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The transcription factorNF-κB plays a critical role in the inflammatory response and it has been implicated in var-
ious diseases, including non-alcoholic fatty liver disease (NAFLD). Although transient NF-κB activation may pro-
tect tissues from stress, a prolonged NF-κB activation can have a detrimental effect on tissue homeostasis and
therefore accurate termination is crucial. CopperMetabolismMURR1Domain-containing 1 (COMMD1), a protein
with functions in multiple pathways, has been shown to suppress NF-κB activity. However, its action in control-
ling liver inflammation has not yet been investigated. To determine the cell-type-specific contribution of
Commd1 to liver inflammation, we used hepatocyte and myeloid-specific Commd1-deficient mice. We also
used a mouse model of NAFLD to study low-grade chronic liver inflammation: we fed the mice a high fat, high
cholesterol (HFC) diet,which results in hepatic lipid accumulation accompanied by liver inflammation. Depletion
of hepatocyte Commd1 resulted in elevated levels of the NF-κB transactivation subunit p65 (RelA) but, surpris-
ingly, the level of liver inflammationwas not aggravated. In contrast, deficiency ofmyeloid Commd1 exacerbated
diet-induced liver inflammation. Unexpectedlywe observed that hepatic andmyeloid Commd1 deficiency in the
mice both augmented hepatic lipid accumulation. The elevated levels of proinflammatory cytokines in myeloid
Commd1-deficient mice might be responsible for the increased level of steatosis. This increase was not seen in
hepatocyte Commd1-deficient mice, in which increased lipid accumulation appeared to be independent of in-
flammation. Ourmousemodels demonstrate a cell-type-specific role for Commd1 in suppressing liver inflamma-
tion and in the progression of NAFLD.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The Copper Metabolism Murr1 Domain-containing protein 1
(COMMD1) is the founder member of a relatively new family of pro-
teins, the COMMD family [1]. This protein family is distinguished by a
unique motif called the COMM domain, located at their carboxy-
terminus. Recent studies have demonstrated that COMMD1 acts in a
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wide variety of cellular processes, including hepatic copper transport
[2,3], hypoxia response [4–6], sodium, potassiumand chloride transport
[7–10], and in nuclear factor kappa B (NF-κB) signaling [11].We recent-
ly confirmed its role in hepatic copper homeostasis in liver-specific
Commd1 knockout mice [12]. On depletion of Commd1 in hepatocytes,
mice become susceptible to hepatic copper accumulation [12], similar
to dogs carrying a homozygous COMMD1 loss-of-function mutation
[2]. Notwithstanding its role in copper transport, the biological role of
COMMD1 in NF-κB signaling in the liver and in inflammatory liver dis-
eases has not yet been defined.

The NF-κB family of transcription factors plays a key role in the in-
flammatory responses. The family consists of five members, of which
p65 (RelA) and p50/p105 (NF-κB1) compose the canonical NF-κB path-
way. The p65/p50 heterodimer is sequestered in the cytoplasm by the
inhibitory IκB proteins. Activation of the canonical NF-κB pathway via
the kinase complex IKK results in translocation of p65/p50 dimer to
the nucleus for transcriptional activation of its target genes. COMMD1
has been shown to terminate NF-κB activity by acting as a scaffold pro-
tein in the E3 ubiquitin ligase complex (ECSSOCS1) [l,13]. ECSSOCS1

http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbadis.2014.06.035&domain=pdf
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promotes ubiquitination and subsequent proteasomal degradation of
p65 and destabilizes the interaction between p65 and chromatin.
Hence, depletion of COMMD1 results in elevated p65 levels and subse-
quently increased NF-κB activity [1,13,14].

