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On the interconnection structures of discretized port Hamiltonian systems

D. Eberard1,∗, B.M. Maschke2, ∗∗, and A.J. van der Schaft1,∗∗∗
1 Univ. of Groningen, Inst. of Mathematics and Computing Science, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
2 University of Lyon, Université Lyon 1, LAGEP, 43 bd 11 novembre 1918, F-69622 Villeurbanne Cedex, France.

For numerical simulation and control design purposes, a mixed-finite element method [3] preserving the port Hamiltonian
structure of the system has been developed [2]. This method was successfully applied for 1D systems. In this paper, we shall
suggest some generalization of this result to higher dimensional spatial domain (3D) using Whitney forms as Galerkin base.
The discretization procedure is illustrated on Maxwell’s equations.

1 Port Hamiltonian framework

Hamiltonian systems with port variables arise from network modelling of distributed parameters systems with boundary energy
flows [1]. The port Hamiltonian framework is based on a power-conjugate variables representation (effort–flux pairs) linking
internal dynamics and boundary exchanges through a power balance. This formulation relies on two objects: a Hamiltonian
function (actually the energy function), and a Dirac structure encoding intrinsic properties in a geometric frame.

Let Ω be an n-dimensional smooth manifold, and Λk(Ω) be the space of differential k-forms on Ω. There exists a natural
duality pairing 〈· , ·〉Ω (Poincaré duality) between α ∈ Λk(Ω) and β ∈ Λn−k(Ω) given by

〈β, α〉Ω =
∫

Ω

β ∧ α . (1)

Analogous statement still holds if Ω is replaced by ∂Ω. Therefore, α in Λk(∂Ω) and β in Λn−1−k(∂Ω) are dual objects in the
sense of (1) where integration runs over ∂Ω. Symmetrization of this two pairings leads to a natural non degenerate bilinear
symmetric form on the product space Fp,q ×Ep,q defined as the flux space Λp(Ω)×Λq(Ω)×Λn−p(∂Ω) times the effort space
Λn−p(Ω) × Λn−q(Ω) × Λn−q(∂Ω), where p + q = n + 1. The Stokes-Dirac structure D follows:

Theorem 1.1 [1] The subset D ⊂ Fp,q × Ep,q of elements (fp, fq, fb, ep, eq, eb) satisfying (2) is a Dirac structure.[
fp

fq

]
=

[
0 (−1)rd
d 0

] [
ep

eq

]
, r = pq + 1 and

[
fb

eb

]
=

[
Id 0
0 −(−Id)n−q

] [
ep|∂Ω

eq|∂Ω

]
(2)

We assume [1] the total energy H =
∫
Ω
H to be given by the density H : Λp(Ω)×Λq(Ω) −→ Λn(Ω) which satisfies some

weak smoothness condition. Time variation of H evaluated along a trajectory (αp(t), αq(t)) ∈ Λp(Ω)×Λq(Ω), t ∈ R, writes
for any time dH/dt =

∫
Ω
[δpH ∧ ∂αp

∂t + δqH ∧ ∂αq

∂t ], where δxH denotes the variational derivative of H w.r.t. αx.
Definition 1.2 (−∂αp/∂t, −∂αq/∂t, fb, δpH, δqH, eb) ∈ D defines a distributed-parameter port Hamiltonian system.

A crucial fact is the power balance dH/dt = − ∫
∂Ω

eb ∧ fb which reads: the energy time-variation inside Ω is equal to the
power supplied through its boundary ∂Ω.

2 Discretization of Maxwell’s equations

In this setting, we address 3D Maxwell’s equations. The electric and magnetic fields induction (d, b) = (αp, αq) are modelled
as two-forms, and the electric and magnetic fields intensity are given by the one-forms e, h. The Hamiltonian is H =
1
2

∫
Ω

e ∧ d + h ∧ b, hence δpH = e and δqH = h. Maxwell’s equations, in Ω ⊂ R
3 without current and where we do take

boundary fluctuations into account, write as the distributed-parameters port Hamiltonian systems[ −ḋ

−ḃ

]
=

[
0 −d
d 0

] [
e
h

]
and

[
fb

eb

]
=

[
e|∂Ω

h|∂Ω

]
. (3)

The energy-balance equation on the domain Ω writes dH/dt = − ∫
∂Ω

e∧h, where e∧h is known as the Poynting vector. We
shall use this set of equations to perform a discretization scheme preserving the geometric structure.
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Whitney forms are suitable bases for electromagnetic fields approximation [4]. Consider an oriented simplicial complex K
associated with a meshing of Ω ⊂ R

