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Chapter 3: Pink Noise in Ergometer Rowing: 
Sport Performance Likely Emerges from 

Complexity 
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Abstract 

The aim of this study was to examine the temporal structures of rowers’ (natural) 

ergometer strokes in order to make inferences about the underlying motor 

organization. Furthermore, we examined the relation between these temporal 

structures and expertise-level. Nine rowers, being part of one elite and one sub-

elite rowing team, completed 550 strokes on a rowing ergometer. Detrended 

Fluctuation Analysis was used to quantify the temporal structure of the intervals 

between force peaks. Results showed that the temporal structure differed from 

random, and revealed prominent patterns of pink noise for each rower. 

Furthermore, the elite rowers demonstrated more pink noise than the sub-elite 

rowers. The presence of pink noise suggests that rowing performance emerges 

from the coordination among interacting component processes across multiple 

time scales. The difference in noise pattern between elite and sub-elite athletes 

indicates that the complexity of athletes’ motor organization is a potential key 

characteristic of elite performance. 
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3.1  Introduction 

 Sport scientists have recently proposed that major advances can be made 

when considering sport and motor performance as emerging from complex 

systems interactions (Davids et al., 2014; Seifert et al., 2013). In this sense, 

coordinated actions such as rowing strokes would emerge from continuous 

interactions between motor processes at different levels and time scales (cell 

activity, muscle contractions, limb movements, etc.), embedded in (and shaped 

by the constraints of) the environment (Davids & Araujo, 2010; Seifert et al., 

2013). In the domain of motor control, researchers have demonstrated that the 

temporal structure of performance variation may provide fundamental insights 

into the nature and effectiveness of the human motor system (e.g., Glass, 2001; 

Goldberger et al., 2002). For instance, random variation in stride intervals signals 

a higher risk of falling among elderly, whereas “healthy” stride intervals involve 

an appropriate ratio between rigidity and random variation (e.g., Goldberger et 

al., 2002; Hausdorff et al., 1997, 2001). Researchers have suggested that the 

latter type of “noise” reveals the presence of complex network interactions 

across brain and body, which means that motor control is distributed over 

cooperative processes at different levels of the motor system (for a review, see 

Wijnants, 2014). Although the complex systems perspective is gaining popularity 

in sport sciences, and researchers assume that effective or skilled sport 

performance requires a form of functional variability (i.e., between rigidity and 

random; see Davids, Glazier, Araújo, & Bartlett, 2003; Phillips et al., 2012; Seifert 

et al., 2013), empirical studies focusing on the temporal structures in sport 

performance are scarce. 

 The study of temporal structures of variation (i.e., noise patterns) and its 

meaning has a relatively long history in physical sciences (e.g., Bak et al., 1987, 

1988), and has gained popularity in the domains of cognitive sciences and motor 

control in the past two decades (e.g., Gilden, Thornton, & Mallon, 1995; 

Goldberger et al., 2002; Hausdorff et al., 2001; Van Orden, Holden, & Turvey, 

2003; Wijnants, 2014). Overall, three types of temporal structures can be 

distinguished, which lie on a continuum from white noise to brown noise (see 

Figure 3). White noise corresponds to purely random variation, and is assumed to 

be typical for component dominant systems (Van Orden et al., 2003). In the 

domain of motor control this would mean that the temporal variability in an 
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action sequence is generated by random fluctuations in the component-

processes (e.g., central pattern generator or motor program), resulting in an  

uncorrelated time series (Figure 3A; see also Diniz et al., 2011; Gilden, 2001; Van 

Orden et al., 2003; Wijnants, 2014). Brown noise corresponds to a stochastic 

function where each subsequent measure is relatively close to each preceding 

measure, which is assumed to be typical for systems composed of components 

that are tightly mutually connected. More specifically, each subsequent action is 

a function of the previous action to which a random increment is added, 

characteristic of a rigid pattern of behavior. Brown noise is reflected in time series 

by short-range correlations between sequential actions (Figure 3C; see also 

Gilden, 2001; Van Orden et al., 2003). In between white noise and brown noise 

lies pink noise, which expresses a subtle mixture of randomness and rigidity. Pink 

noise would be typical for interaction dominant (complex) systems (e.g., Glass, 

2001; Van Orden et al., 2003; Wijnants et al., 2009; Wijnants, 2014). Because of 

the mutual interactions between flexibly coupled system components across 

multiple time scales, time series of interaction dominant systems behavior would 

display long-range dependencies between sequential actions (Figure 3B).  