The NF-κB signaling pathway has a remarkable physiological func-
tion in several liver diseases, including non-alcoholic fatty liver disease
(NAFLD) [15]. NAFLD consists of a wide spectrum of pathologies, rang-
ing from simple steatosis to non-alcoholic steatohepatitis (NASH), and
can even progress to liver fibrosis and cirrhosis, and in some cases to he-
patocellular carcinoma (HCC) [16]. The progression to the severe stages
of NAFLD, which are related to a poor prognosis, is thought to be driven
by inflammation, including the expression of the NF-κB-mediated cyto-
kines Il-6 and Tnf-α [16–18]. These proinflammatory cytokines are
mainly secreted by activated Kupffer cells, the resident liver macro-
phages, and they promote the progression of NAFLD towards NASH
[19,20]. In addition, the NF-κB signaling pathway in hepatocytes also
plays a role in NAFLD progression, as hepatocyte-specific depletion of
NEMO, the regulatory subunit of the IKK complex, results in chronic
steatohepatitis and eventually leads to the formation of liver tumors
[21]. Together these findings underscore the pivotal role of the NF-κB
signaling pathway in health and disease, but the contribution of
COMMD1 in hepatocyte NF-κB signaling and in inflammatory liver dis-
eases still remains elusive. To determine the cell-type-specific role of
COMMD1 in liver inflammation, we used hepatic and myeloid-specific
Commd1-deficient mice and a second mouse model of NAFLD for low-
grade, chronic liver inflammation. In these different mouse models,
we studied the level of diet-induced liver inflammation and the pro-
gression of hepatic steatosis.

2. Materials and methods

2.1. Animals

Conditional hepatocyte-specific (Commd1ΔHep) [12] and conditional
myeloid-specific knockoutmice (Commd1ΔMye)were obtained by cross-
ingCommd1loxP/loxPmice (here referred to aswild type (WT)mice)with
Albumin-Cre [22] or LysM-Cre [23] transgenic mice, respectively. Both
Commd1ΔHep and Commd1ΔMye mice were backcrossed in a C57BL/6J
background for more than 8 generations. Commd1loxP/loxP littermate
mice (WT) served as controls for Commd1ΔHep and Commd1ΔMye mice.
p55Δns/Δns; Commd1ΔHep were obtained by crossing p55Δns/Δns [24]
with Commd1ΔHep mice. All the experimental mice were males and
were housed individually. Theywere fed ad libitumwith either standard
rodent chow diet (RMH-B, AB Diets, Woerden, The Netherlands), or,
starting at 8–10 weeks of age, a high-fat, high-cholesterol (HFC) diet
(45% calories from butter fat) containing 0.2% cholesterol (SAFE Diets)
for a period of 12 weeks. p55Δns/Δns; Commd1ΔHep and p55Δns/Δns mice
were fed only a chow diet and were sacrificed at the age of 20 weeks.
All animals were sacrificed following a 4-hour morning fasting period.
Body weight and liver weight measurements were recorded. Collected
tissues were snap-frozen in liquid nitrogen and blood was collected by
means of heart puncture in K3EDTA-coated MiniCollect® tubes
(#450476, Greiner Bio-One, Alphen a/d Rijn, The Netherlands). The
right hepatic lobewas used for gene expression, immunoblot and histo-
logical analysis. Plasma was separated by centrifuging at 3000 rpm for
10min. at 4 °C. All animal-related studies were approved by the Institu-
tional Animal Care and Use Committee of the University of Groningen
(Groningen, The Netherlands).

2.2. Liver nuclear and cytosolic fraction isolation, DNA binding ELISA

Fractionationwas performed on fresh, ice-cold,mouse liver samples,
using the Nuclear Extract Kit (#40010, Active Motif, La Hulpe, Belgium)
according to themanufacturer's instructions. To study the activity of NF-
κB in fresh livers, the DNA binding of p65 was assessed using the
TransAM NF-κB p65 ELISA kit (#40096, Active Motif, La Hulpe,
Belgium) according to the manufacturer's instructions.
2.3. Isolation of bone marrow cells and peritoneal macrophages

Bone marrow cells isolated from either WT or Commd1ΔMye mice
were cultured and differentiated into macrophages, as described previ-
ously [25]. Peritoneal macrophages were isolated 3 days after injection
of 4% thioglycolate in the peritoneal cavity of eitherWT or Commd1ΔMye

mice.
2.4. Immunoblot analysis

Tissues were homogenized in NP40 buffer [0.1% Nonidet P-40 (NP-
40), 0.4 M NaCl, 10 mM Tris-HCl (pH 8.0), 1 mM EDTA] supplemented
with protease and phosphatase inhibitors and 30 μg of protein was load-
ed per gel lane. Samples were separated using sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to
Amersham™ Hybond™-P PVDF Transfer Membrane (#RPN303F, GE
Healthcare, Diegem, Belgium). Bands were visualized using ChemiDoc™
XRS+ System (Bio-Rad Laboratories BV, Veenendaal, the Netherlands).
2.5. Liver lipid extraction

