
 

 

 University of Groningen

Cellular metabolism regulates contact sites between vacuoles and mitochondria
Hönscher, Carina; Mari, Muriel; Auffarth, Kathrin; Bohnert, Maria; Griffith, Janice; Geerts,
Willie; van der Laan, Martin; Cabrera, Margarita; Reggiori, Fulvio; Ungermann, Christian
Published in:
Developmental Cell

DOI:
10.1016/j.devcel.2014.06.006

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2014

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Hönscher, C., Mari, M., Auffarth, K., Bohnert, M., Griffith, J., Geerts, W., van der Laan, M., Cabrera, M.,
Reggiori, F., & Ungermann, C. (2014). Cellular metabolism regulates contact sites between vacuoles and
mitochondria. Developmental Cell, 30(1), 86-94. https://doi.org/10.1016/j.devcel.2014.06.006

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 26-12-2020

https://doi.org/10.1016/j.devcel.2014.06.006
https://www.rug.nl/research/portal/en/publications/cellular-metabolism-regulates-contact-sites-between-vacuoles-and-mitochondria(569eeef7-3f67-4e90-ac14-41518f0d234a).html
https://doi.org/10.1016/j.devcel.2014.06.006


Developmental Cell

Short Article
Cellular Metabolism Regulates Contact Sites
between Vacuoles and Mitochondria
Carina Hönscher,1 Muriel Mari,2 Kathrin Auffarth,1 Maria Bohnert,3 Janice Griffith,2 Willie Geerts,4 Martin van der Laan,3

Margarita Cabrera,1 Fulvio Reggiori,2 and Christian Ungermann1,*
1Biochemistry Section, Department of Biology/Chemistry, University of Osnabrück, Barbarastrasse 13, 49076 Osnabrück, Germany
2Department of Cell Biology, Center for Molecular Medicine, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht,
the Netherlands
3Institute for Biochemistry and Molecular Biology, ZBMZ, and BIOSS Centre for Biological Signalling Studies, University of Freiburg,

Stefan-Meier-Strasse 17, 79104 Freiburg, Germany
4Molecular Cell Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
*Correspondence: cu@uos.de

http://dx.doi.org/10.1016/j.devcel.2014.06.006
SUMMARY

Emerging evidence suggests that contact sites be-
tween different organelles form central hubs in the
coordination of cellular physiology. Although recent
work has emphasized the crucial role of the endo-
plasmic reticulum in interorganellar crosstalk, the
cooperative behavior of other organelles is largely
unexplored. Here, we identify a contact site named
vCLAMP (vacuole andmitochondria patch) that inte-
grates mitochondria with the lysosome-like vacuole
and thus the endocytic pathway. vCLAMPs depend
on the vacuolar HOPS tethering complex subunit
Vps39/Vam6 and the Rab GTPase Ypt7, which also
participate in membrane fusion at the vacuole.
Intriguingly, vCLAMPs are located proximal to the
ER-mitochondria encounter structure (ERMES)
complexes, and an increase in vCLAMPs can rescue
the growth defect of ERMES mutants. Importantly,
the persistence of vCLAMPs is regulated by phos-
phorylation of Vps39 and is strongly reduced during
respiratory growth. The identification of this organ-
elle contact site reveals a physical and metabolic
interconnection between the endocytic pathway
and mitochondria.

INTRODUCTION

Within the endomembrane system, organelles are tightly inter-

connected via vesicles that carry lipids and proteins between

them. Mitochondria, which form a tubular network across the

entire cell and have essential functions in respiration, Fe-S clus-

ter generation, amino acid biosynthesis, apoptosis, and carbo-

hydrate metabolism, are largely excluded from this vesicular

transport system. Consequently, mitochondria have to rely

on alternative mechanisms to exchange proteins, lipids, and

metabolites with other organelles. Initially identified via electron

microscopy as 10–30 nm junctions, contact sites are now well-

accepted, but poorly characterized sites that couldmediate non-

vesicular exchange between organelles (Elbaz and Schuldiner,
86 Developmental Cell 30, 86–94, July 14, 2014 ª2014 Elsevier Inc.
2011). Multiple contact sites have been described between the

endoplasmic reticulum (ER) and other organelles, including

plasma membrane, Golgi, and endosomes (Hanada, 2010 ;

Eden et al., 2010; Giordano et al., 2013; Manford et al., 2012),

but also mitochondria, named mitochondrial-associated mem-

branes (MAMs; Achleitner et al., 1999; de Brito and Scorrano,

2008; Elbaz and Schuldiner, 2011; Kornmann et al., 2009).

