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Abstract

A hallmark of aging-related organ deterioration is a dysregulated immune response characterized by pathologic leukocyte
infiltration of affected tissues. Mechanisms and genes involved are as yet unknown. To identify genes associated with aging-
related renal infiltration, we analyzed kidneys from aged mice ($20 strains) for infiltrating leukocytes followed by Haplotype
Association Mapping (HAM) analysis. Immunohistochemistry revealed CD45+ cell clusters (predominantly T and B cells) in
perivascular areas coinciding with PNAd+ high endothelial venules and podoplanin+ lymph vessels indicative of tertiary
lymphoid organs. Cumulative cluster size increased with age (analyzed at 6, 12 and 20 months). Based on the presence or
absence of clusters in male and female mice at 20 months, HAM analysis revealed significant associations with loci on Chr1,
Chr2, Chr8 and Chr14 in male mice, and with loci on Chr4, Chr7, Chr13 and Chr14 in female mice. Wisp2 (Chr2) showed the
strongest association (P = 5.006102137) in male mice; Ctnnbip1 (P = 6.426102267) and Tnfrsf8 (P = 5.426102245) (both on
Chr4) showed the strongest association in female mice. Both Wisp2 and Ctnnbip1 are part of the Wnt-signaling pathway and
the encoded proteins were expressed within the tertiary lymphoid organs. In conclusion, this study revealed differential
lymphocytic infiltration and tertiary lymphoid organ formation in aged mouse kidneys across different inbred mouse strains.
HAM analysis identified candidate genes involved in the Wnt-signaling pathway that may be causally linked to tertiary
lymphoid organ formation.
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Introduction

As healthy individuals age most of them display a gradual

decline in renal function as identified by diminished glomerular

filtration rate [1]. Various factors influence the rate of decline

including the presence of co-morbidities (like hypertension and

diabetes mellitus), ethnicity and sex [2]. However, it was

previously shown that in a group of healthy subjects one third

had no absolute decrease in renal function [3] suggesting that

genetic predisposition for decline in renal function, or protection

thereof, exists. Aging-related decline in renal function is charac-

terized histopathologically by vascular, glomerular and tubulo-

interstitial scarring [4]. The process of progressive renal scarring

with age is believed to result from repetitive clinical or silent insults

of acute kidney injury, which is accompanied by local and systemic

inflammatory processes. The inflammatory cascade initially

facilitates regeneration and repair but may promote fibrosis in

the chronic phase [5]. Consequently, attenuation of (aging-related)

renal inflammation is expected to slow down the process of renal

scarring and thereby functional decline.

Microarray analysis of human normal kidney samples revealed

increased expression of immune genes at old age among which B

and T cell-specific genes including immunoglobulin m, l, k chains

and TCRb, respectively [6]. These data suggest the presence of

increased numbers of infiltrating lymphocytes in the aged kidney,

which indicate that there is a conserved increase of immune

surveillance or inflammation in the kidney with age. Similarly, also

kidneys from aged (17–19 months) C57BL6 mice were character-

ized by increased expression of immune-related genes when

compared with young (8–10 weeks) mice [7]. Whether strain-

dependent differences exist with respect to aging-related renal

inflammation is as yet unknown.

Although it is well recognized that renal aging in both humans

[6,8] and mice [7] is accompanied by an elevated inflammatory

status, the cellular and molecular mechanisms underlying this

phenomenon are still unknown. Depending on the spatial

organization of infiltrating leukocytes in target tissues, the function

and consequences may vary. Whereas scattered low level

inflammation is considered relatively benign, chronic inflamma-

tion can result in tertiary lymphoid organ (TLO) formation which

can be associated with tissue damage [9]. As an example, reduced

expression of the calcineurin a isoform in mice resulted in massive

spontaneous TLO formation in aged mice which inversely
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correlated with renal function. Attenuation of TLO formation

improved kidney function, indicating that the process of TLO

formation contributed to the observed nephrotoxicity [10].

As yet, it is unknown whether aging-related renal inflammation

and TLO formation is genetically driven. Therefore, we here

analyzed aging-related renal inflammation and TLO formation in

kidneys collected from healthy aged mice ($20 inbred strains)

followed by Haplotype Association Mapping (HAM) genetic

analysis in order to identify associated genes. HAM analysis, also

known as in silico QTL mapping and similar to genome-wide

association studies (GWAS) in humans, is a powerful tool to

identify genetic loci and to find associations between phenotype

and haplotype in mouse inbred strains [11]. This approach utilizes

high-density single-nucleotide polymorphism (SNP) data from

many inbred strains to identify chromosomal haplotypes associ-

ated with phenotypic traits of interest. The strength of this

approach was shown in previous studies in aged mice resulting in

the identification of a novel gene involved in the regulation of

plasma sodium levels [12] and loci for age-related albuminuria

[13]. The loci identified in the latter study were concordant with

loci associated with human diabetic nephropathy as identified by

GWAS, indicating involvement of common mechanisms in

albuminuria development in mice and humans [13].

Our data revealed differential lymphocytic infiltration and TLO

formation in kidneys from aged mice across different inbred mouse

strains. Subsequent HAM analysis identified candidate genes,

which may be causally linked to aging-associated TLO formation.

Materials and Methods

Ethics Statement
All experiments were approved by The Jackson Laboratory’s

Animal Care and Use Committee.

Mice
Males (20 strains) and females (23 strains) from different mouse

inbred strains were obtained from The Jackson Laboratory, Bar

Harbor, ME. If any of the mice died during follow-up (up to 20

months), they were replaced with mice from the same strain. Mice

were housed in a climate-controlled pathogen-free facility with a

12:12-h light–dark cycle and provided free access to food and

water throughout the experiment. After weaning, they were

Table 1. Mean perivascular cell cluster number and cumulative cluster size identified in male and female mice of the various
mouse strains at the age of 20 months.

