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ABSTRACT: Next-generation sequencing in clinical diag-
nostics is providing valuable genomic variant data, which
can be used to support healthcare decisions. In silico tools
to predict pathogenicity are crucial to assess such variants
and we have evaluated a new tool, Combined Annota-
tion Dependent Depletion (CADD), and its classification
of gene variants in Lynch syndrome by using a set of
2,210 DNA mismatch repair gene variants. These had
already been classified by experts from InSiGHT’s Vari-
ant Interpretation Committee. Overall, we found CADD
scores do predict pathogenicity (Spearman’s ρ = 0.595,
P < 0.001). However, we discovered 31 major discrepan-
cies between the InSiGHT classification and the CADD
scores; these were explained in favor of the expert classi-
fication using population allele frequencies, cosegregation
analyses, disease association studies, or a second-tier test.
Of 751 variants that could not be clinically classified by
InSiGHT, CADD indicated that 47 variants were worth
further study to confirm their putative pathogenicity. We
demonstrate CADD is valuable in prioritizing variants in
clinically relevant genes for further assessment by expert
classification teams.
Hum Mutat 36:712–719, 2015. Published 2015 Wiley Periodi-
cals, Inc.∗

KEY WORDS: Lynch syndrome; variant classification;
pathogenicity prediction; cumulative link model

Introduction
Reliable estimation of gene variant pathogenicity, especially for

missense variants and small in-frame insertions/deletions (indels),
is a major challenge in clinical genetics. This challenge is now being
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exacerbated by the introduction of next-generation sequencing in
clinical diagnostics, which is identifying large numbers of candidate
disease-causative variants, ranging from about 250 [Lohmann and
Klein, 2014], to 400–700 [Yang et al., 2013], up to a mean of 1,083
[Saunders et al., 2012] variants per exome, depending on which
filter steps and stringency are applied. Since it is not feasible to per-
form functional analysis of each variant, in silico tools have become
an important tool in assessing variant pathogenicity. Unfortunately,
although there are many potential methodologies and tools [Cooper
and Shendure, 2011], they often lack clinical validation. As the adap-
tation of high-throughput sequencing in clinical practice increases,
the need for standardized, validated, and easy-to-use in silico classi-
fication tools is becoming even more pressing [Saunders et al., 2012;
Yang et al., 2013].

The recently launched Combined Annotation Dependent Deple-
tion (CADD) [Kircher et al., 2014] method offers a standardized,
genome-wide, variant scoring metric (C-score) that incorporates
the weighted results of widely used in silico pathogenicity prediction
tools, such as SIFT [Kumar et al., 2009] and PolyPhen [Adzhubei
et al., 2010], and of genomic annotation sources like ENCODE
[Dunham et al., 2012]. The resulting CADD scores are expressed
as a measure of deleteriousness (selection pressure bias) for single-
nucleotide variants (SNVs) and small indels. A high score repre-
sents variants that are not stabilized by selection, which are more
often disease-causing than expected by random chance [Kircher
et al., 2014]. In contrast, a low score indicates that a variant re-
sembles evolutionary stable, commonly occurring genetic variation
that poses no apparent disadvantage for an organism. The scores
were shown to correlate strongly to known variant pathogenicity,
such as those causing a predisposition to autism spectrum disorders,
intellectual disability, thalassemia, and more broadly to pathogenic
variants taken from the NHGRI GWAS catalog [Welter et al., 2013]
and ClinVar [Landrum et al., 2013] database. To make interpreta-
tion and comparison easier, C scores are logarithmically ranked to
form scaled C-scores, similar to how PHRED scores are used in the
FASTQ format.

As an easy-to-use resource that brings out the predictive power
of many programs and data combined, CADD may replace the
plethora of tools currently being used. However, before considering
implementation of CADD in clinical work, it is important to evaluate

C© 2015 The Authors. ∗∗Human Mutation published by Wiley Periodicals, Inc.
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and validate its utility by comparing its outcome with that of existing,
consistent, large-scale expert assessments.

