triggered by the user
or through means of a different decision algorithm, such as a rule-
based system. A model of the home and a descriptions of available
devices is used to determine what actions are needed to achieve the
goal. Like the previous example, when the user enters the house the
goal of lighting the rooms will be triggered. When there is enough
natural light outside, the planner will choose to open the curtains, since
this is the cheapest option. However, when it is dark outside the only
option will be to turn on the lights. The environment model is needed
in order for the smart space to know what lights are located where
and which rooms are connected to each other. So in order to light up
the room, the lights in the room itself could be turned on, but perhaps
also lights in adjacent rooms. The planning algorithm also checks
if the created plan, the sequence of actions resulting in fulfilling the
goal, is being accomplished. While executing a plan, actions are being
taken by the actuators, which in turn change the context of the home.
The planning system will get feedback from the context and notices
if something goes wrong. It can then create a new plan to fulfill the
goal through other means, given the new context created by the failed
previous plan.

SC@RUG 2015 proceedings

19

Fig. 3. The planner receives goals and tries to fulfill these goals by
creating/planning a sequence of actions based on the model of the en-
vironment and the current context of the home

3.3 Learning algorithms
Unlike rule-based and planning approaches, learning algorithms [3,
11, 5] do not follow predefined rules created by a programmer or user.
This approach is described schematically in Fig. 4. By monitoring the
actions of a user, the system can detect patterns and automate certain
actions. Following the above example, if the user turns on the light
when they enter the home, the system can detect this and turn on the
lights for them after a while. Even better, if after turning on the lights
the user opens the curtains when it’s light outside and then turns off
the lights, the system would be able to optimize and open the curtains
without having to turn on the lights at all. The learning algorithm
must however be carefully designed to prevent unwanted behaviour.
For example, consider a presentation, where during the presentation
the user turns on the room lights to draw something on the board, and
then switches the lights off again. The system may now infer that
after a certain period of time during a presentation the lights should be
turned on. And this is certainly not the intention of the user.

Learning algorithms can also provide safety to its inhabitants. For
example, Jakkula [13] proposes a method using machine learning to
detect anomalies. By using this anomaly detection method, the health
of the inhabitants can be verified and whenever the system detects an
anomaly and thinks something is wrong with a user, the system can
interfere. This method provides safety for the inhabitants, but in an
entirely different way than the rule-based and planning approaches.
This method does not open windows in case of a gas leak like a rule or
planning approach might do, but instead it focuses solely on situations
and actions that are not normally taken. For example, it could detect a
user has forgotten to turn off the stove and raise an alarm.

4 WELL-KNOWN IMPLEMENTATIONS

In order to see how these general methods operate, several well-known
implementations of smart spaces will be discussed in which these
methods are used. This provides insight into the current state of this
field. The smart home implementations that will be discussed are:

• MavHome, using a learning-based approach
• Smart Homes for All (SM4ALL), using a planner linked with a

rule-based approach

Each of these implementations make use of one or more of the
methods of automation discussed in the previous chapter. This chapter
looks at how these well-known implementations work and how each
implementation tries to fulfil the needs of the users.

4.1 MavHome’s approach
MavHome [5, 4, 6, 10] is a project by the University of Texas at Ar-
lington. Its focus lies on maximizing comfort and productivity of the

Fig. 4. Learning based algorithms predict what actions the user wants
to perform using a history of previous usage and then executes them
automatically.

users while minimizing the operation costs. This project is discussed
because it contains a lot of aspects that are common in learning based
smart homes such as use of multiple agents and the use of several pre-
diction algorithms.
MavHome is, as they call it, an agent-based smart home [5], consisting
of a hierarchy of agents. Each agent has a specific role and contains all
the layers of the general architecture of a smart home shown in Fig 1.
The agents communicate information with other agents through their
communication layer. The agent system is hierarchical, which means
that communication layer might communicate with the decision layer
of another agent. If the physical layer represents another agent, the
actions that have to be executed are communicated with the decision
layer of this other agent. This other agent can then again make its own
decisions on how to handle this particular action. This way, a complex
system can be divided into multiple less complex agents, thereby de-
creasing the complexity of the system and increasing maintainability
and scalability.
While collecting and processing data, MavHome continually tries to
thoroughly find out what is going on in the environment. Based on
the actions and information that is recorded, it tries to identify which
users are currently in the home. MavHome will then try to assist the
user by performing the actions that it predicts the user will perform
themselves. This way MavHome tries to automate the routine of the
users. The decision layer decides what actions to take and tries to pre-
dict these actions by searching for patterns in the information layer.
To make predictions, MavHome uses several different algorithms and
and a filter [5, 4, 6, 10]. These are:

• Smart Home Inhabitant Prediction (SHIP)
• Active LeZi (ALZ)
• Markov Model
• Episode discovery (ED)

4.1.1 Smart Home Inhabitant Prediction (SHIP)
When a user performs an action (uses a device), this specific user-
action is recorded and stored. Say the user performs action A. The
home will then looks at the sequence of actions that were done by the
user before they performed this specific action A. The history of ac-
tions of the specific user is analysed to find if part of this sequence of
actions happened before, in the same state, and resulted in the same
action A being taken. When a previous sequence is found, it will in-
crease the match count of this sequence which registers how many
times this specific sequence resulted in this action. After recording the
matches, the prediction algorithm processes all the matches found. It
ranks the actions taken in a certain state based on the match-frequency
and the length of the previous sequence of actions. Based on these
action rankings it can take the action that has the highest ranking, if a
specific sequence of actions occurs again in a specific state. The main
disadvantage of this prediction algorithm is that the entire action his-

Comparison of Decision-making Approaches in Smart Spaces – Joris Schaefers and Toon Albers

20

tory must be stored. If this history becomes too big over time, looking
for matches and processing them will take too long.

4.1.2 Active LeZi (ALZ)
The Active LeZi algorithm is based on data compression (LZ78 data
compression). The general idea behind this algorithm is that good
compression methods seem to act as good predictors as well. The
algorithm works by first parsing the sequence of actions to a string,
where each character represents an action. By using LZ78 to compress
this string, the method calculates the probabilities of the character that
would be next in the given string. And because the next character
represents an action, compression methods can be used to predict next
user actions.

4.1.3 Markov Model
A lot of context variables of the home are randomly changing, such as
the weather. These randomly changing variables affect what actions
are taken, either by the user or the smart-home. For example, on a
warm sunny day the heating of the home may be reduced and the in-
habitants may be more likely to be outside of the house. The actions
that are taken here are only related to the current state of the environ-
ment, not the previous sequence of states. If it was a cold rainy day the
day before, it won’t have much influence on the actions taken on the
sunny day. This means that actions in the smart home can be modelled
according to the state the home is in at the moment the actions are
taken. One representation that can be used for this kind of modelling
is called a Markov Model. A Markov Model is a model of a system
that has the ‘Markov property’, which means that the future state of
the system only depends on the current state, not the past sequence of
states.

MavHome collects all the actions performed in the home and in
what context they were performed. To refine this Markov model,
MavHome tries to identify tasks based on the actions performed. Ac-
tions might correspond to different tasks if the time and place of these
actions differ significantly. Actions are first partitioned into groups
that are most likely part of a single task. Then a k-means clustering al-
gorithm is used to transform these different tasks into abstract classes
of tasks. K-means clustering groups N-dimensional data (in this case
the properties of each task’s actions such as device and time of day)
into clusters based on the similarity of their properties [19]. These ab-
stract tasks can then be used to calculate probabilities of transactions
between specific states.

4.1.4 Episode discovery (ED)
Episode discovery (ED) is focused on identifying ‘significant
episodes’. This algorithm looks at the action history of a certain user
and tries to find related events. The key difference with the other al-
gorithms is that these events do not have to be ordered. The related
events can also be partially ordered or even unordered. Episode dis-
covery does not make predictions on its own, but it is used to filter
the history of events and actions. The prediction algorithms discussed
earlier can use this filtered set of significant episodes to try to predict
the actions, rather than using the direct history of the actions itself.
The MavHome project found that using ED as a filter significantly in-
creases the prediction accuracy.

4.2 Smart Homes for All’s approach
The Smart Homes for All (SM4ALL) project [1] is a large smart home
project in Europe. Many different people and universities from all
across Europe contribute to this project. This project focuses on the
comfort and safety of the inhabitants of the smart home. This project
uses a planning approach together with a rule engine. Kaldeli et al.
[14] discuss the architecture of this smart home. The goals for the
architecture is to make it highly interactive and adaptive so it can be
used in multiple houses and for multiple types of users. The architec-
ture consists of three layers, as shown in Fig. 5.

The user layer consists of the devices and ways for users to interact
with the system and to instruct the home. For example a smart phone,
tablet or computer. The composition layer contains the components

Fig. 5. Layers of the SM4ALL architecture

that will make the smart decisions in the home. This layer provides
the intelligence of the home and takes all the necessary actions through
means of the other layers. The pervasive layer is used to connect with
devices in the home. The universal plug and play (UPnP) protocol
[2] is used to provide a dynamic way to connect to the devices. The
functionality the connected device has to offer is exposed using the
OSGi platform, which is a Java platform that allows the creation of
complex systems through composition of swappable components. The
pervasive layer provides a way for the composition layer to utilize the
functions the connected devices have to offer.

The service composition layer is the layer that actually does all the
‘smart’ thinking to control the elements present in the other layers.
It is based on CSP solving [14]. The layer contains several different
components, including a rule engine, a repository, a composition mod-
ule, context awareness and and orchestration. The rule engine contains
rules that will generate goals (instead of actions) based on the context,
as is previously discussed in chapter 3.1. The goals that are generated
by this rule engine are passed to the composition module, which acts
as the planner. The planner receives high-level goals either from the
user or the rule engine and makes a plan on how to fulfil these goals.
To do this, the planner uses the repository, which contains the informa-
tion of all the active devices that can be used. The planner generates a
sequence of actions to be executed and passes this to the orchestrator,
which executes the necessary low-level service-actions needed.

The planner is a smart component and searches for the different
ways to fulfil the same goal. When something goes wrong while ex-
ecuting a goal, the planner will notice by either a timeout during the
realization of the goal or through a notification from the context aware-
ness. The planner will then create a different composition of actions
that will realize the same goal. Upon replanning for the goal, the plan-
ner will take into account the new context that is created by the execu-
tion of the failed attempt to reach the goal. Also, whenever something
is wrong and the planner does not receive all the data it needs, such as
specific sensor information, it can still plan to fulfil the goal.

The entire home is modelled as a CSP, so when a specific context
attribute changes, a constraint is added to the constraint satisfaction
problem that reflects this new state. This way, whenever a goal is
received by the planner, it does not have to load the entire context of
the home.

SC@RUG 2015 proceedings

21

5 SMART GRID

An important aspect of smart homes is the possible integration with
smart power grids. The SmartHouse/SmartGrid project [15, 17, 16]
focuses on the energy management and efficiency of the smart homes.
It adds an energy utility to the smart-home environment that can be
used to minimize the energy consumption.

This addition of the energy management utility to the smart home
tries to help regulate the energy consumption. It measures the energy
consumption of the devices in the home and gives information about
energy costs and usage. The home tries to make their users aware of
their energy usage and tries to let them help reduce energy consump-
tion by advising them. To effectively add these energy features to the
home, it is necessary that the system can automatically identify home
appliances. A standard model is used to automatically register new
devices and services.

The energy the home uses does not only come from an energy ser-
vice company. The energy can also come from a distributed energy re-
source (DER). This distributed energy resource consists of relatively
small energy generating devices, such as windmills or solar panels,
which might provide energy to the smart home. Using these resources
can lower the cost of energy. The smart home tries to predict how
much energy the different resources within the DER will generate. The
home also knows the market prices from power companies. Using this
information about the cost of energy, a smart home can perform the
high energy consuming tasks during a time where the cost (and load)
is the lowest.

Smart homes can communicate and interact with each other in order
to manage the energy consumption as a group. They tell each other
how much energy they consume and how much they can produce. This
way a smart grid is created. It might also happen, for example, that
the energy network does not have the capacity to provide a sudden
high demand of energy an area. The homes/devices can make a plan
together to spread out their energy consumption to lower the energy
load. The architecture of the smart home is shown in Fig. 6.

Fig. 6. The SH/SG home architecture

The home contains devices that are used by the inhabitants and con-
sume energy. The device controller influences these devices and can
try to save energy by, for example, switching a device off. The home
may also be able to provide energy. In the figure, the home has a solar
panel and a backup generator. This information is all communicated
to the smart grid by using the gateway in the home. The grid is con-
nected to several different energy producers and consumers, of which
the smart home is one, and tries to balance their energy. The solar
panel of the home might produce enough energy to provide to other
smart homes in the smart grid. And in case of a blackout, the backup
generator’s energy might be sold to other people.

6 RESULTS

The major benefit to rule-based approaches is that the system can be
perfectly tuned to the needs of the user. The downside of this is that
these rules have to be carefully designed, which requires a lot of work
from a programmer or user.

Planning algorithms do not respond in a predefined way, but com-
pose actions to fulfil a goal. However, this requires a precise model
of the environment and a description of the effects of each action. It
also still requires a programmer to create rules to trigger these goals.
One advantage over rule-based systems is that it can be more fault tol-
erant, as it can choose to perform similar actions when some devices
malfunction.

Learning algorithms are by far the most flexible, as little initial
setup is required during installation, since the system learns what to
do over time. The downside is that the system requires a training
phase. That is, it is not actually a smart space until some time after
deployment. This can be mitigated by loading custom learning data
to define some behaviour in advance. However, this naturally requires
more work from a programmer. Another downside is that it may pick
up unwanted behaviour, where the user must act as a moderator to
disable those actions.

The discussed methods can also be related to the user expecta-
tions as given in chapter 2. Rule-based and planning algorithms are
both suitable for security and safety purposes, since they can be pro-
grammed to respond to threats in a certain way. Since the dynamic re-
sponse of planning algorithms can be more fault tolerant, it would be
the best choice for security and safety purposes. However, the learning
approach can most easily be extended to detect anomalous behaviour
from users. This could be used to automatically detect failures in the
hardware of the system, but also to detect medical emergencies [13].
In this way it provides a different kind of safety.

Rule-based and planning algorithms are best suited for (remote)
control, since they can more easily be given a simple user interface.
Learning-based systems may be too abstract to directly add a user in-
terface, since the underlying rules are created dynamically.

Convenience-wise all approaches can reduce the number of actions
the user has to perform by the same amount. The only difference is
how these actions are triggered (programmed versus learned). The
same goes for energy management. In all approaches the energy con-
sumption of the house can be reduced by making smart decisions such
as opening window curtains instead of turning on lights.

Rule-based systems are simplest to produce, since they are rela-
tively uncomplicated and readily available. While the sensors and ac-
tuators add complexity to the system, these are also common factors
for the other methods. The planning method requires more compo-
nents such as the environment model. Learning algorithms are most
complex, since they require large scale analysis of data.

On the other hand, learning algorithms are most easily integrated
because once in place, the system will automatically develop its be-
haviour, although this may take some time. Rule-based and planning
approaches work immediately after installation, however they require
a lot of effort in order to create rules or goals for the system. At the
same time, these approaches can more easily be adjusted by adding,
disabling or modifying the rule database, where learning based sys-
tems would require some sort of complex interface in order to adjust
the underlying rule model.

These results have been summarized in table 1. Per property, points
were divided among the discussed methods, following the above de-
scriptions. The higher the number of dots, the more suited the method
is for that property. This table is only meant as a convenience for the
user and the rating is therefore only meant as an indication and not as
a guide when evaluating automation methods.
Looking at the several different implementations, all focus on conve-
nience while having a flexible way of connecting and discovering new
devices. The way these implementations organize their architecture
in order to fulfil these goals is very different. MavHome has no user-
interaction and tries to fulfil the user-needs by predicting what the user
wants based on their previous actions. This is very different from the
SM4ALL approach which tries to best fulfil the user-needs by execut-

Comparison of Decision-making Approaches in Smart Spaces – Joris Schaefers and Toon Albers

22

Table 1. Rating of the properties per automation method

Rule based Planning Learning
Safety •• ••• •••
(Remote) Control ••• •• •
Convenience •• •• ••
Energy Management •• •• ••
Production ••• •• •
Integration •• •• •••
Adjustability ••• ••• •

ing the high-level goals that are issued. This SM4ALL approach is
based purely on user-interaction with the planning system or with the
rule engine. The way to connect and interact with the devices differs
a lot too. MavHome tries to do this as flexible as possible by using
a hierarchy of agents that can reason about the context and execute
actions on the services. In the SM4ALL project this is done very dif-
ferently. The connected devices send their state to a single repository
which contains all device information and fires events based on status
changes.

The SH/SG project is purely focused on energy management and
tries to communicate with other smart homes in order to share and
save energy. SM4ALL and MavHome show that rule-based, planning
and learning based systems can successfully be used in the creation of
a smart space.

7 DISCUSSION

The results do not show a clear winner between the rule-based, plan-
ning and learning approaches as far as the discussed properties are
concerned. Each approach has certain drawbacks and benefits. Where
the rigidity of rule-based and planning approaches allow for precisely
tuned usage, this is exactly the reason why integration requires a lot
more effort. Therefore when building a smart home or smart space
the developers must choose the most appropriate method on a case-
by-case basis.

Looking at safety, the use of a smart space might greatly increase
safety but might also introduce new risks. Many smart spaces are con-
nected to the internet so the users can interact with the smart space
from outside the space. This means, however, that this system can
also be hacked, in which case hackers have control over the building
and might have the ability to even start a fire. What can also happen is
that the users make a mistake while adding a new rule which could do
harm or cause a disaster.

8 CONCLUSION

In this paper we have discussed a number of expectations users have
regarding smart spaces and smart homes. We described several gen-
eral techniques, as well as some notable smart space implementations.
We have looked at their architecture and described their components.
We then compared the different techniques according to the user ex-
pectations described earlier.

Each of the well-known implementations of smart spaces focuses
on a different type of user-need. None of the implementations effec-
tively focus on all four most important user needs.

Our approach only looks at theoretical benefits of the discussed
methods. In future work, it would be beneficial to see these methods
applied to real environments in a basic form. This is different from the
well-known implementations discussed earlier which are much more
complicated and so do not provide accurate information with respect
to the properties compared in this paper.

It would also be great to see an architecture which integrates a com-
bination of the methods. This could be very difficult to create, because
of the fundamentally different way these methods decide what action
to take. For example, if a learning algorithm were to be combined with
a constraint satisfaction problem (CSP) system (either for a rule-based
or planning approach), then the learning system tries to learn from

the events in the given context, while the CSP system constantly in-
fluences this context by solving this CSP. The learning algorithm will
then be very limited in it’s decision-making because when it predicts
some user actions, the action might not be executed because of the con-
straints given to the context. Meaning that these two algorithms can
work against each other. It might be possible to include a very simple
rule based approach with a learning algorithm method like MavHome
to enhance the security a little. For example by adding a very simple
rule that if there is a gas leak detected, the windows should be opened.

We are also very interested in a cloud based approach. So that if you
visit another smart space that is not yours, the space can automatically
adjust to your preferences. For example if you go on a holiday and visit
your holiday home, the holiday home automatically adjusts to your
preferences and adjusts the light and heating to suit you. Of course the
same idea could be applied to office spaces.

REFERENCES

[1] Smart homes for all. http://www.sm4all-project.eu/. Ac-
cessed: 2015-02-07.

[2] Universal plug and play. http://www.upnp.org/. Accessed: 2015-
02-07.

[3] C. M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006.

[4] D. J. Cook. Identifying tasks and predicting action in smart homes using
unlabeled data. 2003.

[5] D. J. Cook, M. Youngblood, E. O. Heierman, K. Gopalratnam, S. Rao,
A. Litvin, and F. Khawaja. Mavhome: An agent-based smart home. 2003.

[6] S. K. Das, D. J. Cook, A. Bhattacharya, E. O. Heierman, and T.-Y. Lin.
The role of prediction algorithms in the mavhome smart home architec-
ture. 2002.

[7] V. Degeler and A. Lazovik. Dynamic constraint reasoning in smart en-
vironments. In IEEE International Conference on Tools with Artificial
Intelligence, 2013.

[8] A. Dixit and A. Naik. Use of prediction algorithms in smart homes. 2014.
[9] Google Developers. Blockly faq. 2015. https://developers.

google.com/blockly/about/faq.
[10] E. O. Heierman and D. J. Cook. Improving home automation by discov-

ering regularly occuring device usage patterns. 2003.
[11] M. Huber. Automated decision making. In Smart Environments: Tech-

nologies, Protocols, and Applications, chapter 10. 2005.
[12] icontrol. State of the smart home. 2014. http://www.icontrol.

com/insights/2014-state-smart-home/.
[13] V. Jakkula, D. J. Cook, et al. Anomaly detection using temporal data

mining in a smart home environment, volume 47, pages 70–75. Stuttgart
[etc.] FK Schattauer [etc.], 2008.

[14] E. Kaldeli, E. U. Warriach, A. Lazovik, and M. Aiello. Coordinating the
web of services for a smart home. TWEB, 7(2):10, 2013.

[15] K. Kok, C. Warmer, D. Nestle, G. Heusel, J. Ringelstein, P. Selzam,
H. Waldschmidt, A. Weidlich, S. Karnouskos, A. Dimeas, and
S. Drenkard. Smarthouse/smartgrid in-house architecture and interface
description. 2009.

[16] K. Kok, C. Warmer, D. Nestle, P. Selzam, A. Weidlich, S. Karnouskos,
A. Dimeas, and S. Drenkard. Smarthouse/smartgrid coordination algo-
rithm and architecture. 2009.

[17] K. Kok, C. Warmer, G. Venekamp, A. Weidlich, S. Karnouskos,
P. da Silva, D. Ilic, A. Dimeas, J. Ringelstein, S. Drenkard, and V. Li-
olou. Final architecture for smarthouse/smartgrid. 2011.

[18] Y. Lu, G. Li, Z. Jin, X. Xing, and Y. Hao. A knowware based infrastruc-
ture for rule based control systems in smart spaces. 2013.

[19] J. MacQueen. Some methods for classification and analysis of multivari-
ate observations, 1967.

[20] D. Nau, M. Ghallab, and P. Traverso. Automated Planning: Theory &
Practice. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2004.

[21] M. Pragnell, L. Spence, and R. Moore. The market potential for
Smart Homes. YPS for the Joseph Rowntree Foundation York, 2000.
http://cisyr4backupsofeverything.googlecode.
com/svn/trunk/CM30082-DissertationReadings/
2.)Journals/Pragnell,Spence,
Moore-TheMarketPotentialforSmartHomes.pdf.

SC@RUG 2015 proceedings

23

Comparing Adaptive Gradient Descent Learning Rate Methods

Diederik Greveling and Michael LeKander

Abstract—In machine learning, learning algorithms are often trained by minimizing a given cost function using function optimization
algorithms. Gradient descent algorithms are a popular family of function optimization algorithms which utilize calculus-based methods.
There are two leading classes of gradient descent algorithms: batch gradient descent (BGD), which considers every example at each
time step, and stocastic gradient descent (SGD), which only looks at one example at a time.

Most optimization algorithms, including BGD and SGD, require multiple hyperparameters that are not immediately obvious from the
data. In practice, this requires researchers to manually tune these hyperparameters depending on the dataset and desired results.
Recent proposals have suggested modifications to the BGD and SGD algorithms aiming to improve performance and reduce their
dependance upon hyperparameters.

In this paper, we investigate the waypoint averaging and vSGD algorithms in addition to standard BGD and standard SGD. We
evaluate each of these algorithms with respect to their respective convergence properties, number of hyperparameters, and resulting
final cost values. Empirical results on a large dataset of 25010 10-dimensional samples demonstrate that waypoint averaging and
vSGD both reach better local optima faster than the standard algorithms. In addition, we find that these variations are less influenced
by their hyperparameters, thus requiring less manual tuning.

Index Terms—Machine learning, optimization, gradient descent, learning rate, hyperparameters.

1 INTRODUCTION

One of the primary goals of machine learning is to notice patterns in
example data, and then recognize these patterns in novel data. For
example, we can classify different types of fruit based on their colour
and size. Given a set of fruits, the learning algorithm can learn that
bananas are typically yellow and that their size is usually larger than an
apple. The algorithm is now able to “recognize” whether an unknown
fruit is a banana or an apple.

Learning algorithms typically undergo a training process which at-
tempts to find a set of internal parameters, w, which minimize an ob-
jective cost function, E(w). This cost function gives a numeric value
of how “good” a set of parameters performs over a given dataset, with
lower costs preferred over high costs.

The cost function and internal parameters vary between different
learning algorithms. For example, Generalized Learning Vector Quan-
tization’s (GLVQ) internal parameters represent the coordinates of var-
ious prototypes that estimate the centers of data clusters. GLVQ’s cost
function measures how close these prototypes are to the “correct” data
points. GLVQ is discussed in more detail in Section 2.1.

Often, the cost function given by learning algorithms are differen-
tiable, which allows the use of calculus-based methods to approximate
a minimum E(w) value. One popular technique is known as gradient
descent optimization, which is one of the most-used techniques for
large-scale learning problems[2].

At every time step t, gradient descent optimization calculates the
gradient of the cost function, ∇E(wt), which gives a vector pointing in
the direction of the steepest cost function change at the current value
of wt . By constantly following this gradient vector, the procedure will
theoretically always locate a local minimum value, although perhaps
not the global minimum. When gradient descent reaches a minimum
value, or equivalently when it reaches a value with a zero gradient, it is
said to have converged. However, implementation details may prevent
convergence from occurring, as explained in Section 4.

There are multiple variants of gradient descent optimization. How-
ever, most gradient descent variations can be grouped into one of two

• Diederik Greveling is a MSc student, University of Groningen
E-mail: diederikgreveling@gmail.com

• Michael LeKander is a MSc student, University of Groningen
E-mail: m.l.lekander@gmail.com

families: batch gradient descent, or stochastic gradient descent. Batch
gradient descent (BGD) computes the gradient by considering every
element in the dataset and then performing an update step. In con-
trast, stochastic gradient descent (SGD) approximates the gradient by
only considering a single element at a time, immediately performing
an update step after each element. Details about BGD and SGD can
be found in Sections 4.1.1 and 4.2.1, respectively.

Most gradient descent methods require hyperparameters that influ-
ence their convergence properties, but that cannot be easily determined
from the dataset. Hyperparameters are optimization parameters that
are not automatically tuned by the learning algorithm, and must be set
manually during initialization. In practice, these parameters are tuned
by manually searching over various hyperparameter configurations un-
til a good result is found. This manual tuning is costly, since often
multiple full runs are needed in order to find optimal hyperparameter
values. In addition, since these parameters are data-dependent, they
must be recalibrated for every dataset.

One common gradient descent hyperparameter is the learning rate,
α , which determines how far to step in the direction of the gradient.
For both BGD and SGD, the learning rate heavily influences how well
the algorithm is able to minimize the cost function. If the learning rate
is too high, then the algorithm will not converge. If it is set too low,
then the algorithm will take a very long time to converge, and may
easily get stuck in highly suboptimal local minima.

There are multiple methods proposed for adaptive learning rate con-
trol in order to improve finding an optimal solution. Some methods
propose a learning rate schedule where the learning rate decreases
with respect to time[1]. Other methods used higher order derivatives
to approximate an “optimal” learning rate using recently encountered
data[12].

In this paper we research methods proposed by various authors
which each attempt to improve the standard SGD and BGD algorithms
by adapting the learning rate during the course of the algorithm. The
following gradient descent methods will be compared:

• standard BGD

• standard SGD

• variance-based SGD (vSGD) [12]

• BGD with waypoint averaging (WA-BGD) [6]

• SGD with waypoint averaging (WA-SGD, a method we pro-
pose).

24

We carry out this analysis over the poker hand dataset, supplied by
the UCI machine learning repository [4]. The poker dataset contains
25010 examples of possible poker hands, mapping 10 dimensional in-
put (the suit and rank of each of the five cards) to ten classes (the type
of poker hand; straight, three of a kind, full house, etc.).

The remainder of this paper is organized as follows: Section 2 de-
scribes the learning algorithm used. In Section 3 we describe the dif-
ferent criteria needed in order to compare the performance of the dif-
ferent optimization algorithms. Section 4 describes the various gradi-
ent descent methods we explore in this paper. We present our results
in Section 5, and discuss these results in Section 6. Finally, Section 7
concludes the paper.

2 LEARNING METHODS

One important task in machine learning is supervised learning,
whereby an algorithm classifies data into one of several classes. This
is done by generalizing an unkown rule from a set of training exam-
ples with pre-determined classifications. Various learning algorithms
are used to accomplish this task. Some popular supervised learning al-
gorithms include multilayer neural networks and learning vector quan-
tization.

Often these learning algorithms require a training phase to “learn”
the data by setting internal parameters. This training phase can be
formalized as minimizing an objective cost function that predicts how
well a set of parameters will perform against novel data. General op-
timization methods are often used during this phase to find learning
algorithm parameters that minimize this cost function.

2.1 Generalized Learning Vector Quantization
In this paper, we use the generalized learning vector quantization
(GLVQ) classification algorithm proposed by Sato et al. [11]. For
a n-dimensional dataset, the GLVQ algorithm maintains P different
n-dimensional prototypes, each of which represent a cluster of data
points from the same class. Each prototype is associated with a spe-
cific class. Once the prototypes have been trained, the algorithm clas-
sifies unknown n-dimensional inputs by finding the closest prototype
to the input, and then returning the class of that closest prototype.

The goal of GLVQ training is to position each of these P proto-
types in the n-dimensional space such that each prototype is as close
as possible to examples from its own class, while remaining as far as
possible from examples from different classes.

The GLVQ function was chosen for this paper because it has a rel-
atively simple and differentiable cost function,

E(w) = ∑ei(w) = ∑ d(i, pi j)−d(i, pik)

d(i, pi j)+d(i, pik)
, (1)

where ei(w) is the per-sample cost function, d is the Euclidean dis-
tance function, pi j is the prototype closest to i with the same class as
i, and pik is the prototype closest to i of a different class than i.

The GLVQ cost function can produce negative values. This simply
indicates that d(i, pi j), the distance from a sample to its closest cor-
rect prototype, is smaller on average than d(i, pik), the distance to its
closest incorrect prototype.

Since the GLVQ cost function is affected by multiple prototypes for
each sample, prototypes cannot be trained separately. Thus, the opti-
mization algorithm used to train GLVQ can be viewed as optimizing
over a P×n-dimensional space.

3 OPTIMIZATION ALGORITHM CRITERIA

The following list of criteria enables us to make objective distinctions
between the different algorithms. These criteria are based on how fast
the algorithms converge and how many times hyperparmeters need to
be set in order to find the optimal values for these parameters.

• Influence of hyperparameters - As mentioned before, the tun-
ing of the different gradient descent methods is computationally
costly since often multiple runs are needed to locate and verify

optimal settings. Hyperparameters influence the final cost func-
tion value to different degrees for different algorithms. Since
finding optimal hyperparameter settings is computationally ex-
pensive, algorithms with more lenient hyperparameters (even
when not optimally tuned) are preferred.

• Number of epochs before converging - The goal of every opti-
mization algorithm is to find a local optima in the least amount of
epochs. We measure this by the number of epochs (full iterations
through the data) the algorithm requires before it converges. The
number of epochs plays a key role in how efficient the training
process will be.

• Final cost function value - The cost function tells us how well
the learning algorithm is expected to perform when presented
with novel data. This is particularly useful since we can then
make a direct comparison between the different algorithms in
terms of how efficient the algorithms are, particularly when using
identical initializations.

4 GRADIENT DESCENT

Since many learning algorithms produce cost functions that are dif-
ferentiable, calculus-based methods can be used during the learning
algorithm training phase. Gradient descent begins by starting from a
given initial location. Taking the gradient (derivative with respect to
every dimension) of the cost function at a location produces a vec-
tor in the direction of steepest change. Gradient descent then takes a
step in this direction, moving in the direction following the gradient.
However, how far to follow this gradient depends on the method used.

The choice of initial location plays an important role in the con-
vergence of gradient descent methods. Different initial locations may
converge to different local minima, and a “bad” initial location may
cause an algorithm to never converge. The effect of different initial-
izations is illustrated in Fig. 1.

In order for the gradient descent methods to converge, they run
through each sample in the dataset multiple times. If the algorithm has
gone through the whole dataset, i.e. every sample is used at least once,
then the algorithm is said to have completed one epoch. The number
of epochs required until convergence can be used as a measure for the
run time of the algorithm.

It is often the case that an algorithm will come to a relatively good
solution, even if it never fully converges. A technique known as early
stopping terminates the algorithm tmax epochs even if the optimization
parameters are not fully stable. Although early stopping is known to
have some beneficial effects with avoiding over-fitting, it is often used
to simply to reduce the required computation, as it effectively puts an
upper bound on the number of epochs required by the algorithm[7].

4.1 Batch Gradient Descent Methods
In this section we describe the different batch gradient descent meth-
ods we used for our research. We first describe standard BGD, fol-

Fig. 1: Gradients descent steps starting at two different initializa-
tions (adapted from Andrew Y. Ng Stanford CS229 Machine Learning
slides[5]).

SC@RUG 2015 proceedings

25

lowed by a description of BGD with waypoint averaging.