 

 

 

Figure 3. Three types of temporal structures of variation: White noise (A), pink 

noise (B), and brown noise (C).  
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 Although applications of nonlinear time-series techniques to reveal temporal 

structures are in their infancy in sport sciences (Kuznetsov, Bonette, & Riley, 

2014), signatures of non-random temporal structures have already been found in 

running and cycling performance (Hoos, Boeselt, Steiner, Hottenrot, & Beneke, 

2014; Tucker et al., 2006). Hoos et al. (2014) studied fluctuations in speed, stride 

frequency, and stride length of long-distance runners during a half-marathon 

competition race, whereas Tucker et al. (2006) examined fluctuations of power 

output while cyclists were performing maximally during a time trial on cycle 

ergometers. To summarize, both studies reported non-random temporal patterns 

in performance variation (i.e., signatures of brown and pink noise).  

 However, Hoos et al. (2014) and Tucker et al. (2006) examined athletes’ 

performance in competitive situations, which may have acted as an additional 

constraint on the control of the athletes’ movements. Indeed, according to the 

authors, the noise patterns they found would be typical for athletes’ pacing 

during a competition or time trial. This implies that the situations in which the 

participants performed probably affected the motor system by “pushing” it into a 

more rigid organization, thereby eliciting signatures of brown noise. As indicated 

earlier, research outside sports has shown that time series of natural and healthy 

motor performance exhibit prominent patterns of pink noise, characterized by an 

optimal mixture of randomness (i.e., flexibility) and rigidity (e.g., Glass, 2001; 

Goldberger et al., 2002; Hausdorff et al., 1997, 2001; Wijnants, 2014). Therefore, 

the first aim of the current study was to examine athletes’ temporal structures of 

performance during a sport task in which additional (competition) constraints 

were not imposed. More specifically, we investigated the temporal structures in 

time series of rowers’ ergometer strokes, which were performed at their 

preferred rhythm. Finding pink noise would provide evidence for the notion that 

the natural control of rowing strokes emerges from complex systems interactions 

(cf. Glass, 2001; Van Orden et al., 2003; Wijnants et al., 2009). 

 Furthermore, research outside the field of sports has shown that temporal 

structures of variation are closer to pink noise if the motor skill is better 

mastered. In a study on rhythmical aiming, Wijnants et al. (2009) found patterns 

of pink noise in time series of well-mastered aiming movements, suggesting that 

a high coordinative functioning between motor components had developed. 

When aiming movements were less well-mastered the authors found a whitening 
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of the structure of performance variation, which suggests less coordination 

between the system components. Thus, our second aim was to examine whether 

a relationship exists between temporal structure of performance variation and 

level of rowing expertise. For this aim, we tested whether the temporal structures 

of variation in (natural) ergometer rowing strokes are closer to pink noise for elite 

rowers than for sub-elite rowers. 

 Finally, we chose for rowing on ergometers as a research setup, because this 

allowed detailed and reliable time serial measurements. In addition, because 

cyclical (i.e., repetitive) movements lend themselves well for the analysis of 

temporal structures (e.g., Glass, 2001; Wijnants et al., 2009; Wijnants, Cox, et al., 

2012), this setup was highly suitable for obtaining insights into temporal 

structures of variation in sport performance. 

3.2  Method 

Participants 

 Nine competitive male rowers (Mage = 19.11, SD = .78) signed an informed 

consent form and a medical health form before the start of the study. All 

participants were members of the same rowing club. They started rowing 7 

months earlier, and practiced three times a week in the period of this study, but 

up to five times a week in the period preceding the study. The participants were 

part of two different teams, which we distinguished based on the results of early-

season competitions for first-year students. Five participants were part of a team 

ranked between 50% and 66.67% nationally (Team A: Sub-elite), and four were 

part of a team listed among the best 16.67% nationally (Team B: Elite). Note that 

the terms “sub-elite” and “elite” are relative to the category of (Dutch) first year’s 

rowers, specifically with regard to the attained levels of performance in the 

rowing season. 

