
 

 

 University of Groningen

Probing the Disordered Domain of the Nuclear Pore Complex through Coarse-Grained
Molecular Dynamics Simulations
Ghavami, Ali; Veenhoff, Liesbeth M.; van der Giessen, Erik; Onck, Patrick R.

Published in:
Biophysical Journal

DOI:
10.1016/j.bpj.2014.07.060

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2014

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Ghavami, A., Veenhoff, L. M., van der Giessen, E., & Onck, P. R. (2014). Probing the Disordered Domain
of the Nuclear Pore Complex through Coarse-Grained Molecular Dynamics Simulations. Biophysical
Journal, 107(6), 1393-1402. https://doi.org/10.1016/j.bpj.2014.07.060

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-11-2019

https://doi.org/10.1016/j.bpj.2014.07.060
https://www.rug.nl/research/portal/en/publications/probing-the-disordered-domain-of-the-nuclear-pore-complex-through-coarsegrained-molecular-dynamics-simulations(3837a020-2762-4235-aed2-764c2bc92f59).html


Biophysical Journal Volume 107 September 2014 1393–1402 1393
Article
Probing the Disordered Domain of the Nuclear Pore Complex through
Coarse-Grained Molecular Dynamics Simulations
Ali Ghavami,1 Liesbeth M. Veenhoff,2 Erik van der Giessen,1 and Patrick R. Onck1,*
1Zernike Institute for Advanced Materials and 2European Institute for the Biology of Ageing, University of Groningen, Groningen,
The Netherlands
ABSTRACT The distribution of disordered proteins (FG-nups) that line the transport channel of the nuclear pore complex
(NPC) is investigated by means of coarse-grained molecular dynamics simulations. A one-bead-per-amino-acid model is pre-
sented that accounts for the hydrophobic/hydrophilic and electrostatic interactions between different amino acids, polarity of
the solvent, and screening of free ions. The results indicate that the interaction of the FG-nups forms a high-density,
doughnut-like distribution inside the NPC, which is rich in FG-repeats. We show that the obtained distribution is encoded in
the amino-acid sequence of the FG-nups and is driven by both electrostatic and hydrophobic interactions. To explore the relation
between structure and function, we have systematically removed different combinations of FG-nups from the pore to simulate
inviable and viable NPCs that were previously studied experimentally. The obtained density distributions show that the maximum
density of the FG-nups inside the pore does not exceed 185 mg/mL in the inviable NPCs, whereas for the wild-type and viable
NPCs, this value increases to 300 mg/mL. Interestingly, this maximum density is not correlated to the total mass of the FG-nups,
but depends sensitively on the specific combination of essential Nups located in the central plane of the NPC.
INTRODUCTION
Fast and selective transportation of macromolecules be-
tween the cytoplasm and the nucleoplasm is essential for
the proper functioning of eukaryotic cells. This is accom-
plished by the nuclear pore complex (NPC), which is
embodied in the nuclear envelope membranes and moder-
ates the transport of molecules in a size-selective manner.
The NPC is a large molecular assembly with an estimated
mass of 44–70 MDa for yeast (1,2) that provides bidirec-
tional pathways for passive transport of small molecules
and facilitated transport of larger proteins (3–8). The active
transport mechanism of large macromolecules is directional
and is driven by soluble nuclear transport factors (NTF),
which mostly belong to the Karyopherin family (Kap). Dur-
ing import or export, the appropriate NTF binds to cargo
with nuclear import or export signals, upon which the
NTF-cargo complex is translocated through the NPC.

The NPC has an eightfold symmetrical structure and is
composed of ~30 different proteins called nucleoporins
(Nups) (2,9). The Nups fall into different subgroups based
on their function: transmembrane Nups that attach the
NPC to the membrane, structured Nups that form the core
scaffold of the NPC and maintain its shape, and, finally,
FG-nups. The FG-nups comprise ~30% of all Nups and
are found to be intrinsically disordered and have many
phenylalanine-glycine (FG) repeats in their amino-acid
sequence (10). They line the central channel of the NPC
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and are anchored to the scaffold through their structural
domain. These FG-nups have been shown to be essential
for the viability of yeast and presumably all eukaryotes
(11). However, how the biophysical properties of the FG-
nups determine their function in passive and active transport
is subject to intense debate.