4.1.1 Standard BGD
In batch gradient descent, the gradient is accumulated over an entire
epoch before performing an update step. This is in contrast with SGD,
where the weight changes are applied directly (see Sec.4.2.1). BGD
is thus able to calculate the “true” gradient direction for the dataset.
However, it does not know how far it can safely go in the direction of
the gradient before going back “uphill” again. This especially poses
a problem when the dataset is large because the weight changes will
in turn become large which could result in overshooting local optima.
The learning rate can be reduced to solve this problem however this
means that more computation is required for a weight change of the
same magnitude.

The BGD update step is described by

wt+1 := wt −α
n

∑
i=1

∇ei(wt), (2)

where t is the current epoch, wt is the vector of optimization parameter
values at epoch t, and i is the index of a dataset sample.

Some authors often imply that BGD is theoratically superior to
SGD due to the fact the BGD follows the gradient more closely[8].
Some authors also state that BGD is just as fast or faster than SGD [3].
According to Wilson et al., SGD is often faster than BGD and is usu-
ally a better approximation of true gradient descent optimization[14].

4.1.2 BGD with Waypoint Averaging
Papari et al. introduced a variation of BGD known as BGD with Way-
point Averaging (WA-BGD) that addresses the problem of continual
overshooting[6]. They note that if the algorithm continually over-
shoots the optimal parameters due to the learning rate being too large,
then it might be better to take the average over a history of the most
recent parameter values (the waypoint average) and continue from
there. If we continue from this waypoint average, then the learning
rate should be reduced to avoid further continual overshooting.

The WA-BGD method is an attempt to extend BGD in a computa-
tionally efficient way while being easy to implement. Another benefit
is that WA-BGD does not require careful tuning of a large set of algo-
rithm parameters, compared to some other methods. It also does not
require any learning rate schedules or higher derivatives to adapt the
learning rate.

After a set of initialization epochs, both the waypoint average and
gradient descent step is calculated at each subsequent epoch. The con-
figuration that produces a lower cost function value is then chosen
as the next set of optimization parameters, wt+1. A normalized gra-
dient is used to overcome plateau states and flat regions of the cost
function[6].

WA-BGD introduces two additional hyperparameters:

• k, the number of epochs over which the waypoint average is cal-
culated and

• r < 1, which determines how much the learning rate is reduced
if the waypoint average is better.

For the first k epochs, WA-BGD performs similarly to WA-SGD, since
the history is not large enough to perform a waypoint average calcula-
tion, i.e.

wt+1 := wt −α0
∇Et

‖∇Et‖
for t = 0,1,2,3, . . . ,k−1. (3)

Note, however, that a normalized gradient is used.
After the first k epochs, the following steps are performed every

epoch:

1. A normalized gradient descent update is performed:

w̃t+1 := wt −αt
∇E(wt)

‖∇E(wt)‖
. (4)

2. The waypoint average over the previous k optimization parame-
ters is calculated:

ŵt+1 :=
1
k

k−1

∑
i=0

wt−i. (5)

3. The cost function is calculated at w̃t+1 and ŵt+1.

4. Lastly, the new position and step size is determined based on the
cost function value:

wt+1 :=

{
w̃t+1 if E(w̃t+1)≤ E(ŵt+1)

ŵt+1 otherwise,
(6)

αt+1 :=

{
αt if E(w̃t+1)≤ E(ŵt+1)

r×αt otherwise.
(7)

4.2 Stochastic Gradient Descent Methods
In this section we discuss the different methods based on stochastic
gradient descent. We first describe standard SGD, followed by a de-
scription of vSGD method. Finally, we introduce the waypoint aver-
aging for SGD method.

4.2.1 Standard SGD

Standard SGD (also known as the Robbins Monro procedure[10] in
other contexts) approximates the actual gradient by only looking at
the gradient for a single sample at a time. This sample-specific ap-
proximated gradient is called the local gradient. SGD updates the
optimization parameters after each sample from the dataset.

While local gradients can sometimes contradict each other, over-
all SGD does approximately follow the true gradient direction. The
noise generated by contradictory local gradients actually has a bene-
ficial effect, as it may allow escaping some local minima[6]. Another
benefit of SGD is that it can handle large training datasets, since local
gradients can guide the optimization parameters within an epoch.

The SGD update step is described by

wt+1 := wt −α∇ei(wt), (8)

where t is the current time step, α is the learning rate, i is the index of
a random dataset sample, and ∇ei is the local gradient for sample i.

SGD is said to have completed one epoch once it has performed n
update steps, where n is the number of samples in the dataset.

4.2.2 vSGD

Variance-based SGD estimates an optimal learning rate by keeping a
history of the previous gradient, gradient variance, and higher-order
derivative, eliminating the need to manually tune a learning rate [12].

Theoretically, an optimal adaptive learning rate could be deter-
mined by calculating the expected gradient and the gradient variance
(under certain assumptions, details may be found in [12]). Unfortu-
nately, in practice it is not computationally feasible to compute these
values for each sample of a given dataset.

However, it is possible to estimate these values by taking the av-
erage gradient, average gradient variance, and average diagonal ele-
ments of the cost function Hesse matrix (the second derivative of the
cost function) elements. This results in a learning rate that is specific
per optimization parameter.

Let d represent the number of optimization parameters. Let g, v,
and h be d-vectors representing the current estimated average gradi-
ent, squared gradient, and Hesse matrix diagonal, respectively. A d-
dimensional vector τ represents the length of the “memory” of each
optimization parameter. Let hi(wt) refer to the diagonal Hesse ele-
ments of the per-sample cost function at wt for sample i.

The following steps are performed every epoch:

Comparing Adaptive Gradient Descent Learning Rate Methods – Diederik Greveling and Michael LeKander

26

1. Similar to standard SGD, a random sample is picked from the
dataset at every time step t. However, before wt+1 is calculated,
the g, v, h, and τ vectors must first be updated as follows:

gt+1 := (1− τ−1
t)gt + τ−1

t ∇E(wt) (9)

vt+1 := (1− τ−1
t)vt + τ−1

t (∇E(wt))
2 (10)

ht+1 := (1− τ−1
t)ht + τ−1

t hi(wt) (11)

τt+1 := (1− g2
t+1

vt+1
)τt +1. (12)

2. The optimal learning rate can then be estimated by

αt+1 :=
g2

t+1

ht+1vT
t+1

. (13)

This method does not require any initial value of α , thus elimi-
nating the learning rate as a hyperparameter.

3. Finally, each update step is performed identically to SGD but
using the estimated optimal learning rate:

wt+1 := wt −αt+1∇ei(wt). (14)

4.2.3 SGD with Waypoint Averaging

SGD with waypoint averaging (WA-SGD) is essentially the same as
the WA-BGD counter part, except it utilizes SGD update steps instead
of BGD ones. In WA-SGD, the waypoint averages are calculated after
each epoch, that is, after n SGD update steps.

WA-SGD gain the benefit of using noise to overcome some local
optima while still using waypoint averaging for automatic step size
control. It is possible that WA-SGD will converge faster then WA-
BGD due to this added benefit. However we are not able to calculate
the normalized gradient over an entire epoch, due to the nature of SGD.

This method retains the same hyperparameters as WA-BGD,
namely k and r.

If we convert WA-BGD to WA-SGD we have to adjust only 2 steps,
namely the initialization step and the first step of every epoch. In the
initialization step we changed the BGD function to a SGD one. This
can be described by

w̃t+1 := wt −αt∇E(wt) for t = 0,1,2,3, . . . ,k−1. (15)

The first step of every epoch is changed by adjusting it for SGD use:

w̃t+1 := wt −αt∇E(wt) and E(w̃t+1). (16)

5 RESULTS

In this section we discuss the different results produced by the algo-
rithms. We have implemented the discussed gradient descent algo-
rithms specifically in order to compare their results in this paper.

Determining optimal initial optimization parameter values is be-
yond the scope of this paper. Thus, we use identical initialization for
each method when obtaining our results, for fair comparisons between
methods.

In addition, the random number generated was seeded with the same
initial value at the start of each run. This ensures that the sample pre-
sentation order is the same across the stochastic methods.

Fig. 2: LVQ Poker cost function, epochs 0-1000

Fig. 3: LVQ Poker cost function, epochs 700-1000

5.1 Poker Dataset

The poker hand dataset, supplied by the UCI machine learning
repository[4], holds 25010 records of possible poker hands. Each
record (feature) consists out of five playing cards from a deck of 52
cards. Each card has two attributes respectively, suit and rank, so one
record holds 10 attributes, resulting in a 10-dimensional dataset. Ev-
ery hand holds a label for a total of 10 different type of hands in the
game of poker; for example, a “three of a kind” or a “full house”.

We initialized 10 prototypes, 1 prototype for each class. Every algo-
rithm ran for tmax = 1000 epochs. Figure 2 displays the cost function
value of each method from epoch 0 to 1000. The same learning rate
was chosen for BGD and WA-BGD, as well as SGD and WA-SGD.

Figure 3 displays the final 300 epochs, more clearly distinguishing
between the various final results. WA-SGD converged after epoch 793
while the other algorithms ran the full 1000 epochs.

5.2 Poker Dataset subset

To explore the influence of hyperparameters on optimization perfor-
mance, we tested the methods under various hyperparameter settings.
Due to the large computational costs to accomplish this, we used a
subset of the poker hand dataset containing 2200 samples such that
the number of samples from each class is proportional to the full train-
ing set.

SC@RUG 2015 proceedings

27

Fig. 4: Final LVQ Poker cost function value for all learning rates

(a) Comparing various k vs α (b) Comparing various r vs α

Fig. 5: Hyperparameter influence, WA-BGD

(a) Comparing various k vs α (b) Comparing various r vs α

Fig. 6: Hyperparameter influence, WA-SGD

We exhaustively searched over various hyperparameter combina-
tions for each optimization method, again using identical initial proto-
types for each algorithm. As before, we used 10 prototypes, and each
algorithm ran for tmax = 1000 epochs.

For SGD and BGD, we searched over learning rate values equal to
0.0001 ∗ 2p, where p ranged from 1 to 20. The plot of the final cost
function values for these various learning rates can be found in figure
4.

For WA-BGD and WA-SGD, we looked at the combined influence
of various values for k and α while holding r constant, as well as
various values of r and α while holding k constant. The results for
WA-BGD and WA-SGD can be found in figures 5 and 6.

Since vSGD has no hyperparameters, it was not tested on this
dataset.

6 DISCUSSION

In this section we discuss the results presented in 5 in the context of
the criteria discussed in section 3.

6.1 Poker Dataset

No algorithm converged before 750 epochs on the full poker dataset,
and only WA-SGD converged before tmax = 1000 epochs.

Both BGD algorithms (WA-BGD and standard BGD) initially de-
scended faster than either of WA-SGD or SGD (Fig. 2). However after
210 epochs standard SGD and WA-SGD both produce lower final LVQ
cost function values than either standard BGD and WA-BGD. vSGD
descended the fastest of all the algorithms.

BGD becomes stable after 90 epochs, with the highest final value.
WA-SGD is relatively stable after 500 epochs. vSGD is the clear win-
ner it becomes relatively stable after 100 epochs while WA-SGD con-
verges and SGD does not become stable but keeps descending.

As seen in figure 3, WA-SGD converged after 793 epochs with the
second-best final cost function value. Interestingly the standard SGD
method is still descending and is still not stable after 1000 epochs. Be-
cause the learning rate is the same for SGD and WA-SGD and the sam-
ples are chosen in the same order we can state that WA-SGD greatly
improves SGD. The same can be said for vSGD which outperformes
all the other methods in terms of lowest final cost value.

WA-BGD and BGD have the same learning rate at the start, how-
ever WA-BGD performs better than BGD. WA-BGD does not perform
better when compared to the SGD methods. It is surprising to see that
WA-BGD initally decreased the faster than SGD and WA-SGD. Due
to the nature of WA-BGD, we let the step size be very high, allow-
ing it to make large jumps in initial epochs. Once suboptimal gradient
steps were taken, the step size drastically reduced, producing the near-
constant slope.

Overall vSGD is the clear winner, with a minimum cost function
value of −252.50 and fast stabilization at epoch 300. In comparison
with the other algorithms, vSGD also has the highest descent in the
first 50 epochs.

6.2 Hyperparameter influence

The search for optimal hyperparameters was even more computation-
ally expensive than originally anticipated. Even when using the re-
duced dataset, it took over 48 hours to produce results. WA-SGD took
the least amount of time to compute, as it was the method that con-
verged before tmax epochs the most often. Both SGD and BGD always
ran for the full tmax epochs over this dataset, regardless of the learning
rate.

The results for standard SGD (fig. 4) is somewhat confusing, as
the result does not become noticeably worse for the extremely large
learning rates. This is perhaps due to the largest tested learning rate not
being large enough to observe divergent behavior. Unfortunately the
computational requirements prohibit easily testing for a larger range
of learning rates.

The standard BGD results (fig. 4) are equally confusing; the cost
function values to get worse until α = 0.4096, as is expected. How-
ever, after this the final cost function drastically drops for larger learn-
ing rate values. We are not sure how to explain this observed “peak”
in the final cost.

The results from WA-BGD (fig. 5) indicate that, while too-small
learning rates cause the algorithm to not converge after 1000 epochs,
larger α values still give good results. Presumably, the adaptive learn-
ing rate control of waypoint averaging is able to compensate in this
case, which is why this result is better than that of standard BGD.
The k value (fig. 5a) produced slightly better results as it grew larger,
but all values of k greater than one still performed well. The r value
(fig. 5a) had a larger impact on the final cost function value, although
r = 0.4096 seems to be a good heuristic.

For WA-SGD (fig. 6), choosing an optimal learning rate did not
largely impact the final result, so long as it was relatively large. Large
k values (fig. 6a) again performed well, producing nearly identical

Comparing Adaptive Gradient Descent Learning Rate Methods – Diederik Greveling and Michael LeKander

28

results for k > 16 and α > 0.0256. The r value (fig. 6b) had no notice-
able impact on the final cost function value at all, as seen by the nearly
flat surface along the “r value” axis.

Overall, the SGD-based algorithms performed better than the re-
spective BGD-based ones. Standard SGD and WA-SGD produced
lower final cost function values than standard BGD and WA-BGD re-
spectively, while both being less impacted by sub-optimal hyperpa-
rameter settings.

7 CONCLUSION

In this paper, we outline our results from implementing various gra-
dient descent algorithms by comparing them against an ideal simple
cluster dataset, as well as a real-world Poker dataset. We conducted a
search over various hyperparameter values, and present the results of
the training runs.

The waypoint averaging methods produced better initial de-
scent properties than their non-waypoint counterparts for the high-
dimensional poker dataset. There was a somewhat surprising result
that our ad-hoc WA-SGD method outperforms standard SGD.

The learning rate plays a large role on the convergence properties
of the standard BGD and SGD algorithms, as predicted. For WA-SGD
and WA-BGD, the inital learning rate still played a role, although it
was less impactful for larger values. Although WA-BGD and WA-
SGD do introduce additional hyperparameters, these additional hyper-
parameters seem to be more tolerant to a wider range of learning rate
values in comparison with the normal BGD and SGD methods.

vSGD has the best performance on the poker dataset. vSGD is able
to find the lowest cost function value and has the steepest descent in the
first 50 epochs. vSGD does not require any hyperparameters, which
eliminates the need for manual tuning.

There is much room for further related research. This paper only
considers the cost function given by the GLVQ learning algorithm.
However, there are many other learning algorithms that have well-
defined and differentiable cost functions, such as the multilayer neural
network[3] or the relevance matrix LVQ (GMLVQ)[13]. These var-
ious learning algorithms may provide cost fuctions that produce dif-
ferent convergence properties, potentially impacting various gradient
descent methods differently.

Similarly, this paper only considers the poker data set. The dataset
used to train a learning algorithm can also drastically impact the con-
vergence properties of the resulting cost function. Future research
should apply the analysis carried out in this paper to additional data
sets, to see if the results observed in this paper can be replicated or if
they are specific to the poker data set.

Although we compare five different gradient descent algorithms in
this paper, there are many different gradient descent algorithms not
considered here. Two popular methods not considered in this paper
are gradnient descent with momentum[9] and gradient descent with
learning rate schedules[1]. Future research should apply this analysis
on these algorithms, for direct comparison with the methods presented
here. For accurate comparisons, care should be taken that each of these
algorithms have identical initializations as the results presented here.

Finally, the WA-SGD algorithm proposed in this paper produced
promising results in our results. Future work needs to be done to in-
vestigate the theoretical aspects of this algorithm. In addition, this
algorithm needs to be emperically verified over different learning al-
gorithms and data sets.

ACKNOWLEDGEMENTS

The authors wish to thank Michael Biehl for the support he has given
us. The authors also wish to thank Jasper de Boer and Joris Schaefers
for their valuable feedback.

REFERENCES

[1] C. Darken, J. Chang, and J. Moody. Learning rate schedules for faster
stochastic gradient search. In Neural Networks for Signal Processing
[1992] II., Proceedings of the 1992 IEEE-SP Workshop, pages 3–12, Aug
1992.

[2] A. D. Flaxman, A. T. Kalai, and H. B. McMahan. Online convex opti-
mization in the bandit setting: Gradient descent without a gradient. In
Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’05, pages 385–394, Philadelphia, PA, USA, 2005.
Society for Industrial and Applied Mathematics.

[3] M. Hassoun. Fundamentals of Artificial Neural Networks. A Bradford
book. MIT Press, 1995.

[4] M. Lichman. UCI machine learning repository, 2013.
[5] A. Y. Ng. Stanford cs229 machine learning autumn 2014, 2014. File:

gradient-descent.png.
[6] G. Papari, K. Bunte, and M. Biehl. Waypoint averaging and step size

control in learning by gradient descent. In MIWOCI 2011, Mittweida
Workshop on Computational Intelligence, volume MLR-2011-06, pages
16–26.

[7] L. Prechelt. Automatic early stopping using cross validation: quantifying
the criteria. Neural Networks, 11(4):761 – 767, 1998.

[8] J. C. Prı́ncipe, N. Euliano, and W. Lefebvre. Neural and adaptive systems:
fundamentals through simulations. Wiley, 2000.

[9] N. Qian. On the momentum term in gradient descent learning algorithms.
Neural networks, 12(1):145–151, 1999.

[10] H. Robbins and S. Monro. A stochastic approximation method. The
annals of mathematical statistics, pages 400–407, 1951.

[11] A. Sato and K. Yamada. Generalized learning vector quantization. Ad-
vances in neural information processing systems, pages 423–429, 1996.

[12] T. Schaul, S. Zhang, and Y. LeCun. No more pesky learning rates. In
Proceedings of The 30th International Conference on Machine Learning,
pages 343–351, 2013.

[13] P. Schneider, M. Biehl, and B. Hammer. Adaptive relevance matrices in
learning vector quantization. Neural Computation, 21(12):3532–3561,
2009.

[14] D. Wilson and T. R. Martinez. The general inefficiency of batch training
for gradient descent learning. Neural Networks, 16(10):1429–1451, 2003.

SC@RUG 2015 proceedings

29

A Comparison of Combination Schemes for Multiclass
Classification Using Binary Support Vector Machines

R. van Veen and L.E.N. Baakman

Abstract—Several real world problems involve the classification of data in more than two categories. Although a lot of research has
been done on classifying patterns, it is mostly focussed on binary classification problems. One popular way to handle multiclass
classification problems is by combining multiple binary classifiers into one multiclass classifier. We discuss and compare four of
these combination schemes; One-Against-One, One-Against-All, Decision Directed Acyclic Graph and, Half-Against-Half by their
classification accuracy, the time complexity of training them, the space complexity of the final model and the time complexity of using
the models to classify a pattern.
In conclusion the four methods have a comparable classification accuracy, however Decision Directed Acyclic Graph and Half-Against-
Half need less space to store the trained model and is faster in classifying a pattern.

Index Terms—Support vector machine (SVM), multiclass classification, machine learning, supervised learning, pattern recognition,
one-against-one (OAO), one-against-all (OAA), half-against-half (HAH), decision directed acyclic graph (DDAG).

1 INTRODUCTION

The ease with which we humans recognize each others faces, under-
stand spoken words, categorize objects around us by touch, sight, and
other senses, fails to give a true impression of the incredibly complex
process called pattern recognition. Pattern recognition - the act of tak-
ing in raw data and taking an action based on the ‘category’ or ‘class’
of the the pattern - is a widely researched field of interest within the
world of computing science [7]. Comparing the performance of the
state of the art in this field with that of toddlers in pattern recognition
tasks truly illustrates the difficulty of pattern recognition.

This paper focusses on supervised multiclass pattern recognition.
Multiclass classification is concerned with mapping raw data e.g. mea-
surements of real world objects, to one of the more than two possible
output classes. These classes represent the category to which the in-
put ‘belongs’. An example in the field of medical diagnosis could be
the distinction among different types of tumours. The raw input data
in this example would be measurements like shape, volume, and den-
sity of a not yet classified tumour. These measurements are called
features and a collection of such measurements, as related to one spe-
cific tumour, is called a feature vector. A multiclass classifier answers
questions such as “Given these input features, what type of tumour are
we dealing with?” The classifiers in this paper are constructed using
supervised learning, which is a branch of machine learning where the
classifier algorithms are provided with a labelled training set.

Most research on pattern recognition is done on binary classifiers,
i.e. systems that distinguish between two classes. Within the medi-
cal diagnosis, a binary classifier would only be able to differentiate
between two types of tumours, i.e. classifiers that answer questions
such as: “Given these input features, are we dealing with a type A or
type B tumour?” An ongoing research issue is how to extend these bi-
nary classifiers to a system that discriminates between more than two
classes.

Currently there are two types of approaches for multiclass classi-
fication. One method directly considers all data in one optimization
formulation, the other decomposes the problem into multiple binary
classification problems [9]. The first approach is non-trivial and often
leads to unexpected complexity or worse performance [18]. In this
paper we only consider algorithms of the second type.

Several different schemes exist to combine two-class classifiers to
one multiclass classifier. We compare some of these schemes on ac-

• Rick van Veen is a Computing Science student at the University of
Groningen, E-mail: r.van.veen.3@student.rug.nl.

• Laura Baakman is a Computing Science student at the University of
Groningen, E-mail:l.e.n.baakman@rug.nl.

curacy of classification, and computational and spatial complexity.
We consider the following combination schemes. ‘One-Against-One’
(OAO) [12] is a combination of binary classifiers that are trained to
distinguish between one of the classes and every other class. ‘One-
Against-All’ (OAA) [3] uses binary classifiers that are trained to dis-
tinguish one class of patterns from all other patterns. The ‘Deci-
sion Directed Acyclic Graph’ (DDAG) [20] is a method that com-
bines the OAO binary classifiers in a decision tree structure. ‘Half-
Against-Half’ (HAH) [13] is the only method that considers to group
the classes and train the binary classifiers to distinguish between these
groups.

In these types of schemes the binary classifier of choice is often
the support vector machine (SVM) [24, 11, 13, 20]. Support vector
machines are widely used in practice, because of their capabilities to
implicitly map initially non-linearly separable data to data that are lin-
early separable.

The remainder of this paper is organized as follows: Section 2 pro-
vides a brief review of the binary support vector machine and dis-
cusses the different combination schemes described above. In Sec-
tion 3 we compare the different schemes based on results reported in
literature and discuss the performance of the four different classifica-
tion schemes. This discussion includes the theoretical and empirical
time and space complexity of these schemes. The last section presents
our conclusions.

2 DESCRIPTION OF METHODS

In this section we give an outline of the theory behind the different
combination schemes used to solve multiclass classification problems.
In order to do this we first discuss the support vector machine, which
is used as the binary classifier.

2.1 Binary Support Vector Machines
SVMs were first introduced in 1995 and are a popular solution for bi-
nary classification problems [5]. In this section we give a brief review
of support vector machines. For more in depth explanations of the
concepts introduced below we refer the reader to the original paper [5]
and the introductory text by N. Cristianini and J. Shawe-Taylor [6].

We start our discussion of the support vector machine with the most
simple SVM, namely the maximal margin classifier. This classifier can
classify linearly separable data without errors. An N-dimensional data
set is considered linearly separable if a hyperplane with dimension N−
1 exists which divides the space into two half spaces which correspond
to the inputs of the two distinct classes [6].

30

Fig. 1. The separation of two classes, by a maximal margin classifier.
The support vectors are denoted as symbols with a border. The two
arrows perpendicular to the separating hyperplane, shown as a line,
indicate the margin.

Formally, consider a data set X with L points:

X =
{
(~xt ,rt) |~xt ∈ RN , rt ∈ {−1,1}

}L

t=1
, (1)

where rt denotes the class to which a data point ~xt belongs. Since
we consider the binary case a label is either −1 or +1. A separating
hyperplane is defined as all points that satisfy

〈~x,~w〉+b = 0,

where the weight vector, ~w, is perpendicular to the hyperplane and the
bias, b, determines the location of the hyperplane with respect to the
origin.

Given a linearly separable training data set X , as defined in Equa-
tion (1), the maximal margin classifier aims to find a bias b and a
weight vector ~w that satisfy:

min
~w,b
〈~w,~w〉

under the constraint that for all t = 1, . . . ,L:

rt

(〈
~wT,~xt

〉
+b
)
≥ 1. (2)

The margin is the line through the points that satisfy Equation (2).
As its name indicates, the maximal margin classifier maximizes the
distance between the line perpendicular to ~w and the lines through the
support vectors, respectively the solid and the dashed line in Figure 1.
The advantage of maximizing the margins is an increase in generality
[1].

A geometric representation of a maximal margin classifier is pre-
sented in Figure 1. This figure illustrates that the support vectors lie at
a distance equal to the margin from the separating hyperplane.

The boundary that maximizes the margin is called the optimal sep-
arating hyperplane. The vector that defines the separating hyperplane
is a linear combination of some of the vectors used for training. These
vectors are called the support vectors, in Figure 1 they are indicated
by the bordered symbols.

One important disadvantage of the maximal margin classifiers or
hard margin SVMs is that they cannot handle data that are not linearly
separable.

The hard margin SVM can fail to produce a classifier for a given
training set where a soft margin SVM produces one at the cost of mis-
classifying data from the data set [5]. If there exists no hyperplane that
can separate the positive from the negative examples, the soft margin

method will choose a separating hyperplane that splits the dataset as
cleanly as possible, while still maximizing the distance to the nearest
examples. This is done by introducing a slack variable ξt ≥ 0 that
stores the deviation from the margin for pattern ~xt . Two types of de-
viation are possible: an instance may lie on the wrong side of the
hyperplane and be misclassified, or it may be on the right side but not
lie sufficiently far away from the hyperplane. Relaxing Equation (2)
we now require:

rt

(〈
~wT,~xt

〉
+b
)
≥ 1−ξt . (3)

If ξt = 0 there is no problem with~xt . However if 0 < ξt < 1,~xt is cor-
rectly classified, but in the margin. If ξt ≥ 1,~xt is incorrectly classified
[1].

Both the soft and hard margin SVM are linear classifiers, i.e, they
can only partition linearly separable data. To allow support vector
machines to classify non-linear data, they map the data to a higher
dimension using a kernel [2]. In this higher-dimensional feature space
a separating hyperplane is constructed [5]. The linear model in this
new space corresponds to a non-linear model in the original space [1].
Denoting the kernel function with ψ (•) Equation (3) becomes:

rt

〈
~wT,ψ (~xt)

〉
+b≥ 1−ξt .

A large number of different kernels exist and which kernel is opti-
mal depends on the application. There is a group of kernels, the uni-
versal kernels, that guarantee a globally optimal classifier [22]. The
radial basis function (RBF),

ψ
(
~xi,~x j

)
= e−α|~xi−~x j |2 , (4)

is one of those universal kernels. The parameter α controls the width
of the kernel. One advantage of non-linear kernel functions, such as
Equation (4), is the flexibility it provides to the SVM hyperplane cal-
culation. For a discussion of other possible kernels and more details
we refer the reader to ‘Kernel Methods for Pattern Analysis’[21].

The output of a support vector machine for a specific pattern is the
distance between that pattern and the separating hyperplane. However
the methods introduced below often need a posterior probability. A
method that fits a sigmoid to map the output of a SVM to a poste-
rior probability is introduced by J. Platt [19]. We refer the reader to
the original paper [19] for a thorough explanation and to ‘A Note on
Platt’s Probabilistic Outputs for Support Vector Machines’ [14] for an
improved algorithm.

Complexity
The time complexity of training a support vector machine on L pat-
terns is O (Lγ), where γ ≈ 2 for algorithms based on the decomposi-
tion method [20].Classifying S patterns with a binary SVM has time
complexity O (S) [10].

The space complexity of a trained support vector machine depends
upon the number of support vectors, since its decision hyperplane is
implicitly stored as its support vectors. If we assume that a portion β
of the training data will become support vectors the space complexity
of a SVM is O (β L).

Although we use here, and in the rest of out paper, the number of
support vectors to measure the space complexity of the trained model
one should note that the dimensionality of the vectors influences both
the amount of space needed to store the data and the time needed to
classify a pattern.

2.2 One-Against-All
The One-Against-All scheme is probably the earliest implementation
of a SVM multiclass classifier [3]. In this scheme, for a (K > 2)-class
problem, K binary SVMs are constructed. Every SVM is constructed
by training it to distinguish between one of the K classes and the other
K − 1 classes. Consider the set of classes to be {C1, . . . ,CK}, then
every ith SVM is trained with the data of class Ci, which are assigned
the positive labels and with the data from the other {C j| j 6= i} classes,
which are given the negative labels.

SC@RUG 2015 proceedings

31

Fig. 2. Decision surfaces of One-Against-All combination scheme for
binary SVMs. Different classes are illustrated as different shapes and
colours. The shaded triangle in the middle illustrated an ambiguous
region where it is also possible to have 0 or > 1 votes from the different
binary SVMs.

When the classifier is presented with a novel pattern that has to be
classified, all the constructed SVMs are given this input. The SVMs
then cast their votes i.e. they give an output which says the input be-
longs to the single class or to the group of other classes. In order to
handle the votes the multiclass classifier uses a method e.g. the method
of J. Platt [19] to get a probability, which tells the classifier how certain
a SVM is of its vote.

Figure 2 illustrates a N = 2 dimension feature space, with K = 3
classes. Using a One-Against-All multiclass classifier, these three
classes can be separated using three binary SVMs. Three different
cases can be distinguished after counting the votes. In the case that
a novel pattern gets only one vote, the final class assignment is clear.
The second case is when multiple SVMs vote that the novel pattern
belongs to their single class, in this case the classifier that is most con-
fident is chosen to be the winner. This case is illustrated by the yellow
triangles on the outsides of the image in Figure 2. The purple triangle
illustrates the case where none of the SVMs think the pattern belongs
to their single class, in this case the pattern is assigned to the single
class of the SVM that is least certain about its choice.

A problem of the OAA strategy shown in ‘A Review on the Combi-
nation of Binary Classifiers in Multiclass Problems’ [15], is imbalance
of the classes among the data. The OAA scheme may show disadvan-
tages when the number of patterns from the single class is too low
compared to the number of patterns in set formed by the patterns from
all the other classes.

Complexity

Without loss of generality we can assume that each class has L/K
training patterns [13]. Since we need to train K binary SVMs, the time
complexity of training an OAA classifier is

O (KLγ) .

The time complexity of classifying S patterns with a One-Against-All
classifier is

O (K · S) .

If we assume that for each binary SVM, a portion β of the training
data will become support vectors, the space complexity of a model
trained according to One-Against-All is

O (βKL) .

Fig. 3. The decision surfaces of the binary classifiers in One-Against-
One, when trained on a 2D dataset with three classes. Different classes
have different shapes and colours. In the shaded area the classifiers
disagree.

2.3 One-Against-One
A second simple method to combine binary classifiers is One-Against-
One, which trains a classifier for each of the pairs of classes in the
dataset. Each of the K(K−1)/2 binary classifiers is trained on a subset
of the data, i.e. the classifier separating Ci from C j is trained on a
training set containing only patterns belonging to either Ci or C j. We
use Pi j (Ci) to represent the probability that a pattern belongs to the
class Ci as determined by the classifier trained on the classes Ci and
C j.

We combine the output of binary classifiers with Friedman’s pro-
cedure [8], which assigns a pattern to the class that wins the most
pairwise comparisons, formally:

δ = argmax
i

∣∣{Pi j(Ci)> Pi j(C j) | i 6= j, i < K, j < K
}∣∣ .

Where the final class is denoted as δ . Figure 3 shows a two-
dimensional dataset that contains three classes, and the three separat-
ing hyperplanes as trained by an One-Against-One classifier. A dis-
advantage of Friedman’s method is that there will be cases where all
classifiers disagree, illustrated by the shaded area in Figure 3, or where
there are ties in voting, which is only possible if K > 3[23]. If the sys-
tem may not reject any patterns, one can assign the patterns where the
classifiers do not agree to the class with the largest prior probability.

Complexity
Since we train each of the K(K−1)/2 binary classifiers with 2 ·L/K
patterns the time complexity of training a multiclass classifier with
OAO is:

O

(
K(K−1)/2

(
2 ·L
K

)γ)
.

