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Holly Kramer8, Sylvia E. Rosas50, Ilja M. Nolte51,52, Brenda W. Penninx53,54, Harold Snieder51,52,
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Genome-wide association studies (GWASs) have identified

multiple loci associated with cross-sectional eGFR, but a

systematic genetic analysis of kidney function decline over

time is missing. Here we conducted a GWAS meta-analysis

among 63,558 participants of European descent, initially from

16 cohorts with serial kidney function measurements within

the CKDGen Consortium, followed by independent

replication among additional participants from 13 cohorts.

In stage 1 GWAS meta-analysis, single-nucleotide

polymorphisms (SNPs) at MEOX2, GALNT11, IL1RAP, NPPA,

HPCAL1, and CDH23 showed the strongest associations for at

least one trait, in addition to the known UMOD locus, which

showed genome-wide significance with an annual change in

eGFR. In stage 2 meta-analysis, the significant association at

UMOD was replicated. Associations at GALNT11 with Rapid

Decline (annual eGFR decline of 3 ml/min per 1.73 m2 or
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more), and CDH23 with eGFR change among those with

CKD showed significant suggestive evidence of replication.

Combined stage 1 and 2 meta-analyses showed significance

for UMOD, GALNT11, and CDH23. Morpholino knockdowns of

galnt11 and cdh23 in zebrafish embryos each had signs of

severe edema 72 h after gentamicin treatment compared

with controls, but no gross morphological renal

abnormalities before gentamicin administration. Thus, our

results suggest a role in the deterioration of kidney function

for the loci GALNT11 and CDH23, and show that the UMOD

locus is significantly associated with kidney function decline.

Kidney International (2015) 87, 1017–1029; doi:10.1038/ki.2014.361;

published online 10 December 2014

KEYWORDS: chronic kidney disease; genome-wide association study; kidney

function decline; kidney development; population genetics; single nucleo-

tide polymorphism; zebrafish

Chronic kidney disease (CKD) is an important public health
problem affecting up to 10% of adults worldwide.1–3 Faster
rates of decline in estimated glomerular filtration rate
(eGFR), and entry into CKD stages of increasing severity,
are associated with an increased risk of cardiovascular and
all-cause mortality.4–9 Thus, recently issued guidelines on the
evaluation and management of patients with CKD have high-
lighted the importance of evaluating longitudinal measures
of renal function in addition to determining eGFR and
urinary albumin excretion at discrete time points.3

Traditional risk factors for CKD include diabetes and
hypertension, but these do not fully account for CKD risk.10

There is evidence for considerable clustering of CKD within
families11 and the heritability of eGFR has been estimated at
up to 36–75% in population-based studies.12 Using genome-
wide association studies (GWASs), multiple loci have been
identified in association with eGFR and CKD in both
European13–16 and non-European populations17,18 using data
from one time point. However, multiple lines of evidence
suggest that there may be unique genetic contributions to
renal function decline above and beyond baseline renal
function. First, there is substantial variability in the rate of
eGFR decline in studies of healthy persons as well as among
those with CKD.3,4,19,20 Second, we have previously shown
that some genetic loci associated with cross-sectional eGFR
are also associated with incident CKD (CKDi) even after
accounting for baseline eGFR.21 Finally, the genetic back-
ground has been shown to affect CKD progression in animal
models.22,23

Taken together, these data suggest that unique loci may
exist for renal function decline in addition to those identified
for a one-time measure of eGFR. Thus, we conducted a
GWAS meta-analysis among participants from 16 cohorts with
serial kidney function measurements within the CKDGen
Consortium, followed by independent replication among
additional participants from 13 cohorts.

RESULTS
Study participants

Changes in renal function over time were derived from
45,530 individuals who participated in stage 1 meta-analysis
of study-specific GWAS, and an additional 18,028 indepen-
dent individuals who participated in stage 2 meta-analysis
(Table 1). Details on study design and genotyping are provided
in Supplementary Tables S1 and S2 online, respectively.