MALES FEMALES

Strains
Cluster #* mean±
SEM (n)

Rel. cluster size
mean±SEM (n)

Binary
data**

Cluster #*

mean±SEM (n)
Rel. cluster size
mean±SEM (n)

Binary
data**

129S1/SvImJ 4.360.8 (9) 0.16760.047 (9) 1 2.260.8 (6) 0.03560.015 (6) 0

A/J nd nd nd 2.861.5 (6) nd nd

BALB/cByJ { 2.460.3 (8) 0.01860.003 (8) 0 2.661.3 (7) 0.06760.047 (7) 0

BTBR T+ tf/J` 12.765.0 (3) 0.14160.079 (3) 0 9.761.7 (4) 0.09860.019 (4) 0

C3H/HeJ{ 1.060.7 (7) 0.02260.015 (7) 0 4.360.8 (6) 0.02760.010 (6) 0

C57BL/6J 4.760.7 (10) 0.19560.061 (10) 1 2.360.3 (3) 0.04560.025 (3) 0

C57BL/10J 3.361.0 (6) 0.06960.029 (6) 0 3.561.4 (6) 0.02760.011 (6) 0

C57BLKS/J{ 0.060.0 (7) 0.00060.000 (7) 0 0.360.3 (6) 0.00260.002 (6) 0

C57BR/cdJ1 8.061.2 (11) 0.07760.020 (11) 0 8.361.3 (6) 0.20160.084 (6) 1

C57L/J1 ` 18.962.2 (13) 0.41560.055 (13) 1 13.862.4 (8) 0.64560.218 (8) 1

CBA/J 2.860.5 (4) 0.02460.006 (4) 0 1.460.3 (12) 0.02060.006 (12) 0

DBA/2J 3.860.7 (5) 0.06860.022 (5) 0 5.961.6 (7) 0.09360.023 (7) 0

FVB/NJ 3.060.9 (4) 0.03460.025 (4) 0 1.860.7 (6) 0.01460.007 (6) 0

KK/H1J 3.361.4 (4) 0.04460.019 (4) 0 2.761.1 (6) 0.03060.013 (6) 0

LP/J` 8.362.1 (9) 0.23060.066 (9) 1 4.960.9 (12) 0.09060.024 (12) 0

NON/LtJ1 6.361.9 (8) 0.16460.073 (8) 1 18.861.4 (12) 0.27460.025 (12) 1

NZO/H1LtJ nd nd nd 1.660.6 (5) nd nd

NZW/LacJ 3.361.3 (4) 0.03560.027 (4) 0 4.860.6 (8) 0.11360.038 (8) 0

P/J1 ` 9.064.0 (4) 0.23760.079 (4) 1 7.561.7 (10) 0.41960.277 (10) 1

PL/J nd nd nd 2.060.8 (5) nd nd

RIIIS/J{ 1.860.5 (6) 0.00860.003 (6) 0 0.760.3 (10) 0.00360.001 (10) 0

SM/J 3.760.9 (7) 0.02760.010 (7) 0 0.360.3 (6) 0.01360.010 (6) 0

SWR/J 5.862.9 (5) 0.08260.047 (5) 0 3.861.4 (4) 0.21360.074 (4) 1

*Cluster #: number of perivascular cell clusters present per renal cross-section.
**‘‘0’’: relative cluster size ,0.15; ‘‘1’’: relative cluster size .0.15.
1strains included in the kinetics analyses: 6, 12 and 20 months.
{strains without TLOs included in lymphatics and liver infiltration analyses.
`strains with TLOs included in lymphatics and liver infiltration analyses.
n: number of kidneys/mice analyzed; nd: not determined.
doi:10.1371/journal.pone.0091850.t001

Renal TLO Formation in Aging Mice
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maintained on a chow diet (Lab diet 5K52, PMI Nutritional

International, Bentwood, MO, USA). At 20 months, kidneys from

6.5 (median) [3 (min)–13 (max)] male and 6 [3–12] female mice

per strain were analyzed for the presence of perivascular infiltrates

(described below). At 6 and 12 months, kidneys from respectively

5–6 and 4–5 mice were analyzed in a subset of strains.

Periodic acid-Schiff (PAS) staining and quantitative
analyses

For morphological analysis, kidney and liver tissue was fixed in

Bouin’s fixative followed by embedding in paraffin. Paraffin-

embedded tissue blocks were cut into 2 mm sections, and Periodic

acid-Schiff (PAS) staining was performed for histological analysis.

Because the size of the immune cell clusters depended on the way

the tissue was cut and their localization, we measured them as

follows in renal tissue: 1) Perivascular clusters which were found

around the blood vessels at the renal hilum area were excluded; 2)

The total number of perivascular clusters per kidney section as

well as the total cumulative size of the clusters were determined.

The latter was done using the following equation: relative cluster

size = (total cumulative cluster area/total renal tissue area)

6100%; 3) male and female mice were measured in the same way,

while analyzed separately. For quantification of the number of

renal lymph vessels the cortical area was selected in each kidney

and the number of all podoplanin+ (see below) vessel-like structures

with clear lumen were counted and expressed as the number of

lymph vessels per mm2 of cortical area.