The time complexity of classifying S patterns with an One-Against-
One classifier is:

O (S ·K(K−1)/2) .

Let β be the portion of the training patterns that becomes a support
vector, the space complexity of an OAO classifier is then:

O (β L(K−1)) .

2.4 Half-Against-Half
The Half-Against-Half scheme, proposed by H. Lei and V. Govin-
daraju [13], is the only scheme where the binary SVMs are used to sep-
arate two groups of classes. When the data set allows it these groups
effectively divide the data after every classification step in half. The

A Comparison of Combination Schemes for Multiclass Classification – R. van Veen and L.E.N. Baakman

32

Fig. 4. Decision boundaries of the Half-Against-Half multiclass classifier.
Each boundary indicates the groups or single classes it separates. The
decision boundaries do not have the same thickness. By following the
boundaries from thick to thin one can see the order in which the the
recursive binary classification problems are solved.

illustration in Figure 4 shows multiple SVM decision borders. The
classification process is ordered in the same way as a binary decision
tree, and recursively solves the binary classification problems. The bi-
nary classifiers are trained according to this decision process, i.e. from
course to finer decisions. Consider a K = 5 class classification prob-
lem. The root of the decision tree will separate the two largest groups
e.g. {C1,C2} from {C3,C4,C5}. All nodes below the root divide the
remaining classes into two e.g. {C1} from {C2} until the decision pro-
cess reaches a classifier in that separates gives an answer which is only
one class. In the case of the examples the classifier will either vote for
C1 or C2.

The hard part and unique problem of this multiclass classification
scheme is to determine the optimum division of the data on which the
binary classifiers are trained. With smaller data sets the division into
groups can be done manually with prior knowledge, where similar or
close classes can be grouped together. For larger problems it is pre-
ferred to automatically, determine the groups. One proposed strategy
is to divide the data into arbitrary groups. The problem with this strat-
egy is that the arbitrary chosen groups are not necessarily separable,
resulting in poor classification [13].

As an example see the illustration in Figure 4 and consider a novel
data point that belongs to the pentagon class. The multiclass classifier
that uses the Half-Against-Half scheme first decides if the novel point
belongs to the group of circles and triangles or to the other group, by
letting the binary SVM vote that is trained to separate these two groups
of classes. Secondly the SVM that separates the pentagons from the
squares and stars votes for the class it thinks the novel data belongs to.

Complexity
Considering a K multiclass problem. The structure of the Half-
Against-Half scheme is a binary decision tree and has a depth of

2h−1, with h = dlog2(K)e.

For every node in the decision tree a binary SVM needs to be trained
and therefore the the number of SVMs needed is 2h − 1 [13]. The
training time is the sum of the time it takes to train all the binary clas-
sifiers in the h levels. At the ith level, there are 2i−1 nodes and each of
the SVMs at the nodes are trained with L

2i−1 . The total training time is:

O
(

L2
)
,

as shown by H. Lei and V. Govindaraju [13]. H. Lei and V. Govin-
daraju [13] have shown the time complexity of classifying S patterns

Fig. 5. A decision DAG for finding the best class out of four classes.
Each node shows between which classes it compares and which
classes are still possible at that node.

with the Half-Against-Half scheme to be

O (h · S) .

If we assume that for each binary SVM a portion β of the train data
will become support vectors, the space complexity of a model trained
according to Half-Against-Half is

O (hβ L) .

2.5 Decision Directed Acyclic Graph
Similar to the One-Against-One scheme, the Decision Directed
Acyclic Graph (DDAG) method trains a classifier for each pair of
classes in the dataset. Each of the resulting K(K− 1)/2 binary clas-
sifiers are placed in a directed acyclic graph (DAG). A DDAG is a
decision acyclic directed graph in which each vertex has either two or
zero outgoing edges. A DDAG has exactly one root; a vertex which
has no incoming edges. A DDAG has K leaves and K(K−1)/2 inter-
nal vertices. The vertices are arranged in a triangle with the root at the
top, two vertices in the second layer, three in the third, and so on until
the final layer of K leaves. The i-th node in layer j < K is connected
to the i-th node and node (i+ 1) in layer (j+ 1)[20]. An example of
such a DDAG is presented in Figure 5.

The classification of some pattern~x starts at the root. The pattern~x
is used as input for the SVM associated with the root vertex. Based on
the output of this binary SVM the next vertex to visit is selected. This
process is continued until we reach a leaf. The leaf where this path
ends is the class that is assigned to ~x by this multiclass classifier. We
call the resulting path through the DDAG the evaluation path.

The vertex distinguishing class i from j is represented as vi j and the
binary SVM at vertex vi j as Pi j(•). If Pi j(Ci)> Pi j(C j) the evaluation
path is continued at the left child of vi j , otherwise it is continued at
the right child of vi j. If the left child of vi j is chosen, ~x cannot be
classified as belonging to C j. In Figure 5 this is represented by the
grey crossed-out symbols.

One disadvantage of the DDAG is that its result depends on the se-
quence of binary classifiers in the graph. This affects the reliability,
as different permutations of nodes in the graph may produce different
results. Another drawback of the DDAG model is that depending on
the position of the actual class of the pattern in the graph the number
of evaluations is unnecessarily high, which is not only inefficient but
also results in a high cumulative error. If the probability of misclassifi-
cation is 1% in each vertex this will result in a cumulative error rate of
(1− (0.99)(K−1)), which becomes critical for a high value of K [15].

The Decision Directed Acyclic Graph scheme has a couple of ad-
vantages when compared with the One-Against-One scheme. Firstly,

SC@RUG 2015 proceedings

33

the classifiers cannot disagree on some pattern. Secondly, when classi-
fying some pattern with a DDAG it only needs to be classified by K−1
binary classifiers, if OAO is used, K(K− 1)/2 are used. Thirdly, un-
less the binary classifiers are carefully regulated, OAO tends to overfit
[20].

Complexity
The time complexity of training a Decision Directed Acyclic Graph
classifier is the same as training a classifier with One-Against-One:

O

(
K(K−1)/2

(
2 ·L
K

)γ)
.

Classifying S patterns with a DDAG classifier has time complexity

O (S (K−1))

The space complexity of a classifier trained with Decision Directed
Acyclic Graph is the same as one trained with OAO:

O (β L(K−1)) .

3 DISCUSSION

In this section we discuss the differences in complexity between the
combination schemes introduced in Section 2 and we review differ-
ences in performances as described in the literature. We do this based
on a number of papers which we shortly introduce.

H. Lei and V. Govindaraju [13] introduced the Half-Against-Half
combination scheme. In their paper they not only introduce HAH
models, they also compare its performance with that of OAO, OAA
and DDAG models on four different datasets. They concluded that,
HAH results in a more compact model and has similar performance to
the other three methods they consider.

J. Milgram, M. Cheriet and R. Sabourin [17] compare the perfor-
mance of a One-Against-One and a One-Against-All classifier on clas-
sifying hand written digits and letters. Based on their research they
conclude that OAA classifiers are better suited for problems with few
classes, whereas with more classes the difference in accuracy between
OAO en OAA seems insignificant. Furthermore they conclude that
the OAO is better suited for problems with a large number of training
samples than OAA, due to its lower training time.

The DDAG was introduced by J. Platt, N. Cristianini and J. Shawe-
Taylor [20], they also compare the performance of their newly in-
troduced classifier with OAO and OAA on three datasets. They find
that the error rates for the three algorithms are similar, but the DDAG
model is faster when classifying a pattern.

J. Manikandan and B. Venkataramani [16] introduce a novel tech-
nique for a multiclass SVM classifier, diminishing learning, which we
do not consider. They compare the performance of their diminishing
learning classifier with that of a HAH, DAG, and OAA models on rec-
ognizing isolated spoken digits.

J. Platt, N. Cristianini and J. Shawe-Taylor [20] do not mention the
source of the code they use for their experiments. H. Lei and V. Govin-
daraju [13] and J. Milgram, M. Cheriet and R. Sabourin [17] indicate
that they used LIBSVM [4], J. Manikandan and B. Venkataramani [16]
use a combination of MATLAB and C code. All of the support vector
machines used in the research mentioned in this section used a radial
basis function as their kernel.

3.1 Complexity
We start this section by comparing the four different combination
schemes based on their time and space complexities. The second part
of this section is used to verify the theoretical results empirically.

Theoretical
If we compare the time complexity of training the different combina-
tion schemes, we see that all have the same time complexity, except
for OAA which is a factor K higher.

There are however large differences in the time complexity when
classifying novel data. DDAG is faster than OAO. HAH is even faster

than DDAG because of the depth of the HAH decision tree, dlog2 (K)e,
which is smaller than DDAG’s (K−1), especially when K� 2 [13].

In practical applications the size of the trained classifier is an im-
portant concern. Since the model generally stays in memory. An OAA
classifier has the worst space complexity of the mentioned combina-
tion schemes. The size of the DAG and OAO models are similar, al-
though strictly speaking the DAG needs a bit more space to also store
the graph. HAH has the best space complexity, especially for K� 2.

Based on the complexities discussed above, the Half-Against-Half
classifier seems optimal, with only its training time complexity not
lower than its competitors. Although OAA is a simple scheme its the-
oretical performance is the worst of the four.

Emperical

Since the number of support vectors both influences a model’s space
and classification speed we discuss the complexity empirically by
comparing the number of support vectors generated by each model
on a number of datasets. All models mentioned below were trained
with an RBF kernel.

J. Milgram, M. Cheriet and R. Sabourin [17] found that OAA mod-
els have more support vectors than OAO models. Although this is gen-
erally consistent with the findings from [9], they found that the OAA
model needed less support vectors than the OAO or DAG models on
a small dataset with few classes and high dimensionality (L = 178,
N = 13, K = 3). J. Manikandan and B. Venkataramani [16] also found
some cases where the OAA model had fewer support vectors than the
DAG model. Once again the datasets that resulted in these models
were relatively small, with few classes and high dimensionality.

J. Platt, N. Cristianini and J. Shawe-Taylor [20] found that in gen-
eral the DAG and OAO models need the same number of support vec-
tors. Although in one case (L = 16000, N = 16, K = 26) the DDAG
model had significantly more support vectors than OAO. This fits with
the results found by C. Hsu and C. Lin [9] except for one dataset
(L = 2310, N = 19, K = 7) where the OAO model had significantly
more support vectors.

According to H. Lei and V. Govindaraju [13] Half-Against-Half
models consistently need the smallest number of kernel evaluations
when classifying a pattern. Since there are no other comparisons be-
tween Half-Against-Half and the other three methods in the literature
we could not confirm or deny this finding.

Based on the theory, one would expect that to classify a pattern a
DAG model, would need fewer kernel evaluations than an OAO model.
The number of kernel evaluations found for OAO and DAG models
found by [13, 20] fit with the theory.

In general OAA models need more support vectors than the other
three types of models, however there are some exceptions to this rule.
Overall the number of support vectors required by a DAG model is the
same as the number required by a OAO model.

3.2 Performance

H. Lei and V. Govindaraju [13] found that HAH models are more com-
pact and classify faster than OAO, OAA or DDAG models, and have
comparable classification accuracy. J. Manikandan and B. Venkatara-
mani [16] confirmed that HAH needed significantly fewer support vec-
tors than its competitors. However they did not find that HAH consis-
tently had the same classification accuracy as the other schemes. On
the dataset ‘multispeaker dependent’ (L = 300, K = 10) HAH per-
formed significantly worse than the other options. However, they also
found that HAH is the fastest model when classifying inputs. We could
not find any other data comparing the speed of classification of a HAH
model with that of a DDAG model.

J. Milgram, M. Cheriet and R. Sabourin [17] found that OAA works
better on problems with few classes (K ≈ 10), whereas OAO are OAA
are comparable when there are more classes (K ≈ 26). Others did not
find a significant difference in classification accuracy between OAO
and OAA when the dataset has ten classes [20, 13]. Nor did they find
that OAA performed better than DDAG or HAH on problems with a
small (K ≤ 10) number of classes [16].

A Comparison of Combination Schemes for Multiclass Classification – R. van Veen and L.E.N. Baakman

34

J. Platt, N. Cristianini and J. Shawe-Taylor [20] and H. Lei and V.
Govindaraju [13] confirmed the finding that OAO and OAA are com-
parable when the dataset has 26 classes. Strangely J. Platt, N. Cristian-
ini and J. Shawe-Taylor [20] found that OAO performed significantly
better than OAA on a dataset with seven classes. The authors did not
offer an explanation for this difference in performance.

J. Platt, N. Cristianini and J. Shawe-Taylor [20] found that DDAG
performs comparable to OAO and OAA but is faster when classifying
patterns. H. Lei and V. Govindaraju [13] found the same differences
between OAO, OAA and DDAG. J. Manikandan and B. Venkatara-
mani [16] however found that it is not necessarily the case that DDAG
performs comparably to OAA. They even found that on one specific
dataset (L = 500, K = 10) OAA performed significantly better than
DDAG. This fits the conclusion from J. Milgram, M. Cheriet and R.
Sabourin [17], that OAA is suitable for problems with few classes.

In conclusion, an One-Against-All classifier works well, but not
necessarily better than the other three schemes, on problems with few
classes. One distinct disadvantage of the OAA model is that it is gen-
erally larger than models generated with any of the other schemes.

Ordering classifiers in a tree results in models that are faster than the
other schemes. However the resulting models do not necessarily have
the same performance as OAA or OAO. Comparing the classification
accuracy of HAH and DDAG based on the data provided by [16] we
find that their accuracy is about the same.

4 CONCLUSION

We did not find any hard evidence that one classification scheme is dis-
tinctively better than the others. Consequently the choice for a specific
scheme comes down to the time the classifier needs to train, classify
and the space required to store it.

Based on both theoretical and practical results we can conclude that
a One-Against-All model is not a good choice based on the previously
mentioned criteria. Although HAH and DDAG need about the same
amount of storage as OAO, they classify new patterns significantly
faster. Furthermore they cannot result in ties. Consequently it seems
that the HAH or DDAG models are the best choice for most applica-
tions.

ACKNOWLEDGEMENTS

The authors wish to thank B. Marinissen, D. Greveling and, M. Biehl
for their helpful reviews.

REFERENCES

[1] E. Alpaydin. Introduction to machine learning. MIT press, 2014.
[2] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for

optimal margin classifiers. In Proceedings of the fifth annual workshop
on Computational learning theory, pages 144–152. ACM, 1992.

[3] L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, L. D. Jackel,
Y. LeCun, U. A. Muller, E. Sackinger, P. Simard, et al. Comparison of
classifier methods: a case study in handwritten digit recognition. In In-
ternational Conference on Pattern Recognition, pages 77–77. IEEE Com-
puter Society Press, 1994.

[4] C.-C. Chang and C.-J. Lin. Libsvm: a library for support vector ma-
chines. ACM Transactions on Intelligent Systems and Technology (TIST),
2(3):27, 2011.

[5] C. Cortes and V. Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[6] N. Cristianini and J. Shawe-Taylor. An introduction to support vector ma-
chines and other kernel-based learning methods. Cambridge university
press, 2000.

[7] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. John
Wiley & Sons, 2012.

[8] J. Friedman. Another approach to polychotomous classification. Techni-
cal report, Department of Statistics, Stanford University, 1996.

[9] C.-W. Hsu and C.-J. Lin. A comparison of methods for multiclass support
vector machines. Neural Networks, IEEE Transactions on, 13(2):415–
425, 2002.

[10] S. S. Keerthi, O. Chapelle, and D. DeCoste. Building support vector
machines with reduced classifier complexity. The Journal of Machine
Learning Research, 7:1493–1515, 2006.

[11] J. Kindermann, E. Leopold, and G. Paass. Multi-class classification with
error correcting codes. Treffen der GI-Fachgruppe, 1(3), 2000.

[12] S. Knerr, L. Personnaz, and G. Dreyfus. Single-layer learning revisited:
a stepwise procedure for building and training a neural network. In Neu-
rocomputing, pages 41–50. Springer, 1990.

[13] H. Lei and V. Govindaraju. Half-against-half multi-class support vector
machines. In Multiple classifier systems, pages 156–164. Springer, 2005.

[14] H.-T. Lin, C.-J. Lin, and R. C. Weng. A note on platts probabilistic
outputs for support vector machines. Machine learning, 68(3):267–276,
2007.

[15] A. C. Lorena, A. C. De Carvalho, and J. M. Gama. A review on the
combination of binary classifiers in multiclass problems. Artificial Intel-
ligence Review, 30(1-4):19–37, 2008.

[16] J. Manikandan and B. Venkataramani. Study and evaluation of a multi-
class svm classifier using diminishing learning technique. Neurocomput-
ing, 73(10):1676–1685, 2010.

[17] J. Milgram, M. Cheriet, and R. Sabourin. one against one or one against
all: Which one is better for handwriting recognition with svms? In Tenth
International Workshop on Frontiers in Handwriting Recognition. Suvi-
soft, 2006.

[18] G. Ou and Y. L. Murphey. Multi-class pattern classification using neural
networks. Pattern Recognition, 40(1):4–18, 2007.

[19] J. C. Platt. Probabilistic outputs for support vector machines and com-
parisons to regularized likelihood methods. In Advances in Large Margin
Classifiers, pages 61–74. MIT Press, 1999.

[20] J. C. Platt, N. Cristianini, and J. Shawe-Taylor. Large margin dags for
multiclass classification. In S. A. Solla, T. K. Leen, and K.-R. Mller, edi-
tors, Advances in Neural Information Processing Systems 12, volume 12,
pages 547–553. MIT Press, 1999.

[21] J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis.
Cambridge university press, 2004.

[22] I. Steinwart. On the influence of the kernel on the consistency of support
vector machines. The Journal of Machine Learning Research, 2:67–93,
2002.

[23] D. M. Tax and R. P. Duin. Using two-class classifiers for multiclass clas-
sification. In International Conference on Pattern Recognition, volume 2,
pages 20124–20124. IEEE Computer Society, 2002.

[24] D. Tsujinishi, Y. Koshiba, and S. Abe. Why pairwise is better than one-
against-all or all-at-once. In International Joint Conference on Neural
Networks, volume 1. IEEE, 2004.

SC@RUG 2015 proceedings

35

Hyperconnectivity and Hyperconnected Filters

Rogchert Zijlstra Bart Marinissen

Abstract—In this paper we look at known results for hyperconnectivity, an extension of connectivity that aims to relax the restrictions
of connectivity while keeping its strengths. Connectivity itself is already a generalization of the basic 4- and 8-connectivities. The
strength of connectivity depends on connected components. These tend to correspond to structures in an image. Thus, operating on
these components is tantamount to operating on the very structure of an image. However, general connectivity is restricted by a very
strong overlap condition. No two connected components can share a point. Hyperconnectivity loosens this restriction.
We first introduce the concept of connectivity and hyperconnectivity more formally. After that we consider two applications that show
the descriptive power of this framework. The first example is the K-flat zones filter. A very simple and intuitive hyperconnected
filter. It simply states a set to be hyperconnected when the grey value variation is limited. This turns out to perform very well. The
second example is a fuzzy measure of connectivity for fuzzy sets. It turns out that conventional ‘crisp’ methods have their issues.
Hyperconnectivity plays a surprising role in solving these issues. These examples, combined with theoretical considerations, show
the elegant power of hyperconnectivity.

Index Terms—Hyperconnectivity, Connectivity, Image Segmentation, Connected Filters, Morphology, K-flat, Fuzzy Sets

1 INTRODUCTION

Connected filters, and with them connectivity, are a powerful tool.
They allow us to remove unwanted structures from an image without
molesting the wanted structures. However, they are also limited by
what we consider connected. The aim of this paper is to see what can
be achieved by relaxing this limitation. This is done via the framework
of hyperconnectivity as introduced by [4]. We will see how this frame-
work gives rise to hyperconnected filters, which retain the strength of
their connected counterparts. Furthermore, we will also show how
hyperconnectivity can play a role in defining a fuzzy measure of con-
nectivity for fuzzy sets as seen in [1].

In short, a connectivity tells you which sets are considered to be
connected. The quintessential examples of connectivity in are 4- and
8- connectivity. These are shown in Figure 1. For these, we say two
pixels in a set are connected when we can find a path of adjacent pixels
in the set from one pixel to the other. A set is then connected when all
of its points are connected to each other. The difference between 4-
and 8 connectivity lies in which points are considered to be connected.
In 4-connectivity two pixels are adjacent when they share an edge, in
8-connectivity it sufficient from them to share a vertex.

At first sight these connectivities may seem perfectly able to de-
scribe all connected. However, it is rather limited. The power of con-
nected filters comes from the correspondence between image struc-
tures and connected components. Image structures can be quite clearly
present without being 4- or 8-connected. Consider, for example, the
two clearly separate clusters seen in figure 2a. We want to treat each

• BSc. Rogchert Zijlstra, Master student at the University of Groningen,
track: Computational Science and Visualisation E-mail:
rogchertzijlstra@gmail.com.

• BSc. Bart Marinissen, Master student at the University of Groningen,
track: Intelligent Systems E-mail: bartmarinissen@gmail.com.

(a) 4- and 8-connected im-
age

(b) 8-connected but not 4-
connected image

(c) Neither 4- nor
8-connected

Fig. 1: examples of 4- and 8-connectivity

(a) Two clearly seperated clusters (b) The most satisfying segmentation
into connected components

Fig. 2: Two clusters and a possible segmentation of these into con-
nected components

of the clusters as a single structure. In other words, we want the con-
nected components to be as seen in figure 2b

Generalized connectivity allows for this, and much more. The
key restriction for a connectivity is that connected components can-
not overlap. That is, they cannot share a single common point. It is
this restriction that is relaxed by hyperconnectivity. It allows for a
different definition when hyperconnected components overlap.

First, we will formalize these notions of connectivity, connected
components and connected filters. Then we will do the same for their
counterparts in hyperconnectivity. After that, we will show an exam-
ple of a simple yet powerful hyperconnected filter. Finally, we will
show the application in hyperconnectivities when it comes to defining
a fuzzy measure of connectedness for fuzzy sets.

2 CONNECTIVITY

In this section, we will first show how the concept of connected sets
gives rise to connected components and connected filters. Only then
will we give the formal definition of a connectivity. For now, one can
use the 4- and 8-connectivity to guide one’s intuition. Throughout
this section, we consider I to be a binary image over space E. The
definitions seen here are largely based on those seen in [2].

Informally, a connected component of an image is a connected part
that cannot be extended without becoming disconnected; formally, we
have the following:

Definition 1 (Connected Components). Given a binary image I ⊆ E,
we call C ⊆ I a connected component if and only if:
C is connected, and there is no connected setB such that C ⊆ B ⊆ I

The connected components of an image form a partion of that im-
age. Connected filters take this partitioning of an image and keeps

36

or discards each connected component based on some criterion. For-
mally, we have:

Definition 2 (Connected Filter). A selection criterion is a function
Λ : P(E) → {0, 1}. Such a criterion Λ gives rise to a connected
filter ψΛ : P(E) → P(E). To define ψΛ(X), we first need to define:

CX = {A ⊆ X | A is a connected component}

ΓΛ(C) =

{
C if Λ(C) = 1

∅ otherwise

This finally gives us what we need to define the connected filter:

ψΛ(X) =
∪

C∈CX

ΓΛ(C)

One example selection criterion might be: Λ(X) = 1 iff |X| > a,
the so called area filter. Other filters such as those considering the
‘roundness’ of X also exist.

From this, it is clear that connected components are supposed to
correspond to real world objects. It is now clear why we want con-
nected components to correspond to image structures. It are these
structures that we operate on. We already saw 4- And 8-connectivity
fall short for the clusters. The common definition of general connec-
tivity allows for much better correspondence between connected com-
ponents and image structures. The core concept of connectivity is that,
when connected sets overlap (I.E. have a common point), their union
must be connected. This is what causes the connected components to
be a partition. The only other criterion is that each singleton set is a
connected set. Formally, this is:

Definition 3 (Connectivity). We call a family C ⊆ P(E) a connectiv-
ity if and only if both of the following hold:

∀x ∈ E. {x} ∈ C
(
∀A ⊆ C.

∩
A ̸= ∅

)
⇒
(∪

A ∈ C
)

We then call a set C connected if and only if C ∈ C

3 HYPERCONNECTIVITY

The concept of connectivity as seen in definition 3 makes big strides
towards dealing directly with image structures. However, the fact that
connected components always partition an image is a rather strict limi-
tation. It means no single point can lie in two different connected com-
ponents. This works when objects are clearly delineable. However, in
less clear cases this forces us to assign a point without sufficient infor-
mation.

Hyperconnectivity was made to address this by loosening the over-
lap criterion. Specifically, it allows us to choose a custom ‘overlap
criterion’. The resulting framework is much more powerful. In this
section, we first define hyperconnectivity. Then, we will define hyper-
connected components and hyperconnected filters analogously to their
connectivity basic counterparts of the previous section. The definitions
seen here are largely based on those seen in [2].

Before defining hyperconnected components, we first need to define
what constitutes an overlap criterion:

Definition 4 (overlap criterion). (taken almost verbatim from [2]) An
overlap criterion is a mapping ⊥: P(P(E)) → {0, 1} such that ⊥ is
decreasing. That is for any A,B ⊆ P(E):

A ⊆ B ⇒⊥ (B) ≤⊥ (A)

We then consider a family of sets A to be overlapping when ⊥
(A) = 1. An overlap condition is required to be decreasing to ensure
that a non-overlapping family cannot be made overlapping by adding
sets. This allows us to define a hyperconnectivity quite analogously to
definition 3:

Definition 5 (Hyperconnectivity). We call a family H ⊆ P(E) a
hyperconnectivity under overlap criterion ⊥ if and only if both of the
following hold:

∀x ∈ E. {x} ∈ H
(∀A ⊆ H. ⊥ (A) = 1) ⇒

(∪
A ∈ H

)

We then call a set C hyperconnected if and only if C ∈ H

It is immediately clear that connectivity is a special case of hyper-
connectivity for the overlap criterion:

⊥ (A) = 1 ⇐⇒
∩

A ̸= ∅

With this definition, we can immediately generalize connected com-
ponents to hyperconnected components:

Definition 6 (Hyperconnected Components). Given a binary image
I ⊆ E and hyperconnectivity H, we call C ⊆ I a hyperconnected
component if and only if:
C ∈ H and ̸ ∃B ∈ H.C ⊂ B ⊂ I

Note that the hyperconnected components no longer form a parti-
tion of I . Instead, they merely cover I . Connected filters allow a
similar generalization to hyperconnected filters.

Definition 7 (Hyperconnected Filter). Let λ be a selection criterion
and H a hyperconnectivity. These give rise to a Hyperconnected filter
ψΛ : P(E) → P(E). To define ψΛ(X), we first need to define:

HX = {A ⊆ X | A ∈ H}

ΓΛ(C) =

{
C if Λ(C) = 1

∅ otherwise

The hyperconnected filter then becomes:

ψΛ(X) =
∪

C∈HX

ΓΛ(C)

Note that, because we use a union here, if a point lies in any hyper-
connected filter that passes the criterion, it is not filtered out. In the
next section, we will show k-flat zones as an example of a hypercon-
nectivity and how this gives rise to a connected filter.

4 K-FLAT ZONES

Connected filters have been implemented using tree-based algorithms.
One of these is the Max-Tree algorithm [3]. The tree constructed by
this algorithm can be used to construct a hyperconnected filter, the
k-flat filter [2].

4.1 Max-Tree
The Max-Tree algorithm, as described in [3], constructs a tree with the
grey-value peak components at the nodes of the tree. A peak compo-
nent Ph is a connected component with the threshold set at h. This
results in components which have a grey-value of h or higher. Each
node points to its parent Ph′ which has a lower height, h′ < h. It is
easily seen that the parent component is always larger then its child as
the threshold is lower. These peak components and their parents form

Fig. 3: Two k-flat zones which overlap where k = 16 [2]

SC@RUG 2015 proceedings

37

(a) Input signal

(b) Peak components

(c) Max-Tree

Fig. 4: Simple 1D Max-Tree based on [6]

a tree structure as is shown in Figure 4c. To filter using a Max-Tree
can be quite simple. There are several ways to construct a filter using
the Max-Tree. A simple but effective method is subtractive filtering
[5]. Whenever a peak component is filtered out due to the selection
criterion Λ then subtractive filtering lowers its gray-value to the high-
est surviving ancestor. Furthermore the grey-value of all its decedent
are also lowered by the same amount.

4.2 Defining k-flat

A hyperconnected filter which can now be defined is the k-flat zone
filter [2]. A k-flat zone is a region where the total grey-value variation
is bounded by k. An important thing to note is that these zones may
overlap as seen in figure 3.

Because these areas can overlap it is not suited for a connected filter.
With a proper hyperconnected overlap criterion we can construct a
hyperconnected filter using this principle. A k-flat zone can be defined
formally as follows:

Definition 8 (k-flat zone). A k-flat zone Fk,h at level k and height h
is a set of pixels path-wise connected to x ∈ E with a grey-value from
h to h-k:

Fk,h(x) = {p ∈ x | h− k ≤ f(p) ≤ h}

Based on this definition an overlap criterion can be contructed:

⊥k
j ({Hj}) = 1 iff

∪
Hj ̸= ∅ ∧ max

p,q
∪

Hj

∥f(p) − f(q)∥ ≤ k

The corresponding hyperconnectivity is:

Hτ = {∅} ∪ {A ⊆ C | ∥f(p) − f(q)∥ ≤ k ∀p, q ∈ A}

(a) Original signal (b) Signal after filtering

Fig. 5: k-substraction filtering on a 1-D signal where k = 3

(a) Original image (b) Rolling ball with radius 15

(c) Anisotropic diffusion (d) Area attribute filter with 10 ≤
area ≤ 8000 and k = 0

(e) The same area attribute filter
with k = 60

(f) k-absorption rule with k = 40

Fig. 6: Digitisation of De Agro Frisae by Ubbo Emmius using different
filters. Images taken from [2]

With this hyperconnectifity 4.2 we can alter the Max-Tree such that
it replaces its peak components with k-peak components. Now a re-
gional maximum is needed just like the peak components of the Max-
Tree. a k-regional maximum Mh,k is a k-flat at height h zone which
has neighbours smaller than h−k. One can see that these corresponds
to peak components of Ph−k. As the k-peak components corresponds
to the normal peak components it can be implemented as a filter over
the Max-Tree. This also allows the use of multiple k-flat zones filers
to be applied by generating one Max-Tree.

4.3 Filtering using k-flat

For k-flat zones the subtractive filter is not suitable. Applying it can
violate the idempotent condition of an connected filter. For this reason
we will need a new filter. The k-flat zone subtractive filter will need
to preserve decisions upwards within a range of k above a preserved
ancestor. A way of doing this is adding a propagation range k′ to the
nodes of the max tree. for any preserved nodes this is equal to k. If
a node Ph′ should be discarded based on some criterion we need to
check whether it lies within the propagation range of its parent Ph. If
∆h = h′ − h ≤ k′

h then it lies within the propagation range which
means we preserve the node. Ph then gets a different propagation
value, k′

h = k′
h′ − ∆h. However if ∆h > k′

h then it falls outside
of the propagation range. In this case the node has to be removed and
k′

h′ is set to zero. In the subtractive the gray-value would be set to the

Hyperconnectivity and Hyperconnected Filters – Rogchert Zijlstra and Bart Marinissen

38

grey-value of its parent. With k-subtractive the grey-value will be set
to the grey-value of its parent Ph plus its propagation range k′

h. These
rules allow k-subtraction to be idempotent. The results of these rules
can be seen in figure 5. In this signal two components do not satisfy Λ
and are being considered for filtering. The first component lies outside
of the propagation range. For this reason we lower it to the value of
his parent plus its propagation rate. However the second component
lies withing the propagation range and is preserved.

For some applications using k-subtraction is not optimal. An alter-
native to this method is k-absorption. It is able to filter low contrast
features which touch high contrast features. It allows k′ to be nega-
tive when a feature is rejected by the attribute criterion and it is more
then k lower then the peak. When a node has a negative k′ we need to
absorb into the background.

4.4 Example using k-flat
k-absorption has uses within digitisation of books [2]. When digitising
books it can be a problem that the letters on the other side of the page
show through. One would like to flatten the background and the letter
from the backside of the page. While digitizing De Agro Frisae by
Ubbo Emmius this problem occurred [2]. In figure 6 shows that the
letters from the backside of the page showed through and hindered the
character recognizer. Several filters were used to combat this issue. A
rolling ball filter 6b, anisotropic 6c diffusion and area attribute filter
were used for this 6d. They were not able to suppress all the letters
from the backside. Using k-flat filters significantly increased the result
6e. Taking a closer look at the title and the side note in 6e reveals some
noise which has not been filtered out. For these details k-absorption is
a better method. Using k-absorption with k = 30 gave the best result
out of all these filters.

5 APPLICATIONS TO CONNECTIVITY FOR FUZZY SETS

Besides allowing us to define hyperconnected filters (like K-flat
zones), hyperconnectivity also sees application in defining a connec-
tivity measure for fuzzy sets. Fuzzy sets are a generalization of normal
sets. Fuzzy sets allow elements to be partially in the set. The member-
ship of an element to the set lies on a scale rather than being binary.
Formally, a fuzzy set on space X is denoted by a membership func-
tion: µ : X → [0, 1]. µ(x) denotes the degree to which an element
x ∈ X belongs to the fuzzy set with 0 indicating no membership at all
and 1 indicating full membership. The approach taken in this section
is based largely on [1]. However, this section is agnostic with regards
to the underlying connectivity, while the article it is based on assumes
path connectivity.