Different models have been proposed to explain the role
of the FG-nups during nuclear transport.

The selective phase model, for instance, presumes that the
weak FG-FG interactions form a homogeneous cross-linked
network (a hydrogel) inside the NPC. The Kaps can locally
break the cross-links in the network and melt through the gel
due to their higher affinity to the FG-repeats (compared to
FG-FG affinities); the space between the cross-links serve as
a sieve and allows for free diffusion of smaller molecules (12).

The virtual gate model suggests that the brush-like struc-
ture formed by the disordered FG-nups repels nonspecific
cargoes, but allows Kap-associated cargoes to overcome
this entropic barrier because of the low-affinity interactions
between the Kaps and the FG-repeats (13).

The reversible collapse model can be considered as an
extension of the virtual gate model in which the active trans-
port is facilitated by a conformational change of the FG-
nups due to the presence of the Kaps (14). The interaction
between Kaps and FG-nups results in a local collapse of
the Nups toward their anchor point, providing enough space
for translocation of the Kap-cargo complex.

The reduction-of-dimensionality model suggests that the
wall of the transport channel is covered with an FG-NTF
bilayer, leaving a 5–10 nm tube for passive diffusion of
http://dx.doi.org/10.1016/j.bpj.2014.07.060
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small molecules at the center of the pore. The active trans-
port is then facilitated by a two-dimensional random walk of
the Kaps over the NTF surface (5,15).

The forest model is based on the Stokes radius and dimen-
sion of the individual FG-nup domains. Those FG-nups that
have a fully collapsed conformation formshrub-like structures
near the scaffold, and those that consist of an extended domain
next to a collapsed domain form tree-like structures, resem-
bling an FG-nup forest landscape. It has been proposed that
this configuration forms two distinct transport pathways, one
at the center and the other near the scaffold, which are used
for active and passive transport, respectively (16). However,
no consensus has been reached so far on a prevailing model.

One reason hampering the understanding of nuclear trans-
port is the absence of experimental techniques that can probe
the structure and dynamics of the disordered proteins in-
side the transport channel and during transport. This has
led to the development of computational approaches to
gain insight on the conformation of the FG-nups inside the
NPC. Due to the large size of the system, high-resolution
(all-atom) molecular-dynamics simulations are restricted to
study only single FG-nups (16,17) or a periodic array of short
FG-nup segments, end-grafted on a flat surface (18,19). On
the other hand, several low-resolution approaches have
been used to study the transport rate and accumulation of
cargo molecules inside the NPC without considering the
detailed interactions between the FG-nups (20–23). Due to
the high level of coarse-graining, the full geometry of the
NPC can be accounted for in these approaches, but at the
expense of losing detail at the scale of individual amino acids
(24). Recently, Tagliazucchi et al. (25) developed a computa-
tionalmodel that accounts for the amino-acid sequence of the
FG-nups by distinguishing six different families of amino
acids. Then, FG-nups are distributed along the channel teth-
ered to the surface of the NPC-scaffold and minimization of
free energy is applied subject to axisymmetric boundary con-
ditions. Using this model, they studied the translocation of
model particles through the NPC.

The goal of this article is to probe the full three-dimen-
sional disordered domain of the yeast nuclear pore complex
by accounting for all FG-nups, each having a complete
20 amino-acid resolution. Our one-bead-per-amino-acid
molecular dynamics approach is based on experimentally
obtained hydrophobicity scales and calibrated against
experimental Stokes radii of a wide range of FG-nup seg-
ments (16). Using the model, we will study the effect of
electrostatic and hydrophobic interactions on the FG-nup
conformation and explore the relation between FG-nup dis-
tribution and cell viability, as studied using genetically
modified yeast strains (11).
METHODS

A coarse-grained molecular-dynamics model is developed in which each

amino acid is represented by one bead. An average mass of 120 Da is
Biophysical Journal 107(6) 1393–1402
assigned to each bead and the distance between neighboring beads is fixed

at b ¼ 0.38 nm using a stiff harmonic potential,

fbond ¼ Kbðr � bÞ2 with Kb ¼ 8038 kJ , nm�2 ,mol�1:

