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Abstract. We show how to construct families of stationary hydrodynami-
cal configurations that reproduce the observed vertical gradient of the rotation
velocity of the extra-planar gas in spiral galaxies. We then present a simple
model for the lagging halo of the spiral galaxy NGC 891, which is in agreement
with the H i observations. Our method is based on well known properties of
baroclinic solutions, and it is an elementary application of a much more general
and flexible method.

1. Introduction

Observations at different wavelenghts show that spiral galaxies are surrounded
by a gaseous halo. This extra-planar gas is multiphase: it is detected in H i (e.g.,
Swaters, Sancisi, & van der Hulst 1997), Hα (Rand 2000), and X-ray observa-
tions (Wang et al. 2001; Strickland et al. 2004). In particular, high-sensivity H i

observations of edge-on galaxies like NGC 891 (Swaters et al. 1997; Fraternali et al.
2004) and UGC 7321 (Matthews & Wood 2003) reveal neutral gas emission up
to large distances from the plane and show the presence of a vertical gradient
in the gas rotation velocity (see Fig. 1). In addition, the study of face-on galax-
ies has revealed the presence of vertical motions of neutral gas often associated
with holes in the disk H i distribution (Puche et al. 1992, Boomsma et al., this
conference).

Clearly, the two major issues of the origin and of the dynamical state of
the extra-planar gas are strictly related. For example, the halo gas could be the
result of cosmological accretion (i.e., infall of extragalactic gas; Binney, this con-
ference), or could have been ejected from the plane through a galactic fountain
mechanism (Shapiro & Field 1976), or it could have had a mixed origin. One
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might expect different structural and kinematical configurations for these cases.
Here we focus on the problem of the dynamical state of the extraplanar gas.

There are two “extreme” kinds of explanations for the extra-planar gas kine-
matics (low rotation and vertical motions): the ballistic models and the fluid
stationary models. Ballistic models describe the gas as an inhomogeneous col-
lection of clouds in ballistic motion, subjected only to the gravitational potential
of the galaxy. A well-known example of ballistic model is the galactic fountain,
which describes how ionized gas is ejected from the galactic plane due to stellar
winds and supernova explosions and then cools and falls back ballistically onto
the disk (Bregman 1980). Ballistic models are effective at explaining vertical
motions of the cold (H i ) and warm (Hα) gas components. However, the obser-
vations indicate a considerable morphological and kinematical regularity of the
extra-planar gas (see, e.g., the total H i map of NGC 891 in Fraternali et al.
2004 and Fig. 1 here), which may be difficult to understand in the context of
purely ballistic models (see also Collins, Benjamin, & Rand 2002).

The observed regularity may be explained more satisfactorily in the context
of fluid stationary models. In these models, the gas is taken to be a rotating
fluid in stationary equilibrium, without motions along the R and z directions; all
the thermodynamical quantities are therefore time-independent, and the galaxy
gravitational field is balanced by the pressure gradient and the centrifugal force.
Until now, this approach has not been fully explored in all its possibilities, and
only a few attempts have been made (e.g., see Benjamin 2002). Here we present a
short account of our approach and of its main advantages, while a full discussion
will be given in a forthcoming paper (Barnabè et al. 2004).

2. Stationary models: the standard approach

The simplest fluid models are constructed by solving the stationary equations
of hydrodynamics (written in the standard cylindrical coordinates R, z, and ϕ),
under the assumptions that vR = 0, vz = 0, and vϕ = ΩR (in other words, the
system is in a state of permanent rotation):



















1

ρ

∂P

∂z
= −

∂Φtot

∂z
,

1

ρ

∂P

∂R
= −

∂Φtot

∂R
+ Ω2R ,

(1)

where ρ, P and Ω are the density, the pressure and the angular velocity of the
gas, and Φtot is the total gravitational potential of the system. Owing to the
axial simmetry, all the physical variables are functions of R and z only.