Immunohistochemistry
For immunohistochemical staining, sections were deparaffinized

in xylene followed by rehydration. Heat-induced antigen retrieval

was performed in a microwave in 10 mM sodium citrate buffer

(pH 6.0) followed by an endogenous avidin and biotin blocking

step (Avidin/Biotin Blocking Kit, Vector Laboratories). Kidney

sections were stained for rat anti-mouse CD45 (pan leukocyte

marker, clone 30-F11, BD Biosciences), rabbit anti-human CD3

(T cells, DAKO), rat anti-mouse B220 (B cells, tissue culture

supernatant from clone RA3-3A1), rabbit anti-human Ki67

(proliferating cells, NCL-Ki67p, Novocastra - Leica Microsystems

B.V.), anti-mouse peripheral node addressin [PNAd] (HEVs, clone

MECA-79, Biolegend), hamster anti-mouse podoplanin (clone

811, Acris Antibodies Inc), WISP2 (ABIN709676, Antibodies-

Online), TNFRSF8 (ABIN1385704, Antibodies-Online), and

CTNNBIP1 (ABIN753748, Antibodies-Online). Liver sections

were stained for CD3 and B220 only. Sections were incubated

with primary antibodies for either 1 h (podoplanin, WISP2,

TNFRSF8, CTNNBIP1) or 2 h at room temperature (CD3, B220,

PNAd, Ki67), or overnight at 4uC (CD45). Sections incubated

with primary antibodies against Ki67, CD3, B220 and CD45 were

then exposed to appropriate biotin-labeled secondary antibodies:

anti-rat IgG, anti-rabbit IgG, anti-mouse IgG (DAKO) and anti-

rat IgM (Abcam), followed by incubation with peroxidase-

conjugated streptavidin for 30 min at room temperature. For

detection of podoplanin, sections were incubated with peroxidase-

conjugated goat anti-Syrian hamster (Abcam) secondary antibody

for 30 min. For detection of WISP2, TNFRSF8, CTNNBIP1,

sections were incubated with peroxidase-conjugated goat anti-

rabbit secondary antibody (DAKO) and rabbit anti-goat tertiary

antibody (DAKO), each for 30 min. Immunoreactivity was

visualized using 3,39-diaminobenzidine (DAB) solution (1 mM

DAB, 50 mM Tris–HCl buffer (pH 7.6), 10 mM sodium azide,

0.006% H2O2) or by adding the substrate 3-amino-9-ethylcarba-

zole (AEC) from DAKO Envision kit (DAKO). Hematoxylin was

used as nuclear counterstaining except the podoplanin-stained

sections on which PAS-counterstaining was performed. Negative

controls for immunostaining were performed by adding the same

concentration of appropriate isotype control antibodies (DAKO)

Figure 1. Phenotypic characterization of perivascular immune cell clusters in the aged mouse kidney. (A) PAS staining was used for
computerized morphometric analysis. Left panel: low-power magnification (40x) showing representative perivascular infiltrates (arrows) in a male
C57L/J mouse. Middle panel: higher-power magnification (100x) of the left panel showing three individually measured perivascular cell clusters. The
cell clusters were encircled and the surface area was calculated and expressed in mm2 as indicated. Right panel: high-power magnification (4006) of
the middle panel. (B) The immune cell clusters consisted of CD45+ cells of which the majority was CD3+ T cells (C) and B220+ B cells (D). Panels B, C &
D display serial sections (magnification: 2006). Insets show high-power magnifications (500x) of the indicated areas. Arrows indicate immune cell
clusters. a: arteriole, v: vein.
doi:10.1371/journal.pone.0091850.g001

Renal TLO Formation in Aging Mice
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instead of primary antibodies. No specific immunoreactivity was

detected in these negative control sections (not shown). Images

were captured using a Hamamatsu NanoZoomer 2.0-HT Virtual

Slide Scanner (Hamamatsu Photonics, Japan). Quantitative

analyses of cluster size were performed using Aperio ImageScope

version 10.2.2.2352 image analysis software.

Immunofluorescence
Four-micrometer thick frozen sections (C57BL6/J mouse

kidney) were fixed in acetone (10 min., room temperature) and

subsequently incubated in 0.03% H2O2 (in PBS). Sections were

pretreated with normal mouse serum (20 min., room tempera-

ture), and next incubated for 1 hr with primary antibody mixture

consisting of hamster anti-mouse podoplanin (clone 811) with

either goat anti-mouse VEGFR3 (R&D Systems) or rabbit anti-

mouse LYVE-1 (kind gift from Prof. David Jackson, John Radcliffe

University Hospital, Oxford, UK) diluted in PBS/1% BSA.

Binding of primary antibodies was detected by incubating the

sections for 30 min. with secondary polyclonal antibodies diluted

in PBS +1% normal mouse serum: peroxidase-conjugated goat

anti-Syrian hamster (Abcam) with FITC-conjugated rabbit anti-

goat (DAKO) or FITC-conjugated goat anti-rabbit (DAKO).

Peroxidase-activity was visualized using the TSA Tetramethylrho-

damine System (PerkinElmer LAS Inc., USA). Sections were

mounted in Vectashield mounting medium and analyzed on a

Leica DM4000B microscope (Leica Microsystems B.V.).

Haplotype Association Mapping (HAM) analysis
To identify loci associated with the presence of perivascular

immune cell clusters HAM analysis was performed using the

Efficient Mixed Model Association (EMMA; http://mouse.cs.ucla.

edu/emma) method to control for genetic relevance [14]. In both

sexes, binary data (i.e. presence or absence) were used based on the

threshold at 0.15 of relative cluster size. Strains with relative

cluster size ,0.15 were marked as ‘‘0’’, and those .0.15 were

marked as ‘‘1’’. Associations with a P-value ,1026 were

considered significant. HAM results are displayed in both

Manhattan plots (to illustrate the observed associations along the

genomic coordinates), and Quantile-Quantile (Q-Q) plots (illus-

trate deviation of the observed from the expected probability

distribution).