One can characterize a fuzzy set µ entirely by its so called α-cuts:
(µ)α. These are defined as all elements that belong to µ with degree
α or more. That is:

(µ)α = {x ∈ X | µ(x) ≥ α}

Like for normal sets, the union and intersection of fuzzy sets also exist.

(a) A disconnected fuzzy set with
C(µ) = 0.5

(b) A (fully) connected fuzzy set with
C(µ) = 1

Fig. 7: examples of fuzzy sets and how they are connected. Images
taken from [1]

(a) A fuzzy set with C(µ) = 0.25 (b) A fuzzy set with C(µ) = 0.05

Fig. 8: Counter intuitive examples of 1D fuzzy sets and their connec-
tivity. Images taken from [1]

These correspond respectively to the maximum and minimum mem-
bership of the elements, that is:

(∪

i

{µi}
)

(x) = max
i

{µi(x)}
(∩

i

{µi}
)

(x) = min
i

{µi(x)}

There are many applications for fuzzy sets. One example is simply
allowing the expression of uncertainty when it comes to segmentation.
α-Cuts are the natural way to then move from fuzzy sets to normal
(or ‘crisp’) sets. These α-cuts will play a large role in our first real
connectivity for fuzzy sets.

Definition 9 (a connectivity for fuzzy sets). We call a fuzzy set µ con-
nected for some connectivity C over X if and only if:

∀α ∈ [0, 1] : (µ)α ∈ C

This condition is equivalent to µ not having ‘disconnected’ local
maxima. An example can be found in figure 7. In 7a one can see that
any α-cut with α > 0.5 will result in the α-cut being disconnected.
When looking at α-cuts of 7b it becomes clean that any α-cut is still
connected. This is a ‘crisp’ definition of connectivity for a connected
set. Since we are working with fuzzy sets, it would be reasonable to
expect a similar fuzzy measure of connectivity. This can be achieved
by looking at whether the different α-cuts are connected. One might
then say that a fuzzy set µ has a connectivity measure equal to the
highest τ so that all α cuts up to τ are connected, that is:

C(µ) = max{τ ∈ [0, 1] | ∀α ≤ τ : (µ)α ∈ C}

Examples of how this works can be seen in figure 7.
Hyperconnectivities come in to play when we start considering all

µ with a minimum connectivity of τ . Such a set gives us a hypercon-
nectivity with overlap criterion:

⊥τ ({µi}) = 1 iff ∀α ≤ τ :
∩

i

(µi)α = ∅

The corresponding hyperconnectivity is:

Hτ = {µ | C(µ) > τ}

This definition does have some issues. These are illustrated in fig-
ure 8. Intuitively, one would say that 8b is more connected than 8a
and yet, 8a has a much higher connectivity than 8b. The degree of
connectivity is determined by the height of the lowest saddle point (or
non-edge minimum in the 3D case). It does not take into account how
deep a cleft a saddle point creates.

SC@RUG 2015 proceedings

39

6 CONCLUSION

We set out to see how hyperconnectivity generalizes connectivity.
How this generalization improves upon connectivity, and what is lost
in this generalization. Very little turns out to be lost. The biggest
change is that one can not rely on the hyperconnected components of
an image to be a partition. One might also say that hyperconnectiv-
ity gives more choices, making the resulting methods less practical to
implement. However, the intuitive example of K-flat zones and its
simplicity should serve as counterpoint to this charge.

What is gained is versatility. This gives access to more powerful
filters such as theK-flat zones which outperforms many connected fil-
ters in certain areas by having the restriction of connected components
forming a partition lifted. Furthermore, we saw how hyperconnectiv-
ity comes up naturally when trying to define connectivity for fuzzy
sets. Whilst the resulting definition still has some flaws, it certainly
shows the descriptive potential of the framework of hyperconnectivity.

With regards to fuzzy sets, in [1] the definition presented here is
extended to rectify some of these flaws. However, the entire paper
uses path connectivity (i.e. 4- or 8-connectivity) as a basis. We would
consider it interesting to see if the approach of this paper could be
extended based on any general connectivity.

There is much more to connectivity and hyperconnectivity than we
have shown here. For example, whilst we have been working with sets,
all of this can readily be extended to so called lattices. In fact, our two
main sources: [1] and [2] are both formulated for lattices. There is also
a much more theoretical result that shows an equivalence between all
algebraic openings over lattices and hyperconnections over lattices [7].
One does not need to know what these terms mean to realize that the
uses of hyperconnectivity extend far beyond what we have explored in
this paper.

That final point sums up our conclusion. Hyperconnectivity is a
very broad framework. Within it, both many things already known
and things yet to be discovered can be described. As such, this is an
interesting and exciting field of research that shows a lot of potential.

ACKNOWLEDGEMENTS

The authors wish to thank the expert reviewer Dr M.H.F. Wilkinson
for his suggestions and support. They also wish to thank their fellow
students whom reviewed this paper. Our paper truly benefited from
our reviewers’ suggestions and remarks.

REFERENCES

[1] O. Nempont, J. Atif, E. Angelini, and I. Bloch. A new fuzzy connectiv-
ity measure for fuzzy sets. Journal of Mathematical Imaging and Vision,
34(2):107–136, 2009.

[2] G. Ouzounis and M. Wilkinson. Hyperconnected attribute filters based on
k-flat zones. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 33(2):224–239, Feb 2011.

[3] P. Salembier, A. Oliveras, and L. Garrido. Antiextensive connected oper-
ators for image and sequence processing. Image Processing, IEEE Trans-
actions on, 7(4):555–570, Apr 1998.

[4] J. Serra. Connectivity on complete lattices. Journal of Mathematical Imag-
ing and Vision, 9(3):231–251, 1998.

[5] E. Urbach, J. Roerdink, and M. Wilkinson. Connected shape-size pat-
tern spectra for rotation and scale-invariant classification of gray-scale im-
ages. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
29(2):272–285, Feb 2007.

[6] M. Westenberg, J. Roerdink, and M. Wilkinson. Volumetric attribute filter-
ing and interactive visualization using the max-tree representation. Image
Processing, IEEE Transactions on, 16(12):2943–2952, Dec 2007.

[7] M. Wilkinson. Hyperconnections and openings on complete lattices. In
P. Soille, M. Pesaresi, and G. Ouzounis, editors, Mathematical Morphol-
ogy and Its Applications to Image and Signal Processing, volume 6671 of
Lecture Notes in Computer Science, pages 73–84. Springer Berlin Heidel-
berg, 2011.

Hyperconnectivity and Hyperconnected Filters – Rogchert Zijlstra and Bart Marinissen

40

Comparing COSFIRE Filters with Neural Networks in Visual
Pattern Recognition

Sweta Singh and Niels Kluiter

Abstract—Object detection is one of the most prominent applications in computer vision. Keypoint detection is the initial step in many
object detection algorithms. Challenges for most existing methods are the wide range of existing shapes and textures, sensitivity to
illumination, presence of noise and object repetitions. This is the reason for extensive ongoing research in this field.
In our research we study the two recently developed algorithms in object detection and pattern recognition,namely Combination Of
Shifted FIlter REsponses (COSFIRE) filters and deep learning(with convolutional neural networks). COSFIRE filters are inspired by
the mechanism of neurons in the human visual cortex, and also convolutional neural networks are inspired by the mechanism of
human visual nervous systems.
The goal of this paper is to bring about a comparison between these two algorithms. As there is a broad range of keypoint detection
and pattern recognition problems, we will look at a subset of it for which the methods in question are most frequently used, like
handwritten character and traffic sign recognition. We will study the inner working of the algorithms and their performance on well
known and large datasets like MNIST.
From a detailed study of the two methods we understand that they are two distinct approaches where COSFIRE filters are key feature
based detectors and Deep neural networks do not need any of it. The network adapts to have enough output nodes to represent all
possible output classes.

Index Terms—COSFIRE filters, Convolutional neural networks, Deep learning, Keypoint detection, Pattern recognition

1 INTRODUCTION

Computer vision can be described as: ‘making the computer observe
visual information and understand it’. This is rather a complicated
and probabilistic task. In 1963 L.G. Roberts, a PhD student at MIT,
proposed to let machines distinguish between three-dimensional ob-
jects like cylinders, balls and cubes[27]. Dr. Seymour Papert, a math-
ematician and one of the pioneers of Artificial Intelligence, also at
MIT, picked this up and proposed a summer project on this in the year
1966[20]. He later extended this research to identify more complex
structures. This was the beginning of research in the area of computer
vision. All at once in 90’s, there was an overflow of techniques that
were proposed to solve computer vision related problems, like object
classification, detection and segmentation. This led to a new gener-
ation of smart systems. Important successes in computer vision can
be contributed to key feature detection and representation algorithms.
This included SIFT, Bag of Words and local keypoint extraction al-
gorithms. The introduction of Support Vector Machines further revo-
lutionized the field of Computer vision. This was coincidentally also
the time when social media were in phase of revolution, which led
to availability of enormous data. This, together with an exponential
rise in computing power with advent of stronger CPU’s and GPU’s,
has given rise to heavier methods like deep learning networks, which
achieve close to the accuracy of humans in certain tasks.

Today, computer vision is used in object detection, stereo vision
and many such applications. In our study, We compare the recently
developed trainable COSFIRE filters method and deep convolutional
neural networks in the field of object recognition and object detection.
We discuss the working principles of these two methods and exam-
ine their shortcomings. We also study their practical performances in
applications like the recognition of handwritten digits.

Visual recognition can be divided into two parts, image representa-
tion and image classification. Image representation includes keypoint
detection, feature extraction and feature encoding. Keypoints are the
points of interest that represent important aspects of an image. Fig.

• Sweta Singh is with University of Groningen. E-mail:
rnsweta@gmail.com.

• Niels Kluiter is with University of Groningen. E-mail:
nl.kluiter@gmail.com.

Fig. 1: (a)Examples of keypoints in form of corners and junctions.
(b)Keypoints enlarged[1]

1 shows some of the examples of keypoints, these can be for exam-
ple corners, junctions or crossings of lines. Feature extraction is de-
scribed by a multi-dimensional feature vector and is called descriptor.
It represents the environment around a point of interest so as to capture
the characteristic and indicative information about the image content.
Examples of descriptors include SIFT and SURF. After application
of feature detection and description algorithms, each image is repre-
sented by a set of multidimensional vectors, which is transformed into
a single vector representation. Classifiers like support vector machines
are trained on these data to learn the features that are to be tested. [3]

Computer vision, like the term suggests, tries to incorporate the vi-
sion happening in the human brain into computers. Studies suggest
that ventral visual and dorsal visual pathways are the two major corti-
cal systems that process the visual information. The primary function
of the ventral visual system is to recognize and identify properties of
objects like shape and color. Fig. 1 shows the ventral visual pathway
of a rhesus monkey, that is very similar to that of a human being and
that explains the manner in which objects are identified at different lev-
els in different parts of the visual system of the brain. In the eyes an
object is projected at the retina, this information is processed in differ-
ent parts of the visual cortex based on the complexity of the identified
object[7]. Fig. 2 shows the ventral visual pathway that is involved in
object identification. COSFIRE filters are inspired by shape selective

41

Fig. 2: Locations of the ventral stream cortical area in the macaque
monkey brain and the flow of visual information from the retina[8].

neurons in area ‘V4’ that exhibits selectivity of (curved) contours or
of combinations of line segments[1][21] [22].

Deep convolutional neural networks were also inspired by the hu-
man visual nervous system [9]. Many studies suggest that the hu-
man brain recognizes objects starting from simpler objects at the ‘V1’
region and the most complex objects in the inferior temporal cortex
region in a cascading reflexive feed-forward manner[8]. This is emu-
lated by deep learning methods where depth corresponds to number of
layers of neurons in the system.

In this paper we compare these convolutional neural networks, be-
cause it has proven itself to be the best at several pattern recognition
tasks with COSFIRE filters, which show great potential, but have have
not yet proven themselves. This to see if COSFIRE filters could be a
viable method to use for certain pattern recognition and keypoint de-
tection tasks. We do this by first studying how both methods work, this
is explained in section 2. In section 3 we analyze both methods and
find their advantages and disadvantages and also look at some practi-
cal results, these are then discussed in section 4. Section 5 proposes
some future work, after which the paper is concluded in section 6.

2 METHODS

Many methods for doing keypoint detection and pattern recognition
tasks exist today. In this paper we focus on two successful methods:
COSFIRE filters and deep learning in convolutional neural networks.
In the following sections we will explain how these methods work and
how the aforementioned tasks were done traditionally.

2.1 Traditional machine learning methods
Many problems in computer vision could have been easily solved if we
were able to represent the data in the right form. For example one pixel
of an image would give little information on what it represents. But if
this data can be transformed into a high level representation, it could
tell if the image was a face or a hand et cetera. In the past, people
would hand an engineer the mapping from raw input, like pixels, to
features that they could use. These features were then fed to machine
learning algorithms. Success of algorithms like deep learning show
that we do not need to hand engineer and computers can be used for
this job in a much better way. A large data set is chosen to learn the
process of transforming the raw data into high level representations.

2.2 Neural networks
Neural networks have been a field of research for more than six
decades now. Throughout their history, neural networks have had a
typical architecture; multiple layers of interconnected nodes, repre-
senting biological neurons. They generally have an input layer, an out-
put layer and often one or more hidden layers in between. The values
of the output nodes are calculated from layer to layer using weights on
the inter-node connections. By backward propagation these weights
can be updated to train the network[19].

2.2.1 Deep learning
Prior to 2006, research in neural networks mainly focused on architec-
tures with up to two hidden layers, these are called ‘shallow architec-

Fig. 3: The process of convolution on images, the kernel is applied
to a patch of the input image, here highlighted in blue, the values are
multiplied element-wise and then added together. The result is the
value of the pixel in the output image that correspond the center of
the patch from the input image. Here this value is shown in blue,
calculated as 1× 2 + 2× 2 + 1× 9 + 0× 4 + 0× 4 + 0× 4 +−1×
2+−2× 2+−1× 6 = 3. The input patch is then shifted one pixel,
to calculate new output pixels with the same kernel, until a complete
output image has been calculated.

tures’. Researchers preferred to work with these, because architectures
with more layers, called ‘deep’, were hard to both prove and train.
This changed due to the work of several researchers [15][16], LeCun
et al.[26] and Bengio et al.[2] in the years starting from 2006. In these
studies, new training strategies for neural networks were researched,
making it easier to train nets with a deep architecture. This opened
the door for several neural networks algorithms, which could now be
used more effectively for several applications, like speech recognition
or image reconstruction.

2.2.2 Convolutional Neural Networks
A method that is especially good for object detection is called ‘con-
volutional neural networks’. This form of neural nets has been intro-
duced in the 1980’s by K. Fukushima, at that time called the neocog-
nitron [9]. In the following years it was picked up and enhanced by
various research groups, up till 2006, when the new developments in
deep learning added new opportunities for convolutional neural net-
works.
The main field for which these networks have been used is pattern
recognition in images. This is why the nodes in the networks are gen-
erally aligned in 2D grids, while it could just as well be 3D or 1D for
example. Such grids form the initial layers of the convolutional neural
network. The layers in these networks can be of three forms: convo-
lutional, sub-sampling and fully connected, below these are explained
in detail:

Convolutional layer The type of layer from which the network
got its name. Each node in the grid (or image) that forms this layer
is connected to a square section of the grid(s) in the previous layer.
The weights on these connections are the same for each node in the
convolutional layer. This causes the weights to have the same effect
as a convolution kernel, as you can see in Fig. 3. Convolution is a
process that is used in processes like edge detection. In edge detection
multiple kernels are usually used to detect edges in different directions.
Similarly in convolutional neural networks, the goal is also to detect
multiple features (not necessarily edges) instead of one. This is why
in the convolutional layer there are usually not one, but multiple grids,
being the results of multiple different sets of ‘kernel’ weights.

Also the previous layer could consist of multiple grids, which is
why the nodes in a convolutional layer are connected to all grids in the
previous layer.

Sub-sampling layer A sub-sampling layer does exactly what its
name suggests, it sub-samples the grids in the previous layer, which
is a convolutional layer, to reduce it in size. Every grid in the con-
volutional layer is connected to one smaller grid in the sub-sampling
layer. Every node in the smaller grid is connected to a small section

Comparing COSFIRE Filters with Neural Networks – Sweta Singh and Niels Kluiter

42

Fig. 4: The structure of a convolutional neural network. It starts with
alternating convolutional and sub-sampling layers, then derives a re-
sult through fully connected layers.

of nodes from the convolutional layer grid, from which its value is de-
termined. This can be done in multiple ways, like averaging the input
values, but in most cases taking the maximum input value is chosen.
This particular process is called ‘max-pooling’.

Fully connected layer The initial layers of the network are
formed by alternating convolutional and sub-sampling layers, this
results in a large number of small grids/images. At the final stage
there are so called fully connected layers, in which every node is
connected to all nodes in the previous layer. These layers are used to
get from the great amount of nodes/pixels to the desired final result.

Together the layers form a network like in Fig. 4. As happens
with all neural networks, the weights between the layers of node are
trained by introducing example inputs for which the output is known.
The weights can be updated to make the response from the network
approach the expected output. In convolutional networks, the weights
are only trained in the convolutional layers and the fully connected
layers. This is because in the sub-sampling layers the max-pooling
process is done, which is a fixed procedure.[12]

2.3 COSFIRE Filters

A COSFIRE filter is a trainable filter proposed in by G. Azzopardi
and N. Petkov[1] that can be used for keypoint detection and pattern
recognition. How the process of training and applying these filters
works is explained in the following sections.

2.3.1 Method

Combination Of Shifted REsponses (COSFIRE) filters are contour
based detectors. The responses of these filters are calculated as the
weighted geometric mean of the shifted responses of simpler orienta-
tion selective filters (for example Gabor filters, as explained in section
2.3.2). In order to obtain the shifted responses, the corresponding sup-
ports at different locations are combined to obtain a bigger support in
form of a sophisticated COSFIRE filter. For this computation, instead
of the arithmetic mean, the geometric mean was considered. This is
because of two reason. One one hand because it is resistant to con-
trast variations. And more importantly, by the psycho-physical fact
that curved contours are identified by the activity of neurons by multi-
plication of responses from the sub-units, that are sensitive to different
parts in curve patterns[11]. This helps COSFIRE filters to produce
the responses only when all constituent parts of the pattern of interest
are present[1] . A COSFIRE filter works in different stages. It first
needs to apply the selected Gabor filters. The output of Gabor filters
goes through Gaussian blurring, whose response is shifted by distinct
vectors and the shifted responses are multiplied in order to calculate
the weighted geometric mean, which determines the final response.
The basic working of COSFIRE filters is explained in Fig. 5. The
figure shows an input image with 3 vertices. The vertex that is encir-
cled is considered as a prototype pattern of interest. This is used to
automatically configure the COSFIRE filter that responds to same and
similar test patterns. The two ellipses represent the dominant orien-
tations in the surrounding region of the mentioned point of interest.
These lines are detected by the symmetric Gabor filters. The circle in
Fig. 5(b) shows the overlapping supports of a group of such filters.

Fig. 5: Working Principle of COSFIRE Filters. Fig. (a) represents a
synthetic image of size 256 X 256 pixels. The circle shows a prototype
pattern of interest chosen by the user. Fig. (b) is an enlarged version
of Fig. (a). It shows ellipses representing the support of line detectors
that applicable for the concerned feature.[1]

The response of these filters in the centers of the corresponding el-
lipses are multiplied to give the response of the COSFIRE filter. The
selected orientations and the locations of the response are found by
studying the local prototype pattern used in configuring the particular
COSFIRE filter. The Gabor filter responses at different locations in the
vicinity of the point are shifted by different vectors. This is followed
by pixel-wise evaluation of a multivariate function to give the output
of COSFIRE filter.

2.3.2 2D Gabor filters
A Gabor filter is a linear filter. Frequency and orientation represen-
tations of Gabor filters are comparable to those of the visual system
of human beings. They are found to be suitable especially for texture
representation and discrimination. A Gabor filter is made by modulat-
ing a sinusoid by a Gaussian. The response of a Gabor filter can be
represented by gλ ,θ (x,y) where λ and θ are the selected wavelength
and orientation respectively. In order to increase the object detecting
property, the Gabor filters are enhanced with surround inhibition by
which the texture edges are suppressed leaving the contours of the ob-
ject and the region boundaries unaffected. Other aspects of the filter
like aspect ratio, bandwidth and phase offset are not considered in the
COSFIRE implementation[14][17][23][24][25][28]. The responses of
the Gabor filters are normalized in order to keep the sum of all positive
responses to 1 and their negative responses to -1. All the responses are
thresholded to t1 of the maximum response gλ ,θ (x,y) for combination
of values (λ ,θ) at every point (x,y) of the image.

2.3.3 Process of COSFIRE filter configuration
The responses of the Gabor filters from the process explained in
section 2.3.2 form the input to a COSFIRE filter. Each of these
Gabor filters are defined by values (λi,θi) around each of the points
(ρi,φi) with respect to the center of the COSFIRE filter. These four
parameters (λi,θi,ρi,φi) represent the properties of the contour in the
region of given point of interest. The response of the bank of Gabor
filters along the circle of given radius ρ in the area of chosen point
of interest is considered for configuration of the COSFIRE filter (see
Fig. 6). At each of the positions along the circle, the maximum of
all responses for all the possible values of (λ ,θ) that are used in the
bank of filters is considered. The positions with values higher than
their corresponding values in the nearby positions along an arc of
angle π/8 are chosen as points of dominant orientations in the region
of a point of interest. For all these values, their polar coordinates
with respect to the center of the filter are computed (ρi,φi). For each
of these locations (ρi,φi), the corresponding Gabor filter responses
gλ ,θ (x,y) higher than a fraction t2 = 0.75 of the maximum value of
gλ ,θ (x,y) throughout the combinations of values λ ,θ are considered.
For each value of θ that matches the condition, a single value of

SC@RUG 2015 proceedings

43

Fig. 6: Configuring a COSFIRE filter[1]

λ with maximum response of Gabor filters across all λ values is
considered. Each unique pair of λ ,θ and position (ρ,φ) constitutes
a tuple (λi,θi,ρi,φi). In this way, for each location (ρi,φi), there are
multiple tuples possible. With this method of selection of parameters,
the example considered with the point of interest shown in Fig. 6, for
ρ ∈ 0,30, the four tuples formed are:

S f = {
(λ1 = 8, θ1 = 0, ρ1 = 0, φ1 = 0)
(λ2 = 8, θ2 = 0, ρ2 = 30, φ2 = π/2)
(λ3 = 16, θ3 = π/2, ρ3 = 0, φ3 = 0)
(λ4 = 16, θ4 = π/2, ρ4 = 30, φ4 = π/2)
}

Let us consider the second tuple in S f : (λ2 = 8,θ2 =,ρ2 = 30,φ2 =
π/2). This describes the contour path with a width of λ2/2 = 4 pixels
and an orientation angle of θ2 = 0 which can be detected by the filter
with selected wavelength λ2 = 8 and orientation θ2 = 0 at a position
of ρ2 = 30 pixels above the point of interest shown by point b in the
Fig. 6.

2.3.4 Blurring and shifting of responses from Gabor filters
As seen in the previous section, for the given point of interest there
were four strong responses produced, each at different positions from
the center of the filter. These responses are first blurred in order
to bring in some tolerance in the position of corresponding contour
parts. This, with the help of a Gaussian function Gσ (x,y) with
standard deviation σ , is used to compute the weighted responses. The
maximum of this value is considered as blurring.

σ = σ0 +αρ. (1)

In the equation (1), σ0 and α are constants. The orientation bandwidth
can be increased by increasing the value of α . All the responses are
shifted to bring them towards the center of the filter.

2.3.5 COSFIRE filter response
The response of a COSFIRE filter, as mentioned earlier, is a geometric
mean of all the blurred and shifted responses of thresholded Gabor
filter responses. It can be represented as in (2):

rs f (x,y) = |(
|s f |
∏
i=1

(sλi,σi,ρi,φi
(x,y))ωi)1/∑

|s f |
i=1 ωi |t3 (2)

Equation (2) shows that the response is thresholded at a fraction t3
of the maximum value of across all the coordinates (x,y) of the image.

Fig. 7 shows the different stages of the working of the COSFIRE
algorithm. It shows that the output response of a COSFIRE filter is
determined by the geometric mean of the four blurred and shifted im-
ages that are produced as the responses of two Gabor filters. It can be
noticed that the filter responds strongly to the horizontal line to the left
of selected point of interest, the vertical line and the intersection of the
horizontal and vertical line.

Fig. 7: Different stages of the working of COSFIRE filters, namely
configuration (a) and blurring and shifting. An input image has a size
256×256 pixels. A point of interest is shown by a circle around a ver-
tex. To detect the horizontal and the vertical lines, two anti-symmetric
Gabor filters are used. The output of a COSFIRE filter is computed
as the weighted geometric mean of all the blurred, shifted and thresh-
olded Gabor filter responses. The two local maxima in the output re-
sponse of the COSFIRE filter correspond to two similar vertices of the
input image.[1]

In section 2.3.3 it was mentioned that the prototype can be selected
by the user. Nevertheless it is possible for the system itself to discover
the pattern that is to be used for configuration. We mentioned the
use of Gabor filters for detection of lines and edges, nonetheless any
other orientation selective filters could be used. As can be seen in
the examples above, the number of parameters ρ increases with the
complexity of the local pattern that is used in configuration of the filter.

In order to experiment with the algorithm, we executed the openly
available COSFIRE algorithm on one prototype pattern and sixteen
test images of complex scenes. The code was successful in correctly
detecting the given traffic sign in all the complex scenes. A few of the
images can be seen in Fig. 8.

3 ANALYSIS

The two methods presented greatly vary in the way they work. COS-
FIRE filters are trained in a defined manner, so they are able to do reli-
able detection. It was able to detect traffic signs in a publicly available
dataset[13] with training images like the one in Fig. 8a and detailed
scenes for testing like in Fig. 8c and 8d. On the entire dataset, COS-
FIRE had a recall rate of 100%, that is, it was able to detect the traffic
signs in all scenes. Similarly it had a very high recall rate of 98.50
percent on the DRIVE dataset in another test. The DRIVE dataset is
a dataset of retina images, in which bifurcations of blood vessels need
to be detected. This result was achieved by training four COSFIRE
filters on selected bifurcations in one training image, so a 100% recall
rate was achieved. The same four filters were then used to detect bifur-
cations in the training set. To be able to solve both detection problems,
some parameters need to be changed in the algorithm. These include
threshold values to suppress some filter responses, parameters regard-
ing blurring of input filter responses and a set of parameters that deter-
mine which Gabor filters to use. Besides that the COSFIRE algorithm
can be opted to run in different ‘modes’. In vascular bifurcation detec-
tion the algorithm was used in rotation, scale and reflection invariant
mode, while in traffic sign detection it was used in invariant mode. The
algorithm can also be utilized to do recognition tasks. This requires
some extra steps. Depending on how much a pattern can change, more
filters need to be trained to capture all the varieties a pattern can have
(for example the varieties in handwritten digits in Fig. 9). When a
dataset is too large like the MNIST dataset (Mixed National Institute

Comparing COSFIRE Filters with Neural Networks – Sweta Singh and Niels Kluiter

44

(a) Training Image (b) Cosfire filter

(c) test image (d) test image

Fig. 8: The algorithm used the prototype image of pedestrian crossing
sign to create a COSFIRE filter. This was used in detection of pedes-
trian crossing sign in a complex scene. In both the scenes (c) and (d)
it successfully detected the pattern, as can be seen by a red dot on the
sign board.[13]

of Standards and Technology), a popular database for recognition of
handwritten characters, a random subset of images from each class
with a random local pattern can be used for training. A support vector
machine is then used for their classification. Convolutional neural net-
works are on the contrary designed to do recognition tasks. They need
little configuration specific to the object they are recognizing, apart
from the configuration of the neurons in the fully-connected layers,
that have to lead to a desired amount of resulting classes. They have
been proven to be very effective in recognizing patterns like handwrit-
ten characters and traffic signs [18][10]. Neural networks are however
not able to do detection tasks effectively on their own. For that an-
other algorithm is needed that (finds and) presents parts of the image
to the neural network to check whether a pattern is present there. An
example of this is a sliding window, a ‘window’ is move over a scene
and the part inside the window is presented to the neural network, the
window then moves a few pixels and presents the new image. This is
the simplest way to make convolutional neural networks compatible
for detection tasks. More sophisticated methods exist however.

3.1 Experimental results

Many commercial applications like postal mail sorting and bank
cheque processing require handwritten character recognition. This is
still a challenging task. Feature recognition is a crucial step in effec-
tiveness of these technologies.
COSFIRE filter attempts to successfully does this job[1]. In this pro-
cess the trainable COSFIRE filter is first configured to detect specific
parts of the image of the handwritten digits. Response of many of such
filters is finally combined to form the shape descriptor of the given
handwritten digits. The popular MNIST data-set was used to evaluate
the performance of this method. The set contains about 60000 hand-
written characters that can be used for training and another 10000 for
testing. For configuration, a random subset of images of digits was
taken from each class. In each of these images, a random location was
chosen to configure a COSFIRE filter. After configuring around 500
COSFIRE filters and applying it to a test image, a vector with each
element corresponding to a maximum response of a COSFIRE filter is
created. This training in total took about ten seconds. The feature vec-
tors of the digit images thus obtained were then used in training an all
pairs multi-class support vector machine classifier with a linear kernel.

Fig. 9: Handwritten digit examples from the MNIST dataset[1]

Fig. 9 shows examples of handwritten digits from the MNIST dataset
that was used to examine the performance of COSFIRE filters. As can
be seen that different handwritings of the same digits vary in orienta-
tion, therefore the experiment was repeated several times by applying
the COSFIRE filters in a partial rotation invariant mode with rotation
tolerance angle ψ (ψ ∈ −π/4,−π/8,0,π/8,π/4) in equation (3).

ℜψ (S f) = (λi,θi +ψ,ρi,φi +ψ)∀(λi,θi,ρi,φi) ∈ S f (3)

Using this strategy, COSFIRE achieved a recognition rate of 99.48
percent, so it had a validation error of 0.52%.

Convolutional neural networks also claim to be particularly good
at doing tasks like handwritten character recognition. Several con-
volutional neural networks methods have used this set to test their
performance, the best result for such method at this point is a com-
mittee of 35 trained neural networks[5],[18] it had a validation error
0.23%. Training of these neural networks however took 14 hours per
network, which would be a total of 490 hours if not trained in parallel.
The best single network was presented one year earlier by the same
researchers[6]. It was a convolutional network with seven hidden lay-
ers. Training it took a longer time than comparable networks with
fewer layers, but it had a much lower validation error of 0.35%. An-
other frequently used benchmark in computer vision is for recognition
of German traffic signs[10] known as GTSRB. In this benchmark a
dataset of more that 50000 images are used with images that belong to
more than 40 traffic sign classes. The same convolutional neural net-
work as with the MNIST dataset is most successful with this dataset.
It has a success rate of 99.46% which was better than the result of one
of the humans that had to do the same tasks[4].

4 DISCUSSION

From the previous section it becomes clear that there is not a lot of
overlap in application to which the methods have been applied. Both
have been applied to the MNIST handwritten character dataset, where
convolutional neural networks proved to been more effective. How-
ever they required much more time to be trained on more dedicated
hardware [5]. Apart from the MNIST dataset, there is no set to which
both methods have been tested. This is due to their difference in de-
sign. COSFIRE filters are designed to do object detection tasks, while
convolutional neural networks do pattern recognition tasks. Both al-
gorithms have however been used to do the tasks for which the other
is designed, but for both this requires extra steps. There is however
evidence that there are more possible common grounds for the algo-
rithms, is has for example been shown that both methods are able to
handle patterns like traffic signs. When the features are well defined,
keypoint detectors can be used easily. COSFIRE filters perform very
well even when the key features are not defined, as it can automati-
cally configure the filters by choosing random keypoints. Deep neural
networks are also useful when the features are hard to be represented,
but the only drawback is the computational cost it has to pay for the
complexity of features.

SC@RUG 2015 proceedings

45

5 FUTURE WORK

From the limited amount of benchmarks on which both the methods
have been tested we have only been able to get an idea of the relative
performance of the two algorithm. To draw reliable conclusions on
which algorithm is better both of them need to be tested on additional
common benchmarks. We have not been able implement any of the
necessary extensions on existing algorithms to do the task for which
the other algorithm was designed. This is a task that could be done in
future to support the conclusions made in this paper.