The bending and torsion potentials for the coarse-grained model are

extracted from the Ramachandran data of the coiled regions of protein
structures as discussed earlier (26). It is widely accepted that FG-nups

are intrinsically disordered and highly flexible, without evidence of second-

ary structure formation (10,16,27,28). This indicates that no stable, long-

lasting hydrogen bonds are formed. In line with this, hydrogen bonding is

not incorporated in our model. Because solvent molecules are not modeled

explicitly, the solvent-residue interactions are accounted for through hydro-

phobic and hydrophilic interactions between the amino-acid residues. In

addition, the screening effect of polar water molecules and free ions and

the electrostatic interactions among charged amino acids are accounted

for through a modified Coulomb law. To take into account both attractive

hydrophobic and repulsive hydrophilic interactions with one function, the

following potential is proposed as

fhpðrÞ ¼
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where
εij ¼ εhp

ffiffiffiffiffiffiffiffiffiffiffiffiffi�
εiεj

�aq
is the strength of the interaction for each pair of amino acids (i, j), and s ¼
0.60 nm is the average residue diameter (29). The choice for the exponent 8
for the repulsive interactions has been made to have a softer repulsive

potential (29) and thus a smoother energy landscape. The prefactors are

chosen such that the potential and its derivative are continuous at r ¼ s.

The hydrophobicity scales obtained from partition energy measurements

(30–32) are normalized between 0 and 1, and the average value of the

experimental data is used to define the relative hydrophobic strength for

each amino acid εi ˛[0,1] (see Table S1 and Table S2 in the Supporting

Material). The εhp can be interpreted as the absolute hydrophobic strength

between the most hydrophobic amino acids, whereas εrep defines the inten-

sity of the repulsive hydrophilic interactions. When εij > εrep, the potential

is attractive (hydrophobic interactions); when εij ¼ εrep, the potential is

neutral, only accounting for excluded volume effects until r ¼ s; and

when εij < εrep, the potential is purely repulsive (hydrophilic interactions).

The electrostatic interactions between charged amino acids are described by

the modified Coulomb law as

fel ¼
qiqj

4pε0εrðrÞr expð�krÞ: (2)

Because experiments suggest that the nuclear envelope is not a selective ion

barrier (33), a Debye screening coefficient similar to that of the cytoplasm,
k¼ 1.0 nm�1, is chosen (34). The distance-dependent dielectric constant of

the solvent εr(r) is included through the sigmoidal function

εrðrÞ ¼ Ss

"
1� r2

z2
er=z

ðer=z � 1Þ2
#
;

where Ss ¼ 80, and z ¼ 0.25 nm (35,36).
The parameterization procedure starts by choosing the values of εrep and

εhp to be 10.0 and 13.0 kJ.mol�1, respectively, to set the minimum energy

for the interaction of the most hydrophobic amino acids to �5.2 kJ.mol�1,

as suggested in Zhang and Kim (37). Then, by using the experimental

hydrophobicity scales of Table S1, the exponent a is chosen such that the
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model can reproduce the experimental Stokes radius of one of the low-

charge FG-Nup segments (i.e., Nup42 (AA 1–212) (16)). With a ¼ 0.27,

the strength (hydrophilicity) of the three charged amino acids D, E, and

K (assumed to be equal) is determined to capture the Stokes radius of a

highly charged FG-nup segment (i.e., Nup116s (AA 765–960) (16)) within

5% error. By doing so, the interaction strength between polar amino acids is

smaller than kBT, which is in accordance with the polar nature of these res-

idues. Furthermore, the hydrophobicity scales of Proline, Glutamine, and

Glycine are fine-tuned to reproduce the experimental end-to-end distances

of poly-Proline segments (38), the dimension of poly-Glutamine segments

with different lengths (39), and the experimental gyration radius of poly-

Glycine chains (40), respectively. The final hydrophobicity scales εi are

presented in Table S2.

Although the Stokes radii of only two FG-nup segments are used to

obtain a and εi, the Stokes radii of the rest of the 16 FG-nup segments

are predicted within 20% error with respect to the experimental values

(see Fig. 1 and see Table S3). It should be noted that this accuracy cannot

be achieved without considering repulsive interactions between hydrophilic

amino acids. The performance of the force field for the collective interac-

tion of FG-nups is verified by simulating an array of Nup62, end-grafted

on a flat surface (see Fig. S1 in the Supporting Material). The computed

brush height of h ¼ 13 nm compares well with the experimental value,

h ¼ 14.1 nm (41).