MAMs have been implicated in the transport of Ca2+ and phos-

pholipids from the ER to the inner mitochondrial membrane

(Osman et al., 2011). In yeast, the ER is attached to the mito-

chondrial surface via the ER-mitochondria encounter structure

(ERMES), which consists of two integral outer mitochondrial

membrane proteins, Mdm34 and Mdm10, the ER protein

Mmm1, and the peripheral outer mitochondrial membrane pro-

tein Mdm12 (Kornmann et al., 2009), although the function of

ERMES in lipid transfer has been debated (Nguyen et al., 2012).

Mitochondrial and vacuolar biogenesis seem to affect each

other. For instance, vacuole morphology is affected by a loss

of the cardiolipin synthase Crd1 (Chen et al., 2008), whereas

several endosomal and vacuolarmutants, including all V-ATPase

subunits, result in a mitochondrial petite phenotype (Merz and

Westermann, 2009) or affect mitochondrial functions in longevity

(Hughes and Gottschling, 2012). We considered the possibility

that some of the identified connections may be the result of a

direct contact between both organelles.
RESULTS

Identification of a Vacuole-Mitochondria Contact Site
To search for membrane contacts, we simultaneously traced

mitochondria, labeled with OM45-GFP, and fluorescently

stained vacuoles and observed repetitive contacts between

both organelles (Figure 1A). Using our newly established electron

tomography method, we confirmed such contacts at the ultra-

structural level in 200–250 nm cryosections. Vacuole-apposed

mitochondria formed contact sites (i.e., distance of two adjacent

membranes less than 10 nm; Holthuis and Levine, 2005) approx-

imately 100 nm wide, with crista junctions close by (Figure 1B).

To identify components involved in these contacts, we

screened candidate proteins of the vacuole. Because contact

sites are rare in wild-type cells, the analysis of deletion mu-

tants proved to be difficult. Because it was postulated that

mailto:cu@uos.de
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Figure 1. Identification of Vps39-Dependent Contact Sites

(A) Contacts between vacuoles and mitochondria in wild-type. Z stack of consecutive 0.2 mm sections of a wild-type (WT) strain expressing the mitochondrial

marker protein Om45-GFP. Vacuoles were stained with FM4-64. Cells were depicted by fluorescence microscopy. Arrowheads indicate contacts; scale bars

represent 5 mm in (A), (C), and (I).

(B) Sequential tomograph slices (with or without contours, or contours alone; mitochondrion, red; vacuole, blue) illustrating the contact site between a mito-

chondrion and a vacuole, which is highlighted with an arrow. Scale bar represents 100 nm.

(C) Vps39-induced vacuole-mitochondria contacts. Localization of mitochondria and vacuoles was analyzed as in (A) in a WT (upper) and a strain overexpressing

Vps39 under control of the TEF1 promoter (lower). Arrowheads indicate vacuole-mitochondria contacts.

(D–H) Ultrastructural analysis of a strain overexpressing GFP-Vps39 (E–H) in comparison to a WT strain (D). The fusion protein was visualized using antibodies

against GFP. GFP-Vps39 localizes to vacuoles and is enriched at contact sites between vacuoles and mitochondria. CW, cell wall; PM, plasma membrane; ER,

endoplasmic reticulum; M, mitochondria; V, vacuoles. Scale bars represent 200 nm. Yellow arrowheads indicate crista junctions fromwhere cristae protrude into

the matrix lumen.

(I) Contacts require Ypt7-associated Vps39, but not its HOPS integration. N-terminally GFP tagged Vps39 was expressed under the TEF1 promoter in vps41D or

ypt7D strains. Mitochondria were depicted with Shm1-3xmCherry.

See also Figures S1 and S2.
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hyperactivation of a tether should increase the extent of the

respective membrane contact site (MCS) (Pan et al., 2000; Helle

et al., 2013), we used overexpression to test if contacts between

vacuoles and mitochondria would enlarge. During SNARE-

dependent membrane fusion, vacuoles are initially tethered to

endosomes or other vacuoles via the HOPS tethering complex.