At the baseline examination, the prevalence of CKD,
defined as eGFRo60 ml/min per 1.73 m2, ranged from 3.2 to
21.4% in stage 1 cohorts and from 0.2 to 23.9% in stage 2
replication cohorts. As expected, cohorts with lower mean
age at baseline tended to have a lower baseline prevalence of
CKD. Four kidney function decline traits were derived from
serial eGFR values in each study participant to model
mechanisms underlying different rates of kidney function
change over time: (i) annual decline of eGFR (eGFRchange,
in ml/min per 1.73 m2 decline per year; a positive value
represents a decline in eGFR, whereas a negative value
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represents a rise in eGFR over time); (ii) CKDi to select
individuals with a decline in kidney function to the clinical
outcome CKD stage 3 or higher (CKDi, cases defined as those
free of CKD at baseline but eGFRo60 ml/min per 1.73 m2

during follow-up); (iii) CKDi with additionally at least a 25%
eGFR decline from baseline to select individuals reaching
CKD stage 3 after a sizeable decline in kidney function
(CKDi25);24 and (iv) rapid eGFR decline to select individuals
with the highest risk of adverse outcomes (Rapid Decline,
cases defined as those with annual eGFR decline X3 ml/min
per 1.73 m2).5 Most cohorts showed a decline in kidney
function over time (Table 1). The distribution of all four
traits in stage 1 and stage 2 cohorts can be found in
Supplementary Table S3 online.

Heritability of eGFR change

The heritability of eGFR change in the Framingham Heart
Study was estimated as 38%, after adjusting for age, sex, and
baseline eGFR.

Stage 1 meta-analysis of GWAS of measures of kidney
function change over time

Stage 1 GWAS meta-analysis was performed in all samples for
all four traits. Two secondary association analyses were
performed to account for potentially different rates of kidney
function decline in those with and those without CKD: (i)
eGFRchange stratified by baseline CKD status and (ii) Rapid
Decline in only those without baseline CKD; too few indivi-
duals with CKD fulfilled the Rapid Decline criteria to perform
this analysis. Supplementary Figure S1 online shows the
Manhattan and QQ-plots of the stage 1 meta-analysis of each
trait. The genomic control factor ranged from 1.007 to 1.05,
suggesting negligible evidence for population stratification.

In GWAS meta-analysis of stage 1 cohorts, the minor T
allele of rs12917707 at the UMOD locus, previously identified
by GWAS to be associated with higher eGFR in cross-sectional
analysis,14 was associated with an increase in eGFR over time
at a genome-wide significance level (P¼ 2.6�10� 14, Table 2),
and showed at least nominally significant, direction-consis-
tent association with all other analyzed phenotypes (Supple-
mentary Table S4 online). In addition, SNPs at the novel
CDH23, GALNTL5/GALNT11, MEOX2, IL1RAP/OSTN,
C2orf48/HPCAL1, and NPPB/NPPA loci were associated with
at least one of the analyzed traits at a significance level of
Po10� 6 (Table 2). Thus, a total of seven SNPs were moved
forward to stage 2 meta-analysis. These SNPs mostly showed
high imputation quality in each cohort or were genotyped
de-novo (Supplementary Table S5 online), and showed low
between-study heterogeneity (I2o25%).

Stage 2 meta-analysis

Of the seven loci moved forward for stage 2 meta-analysis,
only rs12917707 at UMOD was significantly associated
with the stage 1 trait after correcting for multiple testing
(P¼ 4.7*�10� 5). Two further SNPs showed suggestive
significance (one-sided Po0.05) with their respective stage T
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1 trait: rs875860 in CDH23 with eGFRchange in those with
CKD at baseline, and rs1019173 at GALNTL5/GALNT11 with
Rapid Decline (Table 2). There was no significant hetero-
geneity between studies for these two SNPs (rs875860: I2¼ 9.7%,
P¼ 0.34; rs1019173: I2¼ 32.4%, P¼ 0.12) or for the other
SNPs analyzed in the stage 2 meta-analysis (I2o30.0%).

The SNP rs1019173 is located in an intron in the GALNTL5
gene, and lies in a linkage disequilibrium block spanning the
genes GALNT11, MLL3, CCT8L, and part of the GALNTL5
gene (Figure 1a). The SNP in CDH23, rs875860, is an intronic
SNP in a linkage disequilibrium block whose boundaries lie
within the coding region of the CDH23 gene (Figure 1b).