6 CONCLUSION

In this article two completely different computer vision methods have
been examined, that are able to do similar tasks. The COSFIRE
method considers key features (keypoints) as a prototype pattern.
These keypoints can be used for detection and recognition problems.
The other method, deep convolutional neural networks, consists of
multiple layers of ‘neurons’ that have to be trained to automatically
solve problems. We have compared both methods on the MNIST
dataset in order to examine which ones perform better. With this
dataset convolutional neural networks achieved a validation error as
low as 0.25-0.32%. COSFIRE got a validation error of 0.52%. These
results are quite close, however convolutional neural networks can
sometimes take hours to train, while COSFIRE is often done training
within 10 seconds. Using COSFIRE does however require the user to
have some knowledge about the method itself, as a lot of configura-
tions have to be made to receive optimal results for a certain task. To
conclude, convolutional neural networks are probably the wises choice
if accuracy is most important. However if efficiency also plays an im-
portant role, COSFIRE is probably more favorable.

ACKNOWLEDGMENTS

The authors wish to thank Toon Albers, Nicolai Petkov, Rogchert Zi-
jlstra for reviewing and re-reviewing this paper, which made it greatly
improve in quality.

REFERENCES

[1] G. Azzopardi and N. Petkov. Trainable cosfire filters for keypoint detec-
tion and pattern recognition. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 35(2):490–503, 2013.

[2] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, et al. Greedy layer-
wise training of deep networks. Advances in neural information process-
ing systems, 19:153, 2007.

[3] E. Chatzilari, G. Liaros, S. Nikolopoulos, and Y. Kompatsiaris. A com-
parative study on mobile visual recognition. In Machine Learning and
Data Mining in Pattern Recognition, pages 442–457. Springer, 2013.

[4] D. Cireşan, U. Meier, J. Masci, and J. Schmidhuber. Multi-column deep
neural network for traffic sign classification. Neural Networks, 32:333–
338, 2012.

[5] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural net-
works for image classification. In Computer Vision and Pattern Recogni-
tion (CVPR), 2012 IEEE Conference on, pages 3642–3649. IEEE, 2012.

[6] D. C. Ciresan, U. Meier, J. Masci, L. Maria Gambardella, and J. Schmid-
huber. Flexible, high performance convolutional neural networks for im-
age classification. In IJCAI Proceedings-International Joint Conference
on Artificial Intelligence, volume 22, page 1237, 2011.

[7] J. J. DiCarlo and D. D. Cox. Untangling invariant object recognition.
Trends in cognitive sciences, 11(8):333–341, 2007.

[8] J. J. DiCarlo, D. Zoccolan, and N. C. Rust. How does the brain solve
visual object recognition? Neuron, 73(3):415–434, 2012.

[9] K. Fukushima. Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position.
Biological cybernetics, 36(4):193–202, 1980.

[10] I. fr Neuroinformatik. INI Benchmark, 2014 (accessed March
2015). http://benchmark.ini.rub.de/?section=home&
subsection=news.

[11] E. Gheorghiu et al. Multiplication in curvature processing. Journal of
Vision, 9(2):23, 2009.

[12] A. Gibiansky. Convolutional Neural Networks, Feb. 2014 (ac-
cessed March 2015). http://andrew.gibiansky.com/blog/
machine-learning/convolutional-neural-networks/.

[13] C. Grigorescu. INI Benchmark, (accessed March 2015).
http://www.cs.rug.nl/˜imaging/databases/traffic_
sign_database/traffic_sign_database.html.

[14] C. Grigorescu, N. Petkov, and M. A. Westenberg. Contour detection
based on nonclassical receptive field inhibition. IEEE Transactions on
Image Processing, 12(7):729–739, 2003.

[15] G. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep
belief nets. Neural computation, 18(7):1527–1554, 2006.

[16] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of
data with neural networks. Science, 313(5786):504–507, 2006.

[17] P. Kruizinga and N. Petkov. Non-linear operator for oriented texture.
IEEE Trans. on Image Processing, 8(10):1395–1407, 1999.

[18] Y. LeCun. THE MNIST DATABASE of handwritten digits, 2012 (accessed
March 2015). http://yann.lecun.com/exdb/mnist/.

[19] R. P. Lippmann. An introduction to computing with neural nets. ASSP
Magazine, IEEE, 4(2):4–22, 1987.

[20] S. Papert. The summer vision project. 1966.
[21] A. Pasupathy and C. E. Connor. Responses to contour features in

macaque area v4. Journal of Neurophysiology, 82(5):2490–2502, 1999.
[22] A. Pasupathy and C. E. Connor. Population coding of shape in area v4.

Nature neuroscience, 5(12):1332–1338, 2002.
[23] N. Petkov. Biologically motivated computationally intensive approaches

to image pattern recognition. Future Generation Computer Systems,
11(4-5):451–465, 1995.

[24] N. Petkov and P. Kruizinga. Computational models of visual neurons spe-
cialised in the detection of periodic and aperiodic oriented visual stimuli:
bar and grating cells. Biological Cybernetics, 76(2):83–96, 1997.

[25] N. Petkov and M. A. Westenberg. Suppression of contour perception by
band-limited noise and its relation to non-classical receptive field inhibi-
tion. Biological Cybernetics, 88(10):236–246, 2003.

[26] C. Poultney, S. Chopra, Y. L. Cun, et al. Efficient learning of sparse
representations with an energy-based model. In Advances in neural in-
formation processing systems, pages 1137–1144, 2006.

[27] L. G. Roberts. Machine perception of three-dimensional soups. PhD
thesis, Massachusetts Institute of Technology, 1963.

[28] N. P. S.E. Grigorescu and P. Kruizinga. Comparison of texture features
based on gabor filters. IEEE Trans. on Image Processing, 11(10):1160–
1167, 2002.

Comparing COSFIRE Filters with Neural Networks – Sweta Singh and Niels Kluiter

46

Similarity metrics for psychological symptom graphs

J.D. van Leusen and S.F. de Bruijn

Abstract— Research has shown that comorbidity, a phenomenon where a patient exhibits multiple mental disorders simultaneously,
is very common. In the field of psychopathology, the scientific study of mental disorders, the causes of comorbidity are currently a
hot research topic. Psychological features, also known as psychological variables, are markers of some state of mind. Examples
at any given moment may include cheerfulness, irritability, fatigue, but also degree of worrying. These features can be modeled by
using a graph where the features are represented by the nodes and the causal relationships between the features are represented
by the edges. The benefit of modeling the features by using a graph is that many algorithms exist to perform analysis on a graph,
giving way to a large variety of possible analysis techniques to be used on this data. An example of such an analysis technique is
comparing two graphs. Being able to compare these graphs is valuable as it provides insight into the similarity of the psychological
features of two people. This in turn can help in understanding the causes of comorbidity. In this paper we provide an overview of
existing graph comparison methods, while also proposing two new techniques to determine the similarity between two graphs. By
theoretically evaluating the methods on both performance and accuracy we conclude that our proposed methods are in theory an
optimal trade off between performance and accuracy.

Index Terms—Graph similarity, Psychological symptom graphs, Graph theory

1 INTRODUCTION

Research has shown that comorbidity, a phenomenon where a pa-
tient exhibits multiple mental disorders simultaneously, is very com-
mon [14]. In the field of psychopathology, the scientific study of men-
tal disorders, the causes of comorbidity are currently a hot research
topic. The exact causes of comorbidity are still unknown, but it is sus-
pected to be related to the networked nature of psychological symp-
toms [4]. ”The networked nature of psychological symptoms” refers
to the theory that psychological features are not self-contained. Instead
they are thought to be affected by other psychological features.

Psychological features, also known as psychological variables, are
markers of some state of mind. Examples of these features may in-
clude cheerfulness, irritability, fatigue, but also degree of worrying.
Several techniques exist to assess these psychological features and di-
agnose mental disorders in patients. An example of such a technique is
having the patient fill out regular surveys containing questions about
their mood, among other things. The answers to these surveys are
then used to measure psychological features such as cheerfulness and
degree of worrying. These surveys are conducted over some period
of time resulting in a time series representation of their psychological
features. Having a time series of these features creates a pattern over
time which can be used to detect the presence of mental disorders.

As mentioned earlier, these psychological features are not stan-
dalone; relationships exist between them. One important relationship
is the causal relation where one feature is the cause of another. Mod-
eling the relationships between these features can be done by using
a graph. Such a graph represents the psychological features as nodes
and depicts the relations between them as the edges between the nodes.
One benefit of modeling the features by using a graph is that many al-
gorithms exist to perform analysis on a graph, giving way to a large
variety of possible analysis techniques to be used on this data.

An example of such an analysis technique is comparing two graphs.
As each graph represents part of the psychological features and rela-
tionships, being able to compare these graphs is valuable as it provides
insight into the similarity of the psychological features of two subjects.
These subjects might be the same person at different points in time or
two different individuals.

This in turn is valuable to determine the causes of comorbidity, as

• J.D. van Leusen is a student at the University of Groningen, E-mail:
jvleusen@gmail.com.

• S.F. de Bruijn is a student at the University of Groningen, E-mail:
s.f.debruijn@gmail.com.

people may have different combinations of disorders while also hav-
ing different, or similar, combinations of symptoms. Not only is it
potentially useful for comparing the features of two people, if multi-
ple graphs exist of the features of one person then the development of
symptoms within a person over time can be studied. Knowing which
different causal relationships between symptoms tend to result in sim-
ilar manifestations of mental disorders is very valuable knowledge for
this reason. Having a method to accurately determine the similarity of
symptom graphs fills a gap in current knowledge.

In this paper we provide an overview of existing graph comparison
methods while also proposing two new techniques to determine the
similarity between two graphs. We consider three main categories of
graph comparison methods:

• Edit distance

• Feature extraction

• Iterative methods

The edit distance category focuses on the structural shape of the
graph while the feature extraction category focuses on certain prop-
erties of the graphs and the iterative methods category focuses on the
similarity of node’s neighbors. Our proposed methods extends one
of the iterative methods to determine node similarity to a metric that
quantifies the similarity of two graphs.

We start with an overview of the existing graph comparison meth-
ods in Section 2. We present our two new methods in Section 3. We
analyze the pros and cons of each of these methods by examining the
properties of the methods and determining how the methods can be
applied in the field in Section 4. The paper is concluded in Section 5.

2 RELATED WORK

A graph G is a set nodes V and edges E. Each edge has a start node
and an end node: E ⊂ V ×V . If the nodes of a graph have attributes,
then it is an attributed graph [5].

Multiple techniques exist to determine the similarity between
graphs. These techniques can be divided in three categories [9]:

• Edit distance

• Feature extraction

• Iterative methods

The edit distance set of techniques state that two graphs are similar
if they are isomorphic or they have isomorphic subgraphs. Their main

47

1 2

3 4

5 6

7 8

1

2

3

4

5

6

7

8

Fig. 1: Equivalent graphs in different configurations, an example of
graph isomorphism.

disadvantage is that the only known algorithms to determine whether
two graphs are isomorphic have an exponential complexity, making
them unsuitable for large graphs.

The second class of techniques, feature extraction, focuses on de-
termining the similarity of a set of statistics derived from the graph.
While they scale well due their reduced amount of data, their results
are very dependent on the chosen statistics. The consequence is that
statistics may not actually reflect the similarity of the graphs.

The third class of techniques is based on the school of thought that
two nodes are similar if their neighbors are similar. We discuss each
of these classes of techniques in more detail in the next sections.

2.1 Edit distance
Graph isomorphism is a property of two graphs where there exists a
one-to-one mapping between the nodes of the graphs and the edges be-
tween those nodes. When two graphs are isomorphic it is possible to
turn one of the graphs into the other graph by moving the nodes with-
out changing changing the nodes or edges of the graphs. An example
of isomorphism is shown in Figure 1.

Edit distance is a concept related to graph isomorphism that in-
volves calculating the number of actions required to make two graphs
isomorphic. In order to determine the edit distance the following op-
erations can be applied to a graph:

• Insert or delete an isolated1 node

• Insert or delete an edge

• If the graph has attributes, changing these attributes

The edit distance of two non-isomorphic graphs represents the dif-
ference between the graphs. To calculate a similarity score for the
graphs the edit distance needs to be compared to the size of the actual
graph. This gives a measure of how much the graph would stay the
same and how much the graph would need to change to be equivalent
to the other graph.

The primary issue with the use of graph isomorphism property
and edit distance is that the most efficient known algorithm to
determine graph isomorphism has a computational complexity of
O(2O(

√
n logn))2 for graphs with n nodes [11, 1]. Graph Isomorphism

is one of the open problems in computational complexity theory as it
has yet to be classified as a P or NP-complete problem.[6]

While edit distance is a very powerful method of describing the
similarity of two graphs, the exponential complexity of the algorithms
involved in the calculation causes the performance of this method to
scale badly with the size of the graphs involved.

2.2 Feature extraction
The idea behind feature extraction is that the original graph contains a
lot of redundant data. By reducing the input data to a number of values

1An isolated node has no edges attached to it
22O(n) is the notation for an exponential time complexity where the expo-

nent is linear.

with a smaller size or dimensionality, the relative similarity of the orig-
inal graphs can be calculated by comparing their derived values. This
reduces the problem of comparing the original graphs to a problem of
comparing their derivative features, a trade between performance and
accuracy.

Koutra et al. [9] defines a number of features that can be used to
assess similarity between graphs.

• By turning the graph into an adjacency matrix3 it is possible to
calculate eigenvalues for the graph.

• The degree of the node refers to the number of edges attached to
a node. The distribution of node degrees throughout the graph
describes the distribution of connectedness in the graph. Distri-
butions with a large number of high degree connections implies
a highly connected graph while a distribution with a large num-
ber of low degree connections imply a loosely connected graph.
Generally the average degree of all the nodes in the graph is used
as a feature in the feature comparison.

• The diameter of a graph is defined as the maximum length of
all paths between any pair of nodes in the graph. This value de-
scribes the presence of outsider values in the graph, where the
path between the outermost value and the central cluster of the
graph is very long. If the graph is disconnected then the diameter
would be infinite. To avoid these infinite values the diameter fea-
ture should only be used on connected graphs or subcomponents
of the graph.

All of these features discard some of the information contained in
the original graph during the calculation of the values. The features
have a reduced accuracy when used to identify their original graph.
This means error in the determination of similarity is increased pro-
portionally to the amount of data that is discarded.

To improve the accuracy of the comparison when using feature ex-
traction, the comparison is not performed with only a single feature.
Instead multiple features are calculated to determine a feature vector
that can be used to compare similarity with better accuracy than indi-
vidual features.

Feature extraction performance depends on the features selected,
but the fact that a selection of features is used means that computa-
tionally expensive features can be replaced by a set of features that are
cheaper to compute. This allows the feature extraction method to be
very flexible when it comes to the required performance and accuracy.

2.3 Iterative methods
Iterative methods determine the similarity of two nodes within a graph
based on how similar the neighbours of these two nodes are. These
methods are iterative as for each iteration a similarity score of the
nodes is calculated. These scores are then used for the next iteration
to compute a more accurate score. This process continues until the
scores converge to a state of equilibrium.

We discuss multiple prominent algorithms that belong to this cat-
egory. Firstly there is the similarity flooding algorithm by Melnik et
al. [12], which aims to find nodes between graphs that correlate to each
other. For example, in case of feature graphs two corresponding nodes
would be the node for ‘fatigue’ in one graph with the node ‘fatigue’
in the other graph. One way that the correlation between nodes can be
determined is by looking at the node labels. This algorithm takes two
graphs as its input and provides a mapping between correlated nodes
as the output. Note that this does not provide a similarity metric for
two graphs but rather provides a map of nodes that correspond to each
other.

The second example of a prominent algorithm in the class of itera-
tive methods is the SimRank algorithm [8]. This algorithm also does

3n∗n matrix defined for a graph with n nodes, where the value at (i, j) is 1
if there is an edge between node i and j and 0 in all other cases. If the graph is
weighted or directed then the values of the adjacency matrix can be changed to
represent these values instead of the binary representation.

Similarity metrics for psychological symptom graphs – J.D. van Leusen and S.F. de Bruijn

48

Fig. 2: A simplified example of two graphs with corresponding nodes.

not provide a similarity metric for two graphs, instead it provides a
measure of how similar the nodes within a graph are to each other.
For example it will provide a similarity score for the nodes ‘fatigue’
and ‘irritability’ that exist in the same graph. This is another form of
similarity that is based on the similarity of the neighborhood of a node.

The third example is close to what we need, since it is a total graph
comparison method. As proposed by Zager et al. [15] this algorithm
computes the similarity of two graphs based on how similar their nodes
and edges are. This is done by first computing the similarity between
the nodes and the similarity between the edges and then determining
which nodes from one graph correspond to nodes in the other, as well
as which edges in one graph correspond to edges in the other graph.
This algorithm is used for graph matching, for example determining
whether a subgraph is contained in another graph.

Finally we discuss an iterative method as proposed by Leicht et
al. [10]. Like the others it determines the similarity of two nodes based
on the similarity of the node’s neighbours. They propose the following
definition for node similarity:

Si j =
2mλ1

kik j

[
(I− α

λ1
A)−1

]
i j

(1)

Where:

• Si j is the similarity from node i to node j

• ki and k j are the degrees of nodes i and j respectively

• m is the total number of edges in the network

• A is the adjacency matrix

• λ1 is the largest eigenvalue of A

• α is a parameter between 0 and 1 that reduces the contribution
of long paths relative to short paths

• I is the identity matrix

Knowing the similarity between nodes could be useful for psycho-
logical symptom graphs since the nodes represent symptoms. Know-
ing how similar two symptoms between two patients are could be a
useful metric in determining the causes of comorbidity.

2.4 Symptom graphs
The methods that are mentioned above are applicable to general
graphs. Symptoms graphs are specific instances of graphs. They
are not necessarily connected because not all symptoms need to have
causal relationships. For example fatigue may cause concentration
problems, while depression may cause suicidal tendencies. These two
relationships do not need to be connected at all. Causality is not a two
way street, ‘when it rains I get wet, but when I get wet it does not have
to rain’ is a very clear example. As such symptom graphs are directed
graphs. Symptom graphs are weighted graphs, as causality is not all
or nothing. The weights represent the degree of causality. Symptom
graphs can contain self loops [3].

Symptom graphs exhibit the small world phenomenon [2]. This
means that they tend to consist of clusters since multiple symptoms
are clustered together by a shared cause. The clustering property of
the graph also means the average path length will be very short.

Finally the nodes of the symptom graphs are known symptoms.
This property means that there are common nodes between two differ-
ent symptom graphs, since there are a number of common symptoms
that will be shared.

3 PROPOSED SIMILARITY METRIC

We propose two new ways to determine graph similarity. These meth-
ods are based on an existing node similarity metric, as proposed by
Leicht et al. [10]. We extend this similarity metric of two nodes to a
similarity metric of two graphs.

We start the node similarity metric as proposed by Leicht et al. [10]
and discussed in Section 2. This method fits symptom graphs best as
the neighbors of nodes are very important, given that they represent
symptoms. Using this method also has the advantage that is appli-
cable to the research question of what the causes of comorbidity are.
As mentioned, it is suspected that symptoms are caused in part by
each other. As a result it is valuable to determine a graph’s similar-
ity based on how similar the neighbors of corresponding nodes are.
This metric in itself does not provide any possibility to extend it to a
graph comparison method, as it only focuses on one graph in specific.
However since we know that the nodes of the graph represent psycho-
logical symptoms we can pair the corresponding nodes of each graph
with each other. For example the symptom ”irritability” has a node in
graph A and is also represented by a node in graph B. Even in the sce-
nario where the symptoms differ between graphs it is possible to use
the similarity flooding algorithm to map corresponding nodes to each
other, albeit with a potentially larger margin for error as the nodes now
may not match in a one-to-one fashion. In this case there is a chance
that the wrong symptoms are mapped to each other, so it is desirable to
have two graphs with the exact same symptoms represented in them,
even if nodes are entirely disconnected.

We now have two corresponding nodes in two different graphs and
a method to compare these two nodes. What remains is the matter
of taking the similarity of corresponding nodes and extending this to
account for the similarity of all corresponding nodes, resulting in the
proposed similarity metric for the two graphs. There are several pos-
sibilities to make this extension happen, but the following two will be
considered:

1. two graphs are similar based on the average similarity of the cor-
responding nodes

2. two graphs are similar based on the percentage of nodes whose
similarity exceeds some threshold α

We will clarify both cases by using a very simplified example sce-
nario concerning two graphs. Figure 2 displays two graphs: on the left
graph 1 with nodes A1,B1,C1 and D1. On the right graph 2 with nodes
A2,B2,C2 and D2. The letters in these graphs represent the symp-
toms and similar letters represent similar symptoms. The edges of the
graphs differ while the nodes are similar. Table 1 displays an example

SC@RUG 2015 proceedings

49

of the values that the similarity between nodes may exhibit. Note that
these values are made up but do correspond to the graph displayed in
Figure 2. The similarity metric we use for the nodes is based on how
similar their neighboring nodes are. For example since node A1 has
neighbors B1 and C1 while node A2 has neighbors B2 and D2, we say
that nodes A1 and A2 are 50% similar. This translates into a similarity
score of 0.5. These values lie between 0 and 1, 0 meaning that the
two nodes are not similar at all and 1 meaning that the two nodes are
practically identical. We can tell from Table 1 that one set of nodes is
identical, two sets of nodes are quite similar and one set is not simi-
lar at all. Intuitively we might say that the two graphs are reasonably
similar.

Node pair Similarity value
A1,A2 0.5
B1,B2 1.0
C1,C2 0.67
D1,D2 0.67

Table 1: Hypothetical node similarity values.

Let us look at the first proposed extension to see how it compares
to our intuitive notion of similarity. The first proposed extension states
that two graphs are similar based on the average similarity of the cor-
responding nodes. The average similarity of the sets of nodes is easily
calculated:

0.5+1.0+0.67+0.67
4

= 0.71

This measure would say that the two graphs are 71% similar, coin-
ciding pretty well with our intuitive notion of the value.

The second proposed extension states that two graphs are similar
based on the percentage of nodes of which the similarity exceeds some
threshold α . The results are obviously very dependent on the choice of
parameter α . If we are to set α = 0.7, we obtain a similarity score for
the graph of 25%. The eventual value for α would have to be carefully
considered in a real environment. Considerations to take into account
include assessing what values the similarity values for nodes will at-
tain. A test setting where the similarity between nodes is known can
help in determining this by providing feedback on what the similarity
values are for nodes that are known to be similar.

4 EVALUATION

To evaluate the usability of the proposed methods to compute symp-
tom graph similarity the performance as well as the accuracy of the
results will be considered. The asymptotic runtime4 will be used to
evaluate the performance of the methods. The level of detail as well
as information used to calculate the results will be used to evaluate the
accuracy of the methods.

4.1 Performance
The first aspect to consider when selecting the method to compare
graphs is the performance when dealing with the subject graphs. The
paper by Borsboom et al. [2] contains a symptom graph containing 439
nodes, but in compositon to other graphs used in computer science this
is a moderately sized graph.

As mentioned in Section 2.1, the performance of the edit distance
approach does not scale. The most efficient known algorithm has an
asymptotic complexity of O(2O(

√
n logn)). Even given the moderate

average size of symptom graphs this approach would require a larger
amount of processing power than the other approaches, making it un-
suitable for this use case.

The performance of the feature extraction approach heavily depends
on the features that are being used to evaluate the graphs. Some of
the features only consider the nodes of the graph such as the average
degree of the nodes (resulting in a complexity of O(n)). The expensive

4Big O-notation

features will consider each node and all the potential neighbors of that
node, such as the diameter of the graph. Since each other node in the
graph is a potential neighbor the resulting complexity is O(n2).

Finally the performance of the proposed iterative method approach
heavily depends on the specific node similarity calculations that are
being used since their complexity can vary wildly among the various
options. Since the method involves going through each named pair in
the graphs and calculating the similarity of those pairs the similarity
calculations generally involve the neighbors of the two nodes which
results in a complexity of O(n). This means that the final complex-
ity of calculating the proposed method is O(n2), since the finalizing
methods discussed in Section 3 are of linear complexity and and are
asymptotically dominated by the quadratic complexity of the similar-
ity calculations.

4.2 Accuracy
Section 2.4 lists a number of properties of symptom graphs, these
properties need to be considered when evaluating the accuracy of
the methods since they represent the unique properties of symptom
graphs.

The edit distance approach would be very accurate in determining
the similarity of symptom graphs since it would be able to detect iso-
morphism in shared clusters of symptoms between graphs. Since edit
distance determines the smallest amount of changes required to make
two graphs isomorphic, it also represents the exact difference between
the two graphs. This property means it is the perfect method for deter-
mining the similarity between two graphs as well as the exact differ-
ences between the graphs.

The accuracy of the feature extraction method depends heavily on
the features used in the comparison. To evaluate the accuracy of this
method we will consider the features listed in Section 2.2:

• Eigenvalues are heavily dependent on the structure of the graph,
so they might be a good feature to use to compare the symptom
graphs. However there is no theoretical reason why this feature
would represent the symptom graphs well or poorly.

• Node degrees are a poor way to distinguish symptom graphs
since they are by their nature very interconnected. This means
the distribution of node degrees within different symptom graphs
would be similar, thus making them a bad way to determine sim-
ilarity.

• Graph diameter would only be able to distinguish graphs with
outlier symptoms. While these outliers would indicate differ-
ences between graphs they would not be sufficient to determine
whether two symptom graphs are structurally similar. The graph
diameter feature should be used in combination with other fea-
tures.

The evaluation of the features shows that feature extraction would be
an unreliable way to determine similarity of symptom graphs due to
the shared properties of these graphs.

Finally the accuracy of the proposed iterative method approach de-
pends on the accuracy of determining the similarity through the nodes
of a symptom graph. Since symptom graphs are highly connected and
the exact connections between nodes are an important distinguishing
factor the proposed method might be a very good method of deter-
mining similarity between graphs. The scope of similarity might be
too small since a lot of the important structure is contained in the ex-
panded neighborhood of the nodes. However the limited scope might
be enough to distinguish between differences in the local structures
between the graphs.

4.3 Summary
The results of the evaluation can be seen in Table 2. When accuracy
is the most important property it is clear that edit distance is the best
method to use. Its downside is that the performance will not be accept-
able for most purposes, making it a bad choice for the bulk comparison
of symptom graphs.

Similarity metrics for psychological symptom graphs – J.D. van Leusen and S.F. de Bruijn

50

Method Accuracy Performance
Edit Distance Most accurately rep-

resents the similarity
between two symptom
graphs, affected by global
and local structures.

O(2O(
√

n logn))

Feature Extraction Captures the global struc-
tural similarity of the
graphs well, but fails to
capture the local similar-
ity.

O(n2)

Iterative Method Captures the local struc-
tural similarity of the
graphs well, but fails to
capture the global similar-
ity.

O(n2)

Table 2: Results of the evaluation

Feature extraction and the proposed iterative method have a similar
performance, but their accuracy depends on the type of similarity that
the user is interested in. Feature extraction distinguishes similarity
on a larger scale than the iterative approach. However the properties
of symptom graphs mentioned in Section 2.4 cause symptom graphs
to exhibit similar structures on a larger scale while differing in local
structure. Because of this reason the iterative approach has a better
accuracy when used to determine the similarity of symptom graphs
due to the use of local structure in the algorithm.

5 CONCLUSION AND FUTURE WORK

We have seen several different techniques to determine the similarity
between two graphs. Aside from existing techniques we proposed two
new ways to perform this task. Both methods extend an existing mea-
sure of node similarity to a measure of graph similarity.

Considering the performance issues with the edit distance approach
and the accuracy concerns with the feature extraction approach, we
consider the proposed iterative method as proposed in this paper to
be a good middle-ground approach to determining the similarity of
symptom graphs. Understanding the causes of comorbidity is aided
by a method that is both accurate, while also being able to complete in
a reasonable amount of time. Future work will have to show whether
theory translates into practice, by testing the different methods with an
actual implementation.

Future work will thus involve a practical assessment of the proposed
similarity metrics, as well as a comparison of both accuracy and per-
formance with existing graph comparison methods. Another aspect to
test is to see how well the different methods scale when the graph sizes
increase. The symptom graphs are not extremely large since they nor-
mally only have several hundreds of nodes. However since each graph
can have a quadratic number of edges relative to the number of nodes
the algorithms involved still need to be able to perform efficiently. Be-
ing able to scale these methods might make them more applicable to
other fields besides psychopathology, such as software analysis where
the graphs involved are often much larger.

ACKNOWLEDGEMENTS

The authors wish to thank Frank Blaauw, Michael LeKander and Niels
Kluiter for their review of the draft paper and their valuable feedback.
The authors also wish to thank their colleague students at the Univer-
sity of Groningen for their fruitful discussions and valuable insights.

REFERENCES

[1] L. Babai and P. Codenotti. Isomorhism of hypergraphs of low rank in
moderately exponential time. In Foundations of Computer Science, 2008.
FOCS’08. IEEE 49th Annual IEEE Symposium on, pages 667–676. IEEE,
2008.

[2] D. Borsboom, A. O. J. Cramer, V. D. Schmittmann, S. Epskamp, and
L. J. Waldorp. The small world of psychopathology. PLoS ONE,
6(11):e27407, 11 2011.

[3] L. F. Bringmann, N. Vissers, M. Wichers, N. Geschwind, P. Kuppens,
F. Peeters, D. Borsboom, and F. Tuerlinckx. A network approach to psy-
chopathology: New insights into clinical longitudinal data. PLoS ONE,
8(4):e60188, 04 2013.

[4] A. O. J. Cramer, L. J. Waldorp, H. L. J. van der Maas, and D. Borsboom.
Comorbidity: A network perspective. Behavioral and Brain Sciences,
33:137–150, 6 2010.

[5] X. Gao, B. Xiao, D. Tao, and X. Li. A survey of graph edit distance.
Pattern Analysis and applications, 13(1):113–129, 2010.

[6] M. R. Garey and D. S. Johnson. Computer and intractability. A Guide to
the Theory of NP-Completeness, 1979.

[7] R. A. Hanneman and M. Riddle. Introduction to social network methods,
2005.

[8] G. Jeh and J. Widom. Simrank: a measure of structural-context similarity.
In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 538–543. ACM, 2002.

[9] D. Koutra, A. Parikh, A. Ramdas, and J. Xiang. Algorithms for graph
similarity and subgraph matching, 2011.

[10] E. Leicht, P. Holme, and M. E. Newman. Vertex similarity in networks.
Physical Review E, 73(2):026120, 2006.

[11] E. M. Luks. Isomorphism of graphs of bounded valence can be tested in
polynomial time. Journal of Computer and System Sciences, 25(1):42 –
65, 1982.

[12] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A ver-
satile graph matching algorithm and its application to schema matching.
In Data Engineering, 2002. Proceedings. 18th International Conference
on, pages 117–128. IEEE, 2002.

[13] M. Newman. Networks: an introduction. Oxford University Press, 2010.
[14] K. RC, C. W, D. O, and W. EE. Prevalence, severity, and comorbidity of

12-month dsm-iv disorders in the national comorbidity survey replication.
Archives of General Psychiatry, 62(6):617–627, 2005.

[15] L. A. Zager and G. C. Verghese. Graph similarity scoring and matching.
Applied mathematics letters, 21(1):86–94, 2008.

SC@RUG 2015 proceedings

51

A survey of big data architectures for smart cities

Erik Jager and Stephan Boomker

Abstract— The objective of this paper is to survey the current state of smart city architectures. Smart cities are cities that strive to be
self-sustainable. The city consists of a set of advanced services that create a citizen friendly, sustainable city. These services often
work in near realtime with large amounts of data that can be seen as Big Data. Big Data is heterogeneous unstructured data that is
difficult to process in realtime. We review four different approaches which try to find a solution to handle these kinds of data in a smart
city setting. We contrast these approaches to find the common purpose within these architectures.

Index Terms—Big data, smart cities, data-mining and analyzing, design principles, software architecture

1 INTRODUCTION

In city landscapes, the investment in Information and Communication
Technology (ICT) for enhanced governance becomes more present in
urban environments. These technologies provide the basis of sustain-
ability for smart cities of the future [7]. The smart city system can
be seen as a set of advanced services to create a citizen friendly, effi-
cient and sustainable city [8]. The ICT tools for a smart city are often
applied in different domains like transport-, energy- and environment
management. The systems controlling these smart cities have to deal
with scalability, heterogeneity, geo-location information, privacy is-
sues and large amounts of continuously incoming data from the city
environment. This is where big data comes into play. Big data is de-
fined as a large amount of data that increases exponentially over time
[11].

The problem related to the concept of Smart Cities and Big Data
is growing, this has to do with the urban population. Approximately
75% of the European population today lives in urban areas and the
urbanization of the European population is expected to increase over
80% by 2020 [1]. The continuous increase in urban population strains
the limited resources of a city, this affects its resilience to the increas-
ing demand on resources and urban governance faces ever increasing
challenges. The innovation in ICT in the urban environment can pro-
vide integrated information intelligence for better urban management
and governance, sustainable socioeconomic growth, and policy devel-
opment using participatory processes.

Another important problem includes the fact that data volumes in-
crease exponentially over time, this data tsunami can easily overwhelm
traditional analytics tools or platforms designed to ingest, analyze and
report. The challenges that are being faced are not only how to store
and manage diverse data but also to effectively analyze the data to gain
insight knowledge to make smart decisions.