15% (w/v) liver homogenates were prepared in 1× PBS and lipid ex-
traction was performed using the Bligh & Dyer method [26]. Samples
were analyzed for cholesterol and triglyceride content.
2.6. Cholesterol and triglyceride analysis in plasma and liver lipid samples

Total cholesterol (TC) levels were determined using a colorimetric
assay (11489232, RocheMolecular Biochemicals)with cholesterol stan-
dard FS (DiaSys Diagnostic Systems Gmbh, Holzheim, Germany) as a
reference. Triglyceride (TG) levels were determined using Trig/GB kit
(1187771, RocheMolecular Biochemicals) with Roche Precimat Glycer-
ol standard (16658800) as a reference.
2.7. Antibodies

In these experimental procedures we used the following antibodies:
rabbit polyclonal antibody against COMMD1 (11938-1-AP, Proteintech
Group, USA), mouse anti-β-Actin (A5441, Sigma-Aldrich Chemie B.V.,
Zwijndrecht, The Netherlands), rabbit anti-Tubulin (AB4047, Abcam,
Cambridge, UK), rabbit anti-Lamin A/C (2032, Cell Signaling Technology
Europe, B.V., Leiden, The Netherlands), rabbit anti-p65 (4764, Cell Sig-
naling Technology, Europe, B.V.), rabbit anti-IκBα (sc-371, Santa Cruz
Biotechnology Inc., Heidelberg, Germany), rabbit anti-Cd68 (#137002,
Biolegio, Nijmegen, The Netherlands) rabbit anti-F4/80 (#101201,
Biolegio, Nijmegen, The Netherlands), goat anti-rabbit IgG (H + L)-
HRP Conjugate (170-6515, Bio-Rad Laboratories BV, Veenendaal, The
Netherlands), goat anti-mouse IgG (H + L)-HRP Conjugate (170-6516,
Bio-Rad Laboratories BV).
2.8. Liver histology

Paraffin-embedded liver sections (4 μm) were stained with hema-
toxylin & eosin (H&E). Snap-frozen liver sections (5 μm) were stained
using Oil Red O (ORO) or antibodies against Cd68. F4/80 staining was
performed on either paraffin-embedded or snap-frozen liver sections.
Scoring of steatosis and lobular inflammation was performed in an un-
biased manner by an experienced, certified veterinary pathologist
using a method described previously [27].
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2.9. Gene expression analysis

Pieces of murine liver of approximately 100 mg were homogenized
in 1 ml QIAzol Lysis Reagent (Qiagen, Venlo, The Netherlands). Total
RNA was isolated by chloroform extraction. Isopropanol-precipitated
and ethanol-washed RNA pellets were dissolved in RNase/DNase free
water. 1 μg of RNA was used to prepare cDNA with the Quantitect Re-
verse Transcription Kit (Qiagen, Venlo, The Netherlands) according to
the protocol provided by the manufacturer. 20 ng cDNA was used for
subsequent quantitative real-time PCR (qRT-PCR) analysis using iTaq
SYBR Green Supermix with ROX (Bio-Rad Laboratories BV) and
7900HT Fast Real-Time PCR System (Applied Biosystems). The follow-
ing PCR program was used: 50 °C/2 min., 95 °C/10 min., 40 cycles of
95 °C/15 s and 60 °C/1 min. Expression data were analyzed using SDS
2.3 software (Applied Biosystems) and the standard curve method of
calculation. Mouse Cyclophilin A was used as an internal control gene.
The primer sequences we used are listed in Table S1.

2.10. Statistical analysis

All results are expressed as mean ± SEM. Statistical analysis was
performed using Prism 5.00 for Windows (GraphPad Software, CA,
USA) and the unpaired Student's t test. Results of P b 0.05 were consid-
ered to be statistically significant.

3. Results

3.1. Hepatic depletion of Commd1 results in increased levels of NF-κB
subunit p65

To elucidate the role of hepatic Commd1 in NF-κB signaling and in-
flammation in vivo, we depleted Commd1 in hepatocytes (Commd1ΔHep)
by crossing Commd1loxP/loxPmicewith Alb-Cre transgenicmice,mice ex-
pressing Cre-recombinase in adult hepatocytes [12]. Commd1ΔHep mice
showedmarked reduction in hepatic Commd1 levels, however some re-
sidual amount of Commd1was detected (Fig. 1A), which is likely due to
the expression of Commd1 in nonparenchymal cells, as approximately
80% of an adult liver genome exists in hepatocytes, the rest is located
in endothelial, stellate or Kupffer cells [28].