The Variant Interpretation Committee (VIC) is an expert panel of
the International Society for Gastrointestinal Hereditary Tumours
(InSiGHT). They conducted a thorough clinical classification of
2,360 variants (as of February 2014) in the DNA mismatch re-
pair (MMR) genes MLH1 (MIM #120436), MSH2 (MIM #609309),
MSH6 (MIM #600678), and PMS2 (MIM #600259) that had been
identified in patients suspected of having Lynch syndrome [Thomp-
son et al., 2013b]. This cancer predisposition syndrome, previously
known as hereditary nonpolyposis colorectal cancer, is caused by
DNA MMR deficiency.

The InSiGHT variant classification method is based on a com-
bination of clinical and experimental (molecular) evidence, such
as family history and cosegregation with the disease, tumor find-
ings, population allele frequencies, and mRNA/protein functional
assays (in accordance with established guidelines, available at
http://www.insight-group.org/criteria).

The variants were classified following a five-tier system [Plon
et al., 2008], with class descriptions as follows:

� Class 1: not pathogenic/no clinical significance.
� Class 2: likely not pathogenic/little clinical significance.
� Class 3: uncertain clinical significance.
� Class 4: likely pathogenic.
� Class 5: pathogenic.

Variants that cannot be placed in classes 1, 2, 4, or 5 based on
existing evidence are assigned to class 3 by default and are con-
sidered variants of uncertain clinical significance. It is recognized
[Thompson et al., 2013b] that class 3 may include some cases with
conflicting evidence.

Here, we investigate whether CADD scores are concordant with
variant classifications assigned by the InSiGHT VIC. We show that,
overall, CADD and InSiGHT yield similar results, but that there
are also some important discordant cases. Our contributions in this
paper are:

1. An extensive evaluation of agreement between the in silico
CADD predictions and the InSiGHT expert classifications of
variant pathogenicity.

2. Detection and assessment of conflicting classifications.
3. A CADD-based prioritization of variants of uncertain clinical

significance.
4. Assessment of the reliability of CADD for use in a clinical

setting.

These contributions shed light on an important question in clini-
cal genetic diagnostics: are bioinformatics tools powerful enough to
enable genome-wide variant interpretation without loss of quality
when compared with classification by clinical expert panels that can
also take into account a range of clinical and molecular data relevant
for specific genetic diseases?

Materials and Methods

Data Processing

We downloaded 2,744 variants (as of February 2014) from
the InSiGHT LOVD database (at http://chromium.liacs.nl/
LOVD2/colon_cancer/) for MLH1, MSH2, MSH6, and PMS2. Ref-
Seq identifiers NM 000249.3, NM 000251.2, NM 000179.2, and
NM 000535.5 were added to the cDNA position. This allowed
the successful conversion of 2,582 variants to genomic DNA no-

tation in VCF format by running Ensembl VEP5 [McLaren et al.,
2010]. CADD (version 1.0) was able to score 2,580 of those
(NM 000249.3:c.1254T>R and NM 000535.5:c.1875A>Y failed). Of
these 2,580 variants, 370 were not assessed by InSiGHT, or in a few
cases belonged to multiple classes. This means that 2,210 variants
were classified and belong to one of the five classes of the Interna-
tional Agency for Research on Cancer (IARC) five-tiered classifica-
tion system: 151 variants belong to class 1 (not pathogenic), 84 to
class 2, 751 to class 3, 181 to class 4, and 1,043 to class 5 (pathogenic).

In addition, we ran SnpEff to obtain functional effect predictions
using canonical transcript references and an upstream downstream
interval length of five bases. The output was curated to reduce the
number of effects from two to one in the case of both INTRON
and SPLICE SITE “effects,” by removing the INTRON effect. We
used NM 000251.2 for MSH2 (whereas the LOVD was based on
NM 000251.1) to enable ENSEMBL VEP to process the data, with-
out issues (out of 920 MSH2 variants, 855 were successfully con-
verted to VCF/gDNA notation).