A commonly adopted approach for the solution of Eqs. (1) is that based on
the Poincaré-Wavre theorem (Lebovitz 1967; Tassoul 1980). According to this
theorem, the effective gravitational field at the r.h.s. of Eqs. (1) can be obtained
from an effective potential Φeff if and only if Ω = Ω(R). In this case, the gas
density, pressure, and temperature are all stratified on Φeff , the relation between
P and ρ is necessarily barotropic [i.e., P = P (ρ)], and vϕ = vϕ(R). The last
property, i.e. the so-called “cylindrical rotation”, is in clear disagreement with
the observed vertical gradient of the extra-planar gas rotation velocity in spiral
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galaxies. Thus, in standard applications, one fixes Φtot and the radial trend of
Ω(R) (thus fixing Φeff). Then, one solves the equation ∇P = −ρ∇Φeff for the
density, with assigned boundary conditions and with specified P = P (ρ); for
Ω = 0 one recovers the standard (barotropic) hydrostatic equilibrium solutions.
Clearly, rotational velocities changing with z are excluded here, and this would
seem to argue against the fluid stationary approach.

However, in the next Section we will show that it is possible to construct
baroclinic equilibrium solutions with a negative velocity gradient along z: this
approach is a simple application of a more general technique that will be pre-
sented by Barnabè et al. (2004). Note that baroclinic solutions have been stud-
ied before for problems ranging from geophysics to the theory of sunspots to
galactic dynamics (e.g., see Rosseland 1926; Tassoul 1980; Waxman 1978, and
references therein). In particular, isotropic, self-gravitating axysimmetric galaxy
models can be interpreted as baroclinic fluid configurations, showing streaming
velocities often decreasing with z (e.g., see Lanzoni & Ciotti 2003).

3. Stationary models: baroclinic solutions

At variance with the standard approach, here we start by assuming a gas density
distribution ρ(R, z) (vanishing at infinity). Thus, for a given Φtot(R, z), the first
of Eqs. (1) can be integrated to obtain the gas pressure

P (R, z) =

∫ ∞

z
ρ
∂Φtot

∂z′
dz′. (2)

In general, P can not be expressed as a function of ρ only, and so our system is
barocline. Its temperature distribution is obtained from the perfect gas equation
of state,

T =
µmHP

kρ
. (3)

Inserting Eq. (2) in the second of Eqs. (1) and integrating by parts one obtains
a remarkable “commutator-like” expression for the rotational velocity

ρv2
ϕ

R
=

∫ ∞

z

(

∂ρ

∂R

∂Φtot

∂z′
−

∂ρ

∂z′
∂Φtot

∂R

)

dz′. (4)

Clearly, due to the baroclinic nature of the solution, the quantity vϕ will depend
on z. Unfortunately, the construction of barocline solutions is not as easy as it
appears: in fact, not all the density distributions produce physically acceptable
solutions, that is solutions for which v2

ϕ ≥ 0 everywhere. However, using Eq. (4)
we can state a few sufficient conditions that can be used as guidelines to choose
the density distribution ρ and to obtain physically acceptable solutions. From
now on, for simplicity we assume that the gas is not self-gravitating. Two
sufficient conditions are the following:

(i) when the total potential is homeoidally stratified with axial ratio qΦ, i.e.

Φtot = Φtot(ℓ), ℓ2 ∝ R2 +
z2

q2
Φ

, 0 < qΦ ≤ 1, (5)
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(as in Binney’s [1991] logarithmic potential and Evans’ [1994] spheroidal
potentials), if one assume a gas density distribution of the form

ρ(R, z) = ρ1(R)ρ2(m), m2 ∝ R2 +
z2

q2
g

, 0 < qg ≤ 1, (6)

a sufficient condition to have v2
ϕ ≥ 0 everywhere is

dρ1(R)

dR
≥ 0 ,

dρ2(m)

dm
≤ 0 , and qg ≤ qΦ . (7)

In particular, the third condition requires the gas density distribution to
be stratified on flatter homeoids than the equipotentials.

(ii) When the total potential is generated by a razor thin uniform disk, (i.e.
Φtot = 2πGΣ0z), a necessary and sufficient condition to obtain v2

ϕ ≥ 0
everywhere is ∂ρ(R, z)/∂R ≥ 0.