Since various cellular models demonstrated that down-regulation
of COMMD1 results in elevated p65 levels and subsequently increased
NF-κB activity [1,13], we first assessed the levels of p65 in nuclear
and cytosolic fractions of livers from WT (n = 6) and Commd1ΔHep

mice (n= 6–8) (Fig. 1A). We observed that Commd1ΔHep mice showed
clearly higher protein levels of p65 in both the cytosolic and nuclear
fractions of livers compared with WT mice.
A 
WT

Cytosol

Nuclear

Commd1 ΔHe

Fig. 1. Commd1mediates the levels of cytosolic and nuclear p65 in hepatocytes. (A) Fresh livers
tions, then p65 levels were determined by immunoblot analysis. Three representative mice pe
mice, as determined by quantitative RT-PCR. All values per group are shown as mean ± SEM.
Next, we determined whether the rise in protein p65 levels was
caused by an increase in p65mRNA levels (Fig. 1B). We detected no dif-
ference in hepatic p65 gene expression between Commd1ΔHep mice and
WT littermates, excluding the possibility that the increase in p65 pro-
tein levels was due to alterations in transcriptional regulation. In line
with previous in vitro studies [1,13], these data suggest that Commd1
depletion results in an increased protein stability of p65 in hepatocytes.

3.2. Hepatic Commd1 depletion aggravates steatosis, but not inflammation

Since NF-κB-mediated inflammation is associated with the progres-
sion of NAFLD towards a more severe NASH phenotype [29–31], we in-
vestigated the consequences of elevated p65 levels in hepatic Commd1-
deficient mice on inflammation in a mouse model of NAFLD induced by
an HFC diet. After 12 weeks of HFC feeding, we saw no differences in
body and liver weight between Commd1ΔHep and WT mice (Fig. 2A).
In addition, no liver damage was observed, as the plasma levels of the
liver enzymes ALT and AST were not markedly increased (data not
shown). Surprisingly however, total hepatic cholesterol and triglyceride
levels were significantly increased in the Commd1ΔHep mice following
12 weeks of HFC diet (Fig. 2B). This observation was supported by his-
tological analysis: hematoxylin and eosin (H&E) staining demonstrated
an increase in lipid deposits in the livers of Commd1ΔHep mice (Fig. 2C,
D), as confirmed by ORO staining (Fig. 2C). These differences were not
seen in chow-fed animals. Histologically, HFC-feeding markedly in-
creased the level of lobular inflammation in both WT and Commd1ΔHep

mice, but no alterations between the genotypes were seen (Fig. 2E).
In order to investigate the effect of Commd1 loss in hepatocytes on

inflammation in greater detail, we performed immunohistochemical
stainings. Immunostaining for the macrophage markers [32] Cd68
(amarker of activated macrophages [33]) and F4/80 (marker of mature
macrophages, highly expressed by Kupffer cells [33]) showed increased
infiltration ofmacrophages in the livers onHFC feeding (Fig. 3A), butwe
saw no differences between Commd1ΔHep and WT mice. Expression
analysis of Cd68 and F4/80, together with Cd11b, a migratory marker
of blood-derived monocytes [34], confirmed the immunohistochemical
results (Fig. 3B).