Within HOPS, Vps41/Vam2 and Vps39/Vam6 directly bind the

Rab GTPase Ypt7 (Balderhaar and Ungermann, 2013; Bröcker

et al., 2012). We reasoned that the same machinery might have

the potential to also interact with mitochondria. Neither overex-

pression of Vps41, nor of Vps11, which is critical for HOPS as-

sembly, resulted in any mitochondrial accumulation, and both
D

proteins localized largely to the cytosol or vacuoles (Figures

S1A, S1C, S1D, and S1G available online). Likewise, overexpres-

sion of Ypt7 resulted in dot-like structures proximal to the vacu-

ole (Figure S1A; Balderhaar et al., 2010), which did not overlap

with mitochondria and were identified as multivesicular bodies

with immunoelectron microscopy (IEM) (Figures S1E–S1G).

Strikingly, overexpression of Vps39 caused amassive expansion

of the contacts between vacuoles and mitochondria (Figure 1C).

GFP tagging of Vps39 further showed that Vps39 itself accumu-

lated at the contact sites, which extended along the surface of

vacuoles (Figure S1A). This strong apposition of both organelles

led to a clustered appearance of mitochondria (Figure S1A).
evelopmental Cell 30, 86–94, July 14, 2014 ª2014 Elsevier Inc. 87
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Ultrastructural analyses with IEM revealed a strong Vps39-

dependent apposition of mitochondria to vacuoles, and located

Vps39 mainly in the contact sites (Figures 1E–1H). Hereafter, we

will refer to these contact sites as the vacuole and mitochondria

patches (vCLAMPs). Interestingly, an increase of contacts also

affected the mitochondrial membrane morphology: cristae

were visible almost exclusively outside the contact site and

in wild-type (Figures 1D, 1G, 1H, and S1B). At Vps39-enriched

contacts, inner membranes appeared flat and aligned along

the outer membrane. The number of cristae per micrometer of

membrane was strongly reduced (Figures 1E–1H and S1B), sug-

gesting that either vCLAMPs preferentially form at sites were

cristae are excluded or that vCLAMP formation itself influences

mitochondrial inner membrane organization.

To test whether Vps39 needed to be part of the HOPS com-

plex for contact formation, we monitored Vps39-induced con-

tacts in vps41D or vps11D mutants, which do not form an intact

HOPS complex anymore (Ostrowicz et al., 2010). Although

neither deletion affected mitochondrial morphology per se (Fig-

ure S1I), overproduction of Vps39 resulted in massive cocluster-

ing ofmitochondria and vacuolar fragments (Figures 1I and S1H).

In contrast, in the absence of its vacuolar binding partner Ypt7,

GFP-Vps39 became cytosolic, and mitochondrial morphology

was restored (Figure 1I). We thus concluded that the contacts

are Vps39- rather than HOPS-specific and depend on Ypt7.

Crosstalk between Two Mitochondrial Membrane
Contact Sites
In a search for contact site function, we initially tested for a role

in mitophagy, which requires HOPS. However, extension of

vCLAMPs did not affect mitophagy (Figure S2A); their formation

was independent of known mitophagy-specific proteins (Fig-

ure S2B; Kanki et al., 2009), and did not affect mitochondrial in-

heritance (Figure S2C). We then analyzed previously identified

contact sites at mitochondria and vacuoles relative to vCLAMPs.

In agreement with our IEM analyses (Figure 1), we did not

observe overlap with the nuclear-vacuolar junction, marked by

the ER protein Nvj1 (Pan et al., 2000), endosomes, or peroxi-

somes labeled with Vps8 and Pts1, respectively (Figure 2A). In

contrast, the mitochondrial ERMES subunit Mdm34 was found

in almost half of all cases in proximity to vCLAMPs (Figures 2A

and S3B), suggesting that ER-mitochondrial contacts and

vCLAMPs might influence each other. We therefore wondered

if the known growth defects of ERMES mutants (Kornmann

et al., 2009) would be influenced by enhanced vacuolar-

mitochondrial contacts. Strikingly, Vps39 overproduction, which

did not affect growth of wild-type cells, rescued growth of

mdm10 and mdm12 mutants on glucose medium. In addition,

growth on glycerol, where ERMES mutants are inviable, was

partially restored, suggesting that residual vCLAMPs formation

during respiration is sufficient to compensate for a loss of

ERMES-mediated contact sites (Figure 2B). Moreover, strongly

enhanced vCLAMPs were observed in both mutants, which is

likely due to the condensed shape of mitochondria in ERMES

mutants (Figure S3A). Thus, ERMES itself is not needed to

generate vCLAMPs, whereas loss of ERMES might enhance

vCLAMP formation. These observations suggest that both vacu-

olar and ER contacts contribute to mitochondrial functionality

possibly carrying partially redundant functions.
88 Developmental Cell 30, 86–94, July 14, 2014 ª2014 Elsevier Inc.
Metabolic Control of Vacuole-Mitochondrial Contacts
Because mitochondria strongly proliferate during respiratory