Measures and Procedure 

 The research protocol was approved by the Ethical Committee of the 

Department of Psychology, University of Groningen. For the experiment we used 

Concept 2 ergometers, Model E (Inc., Morrisville, VT). Between the handle and 
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the chain of the ergometer, a force sensor (MEAS, France) was attached, which 

was connected to a data acquisition (DAQ) device (NI USB-6009). The DAQ device 

served to transfer the raw signals to a computer via USB, and these signals were 

collected in Volts (V) at a frequency of 100 Hz.    

 Each participant arrived individually for his ergometer session. After the 

participant did his warm-up activities, we instructed him to perform 550 strokes. 

This number was chosen in consultation with a coach of the participants’ rowing 

club, who indicated that a rowing session that takes more than 30 minutes would 

be a burden for the rowers. A sequence of 550 strokes would last between 20 and 

30 minutes (depending on the participant’s stroke frequency), and would provide 

a sufficient amount of data points to perform reliable analyses (see analysis 

section). We asked the participant to perform the strokes at his preferred rowing 

rhythm. Moreover, we set the drag on the ergometer to 120, which corresponds 

to the resistance set by the participants for their usual workouts.  

Analysis 

 The obtained time series data (in V) were first low-pass filtered with the 

Butterworth filter (cut-off frequency 8 Hz). The time intervals between the force 

peaks (maximal force in each stroke) were calculated and formed the unit of 

analysis. This measure was chosen because the coordination of force exertion is 

crucial for rowing performance (Hill, 2002; Wing & Woodburn, 1995).  

Detrended Fluctuation Analysis (DFA; Peng et al., 1993), which is particularly 

suited for non-stationary data and relatively short time series (512 data points in 

the current study; stroke 18 to 530), was applied to each participant’s peak-to-

peak interval series. The result of DFA analysis reveals the relation between 

window size of data and the mean fluctuation of the windowed data. More 

specifically, the time series of intervals between force peaks were divided into 

non-overlapping windows of equal length. The best-fitting trend line was then 

determined and the average fluctuation (root mean square residual) was 

calculated. This procedure was repeated for windows of different sizes, ranging 

from a subset of 4 interval-data points to 128 interval-data points (i.e., ¼ times 

the length of the entire series we analyzed). The relationship between the 

average fluctuation and window size was plotted on log-log scales, whereby the 

slope reflects the DFA exponent. To enhance the interpretation of the results, the 
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DFA exponents were converted into a commonly used fractal dimension (FD) 

scale based on the conversion formula provided by Wijnants and colleagues 

(Wijnants, Cox et al., 2012; Wijnants, Hasselman, Cox, Bosman, & Van Orden, 

2012): 

FD = .4α2 – 1.2α + 2,          (1) 

where α is the dfa exponent. A resulting FD close to 1.5 reflects white noise, close 

to 1.1 reflects brown noise, and close to 1.2 reflects pink noise (e.g., Van Orden et 

al., 2003). 

 For each rower we determined whether the observed FD fell outside the 

limits that we may expect in the case of a white noise pattern. Subsequently, we 

tested whether the temporal structures of the elite rowers (the rowers of Team 

B) were closer to pink noise than those of the sub-elite rowers (the rowers of 

Team A). For this test we used Monte Carlo Permutation, which has high 

statistical power for smaller sample sizes (e.g., Todman & Dugard, 2001; Van 

Geert, et al., 2012). To interpret the magnitude of the difference between the 

teams, Cohen’s d (observed difference divided by the pooled SD) is reported.    

3.3  Results 

 First, to ascertain the validity of our results, for each participant we checked 

whether the log-log relationship between window size and mean fluctuation 

approached a straight line in the selected data range, which was the case (r2 

varied between .97 and 1.00). Then, to determine whether the peak-to-peak 

interval variations deviated from white noise, we reshuffled the force-peak time-

interval series 100 times for each participant (cf. Hausdorff, Peng, Ladin, Wei, & 

Goldberger, 1995). This entails that the mean and standard deviation of the 

original interval series were kept the same, whereas the sequence of interval-

data was randomized. Figure 4 shows that the FD’s based on the reshuffled data 

were characterized by normal curves centered around the value of 1.5, which 

corresponds to white noise. For each participant the actual FD of the measured 

interval series fell outside the 95% confidence limits of the distribution in the 

direction of pink noise (i.e., a FD of 1.2). 
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Figure 4. Fractal dimensions for each participant of Team A and Team B according 

to 100 reshufflings of the interval series data, and the actually observed values 

(indicated by black arrows). 