Cumulative Link Model

To detect discrepancies between the CADD scores and the In-
SiGHT classification, we assumed that a partitioning of the scores
would exist. In other words, the continuous C-scaled scores can be
binned into the ordinal IARC classes. Working on this assumption,
we were able to define a cumulative link model (ordinal regression)
[McCullagh, 1980; Agresti, 2002]. In a cumulative link model, an
ordinal response variable Yi can fall in j = 1, . . . , J ordered classes.
This response variable Yi then follows a distribution with parameter
π i where π ij denotes the probability that the ith observation falls in

the jth response class (such that
∑J

j = 1 π i j = 1). Since we are deal-
ing with individual observations (instead of counts), the categorical
distribution is used, which can be viewed as a special case of the
multinomial distribution of n observations Yi ∼ Mult(n, πi ) with
n = 1:

Yi ∼ Categorical (πi )

The cumulative probability is then defined as:

γi j = P (Yi ≤ j ) = πi1 + . . . + πi j

Here, we considered a proportional odds model, using a logit
link function: logit( p) = log[ p/(1 – p)]. The cumulative logits for
all but the last class, j = 1, . . . , J – 1, are then defined as:

logit
(
γi j

)
= logit (P (Yi ≤ j ))

= log
P (Yi ≤ j )

1 – P (Yi ≤ j )

This gives a regression for the cumulative logits:

logit
(
γi j

)
= θ j – x�

i β

where θ j represents the logit-scaled cut-off for class j, xi being the
vector of explanatory variables for the ith observation, and β is the
corresponding set of regression parameters. Note that x�

i β does
not contain an intercept. The parameters θ j act as a set of contin-
uous “cut-off points”, such that –∞ < θ1 < · · · < θJ –1 < ∞. To assess
the probability that the ith observation falls within one of ordinal
response classes j, we can write:

P
(
Yi = j |x�

i β
)

=

⎧⎨
⎩

γi j , j = 1
γi j – γi( j –1), j = 2, . . . ,
1 – γi(J –1), j = J

J – 1
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Figure 1. Probability that a CADD score will belong to a certain InSiGHT class. The inverse logit (logit−1) was applied to each of the response
variables. Classes 2 and 4 are dominated by class 3 under this model.

We used the CADD score as an explanatory variable for the ordinal
response of InSiGHT. The parameters were estimated using JAGS, a
program for analysis of Bayesian graphical models using Gibbs sam-
pling [Plummer, 2003]. Convergence of the Markov Chain Monte
Carlo inference was assessed using the potential scale reduction
factor [Gelman and Rubin, 1992; Plummer et al., 2006]. Figure 1
shows the probability that a given CADD score belongs to a certain
InSiGHT class by using the posterior distributions for θ after con-
vergence. Discrepancies were detected by analyzing the deviance of
the observations. Deviance can be thought of as a measure of “sur-
prise”, how likely a certain observation is under the fitted parameters
of the model. Formally:

D
(
Yi , θ̂

)
= –2log[P (Yi |θ̂)]

with Yi being the observation and θ̂ the parameters of the fitted
model. Observations of θ corresponding to variants in the 95th
percentile of the mean deviance—those with the highest deviance—
were re-examined.

Data Availability

The data and scripts used in this paper can be downloaded from:
http://molgenis.org/downloads/vdVelde_Kuiper_etal_2015/

Results

Exploratory Data Analysis

We calculated the CADD scores for 2,744 MMR gene
variants that were downloaded from the InSiGHT group

LOVD (available at http://chromium.liacs.nl/LOVD2/colon_
cancer). A total of 534 variants had to be omitted, either because con-
verting the complementary DNA HGVS nomenclature [den Dun-
nen and Paalman, 2003] based notation to genomic DNA VCF
(Variant Call Format version 4.0 [Danecek, 2011]) based notation
failed (162 variants), or the CADD scores could not be unambigu-
ously assigned (two variants with T>R and A>Y substitutions), or
because they had not yet been classified by the InSiGHT VIC (i.e.,
they were recent submissions, or not reported as germline variants
[370 variants]). See Figure 2 and Methods and Materials for details.
The 2,210 remaining variants fell within one of the five classes: class
1 (n = 151), class 2 (n = 84), class 3 (n = 751), class 4 (n = 181), or
class 5 (n = 1,043).