Currently, a wide array of commercial product solutions are already
available on the market that support the adoption of Smart Grid tech-
nology among energy providers as well as Smart Building technology
among building constructors and managers. Although these products
are a sound starting point to achieve sustainable, efficient and citizen
friendly cities, the vision of a Smart City reaches much farther. This
includes broader resource integration, policy sharing, and increased
ease of deployment and operation automation. Moreover, the com-
mercially available Smart Cities analytics technologies are known to
be cumbersome to setup and reconfigure, making them less likely to
get adopted. Because of this complexity, there is no single tool or one-
size-fits-all solution that can cope with deep mining and analyzing big
data.

• Erik Jager is a MSC student at the University of Groningen,
E-mail: h.j.jager.2@student.rug.nl.

• Stephan Boomker is a MSC student at the University of Groningen,
E-mail: s.boomker@student.rug.nl.

The reason for this paper is the fact that the concept of a Smart City
is lately been adopted by the research community, companies and pub-
lic governments to try to come to a solution for this complex problem.
The solutions that they came up with are architectures for the Smart
Cities of the future that are able to handle and analyze Big Data. In
this paper we try to find common ground for different architectural ap-
proaches. These architectural approaches have been chosen because
they represent the current state of knowledge and are published in
well-known journals and discussed on well-known conferences.

The remainder of this paper is structured as follows: Section 2 es-
tablishes the formal definition of a Smart City and Big Data and their
relation. Section 3 gives a survey of different architectures related to
the Smart City and Big Data concept. We conclude the paper by draw-
ing our conclusion and discussing this survey in Section 4.

2 BACKGROUND

This sections provides information on the field of Smart City and Big
Data’. First we discuss the subjects in their respected fields and an-
alyze these concepts and how they relate. We conclude by bringing
them together as a distributed system.

2.1 Smart city
The first question that comes to mind; what is a smart city? A smart
city environment can be seen as an environment where the city actually
gets to communicate with the people residing within the city. The city
would be able to give live status updates on traffic, energy usage, water
quality, air pollution and smart lighting. The system can aid public and
environmental health but also aid in a more user friendly experience.
Figure 1 shows an overview of the main thematic pillars for smart
cities. The basis of a smart city is built on the infrastructure which
deals with the processing and storage of the data. The next step is
to transform these specific types of data into useful information and
knowledge[7]. A smart city can be seen as a distributed system where
different sources of information provide data to a set of applications to
elaborate responses at a strategic and tactical level [10].

2.1.1 Perspectives
There are various perspectives named in the previous section, to get a
clearer view for some of these perspectives we are going to elaborate
some more on these perspectives. One of the perspectives of a smart
city is the energy perspective. From this perspective the power-plants
need to interconnect with individuals who produce and consume en-
ergy which can be seen as prosumers as described by Girtelschmid
et al. [2]. These prosumers use renewable energy sources to produce
energy that can be given back to the energy grid. Another perspec-
tive is transportation within the city environment. Data is already the
fuel that drives intelligent transportation systems, this data comes from
smartphones, gps trackers, social media posts and camera’s located
around the city. Cities already capture and analyze data from all these
sources as well as using sensors embedded within the roads. This ex-
ample has a large impact but there are also solutions which have a

52

Fig. 1. Cross-thematic data management and analysis for variety of
smart city applications in Cloud environment [7].

much smaller impact. For example in the city of Groningen in the
Netherlands, the traffic lights are outfitted with rain sensors that en-
sures that cyclists get a green light more often when it rains1. This
solution has as a small influence on traffic flow, but has a bigger im-
pact on citizen satisfaction.

2.2 Big Data processing

All of the applications discussed in the previous section produces a
continuous stream of data, which can be defined as Big Data. But what
is Big Data? The term in itself can be confusing, because it implies
that the main challenge is its size. Although size is one of the chal-
lenges, it is not the only challenge. One of the main challenges is to
have a data platform that leverages the large volumes of data produced
into insights. The data that we are talking about comes from small in-
tegrated circuitry which can be added to nearly anything. These sensor
devices can measure light, temperature, motion or sound. The output
of these sensors result in a continuous stream of data.

According to Zikopoulos et al. [11] big data refers to massive, het-
erogeneous, unstructured data that is difficult to process using tradi-
tional tools and techniques. The bottleneck in traditional architectures
is the database server on peak workloads [4]. Traditional tools and
techniques are useful when the source-data is well understood, and
data is relational and can be modeled as such. Whereas Big Data con-
sists largely out of heterogeneous unstructured data which is continu-
ous and of changing quality.

The incoming data streams from all kinds of sources can be unre-
liable and measurements can be invalid. The data collected can be
in different heterogeneous formats and measurements can be in dif-
ferent units of measure. The heterogeneity issues can be addressed
by establishing semantics and applying meta-data to the incoming
data streams. The streaming of of high volumes of data need reliable
streaming platforms that arrive at the system at high velocities [2, 4].
The systems must be able to provide scalability to automatically re-
balance the workload when there is to much data to be processed on
one point.

Ji et al. [4] states that big data is a challenging concept which calls
for a scalable storage index and a distributed approach to retrieve re-
quired results in near real-time. Data in systems of this scale is to
big to process conventionally. The source of these kinds of data are
sensors which are placed for example in smart grids. The systems run-
ning on these kinds of data are highly dependent on time critical and
reliable data.

1http://www.eltis.org/discover/news/groningen-installs-rain-sensors-
cyclists-traffic-lights-netherlands-0

After the data has be gathered and stored there have to be some
components in the smart city system that perform data analytics. These
components are well known in data mining. An overview of how such
a set of components would work is depicted in figure 2.

Fig. 2. Big Data analysis architecture [7].

3 ARCHITECTURES

As stated in the introduction this paper compares four architectures
related to smart cities and big data from the papers [2, 7, 8, 10].

3.1 Architectural overview

The following sections elaborates on four architectures that have been
compared with each other. The main idea is to find the common
ground on which these architectures have been designed.

1. The architecture of Girtelschmid et al. [2] contributes to the big
data and smart city concept by employing ontology reasoning
and distributed stream processing on the cloud. Which results in
a fully automatic and self-contained decision process, while it re-
mains robust and time efficient. An overview of the architecture
is depicted in figure 3.

Fig. 3. Smart city data processing architecture high-level overview by
Girtelschmid et al. [2].

2. The second architecture from Khan et al. [7] is a design for cloud
based big data analysis, their guiding design is to reuse existing,
well-tested tools and techniques. Therefore, they use some ar-
chitectural concepts from their own previous work. They came
up with a layered architecture where each layer represents the
potential functionality that will meet their objectives as shown in
figure 4.

SC@RUG 2015 proceedings

53

Fig. 4. Proposed architectural design by Khan et al. [7].

3. Villanueva et al. [8] present in their paper the distributed object-
oriented middleware, called Civitas, specially designed for smart
cities. An overview of the architecture is shown in figure 5.
This middleware provides services that range from environmen-
tal sensor deployment to the necessary hardware for high perfor-
mance algorithms devoted to extract information from raw data.
This raw data of a smart city is an abstraction that comprises the
IT infrastructure deployed by governmental institutions all over
the city, such as semaphores, traffic sensors, cameras, and public
Wi-Fi networks. They present their architecture on the basis of
a case study scenario in which a service for license plate based
vehicle tracking is required.

Fig. 5. Civitas architectural overview by Villanueva et al. [8].

4. The architecture of Ye et al. [10] tackles the challenges of big
data mining and analysing by integrating different existing tools
and technologies. From the fields of infrastructure resource man-
agement to rich statistical computation and graphic functions.
Their architecture proposed consists of four layers: infrastruc-
ture, virtualization, dataset processing and service as shown in
figure 6.

3.2 Analysis
This section analyzes the literature by finding common ground on
which each of the architectures has been built upon. The architec-
tures are designed by using standard design principles which are spec-
ified in Section 3.2.1. The architectures are built by using multi-tier
architectures that are composed of out of several layers described in
Section 3.2.2. At the end of this section, the tools and techniques used
for these architectures are described.

3.2.1 Design principles
This section goes further into the description of the key design princi-
ples employed in the literature and how these can help in developing
an architecture that is suited for data transaction of these magnitudes.
Architectural drivers are the set of requirements that have a significant
influence on the architecture of a system. The architectural drivers
that we discuss are defined according to the ISO/IEC 25010:2011 [3].

Standardization and the open system principle is used throughout
the literature as a key design principle [7, 5, 8]. The open system
principle means that the system uses standards based technologies, by

Fig. 6. The Architecture of Cloud-based Big Data Mining & Analyzing
Services Platform by Ye et al. [10].

Fig. 7. ISO/IEC 25010:2011 overview [3].

using international standards for API communication, data modeling
and data storage. This prevents lock-in by certain vendors and
supports adaptability of a system by open-standards to enable new
tools and technologies that increase functionality, and are more
efficient. The standards are only used when its utilization does not
break any of the other design principles. The standardization enables
the system to be extendable with new data sources. Standardization
encourages dataproviders and user communities to join the system
[7]. Villanueva et al. [8] goes in deeper in specifying actual standards
to employ, where geographical data representation is based on Mobile
Location Protocol(MLP) from the Open Mobile Alliance.

Scalability The actual analytics engine that is going to perform
adaptions or predictions based on the sensor data has to scale, where
the analysis and search will be parallelized by employing technologies
such as MapReduce [7]. These technologies can be used to optimize
the processing of large amounts of data. Villanueva et al. [8] tackles
the scalability issues of the smart city by using administrative districts
to divide the core infrastructure as can be seen in figure 8. The
architecture of Girtelschmid et al. [2] adopts the dynamically adding
and removing of computing nodes within the analytics infrastructure.

Portability and adaptability are important for an ever changing
smart city environment. Adaptability is important for the deployment
and operational services because this works tightly with the dynamics
of a smart city system. The intelligence within the system proposed
by Villanueva et al. [8] consists of a context aware services and
system that is based upon the adaptability key-driver for unforeseen
situations. Villanueva et al. [8] use a set of simple interfaces within
their architecture to improve the portability and maintainability of the
system.

An overview of different techniques and tools to visualize software – Erik Jager and Stephan Boomker

54

Fig. 8. District-based smart city architecture [8].

Security is not a main driver for the architectures analyzed, and is
omitted in three of the four papers. The issue of privacy and security is
avoided, even though it is not the focus of these papers but still rather
important for the development of a real-world system employed in a
smart city environment. Any smart city system that can interact with
smart grids, traffic management or water management should be built
from the ground up with security in mind [7, 10]. The data will also
contain sensitive data and privacy and security has to be considered.
The Civitas architecture does mention the access to traffic control cam-
era’s that can be based on a security level, where police can control the
camera’s and the traffic control can only observe the feeds. The system
uses interfaces that contain security properties. Girtelschmid et al.[2]
does mention the lack of security in their architecture and state that
this was the result of time constraints, and state that security and pri-
vacy are indispensable [9]. Even though security is not one of the key
drivers in these archtitectures encryption of sensitive data is still ac-
cepted as the default measure to incorporate security in most systems.
Khan et al. [6] proposed end-to-end security measures for smart city
applications which use open data.

3.2.2 Layers
A common property that stands out of each of the architectures is the
fact that they all use some sort of layering structure. The number of
layers within the multi-tier architectures varies between three and five
and the overall purpose of each of the layers is quite similar. In figure 9
you can find a generalized layer architecture which is based on the
architectures by [2, 7, 8, 10]. The next section elaborates more on this.

Fig. 9. Layer structure

The bottom layer is the layer that gathers, handles and analyses the
data in all of the architectures, but there are some differences in the
way they do that. Girtelschmid et al. [2] calls this layer the streaming
platform, which contains a cluster of many individual compute nodes.

Each of these nodes can handle streams of sensor data from arbitrarily
many sensors. It also detects considerable changes in sensor data read-
ings or failures in sensors. The data cleansing processes is also applied
in this layer. Khan et al. [7] does not specify the number of computing
nodes, but does provide data acquisition and cleansing. However this
paper provides only three layers so the data analysis is also done in this
first layer. Villanueva et al. [8] takes on a different approach, they give
an overview of their architecture on the basis of an example, namely a
number plate recognition system. They subscribe their system from a
less technical perspective than the other papers, so their first and sec-
ond layer are the sensors and the logical addressing of those sensors.
The third layer receives the video from the traffic surveillance cameras
and applies the number plate recognition algorithm. The forth layer is
an interface layer and the fifth is a visualization layer. Ye et al. [10]
describe their architecture in the most technical fashion of the four.
The architectural overview has a lot of detail, including the main tech-
niques they use. The first layer provides the infrastructure foundation
for big data processing just as in [2, 7]. The second layer in this archi-
tecture is the virtualization layer which the others do not have. This
layer contains different virtual machine clusters used to manage the
infrastructure resources.

Moving to the top layers we also see some differences and simi-
larities. [2] uses the top layers for the recording of the most recent
readings and accumulate information. Any changes within this layer
triggers the rule engine, which contains a set of rules that are stored
and executed on a timely basis upon user request and whenever the
compute cluster is signaling a change event. This is used to raise
alerts, change settings and send execution results back to the clients.
The same principle applies in [7], the function of their top layers is
to establish the mapping between the resources, generating links and
making the data semantically relevant and browse-able. So the data
is available to help the users submitting queries, algorithms and work
flow to find information from the repositories. [8] used the top layers
also for reasoning and modeling. Same goes for the more technical
architecture in Ye et al.[10]. They have a processing layer for statis-
tics, analytics and graphics and a services layer for computing, cloud
services, data mining and a user interface.

The basic functionality of the layers are similar in most of the ar-
chitectures, the first layers are mainly for collecting and sometimes
analyzing the data and the top layers are for the analyzing, modeling
and getting useful information out of the data. The differences be-
tween the papers depend on the focus of their research, key-drivers,
and the requirements they have.

3.2.3 Tools and Techniques

The final topic of the architecture survey, are the tools and techniques
that they have used. The papers differ from each other in the way
they are written, which means that some of the papers describe more
technical details than the others. Also [7] does not describe a prototype
or concept they created but talks about the techniques they aim to use
if they build such a big data analytics system for smart cities. This
section describes in detail the techniques and tools on the basis of the
category they fit in and the functionality they provide, this means that
we are not going to compare the tools or techniques itself.

An important part of this subject is how to deal with and process
the continuous stream of (real-time) data. Girtelschmid et al. [2] uses
Apache Storm as the basis for the prototype implementation. Storm
is a distributed and fault-tolerant real time computation platform. [2]
uses a cluster of Storm workers to handle the data. Storm uses spouts
to stream data from the sensors to the system, and it uses bolts to con-
sume and emit the data streams. [7] receives the data through reposito-
ries by using APIs. The video steam interface from the traffic surveil-
lance cameras of Villanueva et al. [8] are integrated using Slice. This
interface provides a compiler which automatically generates a VHDL
wrapper for the number plate recognition algorithm. Ye et al. [10] uses
a virtualization layer where different management solutions can exist,
such as MySQL cluster and Hadoop distributed file system and diverse
storage tools. The layer on top of that is the dataset processing layer.
It consists of R language runtime environment and RHadoop environ-

SC@RUG 2015 proceedings

55

ment for statistics, analytics graphics and so on. The presentation of
the data also differs. Some do not talk about the presentation, while
the other papers talk about the possibility for the user to get some in-
formation out of the data or let the user do the querying themselves
and one paper also provides a layout and external reasoning on the
data. So, Girtelschmid et al. [2] is concrete in the techniques and tools
they have used because they developed an actual prototype while the
others did not.

Fig. 10. Layer overview

4 CONCLUSION AND DISCUSSION

This paper shows the current state of knowledge on smart city data
processing architectures. As we found during our research, develop-
ing an architecture that takes into account all of the different architec-
tural issues is not an easy job. This really is a multi-disciplinary field,
where the architectures discussed have to be able to process and store
data from all types of sources. And finally the issue is that data does
not speak for itself, there has to be a top layer that gives meaning to
the data for different audiences. One recurring theme in choices for
design principles for the smart city architecture is the usage of stan-
dardization. Standardization can be decomposed in an open-source
and open-standard supporting solution.

We have established a set of components which describes the in-
formation system at a high level. This resulted in a layered overview
of the architecture which is shown in figure 10. The first layer is the
sensing layer which can get process data from sensor networks, crowd
sourcing, or the internet of things [7]. The next layer is the data layer
data stores which ingests data checks the quality of source data and
storing ultimately storing the data. The business layer, which facil-
itates the transformation of source data. Because when the data is
in its original format, it is not usable for the end-user. The source
data after being processed can be used for analytics, decision support
and visualization. The application layer which finds itself in the ac-
tual real life application area, which can be an application that helps
with city utilities like smart grids and water management, but is also
applied in intelligent -transportation, -buildings, urban planning and
public safety. All of these layers have an overlaying vertical layer that
can be applied on each layer. These are the security challenges and
the cloud platform environment on which this layered structure would
run.

REFERENCES

[1] E. E. Agency. Urban sprawl in europe - the ignored challenge.
In Office for Official Publications of the European Communities,

2006.

[2] S. Girtelschmid, M. Steinbauer, V. Kumar, A. Fensel, and
G. Kotsis. Big data in large scale intelligent smart city instal-
lations. In Proceedings of International Conference on Informa-
tion Integration and Web-based Applications & Services, page
428. ACM, 2013.

[3] ISO/IEC 25010:2011. Systems and software engineering –
Systems and software Quality Requirements and Evaluation
(SQuaRE) – System and software quality models. Standard, In-
ternational Organization for Standardization, Geneva, CH, 2011.

[4] C. Ji, Y. Li, W. Qiu, U. Awada, and K. Li. Big data processing
in cloud computing environments. In Proceedings of the Inter-
national Symposium on Parallel Architectures, Algorithms and
Networks, I-SPAN, 2012.

[5] Z. Khan, A. Anjum, and S. L. Kiani. Cloud based big data analyt-
ics for smart future cities. In Proceedings of the 2013 IEEE/ACM
6th International Conference on Utility and Cloud Computing,
pages 381–386. IEEE Computer Society, 2013.

[6] Z. Khan, Z. Pervez, and A. Ghafoor. Towards cloud based smart
cities data security and privacy management. 2014.

[7] Z. Khan, A. Anjum, K. Soomro, and T. Muhammad. Towards
cloud based big data analytics for smart future cities. Journal of
Cloud Computing: Advances, Systems and Applications, 2015.

[8] F. J. Villanueva, M. J. Santofimia, D. Villa, J. Barba, and J. C.
López. Civitas: The smart city middleware, from sensors to big
data. In Innovative Mobile and Internet Services in Ubiquitous
Computing (IMIS), 2013 Seventh International Conference on,
pages 445–450. IEEE, 2013.

[9] A. Wagner, S. Speiser, and A. Harth. Semantic web technolo-
gies for a smart energy grid: Requirements and challenges. In
In proceedings of 9th International Semantic Web Conference
(ISWC2010), pages 33–37. Citeseer, 2010.

[10] F. Ye, Z.-J. Wang, F.-C. Zhou, Y.-P. Wang, and Y.-C. Zhou.
Cloud-based big data mining & analyzing services platform in-
tegrating r. In Advanced Cloud and Big Data (CBD), 2013 Inter-
national Conference on, pages 147–151. IEEE, 2013.

[11] P. Zikopoulos, C. Eaton, et al. Understanding big data: Analytics
for enterprise class hadoop and streaming data. McGraw-Hill
Osborne Media, 2011.

An overview of different techniques and tools to visualize software – Erik Jager and Stephan Boomker

56

An overview of different techniques and tools to visualize software

Bram Musters, Euaggelos Karountzos

Abstract— Nowadays, software may consist of millions of lines of source code which make the maintainability of the code a difficult,
expensive and time consuming process. This is why the need of getting insight and understanding these huge structures is higher
than ever before. A great way of tackling this problem is through visualization. By getting insight, we answer questions such as “which
files should be modified?” and “what is the impact of these modifications?”.
In order to visualize these systems, a measurement for source code has to be defined. Acquiring these metrics alone is not very
helpful, since getting insight in a huge amount of numbers is not intuitive for humans, therefore visualization is necessary. This paper
also gives a global overview of the different software structures that are around, and how to visualize them. In the visualization part,
we zoom in on the call dependency relations. Some techniques to visualize these relations in combination with metrics are analyzed.
Finally, tools corresponding to these techniques will be used on test data with the purpose of comparing the different visualization
techniques. We will present the drawbacks as well as the benefits of each technique and then we will evaluate the tools according to
ISO standards.
The goal of this paper is to guide future users to select the most suitable tool for specific situations.

Index Terms—Software, Visualization, Structures, Call graphs

1 INTRODUCTION

Since programs started to grow in size, the need to evaluate them grew
as well. The evaluation of the code can be performed using metrics
such as the lines of code that it contains, the number of methods, the
number of classes or even the number of comment lines. However,
this is not the only way we can understand code. One more method
of getting insight in code structures is the visualization of the relation-
ship between the code components, such as the connections between
classes or functions. These insights are important when it comes to
software maintenance and evolution because they help the developers
understand code of thousand lines with very little effort, which can
save resources in terms of work hours and money as well as improve
the quality of the code itself.

In this paper we will focus on the visualization methods that are
available and used on different code structures, such as container and
association relations. The aim of that is to provide a solid overview of
what kind of options developers have when it comes to visualize the
code and assist them on using the most suitable one for every specific
situation.

At first we will address this goal by explaining briefly what met-
rics are and why they are useful in chapter 2. Then we will move on
to explain and provide a variety of ways to visualize methods used to
represent containment relationships of software components. This is
done in section 3. After that the paper moves on to section 4 to ex-
plain, analyze and evaluate improvements of association relationships.
A survey on tools that implemented the techniques described in the
earlier sections is presented in section 5. We will elaborate more on
these tools, exposing their weaknesses and reveal their strengths.

2 CODE MEASUREMENT

One way to measure software systems is to use source code metrics. A
code metric is a quantitative measure of a degree to which a software
system possesses some property [5]. This allows us to perform anal-
ysis and creates a way to visualize software systems. Some of these
metrics are described below.

Line of code (LOC) This metric represents the lines of code in a
repository. The more LOC a software system has, the more dif-

• Bram Musters is a MSc. Computing Science student at the University of
Groningen, E-mail: b.t.musters@student.rug.nl.

• Euaggelos Karountzos is MSc. Computing Science student at the
University of Groningen, E-mail: e.karountzos@student.rug.nl.

ficult it is for a programmer to remember every part of the code,
therefore changes to the code or try debugging it may be time
and money consuming. This metric can turn out to be a little bit
biased because the lines of code depend on things such as the
programming language used. Some languages (usually the low
level languages) need more lines in order to perform a task while
others (high level languages) need less lines for the same task.
On top of that the lines of code also depends on the code style of
the developer, some developers tend to use more lines in order to
have more clear code structure while others tend to wright in a
more compact style.

Halstead complexity Halstead complexity[3] works with unique and
total operation metrics, vocabulary and program length. Instead
of a single complexity value (like the Cyclomatic complexity) it
may return a variety of metrics such as the difficulty of the code
or the effort one has to put into the code in terms of coding time.

Code coverage Code coverage is a measure that describes the degree
to which the code of a system is tested. Measuring code coverage
can be very useful since high code coverage means that there is
a lower chance of that the system contains bugs.

Cyclomatic complexity The Cyclomatic complexity[7] measures
how many different “paths” the programs can take. For exam-
ple, every if, else, while or for statement adds 1 point to the
complexity of the code. High levels of complexity are in gen-
eral undesired since it is harder to get a high amount of code
coverage.

Comment density Comment density is a a useful metric because
comments can make sure that source code is more understand-
able. It is important for software to be understandable, since it is
necessary that developers who are not yet involved in the devel-
opment can understand what particular lines do.

The combination and proper interpretation of the above information
can save resources in both terms of money and man hours. In many
cases developers consult these metrics to make decisions about which
part of the code they should modify. Furthermore, developers can gain
insight in what parts of the system are the most important. A good
example would be the following; By extracting the complexity and the
LOC metric from a file, developers can estimate how time consuming
it will be to patch this particular file. In the remaining part of this
paper, it is assumed that the extracted code metrics are correct with
regard to the input source code.

57

3 CODE STRUCTURE

Apart from the metrics we can also visualize the relations of structure
components that a project has. This structure is something that we can
not measure in a quantitative way, the most common way to visualize
structure is by drawing graphs. In software systems, the structure of
code is typically split in two different kinds of relations[4].

3.1 Containment relations

The first kind of relation is the containment relation, also called par-
ent - child relations. The containment relation describes what software
entities are contained in other entities. Examples of this relation are
inheritance of objects, variables, or included header files. Since con-
tainment relations are directed and do not contain self-loops, they are
mostly visualized using trees [4]. These kind of relations - as the name
suggests - are relations between methods, classes, files, or packages
with the entities to represent the nodes and the relation to represent the
edges of the graph.

Some visualization techniques are described in the following sec-
tions, and the benefits and drawbacks of each visualization technique
are listed.

3.1.1 Top-down tree, Left to right

We group these two visualization techniques together because they
are not really that much different. The only thing that changes is the
topology in which they are represented. The top down tree is the most
widely used technique, the root is placed at the top and child nodes are
placed lower according to the depth. The left to right tree is similar,
but is rotated 90 degrees. Figure 1 contains a top-down tree.

Pros

• The user can easily find the top level nodes or the back bone of
the software.

• It is easier for the user to estimate the importance of some nodes.
The closer to the root they stand the more important they are.

Cons

• Not really informative in terms of visualizing groups of similar
ancestors.

• It does not provide any information on code metrics.

3.1.2 Radial tree

The radial tree has quite some similarities with the top-down and left
to right tree. With this technique, the root is placed at the center and
children nodes are placed on adjective circles according to depth[10].
A radial tree can be seen in figure 1.

Pros

• Scales both in width and height when big structures are visual-
ized.

• The user can easily find the top level nodes or the back bone of
the software.

• It is easier for the user to estimate the importance of some nodes.
The closer to the root they stand the more important they are.

Cons

• Not really informative in terms of visualizing groups of similar
ancestors.

• It does not provide any information on code metrics.

3.1.3 Balloon tree
The balloon tree is an extension to the radial tree visualization; group-
ing nodes that have similar ancestors has been added. A balloon tree
can be seen in figure 1.

Pros

• Inherit pros from the above tree structures.

• Introduce grouping of similar (that can be package, folder or
class grouping) which makes it easier to the user to identify
groups.

Cons

• It does not provide any information on code metrics.

3.1.4 Tree map
Compared to the other tree structures, the tree map can also represent
a metric along with the hierarchical structure. As can be seen in figure
1, the tree map uses a square which represents the whole system. The
large squares that are formed by multiple smaller squares represent
classes, while the inner squares represent the smaller entities of the
system, such as methods. The size of each square is related to a chosen
metric, examples are the complexity or LOC per entity.

Pros

• Provide additional metric information.

• Provide grouping of similar ancestors on all levels (classes, fold-
ers and packages).

• Scales well when big hierarchical structures are visualized.

Cons

• No root information. The user cannot really tell which file is
high up near the root or lower on the leaves.

3.1.5 Sunburst
A sunburst visualization has similarities with the radial tree, since it’s
root is also at the center and child nodes appear on concentric circles.
However, the sunburst also has the advantage of showing a chosen
metric along with the hierarchical structure. The length of each arc
represents this metric. A sunburst can be seen in figure 2.

Fig. 2: This is an example of a sunburst. The center represents the root
node. Here color coding is used, where the color of an arc represents
the file type. (Generated using Disk Usage Analyzer.)

Pros

A survey of big data architectures for smart cities – Bram Musters and Euaggelos Karountzos

58

Fig. 1: Different kind of tree visualizations, from left to right: top-down tree, radial tree, balloon tree and tree map. (From “Hierarchical edge
bundles: Visualization of adjacency relations in hierarchical data, by D. Holten” [4])

• Provide additional metric information.

• Scales well when big hierarchical structures are visualized.

Cons

• Not really informative in terms of visualizing groups of similar
ancestors.

3.2 Association relations
Association relations represent the links between entities of the sys-
tem. An example of such a relation is a call dependency, where a
relation occurs when a method calls another method. A fundamental
difference with respect to containment graphs is that they do not have
to be directed nor tree-shaped. For example in the case of a recur-
sive method, the call graph would create a loop. The classic way of
drawing call graphs is by using node-link diagrams, where relations
are represented by edges between nodes.

4 CALL GRAPHS

In the next section, we analyze techniques that visualize association
relations. Note that these techniques can visualize all kinds of asso-
ciation relations equally well, for example call relations, dependency
relations or a data flow relation. However, we focus on call relations
for simplicity.

Since call relations occur on software entities - and these entities
are containment relations - call graphs consist of both containment
and association relations. A visualization technique that is able to vi-
sualize both relations has to be introduced. When visualizing software
systems, the association relations are usually drawn on top of the con-
tainment visualizations. Drawing the call graph on top of a radial tree
is an example, this can be seen in figure 3, where β = 0. When β = 0,
a classical node link diagram is created.

Pros

• Since the lines are straight, it is relatively easy to follow the re-
lations.

Cons

• Becomes cluttered when the amount of relations increases.

4.1 Hierarchical edge bundles
Holten [4] proposed a technique, hierarchical edge bundling(HEB),
where edges are bundled in order to reduce cluttering. The proposed
technique is a way to visualize containment - and association relations,
which is an advantage compared to other techniques. Since call graphs
consist of the same type of relations, this method can be used to visu-
alize a call graph.

The main idea of the algorithm is to use control points along the
hierarchy that attract the edges to that point. This technique makes
sure that edges transform into spline curves and this results in bundling
of edges. Relations that traverse through the same parent nodes will
be bundled together.

According to Holten, it is a flexible and generic method that can be
used on top of existing visualization techniques. Also, visual clutter is
reduced when dealing with a large number of edges. Furthermore, the
method is customizable by controlling the strength of the bundling of
edges. This is very useful since it is easier to gain insight in high-lever
information when the bundling strength is high, while low bundling
strength emphasizes on low-level connectivity information. An exam-
ple of different bundling strengths can be seen in figure 3.

Telea et al.[9] performed a comparative study where users were
asked to perform certain tasks. They concluded that using HEB is in-
deed an improvement compared to using classical node-link diagrams.
One of the main advantages was that HEB is able to show more data
on the same amount of space. A second advantage is that the bundling
makes sure that edges become less cluttered. However, classical node-
link diagrams also have advantages, one of them is that it is easier to
follow a relation compared to HEB.

4.2 City
Using cities to represent call graphs is an extension of the tree map
in section 3.1.4, it is developed by Wettel and Lanza[11]. The city is
a 3D visualization technique that displays object-oriented languages.
The main reason that cities are used as metaphors to visualize software
systems is that cities provide a clear concept of orientation, since they
are familiar for humans.

A city consists of buildings and districts, buildings represent classes
and districts represent packages. The height and size of the base of
each building is related to chosen metrics of classes. Placement of
buildings is done using a modified version of the tree map algorithm.
An example of a software system visualized as a city can be seen in fig-
ure 5. In this example it is possible to see which classes act like data
classes, they are represented as wide but low buildings. The classes
that are long and tall have a large amount of methods, but do not con-
tain as much attributes.

Pros

• Is able to show multiple code metrics together.

• Scales well when big hierarchical structures are visualized.

Cons

• Only takes care of classes and packages, class internals are not
displayed.

4.3 City using HEB
Since cities are mainly focused on visualizing hierarchical structures,
and HEB is mainly focused on improving adjacency relations, Casert
et al. [1] proposed a combination of the two techniques. This tech-
nique first displays the city and on top of that the HEBs are drawn.
The control points are in 3D, since the HEBs are drawn above the city
visualization and a 3D scene is required. Each control point, that rep-
resents a level of hierarchy, is positioned at a different height. Higher
levels of hierarchies are placed on higher altitudes. The goal of this

SC@RUG 2015 proceedings

59

Fig. 3: Call graph visualized on top of a radial tree. The edges are bundled with different bundling strengths(β). (from “Hierarchical edge
bundles: Visualization of adjacency relations in hierarchical data, by D. Holten” [4])

technique is to use best of both worlds; the results can be seen in fig-
ure 4.

Pros

• Is able to show multiple code metrics together.

• Containment relations are also visualized.

• Scales well when big hierarchical structures are visualized.

Cons

• Only takes care of classes and packages, class internals are not
displayed.

• Containment relations details are lost when a lot of association
relations are drawn.

Fig. 4: Call graph visualized on top of a city using HEB, where edges
are attracted using 3 control point altitudes. (from “3D Hierarchical
Edge Bundles to Visualize Relations in a Software City Metaphor, by
Caserta et al.” [1])

5 TOOLS

There are multiple tools used both for extracting metrics from the code
as well as creating the graphical structures of it. In this section we will
show a small sample of such tools and describe their cons and pros.
The tools were tested by inputting different software code bases to
them.

The tools are reviewed on several requirements that are part of the
ISO Standard 25010 for software quality [6].

• Functionality

– Feature set

– Capabilities

• Usability

– Human factors

– Documentation

• Performance

– Speed

– Scalability

When we are talking about the tools used to extract metrics or call
dependencies from the software systems, there are in general two main
categories. The lightweight and heavyweight extractors:

Lightweight extractors such as, GCCXML1 and MCC[8], only per-
form a partial extraction of metrics. That means that they will
provide some information about the code but not a complete in-
sight. As the name suggests, these tools are fast in terms of com-
putation time.