In particular, point (ii) suggests that if the stellar disk contribution to the
total potential is dominant in the central regions, a “sufficient condition” to have
physically acceptable solutions is to take a centrally depressed gas distribution.
The physical reason for this condition is very simple. In fact, suppose to fix a
generic ρ(R, z) distribution in a uniform (vertical) gravitational field. The gas
distribution is not stratified on Φtot and so must be rotating. According to the
second of Eq. (1) this means that, at any fixed z, the gas pressure must increase
with R. This request can be stated in terms of the gas column density

∫ ∞
z ρdz′.

In fact from Eq. (4) it results that in a vertical gravitational field the square
of the gas rotational velocity is just proportional to the radial gradient of the
column density, that must be positive. It is worth mentioning that this trend is
consistent with the observed H i surface density distribution for several spiral
galaxies (see Cayatte et al. 1994).

4. A simple model for the NGC 891 lagging halo

As a simple application of baroclinic solutions we have attempted to reproduce
the observed negative gradient of the rotational velocity of the extra-planar gas
in NGC 891. The model here should be considered exploratory, in the sense that
we are not interested at reproducing perfectly the kinematical data, but only to
provide a reasonable, physically acceptable model for the extraplanar gas, and
to show that baroclinic solutions deserve deeper investigations in the context of
the extra-planar gas kinematic.

We consider a very simple galaxy model that consists of two components,
namely a razor-thin exponential stellar disk

Φdisk(R, z) = −
GMd

Rd

∫ ∞

0

J0(kR̃)e−k|z̃|

(1 + k2)3/2
dk, R̃ ≡

R

Rd
, z̃ ≡

z

Rd
, (8)

and a logarithmic dark matter halo (Binney 1981) with constant asymptotic
velocity v0

Φhalo(R, z) =
v2
0

2
ln

(

R̃2
h + R̃2 +

z̃2

q2
h

)

, R̃h ≡
Rh

Rd
. (9)
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The galaxy bulge is not considered here. In Eqs. (8)-(9) Md and Rd are the
disk mass and scale radius, Rh and qh are the halo potential scale radius and
flattening parameter, and Jn is the n-th order Bessel function of the first kind
(e.g., Binney & Tremaine 1987).

Figure 1. Rotation curve of NGC 891 for the gas in the plane of galaxy
(filled circles) and for a strip from 30” to 60”, corresponding to about 2.25
kpc, above and below the plane (open circles). The solid curve represents the
circular velocity in the equatorial plane of the model galaxy, while the dashed
curve is the rotational velocity of the baroclinic solution 2.25 kpc above the
galactic plane.

Following the simple criteria illustrated in points (i) and (ii), we adopted
the trial function

ρ(R, z) =
ρ0

Rα
0

(R0 + R)α

(1 + m2)β/2
e−(z̃/hg)γ

, m2 ≡ R̃2 +
z̃2

q2
g

, (10)

where ρ0, R0 and hg are the central density, the radial and vertical scales of the
gas distribution, and α, β and γ are dimensionless constants. For α > 0, Eq. (10)
describes a centrally depressed (i.e. toroidal) gas density distribution, and the
exponential is a scale-height modulating function. Note that the equations for
this model must be solved numerically, and the description of the code will be
given in Barnabè et al. (2004). After a few attempts we fixed Rd = 3 kpc,

Md = 8 × 1010M⊙, v0 = 220 km s−1, R̃h = 5, qh = 0.71, R0 = 2 kpc, hg = 3/2,
α = 1, β = 4, γ = 1/2 and qg = 1/4. For this choice the model circular velocity
reproduces the observed rotation curve of NGC 891 (see Fig. 1, solid line), and
v2
ϕ ≥ 0 everywhere. According to Eqs. (3)-(4), the quantities vϕ and T do not

depend on the value of ρ0.
The meridional section of the isorotation surfaces are shown in Fig. 2 as

solid lines: vϕ decreases with z over the main body of the distribution, with the
exception of the region R . 2Rd and z ∼ 0, where vϕ varies in a non-monothonic
way with z.