Overall, the CADD-scaled C-score distributions for each class
correlate with the InSiGHT classification (Spearman’s ρ = 0.595,
P < 0.001). In Figure 3, the distribution of the scores per class is
represented in a beanplot [Kampstra, 2008]. See also Supp. Figures
S1–S4 for CADD scores of the InSiGHT variants for each gene, using
known variants identified in the Genome of the Netherlands [TGotN
Consortium, 2014a, 2014b] and 1000 Genomes [T1GP Consortium,
2012] projects as population background reference.

Discrepancy Assessment

Using a Bayesian cumulative link model, we identified 108 (4.89%
of 2,210) cases for which a different class would be assigned (see
Materials and Methods). Further analysis focused on the cases for
which the nonpathogenic (class 1) and pathogenic (class 5) clas-
sifications were reversed, as these suggested major disagreements
between CADD and the InSiGHT VIC verdict (see Table 1). The

714 HUMAN MUTATION, Vol. 36, No. 7, 712–719, 2015

http://molgenis.org/downloads/vdVelde_Kuiper_etal_2015/
http://chromium.liacs.nl/LOVD2/colon_cancer
http://chromium.liacs.nl/LOVD2/colon_cancer


(n = 2,274)

(n = 151)

(n = 1)

(n = 1)

(n = 2)

(n = 9)(n = 2)

(n = 3)

(n = 6)

(n = 2)

(n = 43)

(n = 24

(n = 2)

(n = 84) (n = 751) (n = 181) (n = 1043)

(n = 2)

(n = 2)

(n = 15)

(n = 5)

(n = 2,582)

(n = 2,210)

(n = 2,580)

False positives Some might be 
interesting for 
followup study. 
See supplements. 

Some are candidates for followup 
study, e.g. the 24 having >80% prior 
probability of being likely pathogenic 
according to Thompson et al.

False negatives 

class 1 (n = 0) class 1 (n = 0) class 1 (n = 19) 

InSiGHT class 5 InSiGHT class 2 InSiGHT class 4 InSiGHT class 3 InSiGHT class 1 

class 5 (n = 12) class 5 (n = 47) class 5 (n = 12) 

et al. 

Figure 2. Flowchart describing the steps and results of the analysis.

explanations per variant for this analysis can be found in Supp.
Table S1.

False Positives

We identified 12 variants (0.54% of 2,210) that were classified
as nonpathogenic (class 1) by the InSiGHT VIC, but they were
predicted to be pathogenic (class 5) according to the CADD-based
cumulative link model (see Materials and Methods). Re-examination
of the available data for these variants strongly supports the original
InSiGHT classification based on the following evidence:

� Segregation data are inconsistent with the variant being a domi-
nant, high-risk, pathogenic sequence variant in pedigrees (likeli-
hood ratio �0.01).

� Variant with reported frequency �1% in the general population
(1000 Genomes Project), and no evidence that variant is a founder
mutation.

� These are not high-risk variants that are uniquely associated with
Lynch syndrome (they have also been seen in individuals who do
not meet the international criteria for Lynch syndrome).

� Variant leads to a known attenuated protein function, but this
does not cause Lynch syndrome (it has also been seen in healthy
individuals and there is a lack of evidence for MMR deficiency as
shown by MSI and immunohistochemical testing).