Next, hepatic mRNA levels of a number of NF-κB target genes were
determined (Fig. 3C). A significant increase in the expression of the pro-
inflammatory genes: Tnfα, Il-1α, Il-1β and Mcp1, and the NF-κB target
genes: Icam, and Tnfaip3 (A20) was detected following 12 weeks of
HFC feeding, but we saw no differences between Commd1ΔHep and WT
mice, corroborating the histological analysis. In addition, no substantial
difference in the expression of other NF-κB (Fig. S1A) or Commd genes
was seen (Fig. S1B). Altogether, hepatic deficiency of Commd1 exacer-
bated HFC diet-induced steatosis, but not liver inflammation.
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Fig. 2.Hepatic Commd1 deficiency aggravates lipid accumulation in HFC-fedmice. (A) Bodyweight (BW) and liver weight, represented as % of the BW, ofWT and Commd1ΔHep mice after
12 weeks onHFC diet and of control chow-fed groups. (B) Hepatic total cholesterol and triglyceride levels. Liver lipidswere extracted from snap-frozenmouse livers using the Bligh–Dyer
method for lipid extraction and analyzedwith a colorimetric assay. (C)H&EandOROstainingof hepatic tissue from4-hour fasted chow- andHFC-fedmice. H&E stainingwasperformedon
paraffin-embedded samples and ORO staining on snap-frozen hepatic cryo-sections. Representative images per group are shown. Scale bars represent 100 μm. (D) Histological evaluation
of liver steatosis. Steatosis was not present in chow-fedmice (N.D. = not detected). (E) Histological evaluation of inflammation. Inflammation score was based on the number of inflam-
matory foci per five random fields at 200×. All values per group are shown as mean ± SEM. Statistical significance was determined versus WT control mice: *P b 0.05, **P b 0.01.
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Since Commd1 is involved in multiple physiological processes [3,11,
35], it is possible that dietary intervention in combination with
Commd1 deficiency affects additional pathways that modulate diet-
induced liver inflammation, independent of its role in NF-κB signaling,
leading to the observed results. Therefore,wedecided to use a genetic ap-
proach to further evaluate the role of hepatocyte Commd1 in NF-κB-
mediated liver inflammation. We crossed Commd1ΔHep mice on a
p55Δns/Δns genetic background (p55Δns/Δns; Commd1ΔHep). The p55Δns/Δns

mice are homozygous for amutation in the gene encoding the tumor ne-
crosis factor receptor 1 (Tnfr1). This mutation results in impaired shed-
ding of the Tnfr1 from the cell surface, resulting in increased activation
of NF-κB and chronic, low-grade inflammation in the liver [24,36]. The
p55Δns/Δns; Commd1ΔHep mice were born without any overt phenotype
and in the expected Mendelian ratios. No differences in body and liver
weight were observed (Fig. 4A, B). In line with the phenotype of
Commd1ΔHep mice, hepatic Commd1 ablation in p55Δns/Δns mice also re-
sulted in elevated levels of p65 (Fig. 4C), with no alteration in p65
mRNA levels (Fig. 4D). Furthermore, similar to what we and others
have previously shown [24,36], p55Δns/Δns mice display a significant in-
crease in the number of inflammatory foci within hepatic lobules
(Fig. 4E). However, we saw no clear differences in the number of inflam-
matory foci between p55Δns/Δns (n = 6) and p55Δns/Δns; Commd1ΔHep

mice (n = 7) (Fig. 4E). This observation was corroborated by the fact
that the gene expression of proinflammatory markers and cytokines
was not affected by Commd1 deficiency (Fig. 4F). Only Il-1αmRNA levels
were significantly increased, but the level of inductionwas rathermild. In
addition to the NF-κB signaling pathway, TNF-α also activates apoptotic
pathways [37,38], and since NF-κB drives the expression of anti-
apoptotic genes, we also looked at the mRNA levels of anti-apoptotic
genes mediated by NF-κB (Fig. 4G). However, we saw no differences be-
tween the two groups (Fig. 4G).

Altogether, using two independent but complementary approaches,
we showed that depletion of Commd1 in hepatocytes leads to elevated
levels of the NF-κB subunit p65, both in the nucleus and cytoplasm, but
that it does not affect the level of liver inflammation induced by HFC-
feeding nor in Tnf-mediated chronic hepatitis.
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3.3. Steatosis and inflammation are exacerbated in myeloid-deficient
Commd1 mice

In addition to hepatocytes, myeloid cells (in particular macro-
phages) also play a crucial role in NF-κB-mediated liver inflamma-
tion and in the progression of NAFLD [39]. We therefore assessed
the role of myeloid Commd1 in liver inflammation during the devel-
opment of steatohepatitis. We crossed mice carrying floxed condi-
tional Commd1 alleles with LysM-Cre transgenic mice [23] to
specifically ablate Commd1 in the myeloid lineage (Fig. S2A,B) [40].
We fed WT (n = 6–7) and Commd1ΔMye mice (n = 6–7) either
chow or HFC diet for 12 weeks. Commd1 deficiency in myeloid
cells did not lead to differences in body and liver weight, neither in
chow- nor HFC-fed mice (Fig. 5A). The plasma levels of the liver en-
zymes ALT and AST were also not noticeably elevated (data not
shown). However, HFC-fed Commd1ΔMye mice showed a significant
increase in liver triglyceride levels compared to WT mice (Fig. 5B).
H&E staining of the livers corroborated the exacerbated liver
steatosis in Commd1ΔMye mice, and was further confirmed by ORO
staining (Fig. 5C, D).