Single Nucleotide Polymorphism (SNP) genotyping
To determine the genotypes of the Wisp2 and Tnfrsf8 SNPs for

the strains included in our study for which no data were available

in the Sanger database (www.sanger.ac.uk/resources/mouse/

genomes/) oligonucleotide primers were designed that enabled

us to amplify Wisp2 exon 4 and Tnfrsf8 exon 5. High quality DNA

for all the strains was purchased from The Jackson Laboratory’s

DNA resource (www.jax.org/dnares/). PCR and subsequent

sequencing of the PCR products were performed using standard

protocols.

Statistical analysis
Statistical analysis including calculation of mean distribution

and standard error for the cluster size study was carried out using

GraphPad Prism 5 software (GraphPad Software Inc., La Jolla,

CA, USA). To compare multiple conditions, statistical significance

was calculated by one-way ANOVA. The Student t-test was used

to compare two conditions using the original data. Pearson

correlation was used to analyze the mean relative cluster size and

number between female and male mice. Pearson’s x2 test was

performed to analyze the association between kidney and liver

perivascular infiltration. A value of P,0.05 was considered to

indicate significance.

Results

Presence and size of immune cell clusters in aged mice
In the vast majority of aged (20 months) kidneys from the 23

strains of female and 20 strains of male inbred mice, infiltrated

inflammatory cells were found (Table 1). These inflammatory cells

were primarily aggregated in clusters around the veins and

arterioles (Figure 1A) whereas the glomeruli and tubulo-intersti-

tium only contained sparse infiltrated cells. To determine the

composition of these cell clusters, sections were stained with the

pan-leukocyte marker CD45, which is present on all hematopoi-

Figure 2. Distribution of relative immune cell cluster size in 20-months-old male and female mice across the different mouse
strains. Perivascular immune cell clusters were measured in 20-months-old male and female mice and expressed as relative cluster size (as described
in Materials & Methods). Only those strains containing both female mice and male mice analyzed were listed (see also Table 1). Data are expressed as
mean 6 SEM. Numbers indicated above each bar represent the number of mice analyzed.
doi:10.1371/journal.pone.0091850.g002
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etic cells, except erythrocytes and plasma cells. CD45 staining

showed abundant expression in the renal perivascular cell clusters,

indicating that these clusters were dominantly composed of

leukocytes (Figure 1B). Staining for CD3 (Figure 1C) and B220

(Figure 1D) revealed that the CD45+ cell clusters consisted

primarily of T cells and to a lesser extent B cells.

To analyze the quantitative differences in the distribution of the

immune cell clusters among the different strains, the numbers and

the size of these clusters were measured. Figure 1A (middle panel)

shows a representative example of the surface measurement of

three individual immune cell clusters in a PAS-stained section.

Table 1 lists the numbers of individual cell clusters as well as the

relative cluster size identified in the various strains. To correct for

total kidney surface area (which may obviously influence the

number of cell clusters present), the relative cluster size in all the

strains was calculated using the equation mentioned in the

Materials and Methods section (Table 1 and Figure 2). These data

clearly indicate that the number of individual clusters and the

relative cluster size varied among the different strains analyzed.

Pearson correlation analyses revealed that the number of clusters

identified in both males and females significantly correlated with

the relative cluster size (males: Pearson r = 0.8614, P,0.0001 and

females: Pearson r = 0.7339, P = 0.0002). As the analysis was

stratified by sex, we further looked into the sex difference in all the

strains and identified no sex difference with regard to cluster size

(P = 0.6716, data not shown). Consequently, both cluster number

and the relative cluster size observed in male mice were

significantly correlated with those observed in female mice (cluster

number: Pearson r = 0.6845, P = 0.0009 & relative cluster size:

Pearson r = 0.7972, P,0.0001). Only in strains 129S1/SvlmJ and

LP/J, significantly larger clusters were observed in male mice as

opposed to female mice. The data were transformed to binary

ones (Table 1) with a threshold set at 0.15 in both sexes for HAM

analysis (see below).

Perivascular cell clusters have tertiary lymphoid organ
(TLO) characteristics

Tertiary lymphoid organ (TLO) formation is associated with the

presence of immune cell clusters, which are enriched in mainly T

cells and B cells. These conditions recapitulate the cellular

conditions required for the formation of TLOs. Therefore we

next analyzed the perivascular cell clusters in aged kidneys for the

presence of common markers of TLOs. In kidneys from 20 months

old mice there was abundant presence of proliferating (Ki67+)

lymphocytes (Figure 3A) indicating ongoing immune activation in

the affected organ [15]. Particularly, high endothelial venules

(HEVs) abundantly express peripheral-node addressins (PNAds)

which are unique sugar structures on highly glycosylated and

sulphated forms of sialomucins. The expression of PNAd in aged

mouse kidneys provides more evidence for the formation of TLOs

(Figure 3B). Also development of lymph vessels might be

associated with the appearance of TLOs [16,17]. We therefore

analyzed whether TLOs in aged mice were associated with

podoplanin+ lymph vessels within or immediately surrounding

TLOs. As shown in Figure 3C, lymph vessels could indeed be

observed in the close proximity of TLOs. To confirm the

phenotype of lymph vessels, immunofluorescent double labeling

was performed for podoplanin and two other lymphatic endothe-

lium markers: LYVE-1 and VEGFR3 (Figure 3D). The presence

of proliferating cells, HEVs and lymph vessels collectively indicate

that the perivascular lymphoid cell clusters are TLOs.