Although these explanations are specific to Lynch syndrome-
related variants, they indicate that CADD might overestimate the
general pathogenicity of some variants. Most overestimations could
be easily resolved in a clinical Standard Operating Procedure (SOP)

by using population allele frequency as a filter or incorporating
the use of patient pedigree analysis data; these are already com-
mon practices in many clinical laboratories. The remainder could
be resolved by incorporating more in-depth findings from validated
protein functional assays or from risk estimates based on large,
well-designed, case-control studies that consider cohort size, ge-
ography/ethnicity, and quality control measures [Thompson et al.,
2013b]. An evaluation of likely not pathogenic (class 2) variants
predicted to be pathogenic (class 5) can be found in Supp. Table S2.

False Negatives

We identified 19 cases (0.86% of 2,210) for which the cumu-
lative link model predicted the respective variants to be class 1,
whereas InSiGHT scored them as class 5. This indicates that the
model might also underestimate effects. Similar to the approach
to the false positives, outlined above, our re-examination of these
variants supported the original InSiGHT classification.

CADD scores are developed for scoring any possible human SNVs
or small indels [Kircher et al., 2014]. It was therefore expected that
large structural variants would be missed or inaccurately scored (for
5/15 structural variants) by CADD. To simplify the interpretation,
the scaled C-scores are based on the rank of the C-score relative
to all the C-scores for 8.6 billion possible SNVs. Typical variant
C-scores in this study ranged from –4 to 14, whereas the five struc-
tural variants in question scored very highly (between 350 and 550),
which was expected considering the likely pathogenicity of exon
deletions relative to missense variants or codon deletions, for exam-
ple. However, the scaling algorithm seems to fail for such extreme
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versus CADD score

Figure 3. Beanplot [Kampstra, 2008] showing the data points (green) and density estimation (purple) of the scaled CADD C-score per InSiGHT
class. The width of the green lines is relative to the number of data points at that score. Black horizontal lines indicate the mean per InSiGHT class;
the dotted line shows the overall mean. The mean scores of classes 1–5 show a respective stepwise increase of 8.41 (σ = 7.46), 11.44 (σ = 7.72),
16.87 (σ = 9.40), 21.41 (σ = 6.13), and 29.04 (σ = 10.28). The unclassified group (class 3) shows a flatter distribution than the other classes.

Table 1. Number of InSiGHT Variants Reassigned to Alternative
Classes According to the Cumulative Link Model Fitted on CADD
Scores

InSiGHT classification

CADD model Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 135 19
Class 2 71
Class 3 4 1 704 3 3
Class 4 171
Class 5 12 12 47 7 1021

C-scores, and this results in reverting the score for the respective
variant into a very low-scaled C-score instead. We applied SnpEff
[Cingolani et al., 2012] as a second-tier test. This tool has been de-
veloped to annotate and predict the effects of variants in genes in a
robust and qualitative way, thereby complementing the quantitative
nature of CADD scores. Using SnpEff, we were able to correct 17 of
the 19 false-negative cases. SnpEff recognized 14 of the 15 structural
variants, most as “EXON DELETED,” one of two splice aberra-
tions as “FRAME SHIFT,” and two of two truncating mutations as
“STOP GAINED.” These effect types are annotated as HIGH impact
in SnpEff, in contrast to MODIFIER, LOW, or MODERATE effect

types. By using SnpEff information, we have shown that CADD re-
sults should be complemented by this tool, or a comparable tool,
to compensate for sporadic underestimations. See Supp. Figure S5
for an overview of SnpEff variant effect predictions in relation to
CADD scores and InSiGHT classifications.