In addition to the elevated hepatic fat deposits, histological scoring
also revealed an increase in hepatic inflammation (Fig. 5E). The micro-
scopic appearance of the livers showed inflammatory foci widespread
in the hepatic tissue. We therefore investigated the effect of myeloid
Commd1 depletion on liver inflammation in more detail. We stained
liver sections of Commd1ΔMye and WT mice for Cd68 and F4/80
(Fig. 6A). Histological scoring showed an increase in the number of in-
flammatory foci in Commd1ΔMye mice following 12 weeks of HFC feed-
ing. Moreover, this observation was confirmed by mRNA expression
analysis (Fig. 6B). In addition, we analyzed the expression of various
proinflammatory cytokines regulated by NF-κB, such as Tnf, Mcp-1,
Ccl5 and Icam (Fig. 6C). Dietary intervention markedly induced the ex-
pression of proinflammatory markers in both groups. Compared to
WTmice, Commd1ΔMye mice showed a significant increase inmRNA ex-
pression of most of the proinflammatory markers studied, except for
Cd11b and Ccl5, which both showed a trend towards elevated expres-
sion (Fig. 6B, C). In conclusion, depletion of Commd1 in myeloid cells
leads not only to increased liver inflammation, but also exacerbates
the progression of steatosis upon 12 weeks of HFC feeding.

4. Discussion

NF-κB signaling is an essential pathway in the progression of many
inflammatory diseases, including NAFLD [41,42]. It is therefore crucial
to identify the genes and mechanisms regulating the NF-κB pathway,
and these might lead to novel therapeutic strategies to treat NAFLD.
COMMD1, a pleiotropic protein, is involved in various pathways includ-
ing NF-κB signaling [1,11]. Here we evaluated the extent that Commd1
deficiency in either hepatocytes or macrophages contributes to liver in-
flammation and progression of NAFLD in mice. On the one hand we
showed that Commd1 has a cell-type-specific role in controlling liver
inflammation in NAFLD, since myeloid Commd1 deficiency, but not
hepatocyte-specific deletion, augmented the inflammatory tone of the
disease. On the other hand, we saw that depletion of Commd1 in either
cell type exacerbated diet-induced hepatic lipid accumulation.

Ablation of Commd1 in the myeloid lineage caused increased diet-
induced steatosis and liver inflammation concomitantwith the elevated
expression of several inflammatory cytokines, in particular Tnfα. Kupffer
cells are the main source of hepatic TNFα, which has been shown to be
an essential cytokine in the progression of NAFLD [39]. Blocking the
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Tnfα signaling pathway by deletion of either the Tnfr1 or Tnfα amelio-
rates NAFLD in mice [20,43,44]. In addition, leptin-deficient (Ob/Ob)
mice treated with anti-TNFα antibodies show a reduced level of liver
steatosis [45–47]. The increased lipid accumulation observed in HFC-
fed Commd1ΔMye mice might therefore be explained by the elevated
Tnfα expression in thesemice. Our observation of a higher inflammatory
tone in the liver of HFC-fed Commd1ΔMye mice is in line with our recent
study [40], in whichwe showed that myeloid depletion of Commd1 ex-
acerbates dextran sodium sulfate (DSS)-induced colitis and increases
the susceptibility to sepsis because it invokes a stronger inflammatory
response. Furthermore, Commd1 deficiency in bone-marrow derived
myeloid cells selectively altered the expression of LPS-mediated genes,
including a subset of genes involved in the immune response, and
genes directly regulated by NF-κB [40]. However, these expression
data also demonstrated that in addition to NF-κB, myeloid Commd1
also mediates other pathways activated by LPS, either directly or
indirectly [40]. In addition, the intestinal epithelial-deficient Commd1
mice do not show increased inflammation or any sensitivity difference
in DSS-induced colitis, resembling some aspects of the hepatic-specific
deficiency that we present here.