In the combined meta-analysis of these three SNPs from
both stage 1 and stage 2 cohorts, there was no evidence of
between-study heterogeneity in the combined meta-analysis
(I2o25%). Only the SNP at UMOD showed genome-wide
significant association (rs12917707, P¼ 1.2�10� 16) in the
combined stage 1 and stage 2 analysis, whereas there was
suggestive evidence of significance for the two novel loci iden-
tified in stage 1 (rs875860 in CDH23: P¼ 1.5�10� 6 for the
association with eGFRchange in those with CKD; rs1019173 at
GALNTL5/GALNT11: odds ratio¼ 0.91 for the A allele,
P¼ 2.2�10� 7 for the association with Rapid Decline).

Functional validation of novel loci in zebrafish

To investigate the role of the two suggestive novel loci in
vertebrate kidney development and function and to bolster
confidence in the nominally significant statistical associations in
the replication studies, we knocked down the corresponding
genes in the zebrafish using antisense morpholino (MO) tech-
nology. We focused on the CDH23 region and the block contain-
ing GALNTL5, GALNT11, MLL3, and CCT8L1. For the latter
region, we focused on GALNT11 and MLL3, because there are no
zebrafish GALNTL5 and CCT8L1 orthologs. Further, we investi-
gated the effect of MO knockdown of umod. Following MO
injection at the 1-cell stage, we performed in situ hybridization for
the established renal markers pax2a (global kidney) and nephrin
(podocytes) at 48 h post fertilization (h.p.f.). Compared with
control embryos, cdh23, galnt11, mll3a, mll3b, and umod mor-
phants did not display significant defects in glomerular or tubule
gene expression (Figure 2a, n425 embryos per MO injection).

It is possible that morphant embryos develop a kidney
function decline phenotype only after exposure to a nephro-
toxin, despite observing no differences in renal marker expres-
sion at 48 h.p.f. Accordingly, after MO injection, we injected
embryos with gentamicin at 48 h.p.f. and observed edema pre-
valence and severity over the next 3 days. In control embryos,
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Figure 1 | Regional association plots of the novel loci identified by genome-wide association study (GWAS) of kidney function decline
traits. Negative log10 P values are plotted vs. genomic position (build 36, hg18). The lead single-nucleotide polymorphism (SNP) in each region
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gentamicin injection predictably resulted in a majority of
embryos developing minor (cardiac) edema by 24 h post injec-
tion (h.p.i.) (Figure 2b–d). In comparison, cdh23 and galnt11
morphants developed significantly more severe (cardiac, inte-
stinal, and ocular) and more frequent edema (Figure 2b–d).
Specifically, whereas 10% of control embryos developed severe
edema by 72 h.p.i., 43% of cdh23 morphants (P¼ 0.009) and
55% of galnt11 morphants (P¼ 0.001) developed severe edema
at this time point. Additionally, a significant proportion of
cdh23 (33%, P¼ 0.035) and galnt11 morphant embryos (46%,
P¼ 0.005) injected with gentamicin developed edema earlier
compared with controls at 5 h.p.i. In contrast, knockdown
of mll3 or umod affected neither kidney development nor
susceptibility to gentamicin (Figure 2b and c). Taken together,
these data demonstrate that knockdown of cdh23 and galnt11
results in altered renal function after a nephrotoxic insult.

Interrogation of novel loci in eSNP databases and the Chronic
Renal Insufficiency Cohort (CRIC) study

We interrogated eSNP databases for evidence of SNPs at the
CDH23 and GALNTL5/GALNT11 loci to evaluate an effect
on gene expression25 but found no relevant associations.
Similarly, annotation information provided by functional
annotation of genetic variants from high-throughput
sequencing data (ANNOVAR)26 did not yield genetic
variants of potential functional interest within 500 kb of
and in linkage disequilibrium (r240.8 based on HapMap
release 22) with the index SNPs.