growth on glycerol, vacuolar and ER contact sites might be

affected under these conditions. Indeed, the number of ERMES

sites as marked by Mdm34-GFP, Mdm12-GFP, or Mmm1-GFP

strongly increased in cells grown in glycerol as the sole carbon

source (Figures 2C and 2D), suggesting that ERMES sites

(Figure 2E) become more important during respiration. To our

surprise, contacts between mitochondria and vacuoles signifi-

cantly decreased under the same conditions (Figures 3A and

3B). Likewise, the fraction of Vps39 that could be copurified

with mitochondria in glucose was lost in mitochondrial fractions

if purification was done from glycerol-grown cells (Figure 3C).

We then tested if the re-addition of glucose to the medium

would establish vCLAMPs. The reappearance did not occur

instantaneously and was best seen after 180 min. During this

period, a large portion of the mitochondria was degraded

by mitophagy as apparent from the vacuolar luminal staining

(Figure 3D). This suggests that vCLAMPs could be impor-

tant in glucose-grown cells and partially compensate for

the ERMES-mediated mitochondria-ER contacts. Under respi-

ratory growth conditions, vCLAMPs are however strongly

reduced, suggesting a tight metabolic connection between

both contact sites.

We next asked for the potential molecular mechanism of regu-

lation, and focused on Vps39 as the most obvious candidate,

which binds Ypt7. To ask if the interaction of Vps39 and Ypt7

is regulated by metabolic changes, we relocalized Vps39 by

tagging the endogenous protein with a C-terminal Fis1 trans-

membrane domain to the mitochondrial surface (Figure 3E),

which was confirmed by colocalization with a mitochondria-

targeted BFP (Figure 3F). Mitochondria containing Vps39-Fis1

remained filamentous with distinct sites where Vps39 was en-

riched and close contacts with vacuoles were observed with

fluorescence microscopy (Figure 3F) and confirmed with ultra-

structural analysis (Figures 3G, S4A, and S4B). This contact

was not as strong as that observed for overexpressed Vps39,

and some mitochondria remained separated from the vacuoles

(Figures 3F, 3G, and S4B–S4E). Absence of Ypt7 abolished

accumulation of Vps39-Fis1 and led to an even distribution along

the mitochondrial filaments as reported for the wild-type Fis1

protein (Mozdy et al., 2000; Figure 3F). This result supports

the previous finding that vCLAMPs establishment depends

on Ypt7-Vps39 (Figures 1C and 1I). Mitochondria-anchored

Vps39-Fis1 appeared to bind other HOPS subunits and promote

vacuolar fusion because the vacuoles remained largely round.

Importantly, mitochondria-anchored Vps39 remained in dot-

like structures associated with the vacuoles even in glycerol

(Figure 3F), conditions under which the normal vCLAMPs are

strongly reduced. This shows that the Ypt7-Vps39 interaction

does not respond to respiratory growth conditions, but only

the contact between Vps39 and mitochondria.

Phosphorylation is a common mechanism to regulate protein

function in response to growth condition changes. Because

the ability of Vps39 appeared to be regulated by cellular meta-

bolic adjustments to carbon sources such as glycerol, we asked

whether this HOPS subunit might be a target of phosphorylation.

We therefore purified the protein from either glucose or glycerol-

grown cells and searched for phosphorylation sites (Figure S3C).
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Figure 2. Crosstalk of vCLAMPs with Other Membrane Contact Sites

(A) Relative distribution of Vps39 contacts to membrane contact sites and other organelles. The indicated marker proteins (Nvj1 for the nuclear-vacuolar

junctions, Vps8 for endosomes, and Mdm34 for ERMES) were tagged with 3xmCherry. For peroxisomes, GFP-Pts1 was analyzed in the presence of overex-

pressed mCherry-Vps39. White boxes indicate enlarged areas. Scale bars in (A) and (C) represent 5 mm. Quantification is described in Figure S3B.