Perivascular cell clusters increase during ageing
To further elucidate the kinetics of perivascular cell cluster and

TLO formation during aging, the presence and size of these

clusters between aged (20 months) and younger (6 and 12 months)

mice were determined in a subset of strains. These strains were

selected based on the presence of predominant cell clusters at 20

months and included C57L/J, C57BR/cdJ, P/J and NON/LtJ

male and female mice. As shown in Figure 4A and 4B,

perivascular cell clusters developed during ageing. Although

perivascular cell clusters started to develop already at 6 months

of age, no significant differences were observed between 6 and 12

months. At 20 months of age the relative cluster size was

significantly increased (P,0.01) compared with 6 and 12 months

old mice (Figure 4B).

TLO formation is characterized by overall reduced
numbers of lymphatics

In order to study whether TLO formation was associated with

altered numbers of lymphatics, lymph vessels were stained for

podoplanin. Podoplanin has been shown to be one of the most

reliable markers for visualization of lymph vessels by immunohis-

Figure 3. Perivascular immune cell clusters in aged mice have
characteristics of tertiary lymphoid organs (TLOs). Representa-
tive photomicrographs of a perivascular cell cluster from C57L/J mouse
serial sections containing (A) Ki67+ proliferating cells (magnification
200x) and (B) peripheral node addressin (PNAd) expressing high
endothelial venules (HEVs) (magnification 4006). Insets show higher-
power magnifications of the indicated areas. Arrowheads indicate
proliferating lymphocytes (A) and PNAd+ HEVs (B). (C) Podoplanin
expression on lymphatic endothelial cells in a lymph vessel in the close
proximity of a perivascular cell cluster (left panel: magnification 200x,
right panel: 400x). (D) Immunofluorescent double labeling for LYVE-1/
podoplanin (upper row) and VEGFR3/podoplanin (bottom row) on
C57Bl/6 mouse kidney sections. Abbreviations: i: infiltrate; lv: lymph
vessel; v: vein.
doi:10.1371/journal.pone.0091850.g003

Renal TLO Formation in Aging Mice
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tochemistry [18,19]. To this end, 4 strains with relative absence

(BALB/cByJ [n = 9], C3H/HeJ [n = 10], RIIIS/J [n = 10],

C57BLKS/J [n = 10]) and 4 strains with relative abundance

(BTBR T+ tf/J [n = 7], C57L/J [n = 9], P/J [n = 8], LP/J [n = 4])

of TLOs were analyzed (Table 1). In our study lymph vessels were

almost exclusively observed in the adventitia of middle-sized to

large arterioles in the cortex and cortico-medullary region of the

kidneys analyzed, irrespective of presence or absence of TLOs

(Figure 5A). Interstitial lymph vessels were not observed. It is well

known that glomerular podocytes and parietal epithelial cells

strongly express podoplanin. These components were excluded

from the quantitative analysis. In kidneys with TLOs, several

lymph vessels were associated with these infiltrates, both around

(Figure 2C) and inside TLOs, and some of them filled with

lymphocytes (not shown). Although TLO formation appeared to

be associated with lymph vessels around or inside TLOs, the

overall number of lymph vessels was significantly lower in the

kidneys from strains with TLO formation (Figure 5B & 5C).

Renal TLO formation is associated with perivascular
infiltrates in the liver

We next analyzed whether renal TLO formation is accompa-

nied by inflammatory infiltrates in other organs and analyzed the

liver to this end. Again, the 4 strains without (BALB/cByJ, C3H/

HeJ, RIIIS/J, C57BLKS/J) and with (BTBR T+ tf/J, C57L/J, P/

J, LP/J) TLOs were analyzed (Table 1). In general, in kidneys

without TLOs the livers were also devoid of infiltrates (Figure 6A).

However, in mice with renal TLO formation, most livers also

contained perivascular infiltrates (Figure 6B). Quantitative analysis

revealed that 21/31 (67.7%) of mice with renal TLOs also

contained liver infiltrates, whereas 8/27 (29.6%) of mice without

renal TLOs contained liver infiltrates (Figure 6C). Contingency

analysis (Pearson’s x2 test) revealed a significant association

between renal TLO development and presence of perivascular

infiltrates in the liver (x2 = 28.89, P,0.0001). The perivascular

infiltrates in liver consisted of predominantly B220+ B cells and

CD3+ T cells (Figure 6D).

HAM analysis on binary data from male and female mice
In order to identify loci associated with perivascular cell cluster

formation, binary data were used for HAM analysis in both sexes

(Table 1). Strains with relative cluster size ,0.15 were marked as

‘‘0’’, and those .0.15 were marked as ‘‘1’’. Genome-wide

scanning was performed in all strains at 20 months of age

(Figure 7). In male mice, significant associations were found with

loci located on Chr1, Chr2, Chr8 and Chr14, while in females

Figure 4. The size of renal perivascular immune cell clusters increase with age. (A) Representative photomicrographs (PAS staining) of
perivascular cell clusters in kidneys obtained from C57L/J mice at the age of 6, 12 and 20 months. Cell cluster surface area was calculated and
expressed in mm2 as indicated (magnification 100x). Arrows indicate individual perivascular infiltrates. Abbreviation: v: vein. (B) Perivascular immune
cell clusters were measured in 6-, 12- and 20-months-old male (C57L/J, NON/LtJ, and P/J strains) and female (C57L/J, C57BR/cdJ and P/J strains) mice
and expressed as relative cluster size (as described in Materials & Methods). Data expressed as mean 6 SEM. Numbers indicated above each bar
represent the number of mice analyzed. Strains from which no tissues were available are marked as nd (not determined). No differences between 6-
months-old and 12-months-old mice in both sexes were observed. However, a significant increase in relative cluster size was observed in 20-months-
old mice compared with both 6-months-old and 12-months-old mice (**P,0.01).
doi:10.1371/journal.pone.0091850.g004
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associations were found with loci located on Chr4, Chr7, Chr13

and Chr14 (Table 2). Changing the threshold (0.15) for the relative

cluster size for any value between 0.1 and 0.2 did not significantly

change the associated loci. The HAM analysis data have been

submitted to the Mouse Phenotype Database at The Jackson

Laboratory (http://phenome.jax.org/) and will be publicly avail-

able shortly.