 

 Furthermore, we tested whether the mean FD of participants in Team B (elite 

rowing team) was significantly closer to pink noise (i.e., lower) than the FD of 

participants in Team A (sub-elite rowing team). Figure 5 shows that for each 

individual team member of Team B the FD was closer to pink noise than for each 

member of Team A. With the Monte Carlo permutation test we determined the 

probability that the observed difference between Team A and Team B could be 

caused by chance alone, by simulating that chance. This was done by repeatedly 

(10,000 times) redistributing the data to determine the probability of finding the 
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same or a more extreme result. We found that the average FD of participants in 

Team A (M = 1.30, SD = .03) and of participants in Team B (M = 1.22, SD = .03) 

dificantly (p = .003, d = 3.06).   

 

 

 

Figure 5. Fractal dimensions of participants in Team A and Team B. The dashed 

line separates the two teams. 

 

3.4  Discussion 

 Variation is an essential feature of motor performance, and its structure is 

assumed to reveal information about the dynamic organization of the human 

motor system  (e.g., Glass, 2001; Goldberger et al., 2002; Van Orden et al., 2003; 

Wijnants, 2014). By applying nonlinear time series analyses, we found an absence 

of a white noise (random) temporal structure in unconstrained rowing-ergometer 

performance (i.e., intervals between peak forces). Overall, this result is in line 

with recent findings on pacing of long-distance runners (Hoos et al., 2014) and 

power output variation of cyclists (Tucker et al., 2006). Considering the 

converging evidence that the current and previous findings provide,, it seems 

unlikely that sport performance is generated by independently operating 

component processes that perform specific (motor) functions in relative isolation. 
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In such a case, each rowing stroke would result from a process unrelated to that 

of the previous stroke, for example when a central pattern generator or motor 

program commands each new rowing stroke (cf. Goldberger et al., 2002; 

Wijnants, 2014).3 

 However, contrary to the previous studies in the domain of sports, which 

reported signatures of brown noise (Hoos et al., 2014; Tucker et al., 2006), we 

found prominent patterns of pink noise. In fact, none of our participants’ force 

peak-to-peak interval series demonstrated a pattern close to brown noise. The 

differences between our research outcomes and those of Hoos et al. (2014) and 

Tucker et al. (2006) are in accordance with our earlier suggestion that additional 

(competition) constraints may result in a different organization of the motor 

system. More specifically, these differences support the notion that the 

competitive situation in the previous studies elicited a relatively rigid organization 

of the motor system. Indeed, the athletes in the studies of Hoos et al. (2014) and 

Tucker et al. (2006) probably exerted more conscious control over their 

performance, which was confirmed by the authors themselves. They stated that 

athletes in their studies generally followed a “fast-slow-fast” strategy (Hoos et al., 

2014) and placed a significant increase in power output near the end of the trial 

(Tucker et al., 2006). This suggests that athletes made minor adaptations during 

short periods, nested in relatively large adaptations over the entire performance 

duration, which is (statistically) typically expressed in a brown noise pattern.   

 Our second major finding was that rowers from the elite rowing team had FDs 

closer to pink noise than rowers from the sub-elite team. This is in line with 

earlier outcomes in the domain of motor control, showing that effective behavior 

expresses more pink noise than less effective or unhealthy behavior (e.g., Glass, 

2001; Goldberger et al., 2002), and that temporal structures of variation show 

more prominent patterns of pink noise when a task is well-mastered (Wijnants et 

al., 2009). Therefore, in line with Wijnants et al. (2009) we propose that the 

coordination among component processes involved in the generation of 

(relatively unconstrained) rowing strokes is more effective as skill level increases. 