(B) Influence of vCLAMPs on ERMESmutants. ERMESmutant strainsmdm12D andmdm10Dwith or without overexpressed GFP-Vps39 were spotted in 10-fold

dilutions onto plates containing either glucose or glycerol.

(C and D) ERMES proliferates under respiratory growth conditions. C-terminally GFP-tagged ERMES subunits Mdm12, Mdm34, and Mmm1 were depicted in

glucose- or glycerol-containing medium. For growth in glycerol, glucose-grown cells were washed twice with water, diluted in glycerol-containing media, and

grown for 6 hr before imaging. Sum projections of z stacks of an entire cell are shown. Quantification of 350–400 cells from three independent experiments is

shown in (D). Data are mean ± SD.

(E) Schematic model of the ERMES complex.

See also Figure S3.
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Only in glycerol-grown cells, we detected phosphopeptides that

matched to residues S246, S247, S249, and S250 within the

Vps39 N-terminal part. We therefore generated phosphomimetic

(S-D) and nonphosphorylatable (S-A) versions of Vps39, in which

all identified phosphorylated serines were mutated, and ex-

pressed them instead of wild-type Vps39. In agreement with

the observed phosphorylation status of Vps39 in glycerol, we de-

tected vCLAMPs in cells expressing Vps39 S-A, whereas cells

with Vps39 S-D showed strongly reduced vCLAMPs (Figures

4A and 4B). Importantly, cells expressing Vps39 S-D still

maintained round vacuoles, indicating that vacuole biogenesis

per se was not affected (Figure 4A). We thus conclude that

vCLAMPs are formed and regulated via Vps39 phosphorylation

(Figure 4D).
D

ERMES-mediated ER-mitochondria contact and Vps39-medi-

ated vCLAMPs appeared to be regulated in a reciprocal manner

in response to the metabolic status of cells, suggesting that both

contacts/structures are involved in similar physiological func-

tions/pathways, but under fundamentally different overall condi-

tions (respiratory versus fermentative metabolism). In agreement

with this idea, genetic interaction studies revealed that the com-

bined deletion of vps39D and mdm34D was lethal (Figure S3D;

Elbaz-Alon et al., 2014 [this issue of Developmental Cell]). The

absence of Vps39 causes multiple defects that are associated

with vesicular transport and vacuolar functionality (Nakamura

et al., 1997; Price et al., 2000a, 2000b), which hampers the

conclusion that the synthetic lethality is a direct consequence

of impaired vCLAMP formation. Hence, we asked whether the
evelopmental Cell 30, 86–94, July 14, 2014 ª2014 Elsevier Inc. 89
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Figure 3. vCLAMPs Respond to Respiratory Growth Conditions
(A) Loss of vCLAMPs in respiratory growth conditions. Localization of vacuoles marked by overexpressed GFP-Vps39 and mitochondria labeled with

Om45-3xmCherry was monitored with fluorescence microscopy. Cells were grown in medium containing glycerol or glucose as described in the Experimental

Procedures. Scale bar represents 5 mm.

(B) Quantification of cells containing vCLAMPs (n = 700) from four independent experiments. Data are mean ± SD.

(C) Association of Vps39 with purified mitochondria is lost in glycerol. Mitochondria were isolated from strains expressing C-terminally TAP-tagged Vps39 under

either endogenous promoter or overexpressed from the GPD1 promoter, which were grown in either glucose- or glycerol-containing medium. Blots were

decorated with antibodies against the mitochondrial Tom40 and Vps39. T, total cellular protein; M, purified mitochondria. Dashed box in the top row shows a

higher exposure of endogenous Vps39.

(D) Reformation of vCLAMPs occurs after glucose addition. Glucose was added to a final concentration of 2% (w/v) to a glycerol-grown culture as shown in (A)

and localization of GFP-Vps39 was followed by fluorescent microscopy at the indicated time points. Scale bar represents 5 mm.

(E) Schematic model of Vps39 topology and its interaction with Ypt7 and with a putative mitochondrial binding partner (black). To the right, the artificial targeting

of Vps39 via the mitochondrial Fis1 transmembrane domain (TMD) is shown.