Correlation of the phenotype with coding SNPs in Wisp2
and Tnfrsf8

The haplotype block containing the gene Wisp2 showed the

strongest association in male mice (P = 5.006102137), while the

haplotype blocks containing Ctnnbip1 (P = 6.426102267) and

Tnfrsf8 (P = 5.426102245) showed the strongest association in

female mice. Wisp2 and Ctnnbip1 are part of the Wnt-signaling

pathway, while Tnfrsf8 is expressed in activated T and B cells. We

therefore analyzed these genes for coding differences among the

different inbred strains that would correlate with the phenotype.

The Sanger Institute (www.sanger.ac.uk/resources/mouse/

genomes/) recently sequenced the complete genomes of 17 inbred

strains, which include many of the strains (both with and without

clusters) included in our study. The Sanger Institute sequence data

show a non-synonymous SNP in exon 4 of Wisp2 and a non-

synonymous SNP in exon 5 of Tnfrsf8. No SNPs in the coding

regions of Ctnnbip1 were identified. Subsequently, we determined

the genotype for the two SNPs (i.e., exon 4 of Wisp2 and exon 5 of

Tnfrsf8) in all the strains included in our survey (Table 3). For the

Wisp2 SNP (rs27315871) which determines the amino acid at

position 164 (either R or Q), 64% of the males in strains with a

cluster size ,0.15 had the R allele, while 100% of strains with a

cluster size .0.15 had the Q allele. For the Tnfrsf8 SNP

(rs27627526) which determines the amino acid at position 161

(either G or A), 93% of the females in strains with a cluster size

,0.15 had the G allele, while 44% of the strains with a cluster size

.0.15 had the A allele.

Expression of WISP2, CTNNBIP1 and Tnfrsf8 in
perivascular TLOs

As described above, we identified various loci in male and

female mice that were associated with the development of renal

perivascular TLOs of which Wisp2, Tnfrsf8 and Ctnnbip1 showed

the strongest associations. Using immunohistochemistry we

identified WISP2 and CTNNBIP1 but not TNFRSF8 protein

expression within the perivascular infiltrates (Figure 8).

Discussion

Immune cell clusters, which developed into TLOs were present

in aged kidneys in both male and female mice of a large cohort

($20) of different inbred mouse strains. These clusters were mainly

localized at unique perivascular regions, especially in the area

between an arteriole and the accompanying vein. The number

and the size of the clusters was closely correlated indicating

ongoing recruitment of leukocytes once the process has started.

Immune cell infiltration and TLO formation appeared to be a

Figure 5. Strains with TLO formation are characterized by reduced numbers of lymph vessels. (A) Representative photomicrograph of
peri-arteriolar lymph vessels in a C57BLKS/J mouse kidney (left panel). The right panel shows a high-power magnification of the indicated framed
area. Arrowheads indicate podoplanin+ lymph vessels. Abbreviations: a: arteriole; g: glomerulus; lv: lymph vessel; v: vein. (B) The number of
podoplanin+ lymph vessels was quantified in selected strains based on the relative absence (BALB/cByJ, C3H/HeJ, RIIIS/J, C57BLKS/J [black bars]) and
abundance (BTBR T+ tf/J, C57L/J, P/J, LP/J [white bars]) of TLOs at the age of 20 months. Numbers indicated within each bar represent the number of
mice analyzed. (C) The mean number of lymph vessels in the 4 strains without TLOs (BALB/cByJ, C3H/HeJ, RIIIS/J, C57BLKS/J [black bars]) and with
TLOs (BTBR T+ tf/J, C57L/J, P/J, LP/J [white bars]) was calculated. Strains with TLO formation had overall significantly lower numbers of lymph vessels
compared with strains without TLOs (*P,0.05).
doi:10.1371/journal.pone.0091850.g005

Renal TLO Formation in Aging Mice

PLOS ONE | www.plosone.org 7 March 2014 | Volume 9 | Issue 3 | e91850

http://phenome.jax.org/
www.sanger.ac.uk/resources/mouse/genomes/
www.sanger.ac.uk/resources/mouse/genomes/


systemic event since we observed a similar process in the liver. The

immune cell clusters in aged kidneys exhibited various features of

TLOs: aggregation of T and B cells [13,20], proliferation (Ki67+

cells), and presence of PNAd+ HEVs [21]. Presence of similar

infiltrates in aged mouse kidneys was described before [22]. In that

study, some of the kidneys from 3 months old NON mice

appeared to have perivascular infiltrates whereas at the age of 12

months all NON mice included had perivascular infiltrates [22].

TLO formation appeared to be negatively correlated with the

overall number of lymph vessels. This is remarkable since in renal

diseases generally increased numbers of lymph vessels are found

[23]. Under physiological conditions, fluid leaves the vascular

capillary bed and ends up in the interstitial space after which it

enters the lymphatic system together with antigens and leukocytes.

Subsequently, the lymph is drained to regional lymph nodes where

leukocytes participate in the generation of immune responses. The

lymph drainage system becomes especially challenged during

disease conditions such as wound healing, inflammation, and

infection, when excessive fluid, lymphocytes and dendritic cells

travel through the lymphatic system and become activated in

response to antigens presented within the lymph nodes. Since most

of the lymph vessels were found in the arteriolar adventitia the

reduction of the total number of lymph vessels in TLO rich

kidneys in our mice might merely be a reflection of the spatial

occupation of the TLOs in the adventitia. However, defective

lymphatic drainage has also been proposed to be a trigger for

lymphoid neogenesis [24], which could indeed imply that strains

with relatively lower numbers of lymph vessels are more prone to

develop TLOs as observed in our study.