Variants of Unknown Significance

Class 3 mainly contains variants for which insufficient clinical or
molecular data are available, but also a limited number of variants
that have discordant findings (i.e., are resistant to classification).
Most of these variants can easily be assigned to another class as
soon as more data become available. As expected, the distribution
of the CADD scores for class 3 variants, as visualized in Figure 3, is
much flatter than the distributions for the other classes. Matching
the CADD score of each class 3 variant to the distributions of the
other classes (and thus, the likelihood of belonging to one of them)
allows us to propose an endpoint classification that is, according
to the model, more likely than belonging to class 3 for these vari-
ants. In other words, we can suggest prioritization of a variant for
reclassification (using additionally obtained clinical and molecu-
lar evidence) when its CADD score deviates far enough from this
mean, reaching a score that falls into the distributions of known
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Table 2. The 24 Variants That Are Still Uncertain and Predicted
by Bioinformatic Tools to Be Likely Pathogenic, According to the
Probabilities of the MAPP + PolyPhen2 Calibrated Model [Thomp-
son et al., 2013a] and the CADD Model

Gene Variant AA ch.

Previous
[Thompson
et al., 2013a] Here

MLH1 c.1037A>G p.Q346R 0.95 0.99
MLH1 c.109G>A p.E37K 0.87 0.99
MLH1 c.112A>G p.N38D 0.94 0.99
MLH1 c.125C>T p.A42V 0.96 0.99
MLH1 c.184C>A p.Q62K 0.88 0.99
MLH1 c.1918C>T p.P640S 0.82 0.99
MLH1 c.1919C>T p.P640L 0.93 0.99
MLH1 c.304G>A p.E102K 0.87 0.99
MLH1 c.307G>C p.A103P 0.97 0.99
MLH1 c.331G>C p.A111P 0.97 0.99
MLH1 c.347C>A p.T116K 0.93 0.99
MLH1 c.65G>C p.G22A 0.89 0.99
MLH1 c.67G>A p.E23K 0.86 0.99
MLH1 c.74T>C p.I25T 0.86 0.99
MLH1 c.80G>C p.R27P 0.97 0.99
MLH1 c.925C>T p.P309S 0.83 0.99
MSH2 c.1799C>T p.A600V 0.96 0.99
MSH2 c.1826C>T p.A609V 0.96 0.99
MSH2 c.2064G>A p.M688I 0.89 0.99
MSH2 c.2141C>T p.A714V 0.87 0.99
MSH2 c.2168C>T p.S723F 0.88 0.99
MSH2 c.2187G>T p.M729I 0.88 0.99
MSH2 c.529G>A p.E177K 0.86 0.99
MSH6 c.3682G>C p.A1228P 0.97 0.99

nonpathogenic or pathogenic variant classes (see Materials and
Methods).

We performed this analysis and 47 variants (2.13% of 2,210) that
the InSiGHT VIC classified as class 3 (uncertain significance) had
CADD scores of �34, which fell in the >99% probability range for
known class 5 (pathogenic) variants (see Fig. 1). Of these 47 variants,
43 were missense with a mean CADD score of 35.33 (σ = 1.04, 27
in MLH1, 10 in MSH2, four in MSH6, and two in PMS2). The
remaining four were truncating mutations: two stop-gain variants
(c.2250C>A and c.2250C>G, both with a CADD score of 41), and
two frameshift variants (c.2252 2253del and c.2262del) with CADD
scores of 39 and 40. These four variants are all located in the MLH1
gene; they were classified as class 3 by the InSiGHT VIC due to
insufficient evidence, because the stop codons are introduced in
the last exon (19) and are located outside any known functional
domains.

We compared these findings with the previous use of a prediction
model [Thompson et al., 2013a] on 481 substitutions [Thompson
et al., 2013b] of uncertain effect. In this analysis, 173 InSiGHT
missense variants of uncertain significance (class 3), with a >80%
probability in favor of pathogenicity, were prioritized for further
investigation using multifactorial likelihood analysis. The model
calibrated a combination of in silico tools to predict probabilities of
pathogenicity, which is conceptually somewhat similar to the way
CADD scores are constructed, except here the model was specifically
for MMR gene variants associated with Lynch syndrome.