In Caucasian participants of the CRIC study, a prospective
study of patients with CKD at baseline,27 neither SNPs in
GALNTL5/GALNT11 nor SNPs in CDH23 were associated
with eGFRchange (n¼ 1476) or time to a composite renal
event that consisted of incident end-stage renal disease or
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Figure 2 | Cdh23 and galnt11 knockdowns exacerbate nephrotoxic injury in zebrafish embryos. (a) Whole-mount in situ hybridization for
the global kidney marker pax2a (arrowhead denotes the glomerulus; bracket denotes the tubule) and the podocyte marker nephrin
demonstrates that morpholino (MO) knockdowns of cdh23, galnt11, mll3a, and mll3b do not result in changes in kidney gene expression
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halving of eGFR (n¼ 1585, with a total of n¼ 178 events;
results not shown).

DISCUSSION
Key findings

Our key findings are fourfold. First, we estimate the herita-
bility of eGFR decline as being 38% in the general population
of European descent, providing a rationale to search for
genetic variants associated with kidney function decline. Second,
we extend evidence of a known locus (UMOD) previously
associated with CKDi and end-stage renal disease21,28 by
showing genome-wide significant association with kidney
function change. Third, we have identified two novel genetic
loci (CDH23 and GALNTL5/GALNT11) with suggestive asso-
ciation with kidney function decline phenotypes. Finally, we
show that knockdown of the two novel loci in zebrafish
renders the nephron susceptible to a nephrotoxic insult.

Our findings in the context of the literature

We extend the current literature by performing the first large-
scale GWAS of renal function decline traits in the general
population. Previous studies analyzing progression of renal
disease in African Americans,29–32 individuals of European
descent,21 healthy nurses,33 and patients with diabetes,34,35

hypertension,31 IgA nephropathy,36,37 and end-stage renal
disease21 focused only on candidate genes.

The SNP in UMOD has previously been identified in a
GWAS of eGFR measured at one time point,14 and was
significantly associated with CKDi and end-stage renal
disease in a candidate gene study21 and with salt-sensitive
hypertension and kidney damage in rodents and humans.38

Our data extend this knowledge base by providing strong
evidence that genetic variation at the UMOD locus affects
different definitions of kidney function decline.

For Rapid Decline, the associated region on chromosome
7 contains the genes GALNTL5, GALNT11, MLL3, and
CCT8L1, with our zebrafish data suggesting GALNTL5 and
GALNT11 as the genes of interest. GALNTL5 encodes the
putative polypeptide N-acetylgalactosaminyltransferase-like
protein 5, which by similarity has a presumed role in
O-linked oligosaccharide biosynthesis. Polypeptide N-acet-
ylgalactosaminyltransferase 11, encoded by GALNT11, is a
glycosyl transferase that catalyzes the initial reaction in
O-linked oligosaccharide biosynthesis. Studies in Xenopus
support a role of the gene product in left–right patterning by
modulating Notch1 signaling, thus establishing the crucial
balance between motile and immotile cilia, and it is also
expressed in the developing kidney of zebrafish.39,40 Our data
suggest that galnt11 is not essential for kidney development
but protects against susceptibility from nephrotoxins.

The region of chromosome 7 also contains a locus
(rs7805747 in PRKAG2) that was previously identified in a
GWAS meta-analysis of cross-sectional eGFR.15 However, this
SNP is independent of rs1019173 (r2¼ 0.002, D0 ¼ 0.061 in
the 1000 Genomes Pilot Version 1, hg18); therefore, the novel
locus identified in the present study is unlikely tagging the

PRKAG2 locus. Moreover, conditional analysis using genotypes
from both SNPs from individual level data from the ARIC
study showed that the association between rs1019173 and
Rapid Decline is unchanged when controlling for rs7805747
(data not shown).