A simplified geometrical model of the NPC is built based on the geom-

etry of the core scaffold of the yeast NPC, and the FG-nups are anchored at

the predicted positions inside the pore (42,43), as shown in Fig. 2. Table S4

lists the FG-nups with the coordinates of the anchor points specified in Ta-

ble S5. Locations of the FG-repeats and charged amino acids in the

sequence of the FG-nups are depicted in Fig. 2 B. Because the spatial orga-

nization and surface properties of the structural Nups of the scaffold are not

yet fully determined, the scaffold is modeled using hard-sphere beads with a

radius of 2.5 nm, which are assumed to have no specific interaction with the

FG-nups. The initialization procedure and the details regarding the molec-

ular-dynamics simulations are given in the Supporting Material.
RESULTS

Distribution of the FG-nups inside the NPC

To begin, the distribution of the FG-nups inside the NPC is
investigated. The three-dimensional density distribution of
the FG-nups is obtained by calculating the average number
density of the amino acids over the simulation time. An
iso-surface plot corresponding to 140 mg/mL mass density
(0.7 nm�3 number density) is shown in Fig. 3 A. The results
FIGURE 1 The predicted and experimental Rs values for FG-nup seg-

ments plotted against the charge to hydrophobicity ratio (C/H). To see

this figure in color, go online.
show a low-density region up to r ~ 5 nm from the central axis
of the NPC surrounded by a high-density region. The distri-
bution is further analyzed by studying the distribution of the
charged residues and FG-repeats inside the NPC. The
charged amino acids (i.e., D, E, K, and R; see Table S2)
are accumulated near the scaffold in between the inner ring
blobs (Nup188 (42)) (see Fig. 3 B). The FG-repeats are
distributed in the form of a doughnut between the central
low-density region and the highly-charged layer near the
scaffold (see Fig. 3 C). Because the distribution of the FG-
nups is relatively homogeneous in the circumferential direc-
tion, it can be averaged to generate a two-dimensional, r-z
density map (see Fig. 4 A). It shows that the FG-doughnut
is located slightly above the central plane of the NPC
(z ~ 4.5 nm) toward the cytoplasmic side. Furthermore, the
two-dimensional density maps of different residues can be
averaged in the vertical direction to obtain the radial density
profiles. The radial-density distribution of the FG-repeats
and negatively and positively charged amino acids are
plotted in Fig. S2. The FG-repeat distribution shows a peak
value at r¼ 13 nm from the central axis of the NPC whereas
the peak values for the negative and positive amino acids are
at r ¼ 20 nm and r ¼ 21 nm, respectively. Moreover, the
charge distribution shows that the central region of the
pore has a net positive charge, which is consistent with
the simulation results of Tagliazucchi et al. (25).

The conformation of the FG-nups inside the pore is found
to be notably different from that of the isolated FG-nups: the
ratio of the Rg values for the FG-nups inside the NPC to the
gyration radius of the isolated FG-nups ranges from 3.9 to 6.5
(see Table S4). A second simulation (wild-type-2) with the
same FG-nups but different starting configuration and initial
velocity distribution is performed to study the sensitivity to
the initial conditions (the method to generate starting config-
urations is discussed in the Supporting Material). The two-
dimensional density distribution (Fig. 4 B) shows the same
characteristics as that of the first simulation (wild-type-1,
Fig. 4 A). In addition, the localization of the individual FG-
nups is similar in both simulations, which confirms that the
obtained results are not biased by the simulation setup (see
Fig. S5 and Fig. S6). Furthermore, there are uncertainties
regarding the exact position of the anchor points of the FG-
nups according to the experimental data (43). To investigate
the sensitivity to the anchor-point locations, we performed a
new simulation (wild-type-3) in which the anchor points are
displaced in a random direction. The coordinates of the an-
chor points for wild-type-3 are displaced by randomly pick-
ing a new position inside a sphere of radius 4 nm around the
old position (see Table S5). The obtained density distribution
has the same pattern as that of the first and second simula-
tions, as shown in Fig. S3 A. We conclude that small devia-
tions in the anchor-point locations of the FG-nups do not
affect the overall distribution of the FG-nups.