By comparing the two sets of results, that is, the 173 previously
identified variants with our 43 prioritized variants, we found an
overlap of 24 variants (see Table 2). Since they were called by
both models, we consider these 24 missense variants to be the
most urgent candidates for further research to determine their
pathogenicity. Of the remaining 19 variants prioritized uniquely
by CADD, 17 had been evaluated before with prior probabilities of

pathogenicity ranging from 7% (MSH2:c.1418C>T) to 74%–76%
(MLH1: c.85G>T, c.187G>A, c.299G>A, c.794G>A, c.955G>A,
c.1976G>A, PMS2: c.137G>A).

We also compared a CADD-based binary classifier for missense
variants with the multifactorial likelihood model (see Supp. Text for
these results).

Discussion
We investigated the use of CADD scores for the prediction of clin-

ical classifications by comparing them with a high-quality clinical
data set developed by the InSiGHT VIC, which is based on quanti-
tative and qualitative interpretation of both clinical and molecular
data. Generally, the CADD model predictions fitted the InSiGHT
classification. Out of the 2210 variants we tested and classified by
InSiGHT, we identified 12 (0.54%) nonpathogenic (class 1) variants
that the CADD model predicted to be pathogenic (class 5), and 19
variants (0.86%) of class 5 that CADD predicted to be class 1. The
difference could be explained by two considerations: the CADD
model was not designed to classify large structural or splice-site
variants (55% of all the discordant cases, 89% of the false nega-
tives), and the clinical observations, population allele frequencies,
and experimental molecular data sometimes convincingly suggested
an alternative interpretation (39% of all discordant cases, 100% of
the false positives). CADD’s main underestimation of pathogenicity
was due to its inability to accurately predict the effects of whole
exon deletions or duplications. In five such cases, the C-score was
in fact extremely high, but this was not translated into a high-scaled
C-score. The use of a second-tier test, in this case SnpEff, boosted
the sensitivity of classifying via CADD by correcting 17 out of 19 of
these underestimations.

We showed that estimating the deleteriousness of whole exon
deletions/duplications is a weakness of CADD and this needs to be
addressed. The InSiGHT data show that such structural variation
is often pathogenic, but this is not always recognized by CADD.
To avoid incorrect results, and in line with the design limitations
of CADD as acknowledged by its authors, we recommend CADD
should not be used to judge the pathogenicity of large structural
variation as part of an automated variant processing pipeline.

We also investigated the 12 cases of pathogenicity overestimation
by CADD, which showed that these false positives could be explained
by data used for the InSiGHT classification that was not used for in
silico prediction (such as the presence of the variant in the general
population or lack of cosegregation of the variant with the disease).
These results underscore the importance of using clinical data in the
diagnostic interpretation of variants.

There are a few variants in the InSiGHT database with a known
negative effect, such as attenuated protein function, that are clas-
sified as nonpathogenic. The InSiGHT VIC requires both concor-
dant functional and clinical evidence to assign pathogenicity; they
do not accept that attenuated function would necessarily be asso-
ciated with Lynch Syndrome—or any phenotype for that matter.
In our analysis, for example, CADD predicted a deleterious effect
for MLH1:c.394G>C, which is indeed known to cause attenuated
protein function [Lipkin et al., 2004], but is not considered to be
pathogenic in the context of Lynch syndrome because it is not
known to be associated with the causal phenotype. Variant clas-
sifications such as those currently provided by the InSiGHT VIC
for MMR genes are specifically developed for a given phenotype,
namely, Lynch syndrome. Therefore, as acknowledged by the VIC
[Thompson et al., 2013b], they may not capture modest disease
penetrance or other disease phenotypes associated with a given

HUMAN MUTATION, Vol. 36, No. 7, 712–719, 2015 717



variant. This highlights the fact that some apparent discrepancies
may simply be explained by the difference in application of “re-
search tools” such as CADD and “clinical tools” such as the In-
SiGHT database; the latter focuses on results that are of practical
value for a clinical geneticist instead of yielding a spectrum of vari-
ants with possible intermediate penetrance that then require further
interpretation and individualized risk management protocols.