Heavyweight extractors, in contrast, perform a full parsing of the
software system. They are in general slower than the lightweight
extractors and they require more computational power. Such
heavyweight extractors are, Columbus[2] or SolidFX2.

The following tools are analyzed.

5.1 CodeCity
CodeCity3 is a heavyweight 3D visualization tool that is able to vi-
sualize C++, C# and Java languages. However, a separate metric’s
extractor is required when Java is analyzed. As we can see the vi-
sual representations (5) looks very similar to a city (thus the name
CodeCity). The working of the CodeCity visualization is described in
section 4.2. CodeCity’s compatibility levels are pretty good since it
supports three different programming languages. The user is able to
“navigate through the city”, subparts of software systems can be ex-
plored this way, and it adds to the feature set of the tool. The visual
representations of CodeCity allow the user to show two metrics (the
height of the building and its area). When all relations are shown on
top of a city, the general overview can be highly disturbed, this is why
CodeCity offers an option to filter out certain relations. Figure 5 shows
a city without relations, figure 6 shows filtered relations on top of the
city.

CodeCity allows the user to save the visualized repository as
Smalltalk4 and Parcel which adds to the functionality of the tool.

CodeCity’s usability is mediocre, but it can cover the most funda-
mental expectations of a developer. CodeCity however does not main-
tain any kind of documentation other than a scientific paper where the
tool is introduced, and some video tutorials. Its performance is very
good for small projects. Lastly the functionality of the tool is limited.
Other than the city, it does not provide any other kind of views.

1http://gccxml.github.io/HTML/Index.html
2http://www.solidsourceit.com/products/SolidFX-static-code-analysis.html
3http://www.inf.usi.ch/phd/wettel/codecity.html
4http://www.smalltalk.org/main/

A survey of big data architectures for smart cities – Bram Musters and Euaggelos Karountzos

60

Fig. 5: Visual representation of JEdit (http://www.jedit.org/) source
code.

Fig. 6: Visual representation of the JEdit source code along with the
relations (red strings).

5.2 X-Ray

X-Ray5 is also a heavyweight Eclipse plugin written in Java, it only
supports visualization of Java projects. X-Ray uses the node-link di-
agram to represent the relations between the various classes or pack-
ages. In figures 7a and 7b we can observe the results we got from the
tool when we applied it to the JEdit repository for the class and pack-
age relations respectively. On the negative side, X-Ray only supports
saving images as JPG.

(a) Class dependencies. (b) Package dependencies.

Fig. 7: Visual representation of the JEdit repository.

Figure 7 however is too chaotic, there is too much visual clutter
due to the huge amount of relations. A functionality that X-ray pro-
vides is filtering out specific relations, this reduces visual clutter. In
figures 8a and 8b, the effect of filtering out “weak” relations is shown.

5http://xray.inf.usi.ch/xray.php

Since Telea et al. showed that HEB is also able to reduce visual clutter
while keeping the amount of relations the same, it would be a good
improvement of X-Ray if HEBs are used.

(a) Filtered Class dependencies. (b) Filtered Package dependencies.

Fig. 8: Visual representation of the JEdit repository after filtering out
the weak relations.

At this point it is worth mentioning that when experimenting with
X-Ray, several problems occurred, the tool was not reliable.

Overall X-Ray did poorly compared to the other two tools. Its func-
tionality is very limited as well as the usability, which is partially sup-
ported by documentation. The graphs it produces are static without
any dynamic properties. The speed of the tool is also unreasonably
small. When we used it, it took a lot of time for project small in size.

5.3 Structure101
Structure1016 is also a heavyweight tool like the previous two but its
the one with the highest variety of functionalities. These features in-
clude containment and and association relations, metrics and archi-
tectural views. The tool however does not stop there since all these
different view are dynamic and allow the user to interact with them in
an efficient and convenient way. In figure 9 and 10 we can see the in-
terface of Structure101 and some of its views. To create those figures
we used the Apache Ant7 repository. Figure 9 shows an interactive
overview of the Apache Ant repository. Structure101 allows the user
to interact with this view and expand or collapse various components
in order to get a “higher” or a “lower” view. On the top left corner the
tool offers a “mini map” where it shows whether the connections in-
side the repository are structured (bottom left corner) or unstructured
(top right corner). Figure 10 shows a dependency graph of packages, it
is a node-link diagram without edge bundling. This results in cluttered
graphs with many edge crossings. Structure101 also has the option
of a textual summary, where explanation on different aspects of the
code is given, this includes metrics or architectural structure. Lastly
we should mention that the tool employs many more functionalities,
such as a matrix overview of the dependencies, or independent views
focused on certain components (packages, classes or methods).

Overall, Structure101 has high functionality, usability and perfor-
mance. It has numerous feature sets, as well as a well structure docu-
mentation, which includes textual documentation and tutorial videos.
It is highly usable and very straight forward to its use. Its performance
is well above medium as well. It loaded and analyzed the Apache Ant
in seconds.

5.4 Overall evaluation
In table 1, is an overview of our evaluation for each of the tools in this
paper. The minimum value is three minus signs, while the maximum
three plus signs.

6https://structure101.com/products/
7http://ant.apache.org/

SC@RUG 2015 proceedings

61

Fig. 9: Interactive overview of the project.

Fig. 10: Interactive dependency graph.

Tool Functionality Usability Performance
CodeCity - + ++
X-Ray - - + -
Structure101 +++ + +

Table 1: Tools evaluation table.

6 CONCLUSION

In this paper, we described and analyzed different techniques to visu-
alize structures that are present in software. In general, a software sys-
tem has two kind of structures, containment structures and association
relations. Containment structures have many different possibilities to
be visualized, an overview is given in section 3. The classical way of
displaying association relations is by drawing node link diagrams. In
section 4.1, an improvement of classical node link diagrams is shown.
However, Telea et al. [9] showed that this improvement also has draw-
backs, since relations are harder to follow.

After the description of different techniques that are around, soft-
ware visualization tools are analyzed and their benefits and drawbacks
are listed. The tools are reviewed on some requirements that are part
of the ISO standard[6].

ACKNOWLEDGEMENT

We would like to thank prof. dr. A.C. Telea for reviewing our article.

REFERENCES

[1] P. Caserta, O. Zendra, and D. Bodenes. 3d hierarchical edge bundles
to visualize relations in a software city metaphor. In Visualizing Software
for Understanding and Analysis (VISSOFT), 2011 6th IEEE International
Workshop on, pages 1–8, Sept 2011.

[2] R. Ferenc, Á. Beszédes, M. Tarkiainen, and T. Gyimóthy. Columbus-
reverse engineering tool and schema for c++. In Software Maintenance,
2002. Proceedings. International Conference on, pages 172–181. IEEE,
2002.

[3] M. H. Halstead. Elements of software science. 1977.

[4] D. Holten. Hierarchical edge bundles: Visualization of adjacency rela-
tions in hierarchical data. Visualization and Computer Graphics, IEEE
Transactions on, 12(5):741–748, 2006.

[5] T. Honglei, S. Wei, and Z. Yanan. The research on software metrics and
software complexity metrics. In Computer Science-Technology and Ap-
plications, 2009. IFCSTA ’09. International Forum on, volume 1, pages
131–136, Dec 2009.

[6] ISO, Geneva, Switzerland. Systems and software Quality Requirements
and Evaluation (SQuaRE), ISO 25010, 2011.

[7] T. J. McCabe. A complexity measure. Software Engineering, IEEE Trans-
actions on, (4):308–320, 1976.

[8] P. F. Mihancea, G. Ganea, I. Verebi, C. Marinescu, and R. Marinescu.
Mcc and mc#: Unified c++ and c# design facts extractors tools. In Sym-
bolic and Numeric Algorithms for Scientific Computing, 2007. SYNASC.
International Symposium on, pages 101–104. IEEE, 2007.

[9] A. Telea, H. Hoogendorp, O. Ersoy, and D. Reniers. Extraction and visu-
alization of call dependencies for large c/c++ code bases: A comparative
study. In Visualizing Software for Understanding and Analysis, 2009.
VISSOFT 2009. 5th IEEE International Workshop on, pages 81–88, Sept
2009.

[10] I. Tollis, P. Eades, G. Di Battista, and L. Tollis. Graph drawing: algo-
rithms for the visualization of graphs, volume 1. Prentice Hall New York,
1998.

[11] R. Wettel and M. Lanza. Visualizing software systems as cities. In Visu-
alizing Software for Understanding and Analysis, 2007. VISSOFT 2007.
4th IEEE International Workshop on, pages 92–99. IEEE, 2007.

A survey of big data architectures for smart cities – Bram Musters and Euaggelos Karountzos

62

Hooking up forces to produce aesthetically pleasing graph layouts

Johannes F. Kruiger and Maarten L. Terpstra

Abstract—With the advent of social networks as Facebook and Twitter, graph data has taken an even more important stance in the
world. Visualising graph data is important as it may lead to new insights in the data, e.g. hidden relations or bottlenecks in a system.
At the same time it can be a difficult task, especially when the graph is of substantial size.

Naive methods of graph drawing, e.g. random placement of vertices, typically produce poor results where edges have many crossings
and vertices are placed too close to each other. This is not aesthetically pleasing and thus may not produce the prospected insights.
Force-directed graph drawing may produce a solution to this problem. By applying constraints to the location of vertices, better
results can be obtained. These constraints include dynamic forces inspired by physics, like gravity, spring forces, and electrostatic
forces. The weights of these forces can be influenced by vertex measures, as its degree, its closeness to other vertices, or more
complex measures.

In this paper, we compare several approaches[7, 1, 2] to create a force-directed graph layout. We perform a comparison of the
approaches in running time, compactness, and the number of edge crossings and a comparison of the various results in terms of
shape and comprehensibility. These comparisons will mostly be qualitative. Moreover, we try to adapt the approaches to also be
applicable to weighted graphs, and propose a new vertex measure inspired by the methods described in[1] and edge weight.

Index Terms—Graph visualization, force-directed graph drawing, graph theory

1 INTRODUCTION

Many real-world problems can be modelled by using graphs. A graph
is a set of vertices and edges G = {V,E}. The vertices represent
entities in the model, and the edges represent connections between
those entities.

In this paper, we discuss various methods for drawing graphs. The
following introductory sections will give some motivation into why
drawing graphs is important, and how force-directed graph drawing
approaches this problem. Section 2 explains various methods of force-
directed graph drawing, and Section 3 introduces some additions to
these methods.

1.1 Graph layouts

A graph can be laid out in numerous ways, many of which are not
insightful. The field of graph drawing tries to devise methods for cre-
ating insightful graph layouts. A layout is spatial representation of a
graph, where every vertex has a position. The methods we describe
focus on producing good layouts. That is, if we think of producing a
layout as a function that takes a graph as input, it will output the po-
sition for every vertex. A good layout fulfils several properties, such
as:

• Few edge crossings

• Little occlusion

• Maximised angular resolution1

• Compactness

• Uniform edge length

• Spatial distance between vertices is proportional to their graph-
theoretical distance.

• Johannes F. Kruiger, Rijksuniversiteit Groningen, E-mail:
j.f.kruiger@student.rug.nl.

• Maarten L. Terpstra, Rijksuniversiteit Groningen, E-mail:
m.l.terpstra@student.rug.nl.

1The angular resolution is the smallest angle that is formed by two edges
that share a vertex.

Of course, some of these properties have conflicting aims. The art is
to find a desirable balance. Graph layouts can be in either 2D or 3D,
but we will restrict ourselves to 2D in this paper.

Figure 3 shows two layouts of the same graph. The first has been
randomly laid out, and the second has been laid out with a more ad-
vanced technique.

A graph’s plane embedding is a 2D layout of the graph where no
edges intersect other edges[6]. In practice, this may not always be
feasible (or mathematically possible) but aiming for a low number of
edge crossings is a good strategy for finding insightful graph layouts.

For small graphs (consisting of, say, < 10 vertices), making an
insightful layout can easily be done by hand. However, when the graph
contains a large number (say, > 105) of vertices and edges, laying it
out in an aesthetically pleasing way becomes non-trivial.

Examples of use cases for large graph data are:

Social networks Networks like Facebook, Twitter and Google+ con-
tain many users. The graphs are used mainly to model relations
between the users, but also to model relations which denote that
a user is fond of a certain entity, or that a user is attending a spe-
cific event, etc. Visualising these relations gives insight into the
social importance of users, and insight in the influence of certain
entities.

Recommendation engines Web shops are often interested in maxi-
mizing profit. One way of doing that is suggesting which prod-
ucts their users should buy. Web shops often use graph databases
to recommend purchases based on certain criteria. Visualising
this data may be useful for gaining insight in costumer trends.

Computer networks Computer networks are very complex, espe-
cially for large companies. Tracking errors in the network can
be tedious, but graph visualisation can make this process a lot
more convenient.

Path finding Finding paths in a graph is a classic problem. To give
the user more insight in the paths, the graph can be laid out in
such a way to enhance the visibility of the paths.

Naive strategies of producing graph layouts are straightforward, but
often produce poor results. An example of a naive method is employ-
ing random placement of vertices and drawing their respective rela-
tions. The reason these graphs are cluttered is because vertices may
be placed too close to each other, causing overlapping vertices, which
diminish the visibility. Also, using random placement of vertices, the

63

probability that the edges have many crossings is quite high, especially
for larger graphs. This makes the relations hard to follow.

Using naive strategies like this is appealing, because it is straight-
forward to implement and it has a low time complexity.

1.2 Force-directed graph drawing

A more appealing way to produce graph layouts is by using force-
directed graph drawing. Force-directed graph drawing is a strategy
of drawing graphs that has the potential to produce much better re-
sults than naive methods of drawing graphs. It employs several fea-
tures commonly found in the field of physics - such as electric forces,
spring forces, and gravitational forces - to obtain a better layout of a
graph. This layout is often better because it applies constraints we also
observe in the real world, causing the graph to ‘behave naturally’. Peo-
ple experience these layouts as better because they tend to have fewer
edge crossings and fewer overlapping vertices. Oft-times, the graphs
will also exhibit an angular resolution which is higher than graphs ob-
tained using the naive method.

Typically, vertices are modelled as physical entities with a positive
charge, and edges are modelled as springs that connect the vertices.
In the following sections, the physical forces will be explained more
thoroughly.

These physical forces are iteratively applied to the vertices, and the
vertices are moved in the direction of the resulting net force. This
is continues until a certain terminating condition is fulfilled. Typical
termination conditions are

• The maximal vertex displacement during one iteration is smaller
than some threshold τ .

• A maximal number of iterations have passed.

It is desired that, when the algorithm has ended, the layout is in equi-
librium, or minimal energy state.

1.2.1 Hooke’s law

If we let ks denote the spring constant, x denote the current spring
length, and x0 denote the natural spring length, Hooke’s law states
that the magnitude of the spring force is approximated by:

FH(x) = ks (x− x0) .

It can be seen that the magnitude of this force is positive (i.e. attrac-
tive) when the spring is larger than its natural length, and negative (i.e.
repulsive) when the spring is shorter than its natural length.

Given two vertex positions ~p1 and ~p2, this results in the following
force vector on the first vertex:

~FH(~p1, ~p2) = ks (||~p2 − ~p1|| − x0) p̂12,

where p̂12 denotes the unit vector in the direction from ~p1 to ~p2, given
by p̂12 = ~p1−~p2

||~p1−~p2|| . And of course, by Newton’s third law, an opposite
force of equal magnitude acts on the second vertex.

~p1 ~p2
~FH(~p1, ~p2)

~FH(~p2, ~p1)

Fig. 1. The attractive spring forces between two vertices, in the case
that the spring is elongated.

This force is desired since it allows compactness, uniform edge
length, and prevents occlusion. This is due to the nature of springs,
and therefore results in vertices that are close, but not too close.

1.2.2 Coulomb’s law

Since every vertex is modelled to have a positive charge, they exert re-
pulsive forces to all other vertices, according to Coulomb’s law of elec-
trostatic interaction. The magnitude of the force between two charges
q1 and q2 is given by:

FE(x) =
keq1q2
x2

,

where ke is Coulomb’s constant, and x is the distance between the
charges. It is important to notice that this force does not work in the
direction from q1 to q2, but in the direction from q2 to q1. This means
that the force is repulsive when FE is positive, and attractive when
FE is negative, as opposed to Hooke’s law, where it is the other way
around. Using this, it can be seen that the force is attractive when the
charges are of opposite sign, and repulsive when the charges are of
equal sign.

For two vertices with positions ~p1 and ~p2 and charges +1, this re-
sults in the following force vector on the first vertex:

~FE(~p1, ~p2) =
ke

||~p1 − ~p2||2
p̂21

and an equal but opposite force on the second vertex.
Note that the unit vector p̂21 is opposite to the one used for Hooke’s

law, p̂12, to make the force be repulsive when the charges are equal,
and attractive when the charges are opposite.

~p1 ~p2
~FE(~p1, ~p2)

~FE(~p2, ~p1)

Fig. 2. The electrostatic repulsive force between two vertices.

It is important to realise that this force acts between every pair of
vertices. Therefore, it might turn out to be very expensive, O(|V |2),
when no special care is taken. Walshaw et al. use a grid structure to
store vertex proximity, which makes this a lot cheaper[7].

The repulsive Coulomb force prevents occlusion, and undesired
cluttering of vertices. This allows for fewer edge crossings, a higher
angular resolution, and less occlusion.

1.2.3 Gravity

Oft-times, a global gravitational force is employed to direct the ver-
tices to the center of the layout. This can be simulated by placing an
invisible mass M in the center of the layout (position ~0), and applying
the following gravitational force on a vertex at ~p with mass m:

~FG(~p) = G
mM

||~0− ~p||
(−p̂)

= −GmM||~p|| p̂,

where p̂ denotes the unit vector in the direction of ~p, and G is the
gravitational constant.

Since we only need a single scaling parameter, we can set the global
mass to M = 1:

~FG(~p) = −G m

||~p|| p̂.

The vertex mass m can still be used to give more gravitational pull to
certain vertices, based on the graph’s properties.

The gravitational force is mostly applied to keep the graph centred.
It is desired, because it contributes to the compactness of the graph,
and it can also be used to minimize edge crossing, as will be observed
later.

Hooking up forces to produce aesthetically pleasing graph layouts – Johannes F. Kruiger and Maarten L. Terpstra

64

Rickard

Brandon

Lyanna

Eddard

Benjen

Jon Snow

Catelyn

Robb

Sansa

Arya Bran

Rickon

Jeyne

Tyrion

Tywin

Joanna

Cersei

Jaime

Robert

Joffrey

Tommen

Marcella

Margaery

Cassana
Steffon

Stannis

Renly

Shireen

Selyse

Hoster

Minisa

Lysa

Edmure

Jon Arryn

Robin

Roslin

(a) A poor layout of a graph produced by a naive method.
This image was made using the Graphviz package.

Rickard

Brandon
Lyanna

Eddard

Benjen

Jon Snow

Catelyn

Robb

Sansa

Arya

Bran

Rickon

Jeyne

Tyrion

Tywin

Joanna

Cersei

Jaime

Robert

Joffrey

Tommen

Marcella

Margaery

Cassana

Steffon

Stannis

Renly

Shireen

Selyse

Hoster

Minisa

Lysa

Edmure

Jon Arryn

Robin

Roslin

(b) A better layout produced by a spring embedding technique.
This image was made using the Graphviz package.

Fig. 3. A comparison of a graph that has been randomly laid out, and the same graph that has been laid out using force-directed graph drawing.

2 METHODS

In this section, three methods will be discussed. The first being Wal-
shaws’s multilevel approach [7], the second the social gravity ap-
proach by Bannister et al., and the third pre-positioning approach by
Dong et al. We describe what these methods entail and weigh several
advantages and disadvantages of the methods.

These methods are approaches to force-directed graph drawing, and
aim to provide good layouts for certain situations, by reaching a min-
imal energy state in short time. These more advanced methods hope
to outperform simple Euler integration in terms of speed and layout
quality.

2.1 Multilevel approach

The multilevel approach, as described in [7], on the most global level,
works as follows:

1. Coarsen (see Section 2.1.1) the input graph G0 L times,
so there will be a list of increasingly coarsened graphs
{G0, G1, G2 . . . , GL}. The graph coarsening decreases the
number of vertices and edges in every step by merging match-
ing vertices.

2. Assign an initial layout for the coarsest graph, GL. This is not
computationally expensive, since the coarsest graph has very few
vertices.2

3. Take a step back in the level of coarseness, and place the new
child vertices3 on the location of their parent vertices. Perform
force-directed placement on this finer graph.

4. Repeat the previous step until the original graph G0 is restored
and perform the final force-directed placement on this graph.

This approach is considered an improvement over simple force-
directed placement on the original graph, because of the following two
reasons:

2The number of vertices in the coarsest graph, and the level of coarsening
L, can be determined by some coarsening threshold.

3A child vertex is one of the vertices that are being replaced by their coarser
level representation.

• The convergence time of these L force-directed placements is
shorter, because the vertices are generally initialised on a loca-
tion close to the location where they have their global energy
minimum.

• The quality of the layout is better, because initialising the ver-
tices on their neighbours’ location results in fewer edge cross-
ings.

2.1.1 Coarsening graphs

For the coarsening of the graph, a process called matching is used.
A matching of a graph is a set of mutually non-adjacent edges. This
means that the edges in the matching set cannot share any of the ver-
tices they connect.

So how should we construct this matching? The trivial answer to
this question is to simply take a random edge from the graph. By def-
inition, this singleton set has no vertices which are shared with other
edges in the set. However, using a matching method like this results in
a high number of levels L.

On the other side of the spectrum, we can determine the maximal
matching, which is the matching that has the highest possible number
of vertices. Unfortunately, algorithms that solve this problem are at
least of order O

(
|V |2.5

)
. Since this is of too high time complexity,

Walshaw used a variant of the heuristic proposed in [3], which works
as follows:

1. Create a randomly ordered list of the unmatched vertices.

2. Iterate over the vertices, and match every unmatched vertex with
a neighbouring unmatched vertex. If a vertex has no unmatched
neighbours, match the vertex with itself. Remove the matched
vertices from the list, and add the edge that connects them to the
matching set.

Such a matching strategy is a convenient compromise that matches
a decent number of edges within a reasonable time complexity.

2.2 Social approach

Another approach to draw graphs is to take several social measures
into account, as described in [1]. On a global level, this approach
works as follows:

SC@RUG 2015 proceedings

65

1. Calculate the net force on each vertex. Usually, the forces consist
of the gravity, the repulsive forces of the other vertices and the at-
tractive forces of the edges. The gravity starts at zero when plac-
ing the vertices, but is gradually increased as time progresses.
(See Figure 4.) The gravitational force of every vertex is scaled
by the social measure derived for that vertex. Typically this so-
cial measure equals the degree, closeness (reciprocal of the mean
distance of a vertex to all other vertices) or the betweenness (pro-
portion of paths containing the vertex among all shortest paths in
the network) but can also be chosen to be a more complex mea-
sure, such as PageRank[5] or Katz centrality[4].

2. Move the vertex in the direction of the force. By moving the
vertices in the direction of the acting force, the net force on the
vertex is reduced, bringing the embedding closer to an equilib-
rium.

3. These steps are repeated until an equilibrium is reached. When
an equilibrium is reached, it should approximate a good layout
which is a suitable stopping criterion.

t

G

0

Gravitational scaling

Fig. 4. Scaling of the gravitational force as a function of time in the
placement algorithm.

A clear advantage of this method is that it is relatively simple, since
it is easy to mentally visualise. Also, it has a low computational cost,
because computing this additional gravitational force does not result
in a lot of overhead. The real advantage of this method is that high
centrality vertices will be guided towards the centre of the layout, and
the final result of the placement is a very compact layout, as a result of
the gravity. Finally, it is also flexible. The centrality measure can be
chosen to be any function the user desires. Also, the scaling function
can be manipulated, which could produce interesting results.

A disadvantage is that this method tends to produce circular graph
layouts. This might be too suggestive, in the sense that the user might
conclude that the graph has a circular structure, even though it has no
such structure.

2.3 Advanced pre-positioning

Two of the largest problems of force-directed graph drawing are high
running times compared to naive methods and the chances of ending
up in a poor local minimum.

The high running time is caused by the large number of iterations
often required until a layout is found that is in equilibrium. A lo-
cal minimum is encountered when the algorithm finds a layout where
small changes do not necessarily improve the layout, even though it
turns out that a better layout is indeed possible.

These two problems can largely be avoided by a good pre-
positioning prior to force-directed graph drawing. If the pre-
positioning is good, then a lower number of iterations is required until
a proper layout is found as opposed to a random initial placement.

A good pre-positioning to avert the aforementioned problems is
what Dong et al.[2] are trying to achieve. Dong et al. describe the
following method:

1. Determine the importance of each vertex using VertexRank,
which is a modified version of PageRank

2. Group the vertices into layers based on the shortest path from a
vertex to the most important vertex (i.e. the one with the highest
VertexRank)

3. Determine relationship matrix

4. Place most important vertex at the centre

5. Place vertices connected to already placed vertices with an as
large as possible angle at a distance proportionate to the relation
with the placed vertex

After this is done, the normal force-directed algorithm is performed
for a number of iterations until an optimal placement is obtained.

2.3.1 Vertex importance
Dong et al. have chosen to replace PageRank with their own rank-
ing system. While PageRank seems like a rational choice for rank-
ing vertices, as this algorithm has proven itself to be a good choice
for ranking vertices, the authors had good reasons to adapt it to their
own ranking system. PageRank in its classical form is denoted as
PageRank(pi) = 1−d

N
+ d

∑
pj∈M(pi)

PageRank(pj)
L(pj)

where d is a damping

factor, N is the number of vertices, p represents a vertex of the graph,
M(pi) denotes the set of vertices linking to pi and L(pi) represents
the set of vertices that pi links to.

The keen observer notes that PageRank is an operation applied to
every vertex in a directed graph, but common force-directed algo-
rithms are generally applied to undirected graphs. This distinction can
be circumvented by defining a undirected graph as a directed graph
where each undirected edge (pi, pj) is represented as two half-edges
{(pi, pj), (pj , pi)}. This does not have to be implemented explicitly
as one can define that for each vertex the in-degree is equal to the
out-degree which are both equal to the degree of a vertex. Now this
problem may be solved, but now PageRank no longer has a direct con-
nection with the centrality or importance of a vertex, as illustrated in
Figure 5.

Fig. 5. The most important vertex is a but PageRank will not identify it
as such but rather vertices b1 . . . b4. VertexRank will identify a as the
most important vertex. This image is based on [2].

Instead, Dong et al. describe VertexRank as

VertRank(pi)new = (1−d)VertRank(pi)old+d·
∑

pj∈C(pi)

VertRank(pj)

where C(pi) is the set of vertices connected to pi. This measure can
successfully assign importance scores to vertices.

2.3.2 Vertex layering
In the second step, vertices are classified into two different classes:
central vertices and layer vertices. For central vertices, the following
criterion holds true: ∀pj ∈ C(pi),VertRank(pj) ≤ VertRank(pi).

Hooking up forces to produce aesthetically pleasing graph layouts – Johannes F. Kruiger and Maarten L. Terpstra

66

This means that central vertices have at least as high a VertexRank as
all vertices that it shares a connection with. These vertices are placed
first using force-directed methods. In later steps layered vertices are
placed. A layered representation of a graph can be seen in Figure 6.

Fig. 6. The layered graph representation of figure 5. It is clear that a
is the central vertex. The layer number represents the distance to the
central vertex. This image is based on [2].

2.3.3 Relation matrix

Relations between vertices can be strong clues where to position ver-
tices as to minimize edge crossings. For example, in Figure 6, vertices
b1 . . . b4 must be placed adjacent to a because they share an edge.
However, their mutual order has as infinite number of options in terms
of order, swaps or rotations. It is not enforced that vertex b2 is placed
between b1 and b3 because they share no direct edge. However, they
do share an indirect edge via vertices c1 and c2. These indirect con-
nections can also be clues where to place vertices, possibly increasing
the quality of the resulting layout. This information is stored in the re-
lation matrix. For every position (i, j) a 1 is stored if pi and pj share a
direct connection, 0.5 if they share an indirect connection or 0 if there
is no connection at all. This information is later used to determine
better positions for vertices.

2.3.4 Vertex placement

Once the relations are determined, each layer is placed in an as good
as possible way. This is done by placing the central vertex at the cen-
tre first, and then placing each layer iteratively at the largest possible
angle between other vertices, at a distance proportional to the relation
between two vertices.

After all layers have been placed, the regular force-directed algo-
rithm is performed for as many iterations as needed before it converges
to a proper layout, ideally conforming to the properties stated in Sec-
tion 1.1.

3 NEW MEASURES

All the measures we have discussed so far are mostly applicable to
undirected, unweighted graphs. However, if a directed or weighted
graph is considered, useful information will be discarded with the cur-
rent measures. Therefore, we introduce our own measure which takes
information from weighted and directed graphs into account when de-
termining vertex locations.

3.1 Weighted graphs

A weighted graph is very similar to an unweighted graph, with the dif-
ference that to each edge a number, or weight, is attached. This weight
can have a lot of different meanings depending on the purpose of the
graph or the intention of the creator. Common examples are distance,
time, maximum capacity, closeness of a vertex, or just general cost.

The weight of an edge can play a vital role in creating a comprehen-
sive layout of the graph. For example, suppose a high edge weight in-
dicates that there is a weak relation between two vertices. Intuitively,
one would place these vertices further apart than two vertices who
have a strong relationship. This potentially important information is
lost when the aforementioned measures are used to determine distance
between vertices.

We have devised two different measures when weighted graphs are
considered, which we will discuss separately.

3.1.1 Centrality scaling
The first measure is a measure which has influence on gravity imposed
on vertices by scaling the centrality of a vertex. The original methods
as described in [1] merely take into account the number of connections
to a vertex, but not the importance of the connections. Therefore, we
adapt the centrality of a vertex as computed by the aforementioned
measures to be scaled by the importance of every connection. For
example, if the measure is the degree of v, which is the sum of number
of edges containing v, it could instead be sum of the weights of the
edges containing v.

3.1.2 Edge length scaling
Another measure we have devised is edge length scaling based on the
weight of an edge. In this measure, the edge length between two ver-
tices is scaled according to the weight of that edge. This length can be
chosen to be between a certain minimum and maximum, resulting in
the following formula for determining the length of an edge based on
the weight:

l = Lmin +
ω − ωmin

ωmax − ωmin
· (Lmax − Lmin)

where ω is the weight of the considered edge, ωmin and ωmax are the
lowest and highest edge weight in the graph, respectively and Lmin and
Lmax are the minimum and maximum new edge length, respectively.
Note that special care has to be taken when ωmax = ωmin, in other
words, when all weights are equal.

This measure has as a result that vertices connected with a low
weight are placed closer together, but if desired an analogous formula
for the inverse effect can easily be found (which is omitted for brevity).
One must consider that the measure effectively reduces the degrees of
freedom when placing a graph since vertices are placed at a fixed dis-
tance of each other. The only remaining degree of freedom is the angle
at which a vertex is placed. For general graph layouts, this measure
may be too limiting to produce a proper graph layout but if it is appli-
cable it may certainly help to identify important vertices in relation to
other vertices based on the distance between them.

A more forgiving use of this method is to set the natural spring
length of the spring force between the vertices to this length l, so that
the spring contracts when it is larger than the length, and expands when
it is smaller than the length.

3.2 Directed graphs
An important type of graph is the directed graph. For these graphs, a
relation between vertices does not indicate merely the existence of the
relation (e.g. vertex A and vertex B share a connection) but also the
direction of the relation (e.g. vertex A has a link to vertex B). This
type of relation is often found in family trees (e.g. the is-parent rela-
tionship) and in many visualisations of computing science phenomena,
such as the internet, inheritance of objects in object-oriented program-
ming, and graph databases in general.

Since directed graphs can document not only the existence of a rela-
tion but also the direction of the relation, more information can be ob-
tained which could help visualising graphs using force-directed graph
drawing.

It is debatable whether it is desirable to use direction information,
since it not necessarily always affects the topology of the graph. It is
hard to determine at runtime whether the user wants to optimise the
layout for this additional information. We believe that there are use
cases where one definitely wants to optimise, using this information.

SC@RUG 2015 proceedings

67

For example, when visualising web pages and their respective links,
this information is certainly useful, since in-links are a better indica-
tion of importance than out-links.

3.2.1 PageRank
A known measure to determine the ‘popularity’ of a vertex is to base
it on the amount of links to a vertex. This measure is for example
used in Google’s search engine by the PageRank algorithm[5]. In an
undirected graph it is not trivial to successfully use PageRank to aid
force-directed graph drawing. However, using a directed graph, the
popularity of each vertex can be determined by the PageRank algo-
rithm. This information can be useful at the initial placement of a
graph prior to the algorithm of force-direction. The popularity infor-
mation can act as heuristic for initial placement of a graph by placing
the most popular vertex at the centre of the layout. All other vertices
should be placed at an offset from the centre of the layout based on
how much less popular they are, similar to [2]. Using these initial
placements, the placement algorithm generally converges faster.

4 DISCUSSION

In this section we will discuss the differences and parallels between the
current methods and why our own measures might be an improvement
over already existing measures.