3 by a finite number of tetrahedra. Incidence matrices provide intrinsic discrete differential
operators G,R,D related to weak – grad, rot and div – operators [3]. Let T be a tetrahedron delimited by nodes {a1a2a3a4}.
The Whitney edge-element associated with e = {aiaj} is we = λidλj − λjdλi, and the Whitney face-element associated
with f = {aiajak} is wf = 2(λidλj ∧ dλk + λjdλk ∧ dλi + λkdλi ∧ dλj), where λl denotes the barycentric coordinate
associated with node al. Electromagnetic fields are then interpolated (according to their degree) as follows:

e =
∑

j=1...6

Ej wej
h =

∑
j=1...6

Hj wej
; −ḋ =

∑
i=1...4

Ḋi wfi
− ḃ =

∑
i=1...4

Ḃi wfi
. (4)

The discrete analog of the pairing 〈·, ·〉Ω given equation (1) between discrete 1-form α and 2-form β writes

〈α, β〉 =
∫

T

α ∧ β =
∫

T

(
4∑

j=1

αj wej
) ∧ (

6∑
i=1

βi wfi
) = {α}t Y {β} , (5)

where elements Yji’s are
∫

T
wej

∧ wfi
, and {x} denotes the column vector (X1, . . . )t of degrees of freedom. This matrix Y

is neither square nor full rank (even in the general case), thus providing a degenerate product which is an obstacle to define
a Dirac structure. We suggest to reduce the state, using the discrete conservation laws, to achieved a non degenerate pairing.

Since R is a (4×6)-matrix with rank 3, we shall reduce the state by a quotient with its kernel. According to Linear Algebra,
it exists a full column rank (4 × 3)-matrix R such that im R = im R . Thus, there exists a 3-vector Ḋ (resp. Ḃ) such that the
conservation law {−ḋ} = −R{h} writes {−ḋ} = RḊ (resp. {−ḃ} = R{e} writes {−ḃ} = RḂ). As a consequence, the
relation reduces to Ḋ = −[R

t
R]−1R

t
R{h} := −R̃{h} (resp. Ḃ = R̃{e}), since R

t
R is invertible. In the same way, internal

efforts variables express E = [Y R]t{e} := M{e} and H = M{h}. The power Pint inside an element T is now computed as

Pint = 〈Ḋ, E〉 + 〈Ḃ, H〉 = {h}t[−R̃tM + M tR̃]{e} , where − R̃tM + M tR̃ is full rank . (6)

Notice this power in the reduced variables equals the power computed with original variables: 〈−ḋ, e〉 = {−ḋ}t(Y t{e}) =
[RḊ]t(Y t{e}) = Ḋt([Y R]t{e}) = 〈Ḋ, E〉, idem 〈−ḃ, h〉 = 〈Ḃ, H〉.
On the other hand, the power through the boundary of an element T is naturally given by the boundary wedge product. It is
represented by the skewsymmetric full rank (6 × 6)-matrix Yb with coefficients

∫
∂T

we ∧ we′ . Hence the boundary power Pb

is given by {e}t Yb {h}, and corresponds to the discrete Poynting vector computed at the boundary.

Assertion. The linear transformation TL : R
6 × R

6 −→ R
12 × R

12 given by

[
Ḋ E Fb

... Ḃ H Eb

]t

=

⎡
⎣ −R̃ 0 0

... 0 M Id

0 M Id
... R̃ 0 0

⎤
⎦

t ⎡
⎣ {e}

· · ·
{h}

⎤
⎦ :=

[
ME
MF

]t [ {e}
{h}

]
(7)

defines an image representation of the discretized Stokes-Dirac structure associated with system (3).

The proof follows from the construction above. Since D = im(TL), one has to (and can easily) check the necessary and

sufficient conditions: (i) rank
([

ME
MF

])
=12, and (ii) ME(MF )t + MF (ME)t = [0].

3 Conclusion

A mixed-finite element method based on Whitney forms has been applied on Maxwell’s equations (3) expressed in port
Hamiltonian setting. The main obstacle is the definition of a discrete non degenerate (power) product between internal effort-
flux variables. This is due to the non maximality rank condition of (5). The state space vectored out by the kernel of the
weak grad operator allows the construction of the suitable internal power product (6). Adding the (naturally non degenerate)
boundary product leads to the image representation (7) of a discretized Stokes-Dirac structure which approximates (3). The
discretization procedure thus preserves the geometric structure of the equations.

The discrete structure obtained can be completed by the discretization of the Hamiltonian, using the same approximation
bases. Furthermore, the procedure presented here is generalizable to higher dimension.
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