To study the sensitivity of the results to the geometry of
the scaffold, an additional simulation has been performed
Biophysical Journal 107(6) 1393–1402



FIGURE 2 (A) Simplified geometry of the core scaffold of the yeast nuclear pore complex reconstructed based on the model of Alber et al. (42,43). The

outer radius of the scaffold changes from 30 nm at the center to 33.5 nm at the peripheries. The inner blobs, which are decorated in eightfold rotational

symmetry, represent Nup188 of the inner rings. The blobs at the cytoplasmic ring represent Nup82 and Nic96, whereas the ones at the nuclear ring represent

Nic96. (B) The circumferential projection of radial and axial positions of the anchor points of the FG-nups. (C) The distribution of charged amino acids

(red sticks) and FG-repeats (green sticks) in the sequence of the FG-regions of the FG-nups as used in the model. All Nups are anchored to the scaffold

at their C-terminus. To see this figure in color, go online.
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using a symmetric geometry without inner blobs and periph-
eral rings (i.e., without Nup82, Nup188, and Nic96). The
results show that the overall distribution of the FG-nups
does not considerably change except for a slight shift of
the r-position of the high-density region toward the scaffold
(see Fig. S3 B). From this, we conclude that the asymmetric
distribution of the FG-nups is due to the presence of
different FG-nups on the nucleoplasmic and cytoplasmic
sides of the NPC (Nup116, Nup100, Nup42, and Nup159
on the cytoplasmic side and Nup1, Nup145, and Nup60 on
the nucleoplasmic side).

To study the localization of the individual FG-nups inside
the pore, the two-dimensional (r-z) density distribution is
calculated for all FG-nups that are anchored at the same
(r,z) coordinates (see Fig. S5 and Fig. S6). The results reveal
that some of the FG-nups (i.e., Nup49, Nup57, Nup116,
Biophysical Journal 107(6) 1393–1402
Nup100, Nup42, and Nup145-2) are confined inside the
pore and contribute in forming the central high-density
region. The rest of the FG-nups (i.e., Nsp1, Nup159,
Nup145-1, Nup60, and Nup1) have more conformational
freedom and are spread out over a larger volume at both
sides of the NPC.
Effect of hydrophobic and electrostatic
interactions on the distribution of the FG-nups

The contribution of the hydrophobic and electrostatic inter-
actions in shaping the distribution of the FG-nups inside the
wild-type NPC is systematically studied. To begin, the wild-
type NPC is modified by removing the charged residues, D,
E, K, and R, and replacing them with neutral beads (i.e., res-
idues of radius 0.6 nm with no specific attraction, repulsion,
FIGURE 3 The three-dimensional density distri-

bution of different amino acids inside the NPC

obtained from the wild-type-1 simulation. (A)

The distribution of all amino acids. The iso-surface

plot corresponds to a mass density of 140 mg/mL.

(B) The density distribution of charged amino

acids. The iso-surface plot corresponds to a mass

density of 22 mg/mL. (C) The density distribution

of FG-repeats inside the transport channel of

the NPC. The iso-surface plot corresponds to

an average distance of 2.7 nm between the FG-

repeats. To see this figure in color, go online.



FIGURE 4 Two-dimensional density plots of the

FG-nups in the simulated NPCs. (A) Wild-type-1

NPC. (B) Wild-type-2 NPC, simulated with a

different starting configuration and initial velo-

city distribution compared to wild-type-1. (C)

No-charge NPC, in which all charged residues

are replaced by neutral beads in the sequence of

the FG-nups. (D) Denatured NPC, where all resi-

dues are replaced by neutral beads. (E) Reversed

NPC, where the FG-nups are anchored from their

N-terminus. (F) Uniform NPC, in which the

sequence of the FG-nups is modified such that

they have a uniform distribution of charged and

hydrophobic amino acids along their length. To

see this figure in color, go online.
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or charge interaction). The resulting density plot in this no-
charge NPC shows that by removing charged amino acids,
all FG-nups aggregate in a wide, high-density region, leav-
ing an empty region at the center of the NPC (Fig. 4 C). In a
next step, the rest of the amino acids are also replaced with
neutral beads, resulting in a denatured NPC. The obtained
distribution for the denatured NPC shows a uniform distri-
bution of low density throughout the pore (Fig. 4 D). The
results indicate that repulsive interactions between the
charged amino acids in the wild-type NPC serve as a bumper
to push the dense FG-nup clusters, formed through hydro-
phobic interactions, toward the center of the pore. There-
fore, the doughnut-like structure in Fig. 3 is a direct result
of the balance between the electrostatic and hydrophobic in-
teractions. This balance is strongly related to the amino-acid
sequence of the FG-nups, showing a high number of charged
residues near the C-terminal domain (Fig. 2 B).
Effect of amino-acid sequence