In general, there is limited added value in using CADD scores to
assess truncating variants since they are already known to often be
pathogenic for known disease genes. The field of in silico prediction
benefits most from the power of CADD scores when they are applied
to predict the pathogenicity of nonsynonymous SNVs. Here, we
show that CADD performs well on this type of variant for Lynch
syndrome, although a disease-specific model performs better.

We identified 47 variants that had been assigned by InSiGHT
to class 3 (uncertain significance), which, according to the CADD
model, had a high probability of being pathogenic. Of these, 24 mis-
sense variants were already strongly suspected of being pathogenic
by a previous in silico study on MMR gene variant classification
[Thompson et al., 2013a] and we consider them to be top candidates
for further study to confirm their pathogenicity. This suggests that
CADD, in a fashion similar to existing disease-specific pathogenicity
prediction models, can help in prioritizing variants for the collection
of missing clinical and molecular data.

Taken together, we have shown that CADD scores are in
high agreement with expert assessments of MMR gene variant
pathogenicity that is based on multiple data sources for quantitative-
multifactorial and qualitative analysis. As expected, CADD scores
are not yet suitable to interpret large structural variants such as dele-
tions and duplications of exons. Other underestimation effects are
rare and often detectable with a second-tier test. Any overestimated
variants could be excluded based on population frequency, cosegre-
gation analyses, or evidence showing no association or causality.

Calibrated in silico pathogenicity prediction models are not in-
tended to replace functional wet-laboratory studies, but are instead
complementary methods to let clinics benefit from existing gold
standard classifications, by accessing their expert knowledge and
making it possible to assess and prioritize novel variants with rea-
sonable confidence, without the need for often unfeasible amounts
of laboratory work. We believe CADD fits this translatory role very
well, particularly because of its generic and high-throughput nature.
Although CADD cannot replace clinical and molecular validation, it
can, in a practical sense, assist in prioritizing variants for functional
testing when an affected patient carries multiple poorly understood
candidate variants, reducing waiting time for results.

However, translating this knowledge into a clinical setting is not
trivial. We constructed a model based on ordinal regression of
known classifications to calibrate CADD scores as a predictor of
pathogenicity for gene variants in the Lynch syndrome-associated
MMR genes. Similar efforts are required to unlock the potential of
CADD scores as predictors for other disorders, leading to gene- or
disease-specific guidelines that can help clinicians translate CADD
scores into clinical practice. The threshold for “what is pathogenic”
is expected to be rather different to define depending on whether
the disease is caused by dominantly or recessively acting mutations,
whether the disease is Mendelian or complex/multigenic in origin,
and so on. Although the fact that CADD scores are largely based on
conservation indicates that it may not work as well for every gene,
we believe that its overall usefulness is currently unmatched by other
quantitative pathogenicity estimates.

As a preliminary proof of principle, we compared the distribu-
tions of CADD scores of known pathogenic variants (from ClinVar
[Landrum et al., 2013]) with the distributions of variants found in

the general population (from Genome of the Netherlands [TGotN
Consortium, 2014a, 2014b] and 1000 Genomes [T1GP Consortium,
2012]), for as many genes as data availability allowed. This approach
can be used to estimate the predictive power of CADD scores and,
thereby, provide valuable information to clinicians regarding how
effective CADD scores are for predicting variant pathogenicity in
the context of a specific gene. Encouragingly, out of 373 genes with
sufficient data, we found 272 genes (73%) for which CADD has
good predictive power (AUC of >90%).

However, this approach is currently still in development. For re-
liable automated calibration of CADD scores on many genes into
a clinical setting, we need to consider many factors and sources of
bias potentially influencing the informativity of CADD scores, such
as mutation spectrum, penetrance, disorder heterogeneity, variant
classification quality, classification semantics, and disorder inheri-
tance patterns.

We conclude that in silico pathogenicity predictions are becoming
powerful enough to facilitate accurate variant prioritization, at least
for dominantly inherited disorders such as Lynch syndrome.
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