The other locus identified from this study is an intronic
SNP in CDH23 that is nominally associated with eGFR
change in those with CKD at baseline. CDH23 encodes
cadherin 23, a glycoprotein of the cadherin family. Cadherin
23 and protocadherin 15, encoded by PCDH15, form the tip-
links spanning the stereocilia of the inner ear’s hair cells.
These tip-links are key contributors to the mechanosensory
transduction in hair cells required for hearing.41 Rare muta-
tions of CDH23 cause progressive, nonsyndromic deafness
(DFNB12, MIM # 601386)42–44 or Usher Syndrome 1D,
characterized by profound deafness, vestibular dysfunction,
and retinitis pigmentosa (MIM # 601067). The transmem-
brane protein cadherin 23 is expressed in many tissues,
including the kidney,44,45 where it is found predominantly in
the tubulointerstitium.46 Although a kidney phenotype has
not been reported for patients with DFNB12 or Usher syn-
drome, our zebrafish data provide evidence that cadherin 23
has a role in protecting from susceptibility to nephrotoxins,
while not being essential for nephrogenesis.

Implications

Our GWAS findings point toward two novel gene loci, CDH23
and GALNTL5/GALNT11, and one previously identified
locus (UMOD) as being associated with kidney function
decline. The zebrafish experiments support a role of the two
newly identified loci in increasing renal susceptibility to
nephrotoxic insults and may indicate that a perturbation
model could serve as a model of longitudinal kidney function
decline. In a previous work, we have shown that knockdown
of two genes identified by GWAS of cross-sectional eGFR,
mpped2 and casp9, resulted in abnormal kidney development,
with susceptibility to gentamicin only in casp9 knockdown.16

Taken together, our current and previous data highlight the
differential role of genes in affecting kidney development,
function, and susceptibility to damage.

Strengths and limitations

The strengths of this study include the large sample size of renal
function decline traits, follow-up in independent samples,
analysis of several definitions of kidney function decline, and
validation in zebrafish. Some limitations warrant mention. Even
though we addressed interassay differences of serum creatinine
measurement by calibrating creatinine to representative Na-
tional Health and Nutrition Examination Study (NHANES)
standards, several other factors causing imprecision in defining
kidney function decline phenotypes may have reduced our
statistical power to identify genome-wide significant associa-
tions: (i) despite our use of different renal function decline
definitions, all featured in current guideline statements,3 there is
no standard definition of renal function decline; (ii) kidney
function trajectories are less well defined with two vs. several
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serum creatinine measurements given that renal function
change may not be linear over time3 and there may be day-
to-day alterations in glomerular filtration rate (GFR); (iii) GFR
estimation equations are known to be imprecise, especially at
GFR460 ml/min per 1.73 m2; (iv) we observed heterogeneity in
design between studies, including a wide range of length of
follow-up. We cannot rule out that low statistical power also
accounts for the negative finding in the CRIC study. Further,
our findings, obtained mainly in general population cohorts,
provide novel insights into mechanisms of kidney function
decline, but may not be generalizable to cohorts enriched for
CKD. This limitation deserves particular attention because of
the unexpected observation that, in most cohorts, the subgroup
with baseline CKD (defined as eGFRo60 ml/min per 1.73 m2)
showed a mean increase in eGFR over time irrespective of
length of follow-up interval. This may indicate that, in the
CKD subgroup of these cohorts, a baseline eGFRo60 ml/min
per 1.73 m2 may not represent progressive CKD with active
disease but rather stable disease or imprecise GFR estimation.
This highlights that more work with expanded data sets and
functional models are necessary to further elucidate the
genetics of CKD initiation and progression in population-
based studies. Finally, the role of genes contributing to aging
and chronic disease in humans may not be entirely modeled
by transient MO knockdown and observation of a develop-
mental phenotype: whereas zebrafish allows high throughput
modeling of the effects of gene knockdown in a vertebrate
organism, the developmental role of specific genes may well
be different from homeostatic organ maintenance in the
adult. Specifically, umod may not have a relevant role in
zebrafish renal development or toxin susceptibility.

CONCLUSION

In a large GWAS of kidney function decline phenotypes in
individuals of European descent, we showed that a SNP in
UMOD is associated with kidney function decline pheno-
types, and that there is suggestive statistical evidence for
two novel loci (GALNTL5/GALNT11 and CDH23). Zebrafish
experiments at the two novel loci suggest roles in the
deterioration of kidney function after acute injury. Given the
complexity of the kidney function decline phenotype, further
interrogation of these regions is warranted.