Next, we explore the effect of the FG-nup amino acid
sequence on the density distribution in the wild-type NPC.
To do so, we anchored the FG-nups from their N-terminus
to the same anchoring points. The distribution for this
reversed NPC is shown in Fig. 4 E. Finally, a uniform
NPC is simulated where the residues in the sequence of
the FG-nups are reshuffled such that the charged and hy-
drophobic amino acids become uniformly distributed along
their length (Fig. 4 F). To do so, the hydrophobic and
charged amino acids are first evenly distributed in the
sequence of the FG-nups and then the rest of the amino acids
are randomly placed in between them. The density distribu-
tions for both the reversed and uniform NPC are different
from the wild-type NPC. In the reversed case, the high-den-
sity region has shifted toward the scaffold on the cyto-
plasmic side. For the reversed and the uniform NPC, a
wide, low-density region is detected at the center of the
pore. A density concentration can be observed near the cyto-
plasmic entrance of the pore, but with a lower peak density
compared to the wild-type NPC. In these two cases, the
amino-acid composition of the FG-nups (percentage of
charged and hydrophobic amino acids) has not changed
compared to the wild-type NPC, suggesting that the
amino-acid sequence of the FG-nups plays a key role in
the density distribution of the FG-nups in the wild-type
NPC. It should be noted that all simulations in Fig. 4 are per-
formed for the same number of beads. The large difference
in intensity between, e.g., Fig. 4, C andD, is due to the much
Biophysical Journal 107(6) 1393–1402
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larger region over which the residues are spread for the case
of denatured proteins (Fig. 4 D).
Viable versus inviable NPCs

Experiments have shown that cells can survive despite dele-
tion of more than half of the mass of the FG-repeats of the
FG-nups (11). More specifically, Strawn et al. (11) showed
that the presence of Nup100 or Nup116 is necessary but not
sufficient. They proposed that if Nup116 is present and
Nup100 is not, any combination of two of the four
nups, Nsp1, Nup49, Nup57, or Nup145, are required, and
conversely, if Nup100 is present and Nup116 is not, three
of the mentioned four FG-nups must be present. We now
explore a possible relation between cell viability and FG-
nup density distribution by studying two extremes: a viable
NPC with the least amount of essential FG-nups (minimal
mass), and inviable NPCs with maximal mass of the FG-
nups (see Table 1). The viable NPC includes all the FG-
nups anchored near the central plane of the NPC (see also
Fig. 2 B). The importance of Nup116 and Nup100 is inves-
tigated by removing only those two Nups (inviable-2). For
the other four simulated inviable cases, Nup116 and two
of the four Nups, Nup49, Nup57, Nup145, or Nsp1 are
removed from the pore.

The two-dimensional density distributions for all these
cases are shown in Fig. 5. Although the viable NPC contains
less mass than the inviable cases, it has formed a high-den-
sity ring region, similar to what was observed before in the
wild-type NPCs (Fig. 4, A and B), whereas the inviable cases
do not exhibit this. This difference is summarized in Fig. 6
in terms of the radial density distribution at the z-location of
the maximum density (excluding the anchor points) for each
simulated NPC. The maximum density for the inviable
NPCs does not exceed 185 mg/mL, whereas, for the viable
and wild-type NPCs, a maximum density of 300 mg/mL is
reached.
DISCUSSION AND CONCLUSIONS

We have investigated the density distribution of the FG-nups
inside the transfer conduit of the NPC. For this purpose,
a one-bead-per-amino-acid coarse-grained model is devel-
TABLE 1 The list of simulated viable and inviable NPCs and

their composition

Simulation name Nups removed (11)

Viable Nup42, Nup159, Nup1, Nup60, Nup100, Nsp1, Nup145a

Inviable-1 Nup116, Nsp1, Nup49

Inviable-2 Nup116, Nup100

Inviable-3 Nup116, Nup145, Nup49

Inviable-4 Nup116, Nup57, Nup49

Inviable-5 Nup116, Nup145, Nsp1

aFor the viable case, only the peripheral copies of Nsp1 (Nsp1-1 and

Nsp1-2) and Nup145 (Nup145-1) are removed.