(F) Metabolic control of the Vps39-Ypt7 interaction. N-terminally GFP-tagged Vps39 with a C-terminal Fis1 transmembrane domain was monitored with

fluorescence microscopy in WT and ypt7D cells grown in presence of glucose or glycerol as in (A). Vacuoles were labeled with FM4-64, mitochondria were

followed by expression of matrix-targeted BFP. Scale bar represents 5 mm.

(G) Ultrastructural analysis of a strain expressing GFP-Vps39-Fis1 shown in (F). M, mitochondria; V, vacuole. Scale bar represents 200 nm.

See also Figure S4.
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Vps39 S-A and S-D variants would affect viability when ex-

pressed in the mdm34D strain because phosphorylation solely

regulates vCLAMPs formation and leaves HOPS function unaf-

fected (Figure 4A). Indeed, Vps39 S-A rescued the growth defect

caused by the mdm34D deletion partially, whereas Vps39 S-D

did not rescue, but decreased cellular fitness even greater (Fig-
90 Developmental Cell 30, 86–94, July 14, 2014 ª2014 Elsevier Inc.
ures 4C and S3D). However, unlike the vps39 deletion, the Vps39

S-D mutant was not synthetically lethal with mdm34D. Because

the mutated versions of Vps39 were expressed under control

of the endogenous VPS39 promoter, this result also shows

that phosphorylation of Vps39 controls vCLAMP function inde-

pendently from overexpression.
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(D) Model of vCLAMPs dynamics relative to other intracellular membrane contact sites. Contacts are lost upon phosphorylation of Vps39. ERMES, ER-mito-

chondria encounter structure.

See also Figure S3.
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DISCUSSION

We demonstrate here the identification of a direct physical

contact between mitochondria and vacuoles. Contact sites are

formed by Vps39 and Ypt7, but independently of HOPS, sug-

gesting that Vps39 has a dual role on vacuoles. The nucleus-vac-

uole junctions in yeast and ER-late endosome contact sites in

metazoans are formed by Vac8 and Rab7, respectively, two fac-

tors involved in vesicular transport processes in the endolysoso-

mal system (Pan et al., 2000; Rocha et al., 2009). A participation

of fusion regulators in membrane contact site formation might

allow coregulation of vesicular and nonvesicular transport routes

to integrate both types of pathways andmake intracellular trans-

port process more efficient (Hönscher and Ungermann, 2014).

Furthermore, vCLAMPs are regulated by phosphorylation of

Vps39, indicating that they are dynamic metabolic hubs inti-

mately embedded into cellular physiology. Known metabolically

regulated kinases include the TOR kinases, Snf1/AMPK and pro-

tein kinase A (De Virgilio, 2012; Jewell et al., 2013). Interestingly,

our bioinformatic analyses indicate the presence of a Snf1

consensus site within Vps39. The function of vCLAMPs as a
D

metabolic hub is supported by the physical proximity and ge-

netic interaction with ERMES components and the effects of

vCLAMP propagation on the organization of the inner mitochon-

drial membrane. Several studies previously showed thatmutants

in the endocytic pathway have strong effects on mitochondrial

biogenesis. A genome-wide screen identified Vps39 among

the many genes that result in mitochondrial petite phenotypes

(Merz and Westermann, 2009). In turn, mutants in cardiolipin

synthase or phosphatidylglycerolphosphate synthase, two pro-

teins involved in the generation of cardiolipin, a mitochondria-

specific lipid, affect vacuole morphology (Chen et al., 2008),

although not fusion (Stroupe, 2012). This suggests that both

organelles indeed exchange lipids and other nutrients. In agree-

ment, double mutants of vps39 and ERMES are synthetically

lethal, and recovered mitochondria from cells depleted for both

partners have strongly altered phospholipid profiles (Elbaz-

Alon et al., 2014). This suggests that vCLAMPs could be an

alternative site for the transfer of phospholipids (and/or other

metabolites) in addition to the ERMES complex, which could

explain the discrepancies in the results on lipid transfer of

ERMES mutants (Kornmann et al., 2009, 2011; Nguyen et al.,
evelopmental Cell 30, 86–94, July 14, 2014 ª2014 Elsevier Inc. 91
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2012; Elbaz-Alon et al., 2014). Furthermore, both Mdm10 and