Despite the elevated levels of cytosolic and nuclear p65 (Fig. 1A),
Commd1 deficiency in hepatocytes did not affect the level of liver in-
flammation in either NAFLD (Fig. 3) or in mice with low-grade liver in-
flammation due to amutation in Tnfr1 [24,36]. Nonetheless, the increase
in p65 levels is in line with previous in vitro studies [1,13], which dem-
onstrated that COMMD1 promotes the ubiquitin-mediated proteolysis
of p65. Insufficiency of COMMD1 in U2OS cells [13] or loss of p65-
COMMD1 interaction [14] increased the steady-state and the protein
stability of p65, respectively. Togetherwith the unchangedmRNA levels
of p65 (Fig. 1B), these data suggest that the elevated p65 levels in
Commd1-deficient hepatocytes may result from an increased protein
stability of p65 caused by reduced p65 ubiquitination. Nevertheless,
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independent of the level of hepatocyte p65, the activity of NF-κB is not
changed upon depletion of Commd1 (Fig. 3C). A DNA-binding ELISA
assay to assess the activity of NF-κB supported this observation. Al-
though LPS injection itself significantly increased the activity of NF-κB
in the livers of WT and Commd1ΔHep mice, Commd1 deficiency did not
affect the level of NF-κB binding to DNA neither after PBS nor LPS
(Fig. S3). The level of NF-κB activity is tightly titrated through various
mechanisms [48–53] and numerous proteins controlling NF-κB signal-
ing have been identified [11]; we therefore speculate that the effect of
Commd1 loss is compensated for by another mechanism to restore a
basal NF-κB activity. We excluded the contribution of the well-known
NF-κB inhibitors, IκBα (Nfkbia) and A20 (Tnfaip3) [11]. NF-κB drives
the expression of both genes, but the mRNA levels of IκBα (Nfkbia)
and A20 (Tnfaip3) in Commd1ΔHep livers of chow- and HFC-fed mice
were not altered compared to WT mice (Fig. 3C). In line with this
observation, we saw no difference in IκBα (Nfkbia) protein levels in
p55Δns/Δns; Commd1ΔHep mice (Fig. 4C). In addition, we saw no marked
differences in the expression of other COMMD genes, a family of pro-
teins, which have the ability to inhibit NF-κB activity [1,11]. This
suggests that there is another homeostatic mechanism that prevents
uncontrolled NF-κB activity in Commd1-deficient hepatocytes, which
requires further studies to identify the mechanism and understand
what is happening.

Despite the lack of a higher inflammatory response, Commd1ΔHep

mice fed aHFC-diet surprisingly showedelevated levels of liver cholester-
ol and triglycerides (TG) compared toWT littermates (Fig. 2B). Supported
by histological analysis, these data indicate that hepatic Commd1 defi-
ciency aggravates steatosis. Although COMMD1 has been linked to the
regulation of biliary copper excretion andmay regulate trafficking of var-
ious transporters [2,9,54], including ATP7B, a P-type ATPase whichmedi-
ates copper excretion into the bile [55], we could not observe anymarked
changes in the biliary cholesterol excretion determined by the in vivo
Transintestinal Cholesterol Excretion (TICE) experiment [56] (data not
shown). Because we did not observe any marked changes in the mRNA
levels of various genes involved in lipid uptake, synthesis and excretion
(data not shown), a clear explanation for this observation is still missing.
However, as COMMD1 is associated with the intracellular trafficking of
various proteins and is localized to vesicles (reviewed in [3]), we
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speculate that COMMD1 acts as an adaptor protein in sorting/fusion of
vesicles, a process that is also involved in autophagy. Recent studies dem-
onstrated that inhibition ofmacroautophagy is associatedwith accumula-
tion of TG and cholesterol in lipid droplets [57,58]. It would therefore be
of interest to further investigate the hepatic function of COMMD1, and
to determine which kind of vesicles COMMD1 is localized to. Although
COMMD1 partially co-localizes to endosomal and lysomal markers
(reviewed in [3]), COMMD1-associated vesicles are still not fully charac-
terized. Based on its pleiotropic function, it is highly possible that
COMMD1 is not only involved in biliary copper excretion, but requires
further substantial investigation.

In conclusion, in this study we demonstrate that Commd1 represses
the level of inflammation in NAFLD in a cell-type-dependent manner.
Although hepatocyte Commd1 does not play a major role in liver in-
flammation, our data indicate that it does have a protective role in
slowing the progression of steatosis in mice. Furthermore, our current
knowledge advocates that its repressive action on inflammation is re-
stricted to myeloid cells and this seems to be a general phenomenon
in various disease models [40]. The mechanism by which myeloid
COMMD1 restrains inflammation might therefore be an interesting tar-
get for developing new treatment strategies for inflammatory diseases.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbadis.2014.06.035.
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