Biophysical Journal 107(6) 1393–1402
oped that accounts for hydrophobic/hydrophilic and
Coulombic interactions. The force field is parameterized
and validated against experimental data of isolated FG-
nup segments and FG-nup brushes. The model is fine
enough to account for the sequence-dependent Stokes radius
of individual FG-nups and coarse enough to study their col-
lective behavior inside the three-dimensional geometry of
the NPC. It should be noted, however, that all amino-acid
beads are assumed to have the same size and mass and
that no hydrogen bonding is accounted for. Solvent mole-
cules are not included explicitly, but their polar nature and
ionic screening are accounted for through the Coulombic
and hydrophobic/hydrophilic interactions.

We show that the collective interaction of the FG-nups re-
sults in the formation of different zones inside the pore. A
relatively low-density region is observed along the central
axis of the NPC, which is surrounded by a coherent hydro-
phobic doughnut-like structure, rich in FG-repeats. It
should be noted that earlier cryo-EM maps (9) have shown
a high-density central-plug region at the center of the pore.
However, it remains unclear whether this is due to cargo-
molecules or FG-nups. The accumulation of charged resi-
dues is higher near the scaffold where the FG-nups are
anchored, and the center of the NPC has a net positive
charge in agreement with the simulation results of Taglia-
zucchi et al. (25). We show that the disruption of the FG-
nup amino-acid sequence considerably changed the density
distribution of the FG-nups (Fig. 4, E and F). This is in
contrast to the results of Tagliazucchi et al. (25), and can
be traced back to the different interaction energies used be-
tween hydrophilic amino acids. In Tagliazucchi et al. (25),
an attractive interaction energy between hydrophilic amino
acids of ~1.0 kBT is used, whereas in our approach a repul-
sive interaction is defined between hydrophilic residues.
The rationalization for the latter is that the favorable inter-
action between hydrophilic amino acids (including charged
amino acids) and the solvent gives rise to a repulsive inter-
action between these amino acids. This is in accordance
with the experimental observations of Yamada et al. (16),
which show that the Stokes radius of short disordered seg-
ments of FG nups is correlated with the total number of
charged amino acids and not with the net charge of these
segments. As a result, it can be postulated that repulsive hy-
drophilic interactions are more important than Coulombic
interactions in determining the dimensions of these proteins.

Comparison of the FG-nup distribution of viable and invi-
able NPCs suggests that the formation of a high-density hy-
drophobic structure, rich in FG-repeats, is a characteristic
feature of viable NPCs. The contribution of the individual
FG-nups to the total distribution is investigated through
localization maps of all FG-nups inside the pore (see
Fig. S5 and Fig. S6). The localization data suggest that
FG-nups fall into two different categories: roughly half of
the FG-nups contribute to the formation of the FG-repeat
doughnut at the center of the NPC (i.e., Nup49, Nup57,



FIGURE 5 The two-dimensional density plots

for viable (A) and inviable NPCs (B–F) corre-

sponding to Table 1. To see this figure in color,

go online.
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Nup116, Nup100, Nup42, and Nup145-2), and the rest have
more conformational freedom at the entrance and exit of the
NPC (i.e., Nsp1, Nup159, Nup145-1, Nup60, and Nup1).
The FG-repeats of the FG-nups in the latter category can
facilitate the entrance of Kap/cargo complexes to the pore,
whereas most of the FG-nups in the former category are
marked as essential FG-nups, necessary for the viability of
the cell (11).
FIGURE 6 Comparison of the radial density distribution at the z location