Mdm12 are critical for the biogenesis of essential mitochondrial

outer membrane proteins (Wiedemann et al., 2009), suggesting

that ERMES mutants may have additional defects that cannot

be compensated by vCLAMPs. Yeast favors ERMES in glycerol

conditions while the abundance vCLAMPs decreases (Figures

2C, 2D, 3A, and 3B), suggesting that both sites are regulated

in a reciprocal manner and gain importance under different phys-

iological conditions. In agreement with this, Elbaz-Alon and col-

leagues reported that absence of Vps39 increases abundance of

ERMES foci (Elbaz-Alon et al., 2014). Interestingly, upregulation

of Vps39 did not decrease the number of ERMES foci (not

shown), indicating that the reciprocal regulation is not mediated

merely by the physical presence of the other MCSs, but due to

the physiological requirement of an alternative route. Because

vacuoles are closely linked to amino acid sensing via the lyso-

somal EGO/LamTOR and TORC1 (Jewell et al., 2013), and amino

acid catabolism funnels the carbon backbone into the citric

acid cycle, additional connections beyond lipid transfer are likely

important. These might be critical to integrate the metabolic and

nutritional status of the cell into different transport pathways.

Recently, Daniele and colleagues reported a physical contact

between mitochondria and melanosomes, lysosome-related or-

ganelles in pigment cells, revealing that contact sites between

mitochondria and organelles of the endolysosomal system prob-

ably exist in higher eukaryotes as well (Daniele et al., 2014).

We expect that further analysis of vCLAMPs will provide detailed

insights into the organellar crosstalk via MCSs.

EXPERIMENTAL PROCEDURES

Yeast Strains, Plasmids, and Molecular Biology

Strains, plasmids, and primers used and description of site directed mutagen-

esis of VPS39 are presented in the Supplemental Experimental Procedures.

Terminal tagging and deletion of genes were done using homologous recom-

bination of PCR fragments (Janke et al., 2004).

Fluorescence Microscopy

Yeast cells were grown to midlog phase in yeast extract peptone dextrose

(YPD), yeast extract peptone glycerol, or synthetic complete medium lacking

selected amino acids or nucleotides, collected by centrifugation, washed

once with synthetic complete medium supplemented with all amino acids

and the respective carbon source, and immediately analyzed with fluores-

cence microscopy. For FM4-64 staining of vacuoles, cells were incubated

with 30 mM FM4-64 for 30 min, washed twice with full medium supplemented

with the respective carbon source, and incubated in the samemedium without

dye for 1 hr. Images were acquired on a Deltavision Elite imaging system

(GEHealthcare) or a DM5500 Bmicroscope (Leica). Detailed information about

the microscopes and software is provided in the Supplemental Experimental

Procedures.

Electron Microscopy and Tomography

Immunoelectron microscopy examinations were performed using a goat anti-

GFP antibody (Rockland Immunochemicals) as previously described (Griffith

et al., 2008).

The relative distribution of the immunogold labeling in cells overexpres-

sing GFP-Vps39, GFP-Vps41, and GFP-Ypt7 was determined by randomly

analyzing 1,000 gold particles per strain. A gold particle was assigned to a

well-defined organelle (vCLAMP, vacuole or MVBs) when no further than

15 nm away from the limiting membrane or cytoplasm.

Thenumber of cristaepermicrometerwascalculated aspreviouslydescribed

(Rabouille, 1999). Briefly, in thewild-type strain, 50mitochondriawere randomly

selected before to measure their surface section using the point-hit method
92 Developmental Cell 30, 86–94, July 14, 2014 ª2014 Elsevier Inc.
and to count the number of cristae distinctively forming from the inner mem-

brane of this organelle. In cells overexpressing GFP-Vps39, 50 mitochondria

tethered with the vacuole were selected and subsequently the surface section

of both the vCLAMP and the unassociated mitochondria surface were

measured with the point-hit method. The cristae in these two regions were

also counted. The number of cristae per micrometer was obtained by dividing

the number of cristae by the length of the surface section.

Electron tomography reconstructions were carried out on 200–250 nm thick

cryosections prepared as described elsewhere (M.M., W.G., and F.R., unpub-

lished data). Dual axis tilt series were recorded using a Tecnai 20 electron

microscope (FEI) with an angular range of �60 to +60 degrees with 1-degree

increments. In this way, each tilt series contained 121 images. The tilt series

were aligned using fiducial gold particles and single-axis tilt tomograms

were created by combining the two R-weighted back projections using the

IMOD program package (Kremer et al., 1996). The tomograms had a final res-

olution of approximately 4 nm and weremounted into movies using QuickTime

software (Apple).