                                                                 
3 Although some researchers have proposed that sources of pink noise can be injected in 
particular local components such as central pattern generators (Torre & Wagenmakers, 
2009), researchers have now reached consensus that pink noise does not arise from 
specific components within the system, but from complex interactions among the system 
components across different time scales (Delignières & Marmelat, 2013). 
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This is expressed in a more optimal mixture between rigidity and random 

variation, which may be a key characteristic of elite performance (cf. Davids et al., 

2003; Phillips et al., 2012; Seifert et al., 2013). 

Implications and Limitations 

 To date, assessments of sport and motor performance have mainly focused 

on some potential performance predictor x that may explain a significant portion 

of variance in performance outcome y (Atkinson & Nevill, 2001). Such 

assessments are the result of studies that (a) focus on sample means; (b) do not 

examine the performance process over time, but take snap-shot measures of the 

performance; and (c) treat variation as random (i.e., white noise). However, 

variation during (natural) sport performance can reveal information about the 

complexity of the human motor system and the effectiveness of an athlete’s 

behavior, which should not be discarded. Our finding that the temporal structure 

of variation deviated from white noise for each rower, suggests that single-cause 

mechanisms or a linear causal chain of component processes are unlikely to 

account for the resulting rowing ergometer performance. Hence, applying the 

tools of complex systems science, nonlinear time series in particular, has great 

potential to advance insights into sport performance processes as they unfold in 

real-time (Kuznetsov et al., 2014).  

 One particularly interesting avenue for future research would be to examine 

how behavioral systems organize themselves under different circumstances. In 

this study force-peak interval series of rowers’ (natural) stroke performance 

revealed prominent patterns of pink noise. We have suggested that temporal 

structures of variation in sport performance reveal signatures of brown noise 

when additional (competition) constraints are imposed. In addition, researchers 

have proposed that noise patterns may whiten when random perturbations are 

applied to an individual’s motor behavior (e.g., Diniz et al., 2011; Wijnants et al., 

2009; Wijnants, 2014).  

 Furthermore, we found a clear relation between temporal structures of 

variation and rowing expertise-level. Therefore, in the future, researchers and 

practitioners should consider information on variation in rowing strokes (and 

sport performance in general) as a potentially important performance parameter 

that could be used for monitoring purposes. It might be, for instance, that the 
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presence of more pink noise in time series of rower’s natural (or preferred) 

rowing strokes is an indicator of the rower’s ability to increase the stroke 

frequency to higher limits. This suggestion follows from findings of Torre (2010) in 

a study on bimanual tapping. She showed that the intensity of long-range 

correlations (i.e., pink noise) is significantly correlated with the movement 

frequency at which individuals shift their pattern of coordination (from anti-phase 

to in-phase). In other words, more pink noise was associated with the ability to 

persist in a particular coordination pattern at a high movement frequency.  

 However, some limitations should be pointed out with respect to the 

generalizability of the present findings. Although ergometer rowing is widely used 

as a mean to test rowers, and as a replacement for on-water practice, clear 

implications of the current study for actual on-water rowing cannot (yet) be 

provided. Furthermore, the sample size was rather small, and larger samples 

including a variety of skill levels could further enrich insights. In the current study 

we chose to focus on rowers from the same club who did not differ in terms of 

age and rowing experience, but who did differ in terms of their achievements in 

recent competitions. Although this resulted in a small sample size, we found 

significant and strong results, which provides promising prospects for a 

complexity perspective on sport and motor performance.  

Conclusion 

 Here, we showed that temporal structures of rowers’ force-peak intervals 

during ergometer rowing are not random, but are close to pink noise. 

Furthermore, we found that rowers of an elite team expressed even more 

prominent patterns of pink noise, which is the hallmark of well-coordinated and 

effective behavior (e.g., Goldberger et al., 2002; Van Orden et al., 2003; Wijnants 

et al., 2009; Wijnants, 2014). We propose that (skilled) rowers’ performance of 

ergometer strokes naturally emerges from an ongoing dynamic interaction 

between various motor processes across multiple time scales, which is in 

accordance with the complex systems perspective in sports (Davids et al., 2003, 

2014; Seifert et al., 2013). We believe that future applications of the complexity 

perspective will advance insights in the domain of sport and motor performance. 
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