of maximal density in the two-dimensional density plots for the simulated

NPCs. The mass density is calculated using an average mass of 120 Da per

residue. To see this figure in color, go online.
Because it has been shown that the deletion of cohesive
FG-nups or FG domains increases the permeability of the
NPC (44,45), a possible reason for the inviability of the
cells in the experiments of Strawn et al. (11) could be
the disruption of the permeability barrier of the NPC. Our
results show that even though the total mass of the FG-
nups in the inviable mutant NPCs is larger than the viable
mutant NPC, the density of the FG-nups does not exceed
a certain value (i.e., 185 mg/mL). This indicates that the
mutual interaction of an essential set of FG-nups is key in
forming a doughnut-like hydrophobic cluster, rich in FG-re-
peats, which might control the NPC’s permeability barrier
or, alternatively, its active transport mechanism. It must be
noted that in the obtained results the possible effect of
Kaps on the FG-nup density distribution is not taken into
account.

It has been shown that Kaps simultaneously interact with
up to four FG-repeats during transport (46). This suggests a
correlation between the average distance of the FG-repeats
inside the NPC and the distance between the binding sites
on the surface of the Kaps. Experiments have revealed
that the binding sites of NTF2 are separated by 3.5 nm
(47) and simulation studies have shown that the distance be-
tween the binding spots of Kap b1 ranges from 2.5 to 4.0 nm
Biophysical Journal 107(6) 1393–1402
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(48). We have used the density distribution of the FG-nups
to estimate the average distance between the FG-repeats in-
side the pore (see Fig. S4). The results show that inside the
FG-doughnut the distance between the FG-repeats is lowest,
reaching values as low as 2.7 nm. The same analysis for
the uniform NPC (see Fig. 4 F) shows a minimum distance
of 3.4 nm between the FG-repeats only in a small area
near the cytoplasmic side of the NPC. This suggests that
throughout the FG-doughnut, there is more than one FG-
repeat available for each binding site so that the Kaps can
easily find a nearby FG-repeat and translocate from one
FG-repeat to the other (assuming that the presence of the
Kaps does not considerably change the local conformation
of the FG-nups). This is in accordance with the model of
Bednenko et al. (49), which proposes that transport is
accomplished through a series of binding and unbinding
events between the FG-repeats and Kaps.

Single molecule tracking of small molecules, Imp-b1 and
import complexes, has revealed two different but not
completely separated pathways for active and passive trans-
port (50). The spatial distribution of small molecules along
the radius of the pore shows a peak value at the center of the
NPC, whereas the distribution of Imp-b1 exhibits a peak
closer to the scaffold. This is in agreement with the density
distributions obtained from our simulations that show a low-
density region of FG-nups at the center (which might allow
passive diffusion of small molecules) and a peak density of
FG-repeats at 13 nm along the radius of the NPC (which
might mediate active transport).

Our model does not allow discriminating between the
different transport models proposed in the literature. How-
ever, we do note that the shrubs and trees as described by
the forest model (16) were not reflected in the obtained den-
sity distributions. A possible reason is that the forest model
is based on the conformation of isolated FG-nups, which
apparently is different from the conformation of the FG-
nups inside the core of the NPC (see Table S4, last column).
The density of the FG-nups inside the FG-doughnut is in
correspondence to the densities (i.e., T 200 mg/mL) at
which a saturated hydrogel with selective barrier properties
of the NPC can be formed (44,45,51), whereas, in the central
region of the pore, the density of the FG-nups would be too
low (i.e., %150 mg/mL) (51).

To conclude, we have studied the collective behavior of
FG-nups inside the transport conduit of the nuclear pore
complex through coarse-grained molecular dynamics simu-
lations. The obtained density distribution of the FG-nups
reveals the presence of a low-density region of diameter
x10 nm at the center of the NPC, surrounded by a high-
density, FG-repeat-rich region. We show that this unique
doughnut-like distribution is encoded in the amino-acid
sequence of the FG-nups and is driven by hydrophobic, hy-
drophilic, and electrostatic interactions. Our results indicate
that the maximum FG-nup density correlates with the
viability of the cells and is independent of the total mass
Biophysical Journal 107(6) 1393–1402
of the FG-nups. Comparison of experimental observations
with our results suggests that the low-density region at
the center of the NPC provides a permeable medium
through which ions and small proteins can freely diffuse,
while the doughnut-like FG-repeat-rich region provides
the required interaction sites for facilitated transport
of Kap-cargo complexes. Further simulation studies are
needed to confirm this.
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