MATERIALS AND METHODS
Ethics statement
In all studies, all participants gave informed consent. All studies
were approved by their responsible Research Ethics Committees.

Phenotype definition
Serum creatinine was measured at a minimum of two time points
spaced several years apart (2.0–22.2 years, median 5.6 years). In
almost all studies, there were only two serum creatinine measure-
ments in total. To be consistent across studies, we used each
individual’s two creatinine measurements with the longest follow-up
in between for phenotype creation in all cohorts (see below). Baseline
and follow-up serum creatinine were calibrated to the US nationally
representative NHANES data in all discovery and replication studies

to account for between-laboratory variation.47 In order to be
consistent with our prior work, GFR based on serum creatinine
(eGFRcrea) was estimated using the four-variable MDRD Study
Equation. eGFRcrea values o15 ml/min per 1.73 m2 were set to 15,
and those 4200 were set to 200 ml/min per 1.73 m2.

Several phenotypes were used to model different mechanisms
involved in the change in renal function over time, using each
individual’s two serum creatinine measurements with the longest
follow-up. The continuous phenotype eGFRchange, modeling
annual change in kidney function, was calculated by subtracting
the eGFR at follow-up from the eGFR at baseline and then dividing
by the number of years of follow-up for each participant. Thus, a
positive value of eGFRchange corresponds to a decline in kidney
function over time, whereas a negative value of eGFRchange corre-
sponds to an increase in kidney function over time. Three dichoto-
mous phenotypes were calculated to model kidney function decline
phenotypes with different clinical implications:5,24 for Rapid Decline,
cases were defined as individuals with a rapid decline in kidney
function X3 ml/min per 1.73 m2 per year, and controls as those with
a kidney function decline o3 ml/min/1.73 m2 per year.6 For CKDi,
cases were defined as participants with eGFR at baseline X60 ml/
min per 1.73 m2 declining to an eGFR at follow-up o60 ml/min per
1.73 m2; a more stringent definition of CKDi (CKDi25) is restricted
to CKDi cases with a decline in eGFR X25% at follow-up. For both
CKDi and CKDi25, controls were defined as those with an eGFR
X60 ml/min per 1.73 m2 at baseline and follow-up.

Heritability of eGFR in the Framingham Heart Study
Heritability of eGFRchange was calculated with the family data of
the Framingham Heart Study using the variance components
analysis implemented in SOLAR.48 eGFRchange was calculated by
taking follow-up eGFR (obtained between 2005 and 2008) and
subtracting baseline eGFR (obtained in 1995–1998), divided by the
number of years of follow-up. Residuals were created after adjusting
for age, sex, baseline eGFR, and principal components as necessary.
With residuals as response variable, a variance components model
with an additive genetic and a random environmental variance com-
ponent was fitted, where the correlation among relatives attributable
to the genetic component is assumed proportional to the kinship
coefficient matrix. Heritability is calculated as the ratio of the
estimated genetic variance to the total phenotypic variance.

Definition of strata
Kidney function decline is known to differ depending on the level of
baseline eGFR. Thus, eGFRchange was analyzed (i) in the overall
sample (eGFRchange overall), (ii) in those with eGFR X60 ml/min
per 1.73 m2 at baseline (eGFRchange noCKD), and (iii) in those
with eGFRo60 ml/min per 1.73 m2 at baseline (eGFRchange withCKD).
Rapid Decline was analyzed in the overall sample (Rapid Decline
overall) and in those with eGFR X60 ml/min per 1.73 m2 at baseline
(Rapid Decline noCKD). CKDi and CKDi25 were analyzed in the
overall sample only.

Stage 1 genome-wide association analyses
All participating studies used a uniform analysis plan and each trait
was created using standard programming commands that were pro-
vided to collaborating studies. The continuous trait (eGFRchange)
was analyzed by linear regression and the dichotomous traits by
logistic regression (Rapid Decline, CKDi, CKDi25). Models included
the allelic dosage at each marker from imputed study data consisting
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of 2.5 million HapMap-II SNPs49 on average, based on imputations
with different programs and reference panels. Details of genotyping
and imputation in each study are shown in Supplementary Table S2
online. We used the additive genetic model, adjusted for age and sex,
baseline eGFR, and, where applicable, for study site and principal
components.