Generally, conditions in which TLO formation can be found

include organ-specific autoimmune disorders and other chronic

inflammatory and infectious diseases [15] as well as transplant

rejection [20,25,26]. TLO formation at sites of inflammation or

infection is an important part of the local immune response [27]

although it is unknown whether TLOs have the same functional

properties of secondary lymphoid organs [15]. Irrespective of the

potential beneficial effects of TLOs in mounting adequate local

immune responses to antigenic stimuli, TLOs are clearly

associated with organ specific pathologies [15,28,29]. In the

kidney, TLO formation is usually associated with chronic rejection

[20] and autoimmune diseases [30]. The role of TLO formation

during renal aging is unclear but may contribute to aging-related

morphological and functional deterioration. However, in our

study the presence of TLOs was not correlated with renal function

decline (based on microalbuminuria and blood urea nitrogen)

when comparing our histological data with historical function data

from another cohort [13] of the same strains (not shown). Despite

the absence of a correlation between renal function and

perivascular TLOs in aged but otherwise healthy mice, increased

vulnerability to renal damage in response to a second hit in the

presence of TLOs cannot be excluded.

Using HAM analysis, we identified 4 loci in male mice and 5

loci in female mice to be associated with the development of

perivascular cell clusters. The loci with Wisp2, Tnfrsf8 and Ctnnbip1

were the most strongly associated ones. Wisp2 and Ctnnbip1 are

Figure 6. Renal TLO formation is associated with perivascular infiltrates in the liver. Four strains with relative absence (BALB/cByJ [n = 9],
C3H/HeJ [n = 10], RIIIS/J [n = 10], C57BLKS/J [n = 10]) and four strains with relative abundance (BTBR T+ tf/J [n = 7], C57L/J [n = 9], P/J [n = 8], LP/J [n = 4])
of renal TLOs were analyzed for the presence of perivascular infiltrates in the liver. (A) PAS staining on C3H/HeJ kidney and liver without perivascular
infiltrates (magnifications: 40x and 200x). (B) PAS staining on P/J kidney and liver with perivascular infiltrates (magnifications: 40x and 200x). (C) 21/31
(67.7%) of mice with renal TLOs contained liver TLOs, whereas 8/27 (29.6%) of mice without renal TLOs contained liver TLOs (Pearson’s x2 test,
P,0.0001). (D) The perivascular infiltrates in liver consisted of CD3+ T cells and B220+ B cells (magnification: 40x). Insets show high-power
magnifications of the indicated areas. Arrowheads indicate positively stained cell clusters. Abbreviations: a: arteriole, bd: bile duct; i: infiltrate; pv:
portal vein, v: vein.
doi:10.1371/journal.pone.0091850.g006
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part of the Wnt-signaling pathway, while Tnfrsf8 is expressed in

activated T and B cells [31] and are therefore considered strong

candidate genes. Wisp2 encodes the protein Wnt-1 inducing signal

2 (WISP2 or CCN5), which is a matricellular protein belonging to

the CCN family. WISP2 lacks the cysteine-knot-containing

module (which exists in other CCN family members) and contains

three functional domains: (i) an insulin-like growth factor binding

protein-like module (IGFBP); (ii) a von Willebrand factor type C

repeat module (VWC); and (iii) a thrombospondin type-1 repeat

module (TSP-1) [32]. WISP2 was previously shown to be

associated with the Wnt-1 signaling pathway [33]. Overactivation

of Wnt signaling in hepatocellular carcinoma cell lines identified

WISP2 as a downstream target of Wnt3A [34]. These data

indicate that WISP2 is involved in the Wnt-signaling pathway. In

our study, a non-synonymous SNP in Wisp2 (rs27315871) in exon

4 was found that leads to an amino acid difference among strains

(Q164R). Exon 4 encodes the VWC domain of WISP2 which is

reported to interact with bone morphogenetic protein [35]. Based

on these functions we hypothesize that the Q allele in mice leads to

functional differences of WISP2 thereby promoting the develop-

ment of immune cell clusters and TLOs. However, we identified a

few strains (DBA/2J, SWR/J, C57BR/cdJ, and RIIIS/J) that had

Figure 7. Genome-wide haplotype association mapping in aged mice. In both female (A) and male (B) mice, binary data were used based on
the threshold at 0.15 of relative cluster size. Strains with relative cluster size less than 0.15 were marked as ‘‘0’’, and those higher than 0.15 were
marked as ‘‘1’’. Associations with a P-value of less than 1026 were considered significant. Results are displayed in Manhattan plots (left graphs) and Q-
Q plots (right graphs).
doi:10.1371/journal.pone.0091850.g007

Table 2. Summary of the HAM peaks for both sexes at the age of 20 months with a P-value ,1026.

Chr Peak Location* P-value (M) P-value (F) Genes in Interval

1 189,840,009 5.9161029 0.174 Spata17, Gpatch2, Esrrg, Ush2a

2 163,609,677 5.006102137 0.900 Ada, Wisp2, Kcnk15, Rims4

8 105,226,793 5.8561028 0.165 Cdh11

14 118,151,243 5.3161027 0.62 Gpc6, Abcc4

4 144,880,682 0.566 6.426102267 Nmnat1, Lzic, Ctnnbip1

4 148,849,737 0.384 5.426102245 Tnfrsf8

7 118,151,243 0.478 5.3161027 Asb7, Lins2, Lass3

13 16,065,137 0.082 1.7061028 Inhba, Cdk13, miR466i, Rala, Pou6f2

14 114,067,017 0.22 1.3261027 -

Candidate genes are in bold. M: males; F: female.
*NCBIm37 Assembly.
doi:10.1371/journal.pone.0091850.t002
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the Q allele but no perivascular cell clusters. We speculate that

other genes in these strains counteract the effect of the Q allele and

protect these strains from developing cell clusters and TLOs.