The dashed curve in Fig. 1 corresponds to a horizontal cut of Fig. 2, at
z ≃ 2.25 kpc, superimposed to the observed values of the H i rotation velocity
at the same z. The match between the observed points and the model curve is
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Figure 2. Meridional section of isorotation (solid, in km s−1) and isothermal
(dashed, in Kelvins) surfaces for the model in Eqs. (8)-(10).

surprisingly good, in particular when considering that the exploratory nature of
the presented model.

The model isothermal surfaces are also shown in Fig. 2 as dashed lines.
As expected, the gas distribution is quite hot, with temperatures in the range
105 . T . 106 K. The hotter region is “bubble” near the symmetry axis above
(and below) the equatorial plane, while the gas temperature decreases steadily
approaching the galactic disk. In Barnabè et al. (2004) we present and discuss
(soft) X-ray total luminosity and surface brightness maps of our models. In order
to compare the model with the observations the value for the central gas density,
ρ0, must be known. In fact, one could proceed as follows: while the dimension-
less part of Eq. (10) can be fixed to reproduce the rotational and temperature
fields, the observed total X-ray luminosity could be used to determine ρ0. With
this parameter fixed, one can then discuss other, astrophysically relevant model
properties (see next Section).

5. Discussion and conclusions

We have presented fluid models for the extra-planar gas in spiral galaxies. The
approach is based on the class of hydrodynamical equilibria known as baroclinic
solutions. In particular, we have showed how very simple baroclinic configu-
rations can be caracterized by a decrease of rotational velocity with increasing
z similar to that observed in the extra-planar gas of spiral galaxies. We re-
mark that baroclinic solutions are very flexible: for instance, if we require vϕ

to reach the systemic velocity for large |z| (i.e., the halo becomes hydrostatic),
one could repeat the previous analysis with a factorized gas density distribution
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as ρ(R, z) = f(R, z)ρe(Φtot), where f ∼ 1 at large |z| and ρe is an hydro-
static equilibrium solution in the galactic potential. Even more general cases
can be obtained by “perturbing” cylindrical rotation solution, i.e., by assuming
ρe = ρe(Φeff). For such distributions several interesting results similar to those
reported in points (i) and (ii) can be easily derived (Barnabè et al. 2004).

We conclude by discussing the major limitations and open problems related
to the use of a fluid approach:

1) Homogeneity. Observationally the gas is multiphase: what is the rela-
tionship between the (hot) single-phase gas described by fluid models and the
H i and Hα components of extra-planar gas?

2) Absence of vertical motions. Observations show vertical motions of the
order of 50− 100 km/s, while in the approach described in Sect. 3 such motions
are excluded: is this enough reason to abandon stationary fluid solutions?

About point 1), a first important insight will be given by the calculation,
for a chosen baroclinic distribution, of the local and global cooling times. In fact,
while the global cooling time sets the rate at which heat must be furnished to
the distribution in order to assure stationarity, the local cooling time indicates
where clouds will condense out of the smooth density distribution. It would be
interesting to follow the trajectories of such falling clouds under the drag force
of the gas and with initial conditions given by the baroclinic solution. Thermal
conduction could be another important ingredient in the evolution of the clouds.
Of similar interest would be the study of the interaction of cosmologically ac-
creted cold gas with a hot rotating halo. In particular, it would be interesting to
measure evaporation times and to find out whether and on what time-scales the
kinematical regularity of the fluid solution is transferred to the infalling cloud
population.

As to point 2), in addition to the comments above, we also note that baro-
clinic solutions can be generalized to include meridional motions. This general-
ization is not trivial but can be obtained, at least in the geostrophic limit (i.e.,
for small Rossby numbers), by standard expansion techniques (e.g., Waxman
1978; Tassoul 1980). Numerical methods are required to investigate existence
and properties of solutions with faster meridional motions. In any case, it can-
not be excluded that also meridional motions may play a role in the kinematics
of the hot gas.

Thus, it is clear that the ballistic and fluid approaches both give important
(but restricted) informations about the state of the extra-planar gas. A bet-
ter understanding of the problem will be obtained by the investigation of the
interaction of clouds with baroclinic fluid configurations using time-dependent
numerical hydrodynamical simulations. Numerical simulations will also clarify
the fate of the “torus-like” structure common in baroclinic distributions.
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