Tetrad Analysis

Two yeast strains with different mating types were streaked out on a double-

selective plate to allow mating and diploid cell selection. Diploid cells were

cultured in YPD overnight to a stationary phase, pelleted, resuspended in re-

sidual medium, and plated as one large drop onto potassium acetate plates

(1% [w/v] potassium acetate, 3% [w/v] agar). After 3 days, a small amount

of cells was dissolved in 200 ml sterile water supplemented with 5 U/ml

zymolyase (MP Biomedicals) and incubated for 10 min at room temperature.

The reaction was stopped by a short incubation on ice and the addition of

400 ml sterile water. Then 15 ml of this mixture were streaked onto a YPD plate,

and tetrads were separated with the help of a micromanipulator and grown for

at least 3 days. The genotype of the spores was determined by testing growth

on different selective media.

Serial Drop Dilution Assays

Cells were grown in YPD to logarithmic phase, washed twice with sterile water,

and diluted to an optical density 600 (OD600) of 0.25. Serial dilutions (1:10) were

spotted onto different plates and imaged after growth for 2–4 days at different

temperatures.

Purification of Mitochondria

Yeast cells were grown in full medium containing either glucose or glycerol as a

carbon source. The main culture was inoculated from a preculture grown for

either 12 hr (glucose) or 26 hr (glycerol) with an appropriate amount to reach

2.5 OD600 after 12 hr of growth, then 2,500 OD600 units of cells were harvested

and incubated in dithiothreitol (DTT) buffer (0.1 M Tris-H2SO4, pH 9.4, 10 mM

DTT) for 20 min at 30�C. Pellets were resuspended in spheroplasting buffer

(1.2Msorbitol, 20mMpotassiumphosphate,pH7.4) and treatedwithzymolyase

(MP Biomedicals) for 20 min at 30�C. Spheroplasts were homogenized in buffer

(0.6 M sorbitol, 10 mM Tris-HCl, pH 7.4, 1 mM EDTA, 1 mM phenylmethanesul-

fonylfluoride, 0.2% [w/v] BSA [essentially fatty acid-free, Sigma-Aldrich]) with 15

strokes using a tight-fitting potter. After two subsequent centrifugation steps for

5 min at 1,500 3 g and 4000 3 g, the final supernatant was centrifuged at

12,000 3 g for 15 min to pellet mitochondria. Crude mitochondrial fractions

were resuspended in SEM buffer (250 mM sucrose, 1 mM EDTA, 10 mM

MOPS-KOH,pH7.2) anddiluted to aprotein concentration of 5mg/ml.Onemilli-

liter of the fraction was loaded on top of a 60%, 32%, 23%, and 15% (w/v) step

sucrose gradient in EM buffer (1 mM EDTA, 10 mM MOPS-KOH, pH 7.2) and

centrifuged for 1 hr at 134,000 3 g at 4�C. Pure mitochondria were collected

at the 60%/32% sucrose interface, diluted with two volumes of SEM buffer,

and centrifuged at 10,0003 g for 5min. Pellets were resuspended in SEMbuffer

and protein concentration was estimated. Twenty-microgram aliquots of total

mitochondrial protein were centrifuged and pellets were resuspended in 23

SDS sample buffer (60 mM Tris, pH 6.8, 2% SDS, 10% glycerol, 5% 2-mercap-

toethanol, and 0.005% [w/v] bromophenol blue) and boiled for 5 min.

Purification of Vps39 from Yeast Cells and Protein Mass

Spectrometry

Vps39 was purified via a C-terminal TAP-tag from cells grown in either glucose

or glycerol. See the Supplemental Experimental Procedures for more details.
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Preparation of Total Protein Extract

One OD600 unit of cells was collected and resuspended in 0.5 ml of 10% (w/v)

trichloroacetic acid and incubated for 30 min at 4�C. Precipitated proteins

were washed once in ice-cold acetone, air-dried, resuspended in 13 SDS

sample buffer and boiled for 5 min.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be found with this article online at http://dx.doi.org/

10.1016/j.devcel.2014.06.006.
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