Although we were able to demonstrate WISP2 protein expression

in perivascular TLOs, further functional studies should focus on

the relationship between the functional and the structural

differences caused by the Q164R polymorphisms in order to

address this issue.

Ctnnbip1 and Tnfrsf8 were the two strongest associations detected

from the female mice data. Interestingly, Ctnnbip1 is alike Wisp2

also involved in the Wnt-signaling pathway. Ctnnbip1 encodes beta-

catenin interacting protein 1 (CTNNBIP1 or ICAT), which is a

negative regulator of b-catenin in the Wnt-signaling pathway.

CTNNBIP1/ICAT directly inhibits the interaction between b-

catenin and TCF4, thus suppressing downstream signaling

mediated by b-catenin and TCF4 [36]. Alike WISP2, also

CTNNBIP1 was found to be expressed in perivascular TLOs.

Although no non-synonymous SNPs in Ctnnbip1 were identified in

our cohort of strains, we cannot exclude differential gene

expression that associates with the phenotype. On the other hand,

Tnfrsf8 does contain a non-synonymous SNP (rs27627526). Tnfrsf8

encodes the protein tumor necrosis factor receptor superfamily

member 8 (TNFRSF8 or CD30), which belongs to the tumor

necrosis factor receptor (TNFR) superfamily [37]. CD30 is

normally expressed in activated T cells and B cells [31] and its

expression is upregulated in various hematological malignancies

[38]. CD30 is well known for its significant role in the generation

of memory T cells, which is involved in the process of maintaining

secondary lymphoid tissue structure [39]. Given the common

mechanism in the formation of secondary and tertiary lymphoid

structures [15], we postulate that CD30 also might have a

functional role in TLO formation. This is supported by the

observation that CD30 heterozygote Foxp32/2Ox40+/2CD30+/2

mice develop an autoimmune phenotype with lymphocytic

infiltration and TLO development in the liver whereas CD30

deficient Foxp32/2Ox40+/2CD302/2 mice do not [39]. The SNP

(rs27627526) detected in our study determined the amino acid at

position 161 (either G or A), which follows the three cysteine-rich

motifs in the extracellular domain of the murine CD30 protein

[40]. The functional role of this amino acid difference is still

Table 3. Wisp2 and Tnfrsf8 alleles identified in the various mouse strains using SNP analysis.

Protein Allele Strains

WISP2 R C57BR/cdJ, C57BL/10J, SWR/J, CBA/J, BALB/cByJ, BTBR T+ tf/J,

C3H/HeJ, FVB/NJ, SM/J

Q C57BLKS/J, DBA/2J, KK/J, NZW/LacJ, RIIIS/J, C57L/J, NON/LtJ,

P/J, LP/J, 129S1/SvImJ, C57BL/6J

TNFRSF8 G C57BLKS/J, RIIIS/J, FVB/NJ, A/J, C3H/HeJ, C57BL/10J, KK/J,

129S1/SvImJ, C57BL/6J, BALB/cByJ, DBA/2J, BTBR T+ tf/J,

NZW/LacJ, SWR/J

A NZO/H1LtJ, PL/J, CBA/J, SM/J, LP/J, NON/LtJ, P/J, C57BR/cdJ,

C57L/J

Strains affected are underlined.
doi:10.1371/journal.pone.0091850.t003

Figure 8. Lymphocytes in renal TLOs express WISP2 and CTNNBIP1, but not TNFRSF8. (A) H&E staining on a kidney section from a 20
month old male LP/J mouse with perivascular infiltrates (TLOs). Magnification: 20x (left panel) and 400x (right panel). (B) Immunohistochemistry
revealed expression of WISP2 (left panel) and CTNNBIP1 (middle panel), but not TNFRSF8 (right panel). Magnification: 400x. v: vein.
doi:10.1371/journal.pone.0091850.g008
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unknown. Despite our efforts, no TNFRS8 expression was

detected within the TLOs.

It is well known that in experimental models both genetic

background and sex play an important role in the process of aging-

related renal morphological and functional deterioration [41]. We

also observed strong strain differences regarding the presence of

perivascular immune cell clusters and TLOs. These differences

could be partly explained by the genes and SNPs detected, and

underscore the significant role of genetic background in these

processes. When comparing the renal phenotypes across the

different inbred strains, we separately analyzed female and male

mice to detect potential gender-related differences. Although

relative cluster size and cluster number between female and male

mice were correlated, not all strains displayed this correlation in

particular when analyzing the binary data. Based on the binary

data, in total 8 strains were identified with TLOs of which only 3

had TLOs in both the male and female mice. Based on these

differences between males and females, we performed HAM

analyses on males and females separately. Although these analyses

revealed different loci, the candidate genes detected in both sexes

are involved in the Wnt-signaling pathway.

In conclusion, we found the presence of perivascular immune

cell clusters and TLOs in aged mouse kidneys. The clusters

develop in time and relative cluster size differs among the various

strains being relatively consistent between males and females.

Among the genes detected by HAM analysis, Wisp2 (male mice)

and Ctnnbip1 and Tnfrsf8 (female mice) are strong candidate genes

based on their reported functions. These candidates are involved

in the Wnt-signaling pathway and may be causally linked to aging-

related inflammation and TLO formation.
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