Stage 1 meta-analysis
For our stage 1 analysis, we used aggregated statistics of 16
population-based GWASs of individuals of European ancestry for
each of the longitudinal traits: eGFRchange overall, eGFRchange
noCKD, eGFRchange with CKD, Rapid Decline overall, Rapid Decline
noCKD, CKDi, and CKDi25. All 16 stage 1 studies contributed data
to every trait, except for the AMISH study, which provided data to
eGFRchange overall and eGFRchange no CKD only because of low
number of CKD cases at baseline and follow-up.

All input files underwent quality control using the GWAtoolbox
package in R (http://www.eurac.edu/GWAtoolbox.html)50 before
including them into the meta-analysis. Study data were meta-analyzed
assuming fixed effects and using inverse-variance weighting. Thus, the
pooled effect bpooled is estimated as

P

i

bi = s:e:2i
1 = s:e:2

i

, where b and s.e. are the
effect and standard error of the SNP on the outcome in the ith study.
The meta-analyses were performed by METAL. We performed genomic
control correction if the inflation factor l in the study files was greater
than 1 (first genomic control correction) or if it was greater than 1 in
the meta-analysis result (second genomic control correction).51

Next, we created a list of independent SNPs (pairwise r2o0.2,
HAPMAP II release 22) that had a genomic control-corrected
P-value o10� 6 and minor allele frequency 45% in stage 1 meta-
analysis and were present in at least 85% of the contributing studies.

Stage 2 meta-analysis
The stage 2 meta-analysis of SNPs identified in stage 1 was
performed on the same phenotypes and using the same analysis plan
as the stage 1 analysis, and was based on in silico genetic data or on
de novo genotyped variants. Details on each stage 2 study’s geno-
typing and imputation platforms are shown in Supplementary
Table S2 online. In addition, we also performed a combined inverse-
variance weighted fixed-effects stage 1 and stage 2 meta-analysis
using individual study files as input. Studies with less than 50 cases
for a dichotomous trait or with an overall sample size of less than 50
for a continuous trait were excluded from the meta-analyses of the
corresponding trait. SNPs with a stage 2 meta-analysis one-sided
P-value o0.05 and effect direction consistency with the stage 1
meta-analysis effect direction were defined as showing nominally
significant evidence of replication. The I2 statistic was computed to
assess heterogeneity between studies.

Zebrafish functional experiments
Zebrafish were maintained according to established Institutional
Animal Care and Use Committees protocols. Zebrafish were injected
at the 1-cell stage with 2 nl of 400 mM MO (GeneTools, Philomath,
OR) designed to block the ATG start site or an exon–intron splice
site of the target gene (Supplementary Table S6 online). Embryos
were fixed in 4% paraformaldehyde at the appropriate stages for
in situ hybridization using well-established protocols (http://zfin.org/
ZFIN/Methods/ThisseProtocol.html). Renal gene expression was
visualized using established markers for pax2a (global kidney) and
nephrin (podocytes).52,53 The number of embryos displaying abnormal
renal gene expression was compared with uninjected control embryos,

and statistical significance was determined by Fisher’s exact test. For the
gentamicin nephrotoxin experiment, embryos were injected with MO
at the 1-cell stage and then injected with 5 nl of 10 mg/ml gentamicin
prepared from one stock solution in the cardiac sinus venosus at
48 h.p.f. after being anesthetized in a 1:20 dilution of 4 mg/ml Tricaine
in embryo water. Live embryo development and edema prevalence were
documented over the next 3 days.
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(P48/08//A11/08 to CAB and BKK; 2012_A147 to CAB and IMH). The
kidney parameter measurements in F3 were funded by the Else Kröner-
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the Else Kröner-Fresenius-Stiftung (CAB, BKK). De novo genotyping in
F3 and F4 were funded by the Else Kröner-Fresenius-Stiftung (CAB,
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