4.1 Existing methods
We see parallels between the approaches by Dong et al. and Walshaw
et al. Both methods apply a so-called ‘top-down’ approach by placing
the vertices in descending order by importance. Subsequently, they
both extend the graph by placing less important vertices in a most
optimal way.

However, there are also striking differences between the ap-
proaches. The method of Dong et al. operates directly on the graph,
whereas the method of Walshaw et al. generates a new representa-
tion of the graph by grouping vertices together in new vertices that
represent multiple lower-level vertices. Moreover, in the method by
Dong et al. the vertices are placed optimally by a geometric approach
while Walshaw et al. employ a force-directed graph placement ap-
proach on every level. There is also another more fundamental dif-
ference: the Walshaw et al. approach is an approach that is intended
to create a force-directed layout, whereas the Dong et al. approach is
a pre-positioning algorithm where force-directed graph drawing is the
subsequent step.

The social approach described by Bannister et al. seems to employ
a very different approach compared to the clustering or layering ap-
proaches as described by Walshaw et al. and Dong et al. However, we
do not think of these two fundamentally different approaches as com-
peting aims, but rather as two different approaches which may make
more sense to use in a certain context. We suspect that the social ap-
proach is more useful on highly interconnected graphs (i.e. there are
relatively many edges per vertex) and the clustering and/or layering
approach is more sensible in a relatively sparse graph (i.e. there are
relatively few edges per vertex).

One observation we noticed with the social approach is that it tends
to plot graphs in a circular layout, as a consequence of the gravity.
This suggests to the user that every branch of the graph is of equal
size, which is not necessarily the case and is thus a minor case of
serious deception.

4.2 New measures
4.2.1 Gravity scaling based on edge weights
Normally, information about edge weight would be discarded when
using traditional force-directed graph drawing methods. By using this
information for the social gravity measures a better layout could be
obtained. We think that when considering two vertices with the same
number of connections, the vertex that has a higher incoming edge
weight is more important than the other vertex. Therefore, we think
this information should be used to adjust the centrality of a vertex,
therefore adjusting the gravity imposed on the vertex. We suspect that

this would result in fewer edge crossings and vertices with a higher
centrality have a better chance of ending up in the centre of the layout.

4.2.2 Weighted edge length scaling
Usually, every edge is of equal importance in an unweighted graph
and therefore obtains roughly the same length in the force-directed
placement. When considering weighted edges, using a variable length
which is a function of the edge weight a more insightful layout could
be obtained. By scaling unimportant edges we hope that fewer edge
crossings will be observed in the resulting layout and important ver-
tices could be better recognized.

4.2.3 PageRank
PageRank is a well-known vertex ranking algorithm for directed
graphs. We suspect the vertex rank can be used to adjust the cen-
trality of a vertex for using it with the method of Bannister et al., or in
the pre-positioning step as described in Dong et al. Dong et al. have
researched using PageRank before but were unable to use it due to
lacking a directed graph. However, if a directed graph is available it
should be possible to use it in their algorithm and may result in a better
layout.

In the social gravity approach as described by Bannister et al. it
may produce superb layouts, compared with not using direction in-
formation. By adjusting the centrality using the ranks of vertices, the
vertices with a high PageRank will have a high probability of becom-
ing the most central vertex, which is as intended.

5 CONCLUSION

Force-directed graph drawing has proven itself to be a versatile and ro-
bust method for producing aesthetically pleasing graph layouts. There
are many methods to improve the process in terms of running time,
quality of result and flexibility. We have discussed several methods in
our paper, where each method has its advantages and disadvantages.
We hope that the readers of this paper have gained insights in the pos-
sibilities and options when intending to use force-directed graph draw-
ing.

We have also described several new measures which could improve
force-directed graph drawing methods by using additional informa-
tion available about a graph. However, we have not implemented
these measures so we cannot conclude that they can indeed produce
better layouts compared to traditional force-directed graph drawing
methods. Therefore we imagine that future work includes implement-
ing our measures for weighted or directed graphs so users can benefit
from the described methods directly. Moreover, the algorithms could
be tested on graphs that are used in scientific visualisation to ensure
more insight can be obtained.

ACKNOWLEDGEMENTS

We wish to thank our reviewers for their useful comments and sugges-
tions.

REFERENCES

[1] M. J. Bannister, D. Eppstein, M. T. Goodrich, and L. Trott. Force-directed
graph drawing using social gravity and scaling. In Graph Drawing, pages
414–425. Springer, 2013.

[2] W. Dong, F. Wang, Y. Huang, G. Xu, Z. Guo, X. Fu, and K. Fu. An
advanced pre-positioning method for the force-directed graph visualization
based on pagerank algorithm. Computers & Graphics, 47:24–33, 2015.

[3] B. Hendrickson and R. W. Leland. A multi-level algorithm for partitioning
graphs. 1995.

[4] L. Katz. A new status index derived from sociometric analysis. Psychome-
trika, 18(1):39–43, 1953.

[5] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation
ranking: Bringing order to the web. 1999.

[6] R. J. Trudeau. Introduction to graph theory. Courier Corporation, 2013.
[7] C. Walshaw. A multilevel algorithm for force-directed graph drawing. In

Graph Drawing, pages 171–182. Springer, 2001.

Hooking up forces to produce aesthetically pleasing graph layouts – Johannes F. Kruiger and Maarten L. Terpstra

68

Choosing between optical flow algorithms for UAV position change
measurement

Jasper de Boer, Mathieu Kalksma

Abstract—In recent years optical-flow-aided position measurement solutions have been used in both commercial and academic
applications. These systems are used for navigating unmanned aerial vehicles (UAVs) in GPS-deprived environments. Movement in
sequential images is detected and converted to real world position change. Multiple approaches have been suggested, ranging from
using an optical mouse sensor to the use of a stereo camera setup. Our research focuses on single camera solutions.
Previous research has used a variety of optical flow algorithms for single camera solutions. This paper presents a comparison on
three algorithms to check if using different algorithms yield different results in terms of quality and CPU time. This paper also provides
insight into the general theory behind using single camera optical flow for UAV navigation.
The compared algorithms are the Lucas-Kanade method, Gunnar Farnebäck’s algorithm and Block Matching. A testing framework
and custom indoor and outdoor datasets were created to measure algorithms flow estimation quality and computation time.
Characteristic differences were found between the performance of the algorithms in terms of both computation time and quality.
Choosing between algorithms therefore can increase flow estimation quality or reduce CPU time usage. Also different winners per
test set were found in terms of estimation quality.

Index Terms—UAV navigation, optical flow, Lucas-Kanade method, Gunnar Farnebäck method, Block Matching.

1 INTRODUCTION

In recent years the interest in using unmanned aerial vehicles (UAVs)
has increased. UAVs can be used for a multitude of applications, for
example the inspection of agricultural lands, reviewing annual ditch
cleanings, or the inspection of wind turbine blades. An essential part
to such systems is position measurement which is needed for point-to-
point navigation or for maintaining a position.

One method for navigating UAVs is Global Positioning System
(GPS). However, for some applications GPS introduces a significant
error to the location [7] and GPS will not work when there is no signal
available, for instance in indoor environments.

An alternative to GPS are optical-flow-aided position measurement
systems. These systems use sequential images from a camera and
computer vision to measure movement. In recent years several sin-
gle camera solutions have been proposed, which use different optical
flow algorithms: SAD Block Matching [4] and Lucas-Kanade [9]. For
both algorithms the results are promising.

In 2014 the Twirre architecture for autonomous mini-UAVs using
interchangeable commodity components was introduced [14]. The
platform is developed for automating inspection tasks. The architec-
ture consists of low-cost hardware and software components. The pro-
cessing power is positioned on-board the UAV. This allows the plat-
form to run the recognition software on-board. Twirre is able to use
optical flow for position measurement.

With architectures like Twirre, CPU time is shared with software
that is performing the inspections. Optical flow computation time
should therefore be kept to a minimum. This paper therefore inves-
tigates if performance in terms of estimation computation time can be
improved by choosing the right algorithm. This paper also compares
the quality of the algorithms in order to see if optical flow quality can
be improved by choosing between algorithms.

The algorithms that will be evaluated in this paper are: SAD Block
Matching, the Lucas-Kanade method [8] and the Gunnar Farnebäck
technique [5]. The first two algorithms are used in [4] and [9] and the
Gunnar Farnebäck technique is used in Twirre. These three algorithms

• Jasper de Boer is MSc. Computing Science student at the University of
Groningen and a Project Engineer at the Centre of Expertise in Computer
Vision of the NHL University of Applied Sciences, E-mail:
jasper.boer@nhl.nl.

• Mathieu Kalksma is a MSc. Computing Science student at the University
of Groningen, E-mail: m.kalksma@student.rug.nl.

were chosen because they are already applied in the field and because
of their availability in the OpenCV library [2]. OpenCV is easy in use
and extensively used in the field of computer vision. Its BSD license
allows both academic and commercial use [3].

The paper starts with a background chapter which introduces opti-
cal flow and how it can be used for measuring position change in terms
of real world distance. Section 3 shortly introduces the three used op-
tical flow techniques. The algorithms are compared by looking at their
theoretical differences and their efficiency. Section 3 finishes with ex-
plaining the test environment, and the data sets that are used for testing
the three algorithms. Section 4 provides the results of the tests and sec-
tion 5 and 6 will give the conclusion and discussion, and some future
directions accordingly.

2 BACKGROUND

This section introduces a method for measuring position change with
a single camera optical flow system. This section also discusses how
the choice of camera and optics affects the optical flow system. Some
of the choices made for the research method (Section 3) are based on
the method described in this section.

The goal of a optical flow system is to measure x, y and rotational
position change on the plane parallel to the ground in a real world
measure. The described method assumes the use of a camera that is
aimed towards the ground.

2.1 Optical flow
An optical flow algorithm is able to track points across two images.
Given a set of points or pixels in the first image, the algorithm tries to
locate the points in the second image. From the result two correspond-
ing sets of vectors can be constructed. the source vectors

vsrc[n] =
(
px[n] py[n]

)T

and the destination vectors

vdst [n] =
(
px[n]+ tx[n] py[n]+ ty[n]

)T

where p[n] is the original pixel coordinate and t[n] contains the trans-
lation of the pixel. Figure 1 visualizes this process.

Most optical flow techniques are based on the brightness constancy
assumption and the spatial smoothness assumption [1]. With the
brightness constancy assumption it is assumed that points keep the
same intensity between frames. The spatial smoothness assumption

69

(a) first frame (b) second frame with the detected flow

Fig. 1: Illustration of detected optical flow between two frames. The
second frame is a slightly rotated and translated version of the first
frame.

comes from the observation that neighboring pixels generally belong
to the same surface and therefore have similar motion [11].

2.2 Angular correction

An UAV has three principal axis as seen in figure 2. The described
method uses similarity transformation estimation, and hence angular
correction should be applied for both pitch and roll axis. This cor-
rection can be done by using a camera gimbal or by transforming the
vsrc[n] and vdst [n] vectors.

A gimbal can be used in order to keep the camera perpendicular to
the ground. A gimbal uses an inertial measurement unit (IMU)1 and
electric engines to allow the camera to pivot around one axis (yaw),
and therewith blocking other rotational actions (rolling and pitching).

The second approach uses the orientation information from an IMU
in order to transform both vsrc[n] and vdst [n] vectors.

Fig. 2: Principal axis of an UAV. By Auawise (Own work) [CC BY-
SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikime-
dia Commons

2.3 Estimating the similarity transformation

After applying angular correction, the transformation between two
frames is reduced to translation t, rotation R and uniform scaling c.
This four degrees of freedom similarity transformation can be esti-
mated by reducing the least squares error as in equation 1 [13].

e2(R, t,c) =
1
n

n

∑
i=1
||vdst [i]− (cRvsrc[i]+ t)||2 (1)

2.4 Pixel distance to real world distance

To calculate real world position change it is necessary to know the dis-
tance between the UAV and the ground plane. The height h can be
measured e.g. with an ultrasonic distance sensor or with a barometric

1An IMU uses accelerometers and gyroscopes to measure orientation and
gravitational forces.

pressure sensor. Equation 2 is used for calculating the real world trav-
eled distance, where s is the pixel size of the camera sensor and f the
focal length.

trw =
1
f

tsh (2)

From the equation can be seen that a shorter focal length increases
the real world traveled distance per moved pixel. Also a greater height
and larger size of the camera sensor pixels increase the real world dis-
tance. Along with the optical flow algorithm and the frame rate of the
camera, these parameters determine the maximum real world speed at
which the optical flow system is able to measure position change.

3 MATERIALS AND METHODS

In this section will provide the setup of the research. The section starts
with some theoretical information about the used algorithms. After
giving the theoretical background the section continues with the de-
veloped testing framework. Finally it concludes by explaining how
the experiments are performed and by introducing the used data sets.

3.1 Description of examined optical flow algorithms

In this section the three different algorithms for computing optical
flow are presented. They will be presented by explaining their the-
ory, efficiency and showing whether they calculate sparse optical flow
or dense optical flow. The difference between sparse optical flow and
dense optical flow is that sparse flow only calculates the flow for cer-
tain specified pixels, while dense optical flow calculates the flow for
all the pixels. This makes sparse algorithms often faster. Since dense
flow results in more flow vectors, more data is used to minimize the
error function in equation 1, which can lead to a better estimation of
the overall transformation.

In case of a large movement between the two images the algorithms
sometimes can not detect the movement. A solution for this, which
both Lucas-Kanade and Gunnar Farnebäck use, are pyramids. With
pyramids you take l pyramid levels and you run the algorithm for
each level. For each level L the image is shrunk L times resulting
in a 2L times smaller image. With the image shrunk, the initial too
large movement is now detectable.

First the Block Matching algorithm is described, followed by the
Gunnar Farnebäck method and then the Lucas-Kanade method.

3.1.1 Sum of absolute differences

The sum of absolute differences (SAD) algorithm is measures simi-
larity between image blocks. It starts by having two images of size
M×N. For each pixel in the first image a window of BxB is placed
over the image, with the current pixel as middle point. In the new
frame the the algorithm searches within a given search area around
the position of the original pixel. The algorithm moves the window
over every possible position within the search area. For every window
position in the new frame the SAD value is calculated. The position
with the lowest SAD value is returned as the new position of the cur-
rent pixel. This process can also be described as minimizing in the
following function:

1−b

∑
i=0

b−1

∑
j=0
|(fk(x + i,y + i) − fk−1(x + i + u,y + j + v))|. (3)

In this equation fk and fk−1 are the two images and b is the block
size. By minimizing the result the flow of the current pixel can be es-
timated. This process is repeated for every pixel in the original image.

This algorithm is very time consuming. The operation will require
O(MNR2B2) time for a M×N image, R×R search region and a B×B
block size. The operation is a dense optical flow method, as it calcu-
lates the flow for all the pixels in the image.

Choosing between optical flow algorithms –Jasper de Boer and Mathieu Kalksma

70

3.1.2 Gunnar Farnebäck method
The Gunnar Farnebäck method [5] is a two-frame motion estimation
algorithm. Gunnar Farnebäck uses quadratic polynomials to approxi-
mate the motion between the frames. This can be done efficiently by
using the polynomial expansion transform.

In the case of Gunnar Farnebäck the point of interest is quadratic
polynomials that produces the local signal model expressed in a local
coordinate system such that

f (x)∼ xT Ax+bT xc, (4)

where A is a symmetric matrix, b a vector and c a scalar.
Gunnar Farnebäck is a dense optical flow algorithm because it com-

putes the optical flow for all pixels in the image.

3.1.3 Lucas-Kanade method
The Lucas-Kanade method describes an image registration technique
using spatial intensity gradient information to search for the best
match [8]. It does this by taking more information about the image
into consideration. With this, the method is capable of finding the
best match using far less computations than other techniques that use
a fixed order to search. The algorithm takes advantage of the fact
that in most cases the two images are already close to each other.
The registration problem is finding a vector h that minimizes the
distance between two images F(x) and G(x) so that the distance
between F(x + h) and G(x) is minimized in a region of interest R.
Lucas-Kanade suggests a generalization to deal with distortions such
as rotation of the image.

To find the disparity h Lucas-Kanade uses,

h0 = 0,

hk+1 = hk +
∑x w(x)F(x+hk)[G(x)−F(x+hk)]

∑x w(x)F(x+hk)2 ,
(5)

where F(x) and G(x) are the input images and

w(x) =
1

|G(x)−F(x)| , (6)

is a weighting function.
Finally this algorithm will converge in O(M2 logN) [8] time. As

Lucas-Kanade only uses given pixels of the image to measure the op-
tical flow it is a sparse optical flow algorithm.

3.2 Testing framework
For conducting the experiments a testing application was developed.
The program heavily relies on the OpenCV library [2]. The program
can perform optical flow on subsequent images with similarity trans-
formations, using one of the three described optical flow algorithms.
The desired algorithm and the corresponding parameters can be set.
The application estimates the 4 degrees of freedom (DOF) similar-
ity transformation with the corresponding OpenCV function estimate-
RigidTransform(). The application can also use the findHomography()
function to find the 8 DOF homography transformation.

The program results the pixel translation of the centre point and the
global scaling and rotation between subsequent images.

A second program was written for extracting sequential frames
from a large picture. This program was used to generate the image
data described in Section 3.3. This section describes the frame extrac-
tion process in more detail.

3.3 Data sets
The program for extracting frames from a larger image was used for
generating test sets. The program moves a window over an image. The
pixels within the window are saved as a new image. The advantage of
this approach is that perfect ground data can be used to compare the
results of the algorithms against. This is because the translation and
rotation are known. Pitching and rolling actions are not incorporated

in the simulator, because they can be corrected for as described in
Section 2.2.

Figure 3 shows the followed path for the dotted floor image. The in-
dividual frames were converted to grayscale and white Gaussian noise
with a mean of zero and a variance of 0.001 was added to the frames
to make the simulation more realistic.

Fig. 3: The path which is followed in order to generate sequential
images. The windows of the first and last frame are displayed

Three different images from different types of ground surfaces were
used (Figure 4). The first image is an outdoor picture of a grass cov-
ered surface. The other two pictures are from indoor floors: a grey
floor with small white dots and a floor with red carpet. These three
surfaces were chosen in order to have a diversity of data sets where
both indoor synthetic floors and an outdoor underground were repre-
sented. More data sets could have been generated, but chosen images
proved to be diverse enough to answer the research question.

The specifications of the test sets generated from the described im-
ages are listed in Table 1. The flow speed can be decreased by binning
the frames. By binning an image an area of pixels in the original im-
age is combined into a single pixel for the output image. A two by
two binning on an image combines 4 pixels into one pixel and thereby
reduces the total number of pixels by a factor 4. The flow speed is
then decreased with a factor of 2. The flow speed can be increased by
skipping frames.

Table 1: Specifications of the generated and used test sets

name original size crop size nr. of frames flow (px)
grass 4608 x 3456 800 x 800 1164 12.3 - 44.3
dotted floor 7360 x 4135 800 x 800 2386 12.3 - 45.2
carpet 7360 x 3856 800 x 800 2056 12.3 - 45.2

3.4 Experiments
For the experiments, the optical flow algorithm parameters that affect
performance were set to the same value for every algorithm. This al-
lows a fair CPU execution time comparison between the algorithms.
Other parameters were set according to best practice, as for instance
suggested by the OpenCV documentation. Some parameters were ad-
justed by hand in order to increase flow recognition quality. The range
of the scanned neighborhood parameters were set according to known
information about the maximum flow range, as listed in Table 1.

The first performed experiment was a CPU processing time com-
parison. Table 2 lists the parameters used. An Intel i5-4300U based
system was used to perform the tests. For the experiment the grass set
was used. 50 frames were processed in order to measure the average
flow computation time.

The Lucas-Kanade algorithm requires the locations of features that
should tracked. For finding suitable features the Shi-Tomasi corner
detector algorithm [10] was used. The execution time of this algo-
rithm was determined for the same binning factors as the optical flow
algorithms.

SC@RUG 2015 proceedings

71

(a) Grass. By Joshua Ezzell (Own
work) [CC BY-SA 2.0
(https://creativecommons.org/licenses/by/2.0/)],
via Flickr

(b) Dotted floor. The image contrast
is enhanced for visibility reasons

(c) Carpet. The image contrast is
enhanced for visibility reasons

Fig. 4: First crops of the three ground surfaces

The second experiment was a comparison on the quality of the op-
tical flow algorithms with different types of floor. For determining
the quality, the estimated movement of the centre point of the frame
was tracked. As error value the average accumulated distance between
sequential middle points was calculated, as seen in equation 7. The
measure averages out standard normal distributed errors. This mea-
sure was chosen since in a real world application the movement of a
UAV, in order to get the current location, is accumulated as well.

e =
c
N
||∑(tet − tgt)|| (7)

In equation 7, N is the number flow estimations, tet is the estimated
translation, tgt is the ground truth translation and c is the cropping
factor.

4 RESULTS

This section describes the results and gives an interpretation. First the
results for the CPU-time comparison are given followed by the quality
comparison results.

4.1 Computation time comparison

The results of the computation time algorithm are displayed in Figure
5. The results for Block Matching with a smaller binning size than four
were left out, since these computation times were a magnitude higher
than applicable in the field. The Shi-Tomansi algorithm was added
individually to the graph instead of summing the algorithm together
with Lucas-Kanade, since the Shi-Tomansi does not have to be used
each iteration when applying Lucas-Kanade. It only has to be used
when (too many) current good features move out of frame.

The graph shows that the Lucas-Kanade and Farnebäck algorithm
outperform simple Block Matching in terms of execution time. The
distinction between Lucas-Kanade and Farnebäck is harder to make
because of the logarithmic scaling. Table 3 shows the original tim-
ings. From this table the differences in computation times are clearly
distinguishable. Farnebäck is faster when binning with atleast a factor
of 2 is applied.

Table 2: Several of the used parameters for comparing the differences
in CPU processing time

Block Matching Lucas-Kanade Farnebäck
binning - - -
search area 43 43 43
block size 3 3 -
pyramid levels - 3 3
binning 2 x 2 2 x 2 2 x 2
search area 22 22 22
block size 3 3 -
pyramid levels - 3 3
binning 4 x 4 4 x 4 4 x 4
search area 11 11 11
block size 3 3 -
pyramid levels - 3 3
binning 8 x 8 8 x 8 8 x 8
search area 6 6 6
block size 3 3 -
pyramid levels - 3 3
binning 16 x 16 16 x 16 16 x 16
search area 3 3 3
block size 3 3 -
pyramid levels - 3 3

Table 3: Computation time for several binning factors of Farnebäck
and Lucas-Kanade

computation time in milliseconds
binning factor Farnebäck Lucas-Kanade
1 384.8 327.7
2 53.0 70.0
4 12.3 22.8
8 3.1 5.2
16 0.7 1.2

4.2 Quality comparison

The results of the quality comparison are presented in table 4.
For the dotted floor and carpet data sets the findHomography() func-

tion was used instead of estimateRigidTransform(). The resulting flow
for these sets were sometimes too far off for estimateRigidTransform().
This occurred specifically for the Lucas-Kanade algorithm and the
Block Matching algorithm. Figure 6 shows one of these situations.

All tested algorithms perform reasonably well on the natural grass
data set. The errors are reasonably small, since the real average Eu-
clidean flow distance of the grass set is 16.0 pixels. Figure 7 visualizes
the detected movement of the algorithms. The 8 x 8 binning measure-
ments were used to draw the image.

The rotation of the ground truth was used. Further analysis of the
results show that rotations are not properly detected, as seen in Figure
8. As soon as a rotation is introduced, the rotational error drastically
increases, considering the simulator rotates with 3 degrees per frame,
when it rotates. Accumulating the rotation would lead to wrong flight
paths. This error is introduced by the functions that estimate the global
image transformation. In an real wold UAV application a magnetome-
ter can be used.

The dotted floor proved to be harder to detect for all algorithms.
Farnebäck and Lucas-Kanade still perform reasonably well with a bin-
ning of 4 and 8, considering the real average Euclidean flow distance
is 16.0. The poor performance of Block Matching can be explained,
because most of the dotted floor surface pixels have (near) the same
brightness value. Since Block Matching only searches locally, the al-
gorithm will often assign a wrong flow vector.

The Lucas-Kanade algorithm and Farnebäck’s algorithm fail when
a 16 x 16 binning is applied. Running the Shi-Tomansi separately
showed that, without binning, the dots were detected as corners. With

Choosing between optical flow algorithms –Jasper de Boer and Mathieu Kalksma

72

1

1

1

1

1

5

20
0

50
0

20
00

50
00

20
00

0
10

00
00

50
00

00

binning factor

ex
ec

ut
io

n
tim

e
in

 m
ic

ro
se

co
nd

s

2

2

2

3

3

3

3

3

4

4

4

4

4

−
−
−
−

Lucas−Kanade
block matching
Farnebäck
Shi−Tomansi

1 2 4 8 16

Fig. 5: The computation time according to the binning factor for the
three compared algorithms. A logarithmic scaling is used on the exe-
cution time axis

Fig. 6: Wrongfully detected flow by the Block Matching algorithm.
The actual movement is a x-axis translation to the right

the highest binning applied however, the dots were to small for the
Shi-Tomansi algorithm to detect.

The flow of the carpet data set is well detected at a binning factor
of 4. When a binning factor of 8 is applied, Shi-Tomasi does not find
enough good points. The Lucas-Kanade algorithm therefore some-
times returns less than 4 flow vectors, which is not enough for esti-
mating the homography transformation. The flow is set to zero in such
cases, which leads to high errors in table 4. The same holds true for a
binning factor of 16.

Block Matching performs reasonably well with 4 x 4 and 8 x 8
binning, while Farnebäck performs excellent for all binning factors.
Figure 9 shows the recognized paths for the algorithms when a 8 x 8
binning is used. The ground truth rotation is used again for the heading
of the paths.

5 CONCLUSION AND DISCUSSION

This paper shows that choosing between optical flow algorithms for
UAV position change measurement can lead to a decrease of CPU-
time usage. The more sophisticated algorithms: Lucas-Kanade and
Farnebäck are significantly faster than Block Matching, especially for
larger picture sizes.

Table 4: Quality measurements of the algorithms on the different
floors. For (R), transformation is calculated with estimateRigidTrans-
form() and for (H), transformation is calculated with findHomogra-
phy().

binning

4 x 4 8 x8 16 x 16
grass
Block Matching (R) 0.65 0.24 0.19
Lucas-Kanade (R) 0.17 0.18 0.47
Farnebäck (R) 0.17 0.16 0.14
dotted floor
Block Matching (H) 5.41 2.34 7.70
Lucas-Kanade (H) 0.31 0.63 2.07
Farnebäck (H) 0.75 0.83 1.43
Farnebäck (R) 0.40 0.56 1.80
carpet
Block Matching (H) 0.17 0.72 2.42
Lucas-Kanade (H) 0.21 18.14 51.44
Farnebäck (H) 0.49 0.49 0.12
Farnebäck (R) 0.27 0.28 0.10

Fig. 7: Visualization of the detected paths for the 16 x 16 binned
frames from the grass data set. green is the ground truth, blue is Block
Matching, red is Farnebäck and yellow Lucas-Kanade.

Experiment results show that the algorithm’s flow recognition qual-
ity differ per surface. Also the best algorithm differs per data set and
binning factor. Choosing between algorithms can therewith increase
optical flow estimation quality. The best optimal flow quality can be
obtained by switching between algorithms for different undergrounds.

There is no overall winning algorithm, although in general the
Farnebäck method performs best. An surprising result is that the
recognition quality does not always degrade by using a higher binning
factor. This is particularity interesting because higher binning factors
lead to lower CPU-time usage.

During the research a testing framework was developed, which al-
lows fast comparisons between the different optical flow algorithms.
Also new data sets for new floor surfaces can be easily generated. The
framework can easily be extended in order to test new optical flow
algorithms and is therefore also useful for further research.

Due to the low number of examined surface types, the finding that
Farnebäck’s method performs best cannot directly be generalized to all
surface types. Also the simulator did not incorporate scaling. Different
height settings may lead to different results.

The compared algorithms were only tested to a certain extent but
considering the amount of parameters, performance of in particular
Gunnar Farnebäck’s algorithm and the Lucas-Kanade algorithm can
be further optimized. Also only one feature detection algorithm was
used for Lucas-Kanade.

SC@RUG 2015 proceedings

73

●●

●
●
●●
●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●
●
●
●●●●●

●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●
●●●●●●
●●●●●●●●●
●●●●●●●
●●

●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●
●●
●●●●●●●●
●●●●
●●●●●●●●
●●
●●
●●●
●●
●

●●●

●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●
●●●●
●
●●●●●●●●●●
●●●●●●●●●●●●●●●●

●

●●

●
●●●
●●

0 200 400 600 800 1000 1200

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

Index

D
is

ta
nc

e
fr

om
 g

ro
un

d
tr

ut
h

ro
ta

tio
n

Fig. 8: rotational error in degrees. The index axis corresponds to the
index of the frame. The results from Farnebäck with a binning factor
of 8 on the grass data set were used

Fig. 9: Visualization of the detected paths for the 8 x 8 binned frames
from the carpet data set. green is the ground truth, blue is Block
Matching, red is Farnebäck and yellow Lucas-Kanade.

6 FUTURE WORK

The presented research only compared three algorithms. More algo-
rithms can be taken into consideration. Since the developed framework
is designed to be extended, new algorithms can be tested. in a short
amount of time. Other interesting algorithms might for instance be
simple flow [12] and the Horn-Schunck method [6].

The application that takes frames out of a big picture can be ex-
tended to support full affine transformations instead of only similarity
transformations. More data sets can be generated and tested to be able
to further generalize the results of the experiments.

The results show that the used transformation estimation functions
were not able to detect rotations correctly. A magnetometer can be
used as an alternative, however, in situations where the earths magnetic
field is disturbed by the environment, values from a magnetometer are
not reliable. Further research is necessary to see if rotation estimation
from optical flow can be improved.

7 ACKNOWLEDGMENTS

The authors would like to thank the expert reviewer, prof. dr. M.
Biehl and the anonymous reviewers who reviewed drafts of this paper.
This research was partially funded by Nationaal Regieorgaan Prakti-
jkgericht Onderzoek SIA under project: Smart Vision voor UAVs.

REFERENCES

[1] M. J. Black and P. Anandan. A framework for the robust estimation of op-
tical flow. In Computer Vision, 1993. Proceedings., Fourth International
Conference on, pages 231–236. IEEE, 1993.

[2] G. Bradski. The opencv library. Dr. Dobb’s Journal of Software Tools,
2000.

[3] I. Culjak, D. Abram, T. Pribanic, H. Dzapo, and M. Cifrek. A brief intro-
duction to opencv. In MIPRO, 2012 Proceedings of the 35th International
Convention, pages 1725–1730. IEEE, 2012.

[4] H. D., M. L., T. P., and P. M. An open source and open hardware embed-
ded metric optical flow cmos camera for indoor and outdoor applications.
ICRA2013, 2013.

[5] G. Farnebäck. Two-frame motion estimation based on polynomial expan-
sion. In Image Analysis, pages 363–370. Springer, 2003.

[6] B. K. P. Horn and B. G. Schunck. Determining optical flow. ARTIFICAL
INTELLIGENCE, 17:185–203, 1981.

[7] L. Jayatilleke and N. Zhang. Landmark-based localization for unmanned
aerial vehicles. In Systems Conference (SysCon), 2013 IEEE Interna-
tional, pages 448–451. IEEE, 2013.

[8] B. D. Lucas, T. Kanade, et al. An iterative image registration technique
with an application to stereo vision. In IJCAI, volume 81, pages 674–679,
1981.

[9] H. Romero, S. Salazar, and R. Lozano. Real-time stabilization of an eight-
rotor uav using optical flow. IEEE Transactions on Robotics, 25(4):809–
817, August 2009.

[10] J. Shi and C. Tomasi. Good features to track. In Computer Vision and
Pattern Recognition, 1994. Proceedings CVPR '94., 1994 IEEE
Computer Society Conference on, pages 593–600. IEEE, June 1994.

[11] D. Sun, S. Roth, J. Lewis, and M. J. Black. Learning optical flow. In
Computer Vision–ECCV 2008, pages 83–97. Springer, 2008.

[12] M. W. Tao, J. Bai, P. Kohli, and S. Paris. Simpleflow: A non-iterative,
sublinear optical flow algorithm. Computer Graphics Forum (Eurograph-
ics 2012), 31(2), May 2012.

[13] S. Umeyama. Least-squares estimation of transformation parameters
between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell.,
13(4):376–380, 1991.

[14] J. van de Loosdrecht, K. Dijkstra, J. H. Postma, W. Keuning, and
D. Bruin. Twirre: Architecture for autonomous mini-uavs using inter-
changeable commodity components. IMAV 2014, 2014.

Choosing between optical flow algorithms –Jasper de Boer and Mathieu Kalksma

74

faculty of mathematics
and natural sciences

computing science

SC@RUG 2015 proceedings

Rein Smedinga, Michael Biehl and

Femke Kramer (editors)

12th SC@RUG
2014-2015

1
2

th
 S

C
@

R
U

G
 2

0
1

4
-2

0
1

5

www.rug.nl/research/jbi

faculty of mathematics
and natural sciences

computing science

123348 omslag sc@rug proceedings.indd 3 12-05-15 08:55

