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Chapter 2

Atmospheric low-frequency variability

2.1 Introduction

The atmosphere shows variability on a wide range of time and spatial scales. In this
chapter we study the dynamics of atmospheric low-frequency variability as observed
at midlatitudes in northern hemisphere winters. In Chapter 4 we investigate its
potential role in the excitation of the Atlantic Multidecadal Oscillation.

2.1.1 Statement of the problem

A classical problem in the theory of General Atmospheric Circulation is the charac-
terisation of the recurrent flow patterns observed at midlatitudes in northern hemi-
sphere winters (Dole, 1983). This issue has been subject of much scientific attention
at least since Baur’s definition of Grosswetterlagen (Baur, 1951), or Rex’s descrip-
tion of Atlantic blocking (Rex, 1950). One of the motivations for the interest is the
potential importance of this problem to understand persistence and predictability
of atmospheric motion beyond the time scales of baroclinic synoptic disturbances (2
to 5 days). Indeed, it is expected that insight in the nature of low-frequency regime

dynamics will lead to significant progress in the so-called extended range weather
forecasting (Reinhold, 1987). At the same time, the problem is of great relevance in
climate science, since it has been proposed that climate change predominantly mani-
fests itself through changes in the atmospheric circulation regimes, that is ‘changes in
the probability distribution function of the climate attractor’ (Corti et al., 1999). As
a matter of fact, misrepresentation of the statistics of blocking and planetary waves is
widespread in climate models (Palmer et al., 2008; Lucarini, Calmanti, Dell’Aquila,
Ruti and Speranza, 2007): this may have a profound impact on the ability of such
models to reproduce both current climate and climate change.
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There are various approaches to the problem of low-frequency atmospheric vari-
ability and they are not equivalent—though not independent of each other. An old
theory associates recurrent large-scale flow patterns with stationary states of the at-
mospheric circulation, which correspond to equilibria in the dynamical equations of
atmospheric motion. Small-scale weather acts then as a random perturbation induc-
ing fluctuations around equilibria and transitions between states. This mechanism
would be responsible for the existence of multimodal statistics in observed data, like
the bimodal distribution of planetary activity on zonal wave numbers 2, 3, and 4
found by Hansen and Sutera (1986).

Orographic resonance theories lend support to the hypothesis that activity of
planetary waves possesses a multimodal distribution (Benzi, Speranza and Sutera,
1986). A seminal paper in this direction was that by Charney and DeVore (1979):
they proposed that the interaction between zonal flow and wave field via form-drag
causes the occurrence of two equilibria for the amplitude of planetary waves. This
idea was further elaborated by Legras and Ghil (1985) who found intermittent tran-
sitions between multiple equilibria representing blocked and zonal flows. Crommelin
(2002, 2003) and Crommelin et al. (2004) explain the transitions in terms of homo-
and heteroclinic dynamics near equilibria corresponding to distinct preferred flow
patterns. More recent developments aimed at theories allowing for multiple stable
equilibria at the same zonal wind speed, in such a way that the amplitudes of the
corresponding ultra long (planetary scale) waves differ by values of the order of 100
m of geopotential height (Malguzzi et al., 1996).

Despite this remarkable research effort, the scientific debate is still very much
open on whether a single equilibrium/mode (Ambaum, 2008; Nitsche et al., 1994;
Stephenson et al., 2004) or multiple equilibria/modes (Benzi and Speranza, 1989;
Charney and DeVore, 1979; Hansen and Sutera, 1995; Mo and Ghil, 1988; Ruti
et al., 2006) characterise the large-scale atmospheric circulation.

Spectral analysis is an alternative way of characterising low-frequency atmo-
spheric variability. Examination of the so-called Hayashi spatio-temporal spectra
show that the low-frequency component of the variance of the 500 mb geopotential
heights is concentrated in the region of periods larger than 10 days and zonal wave
numbers less than 5 (Fraedrich and Böttger, 1978). Benzi and Speranza (1989) re-
examine previous studies of amplification of waves with zonal wave number 3 (Itoh,
1983) and of onset of Pacific anomalies (Dole, 1986). They summarise the main
physical features of low-frequency atmospheric variability:

• it is on average almost totally non-propagating; planetary waves show a slight
tendency to propagate westwards for wave numbers 1-2 and eastwards for wave
number 4;
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• it seems related to ultra long wave amplification through a non-standard form
of baroclinic instability in which orography plays an essential role;

• it is characterised by vertical coherence of the anomalies, see, e.g., Dole (1986,
Figures 9 and 10).

Hansen and Sutera (1986) hypothesise a baroclinic conversion process balancing dissi-
pation at wave numbers 2, 3, and 4, which is not associated to the ordinary baroclinic
instability, given the equivalent barotropic nature of the difference fields between the
two modes of their wave indicator. It has been known since Charney and Eliassen
(1949) that the interaction between eddy field and orography on planetary scales
is characterised by a non-propagating amplification of the eddy field: this is one of
the common features observed in many studies of transitions between regimes (see
e.g. Malguzzi et al. (1997) and references therein).

The central question debated here is: does the atmospheric variability characteris-
ing the northern hemisphere midlatitude circulation result from dynamical processes
specific to the interaction of zonal flow and planetary waves with orography, and
what are these processes?

2.1.2 Our approach

We derive a ‘minimal model’ for the midlatitude atmospheric circulation, containing
the essential ‘ingredients’ to capture the basic features of low-frequency variability:
zonal flow, a large-scale planetary wave, orography, and a baroclinic-like forcing. The
model is obtained by Galerkin projection of the two-layer shallow-water equations
onto a small number of spatial modes: in the zonal direction we select wave numbers
m = 0 (for the zonal flow) and m = 3 (for the large-scale wave). We choose the
latter because it is where the maximum of the low-frequency stationary variance is
attained, see e.g., Fraedrich and Böttger (1978, Figure 2). We retain wave numbers
0, 1, 2 in the meridional direction. The basic idea is to search for dynamical processes
inherent to the largest spatial scales, using a conceptual model which is sufficiently
simple for this purpose. We do not aim at a realistic representation of atmospheric
motion, although our modelling approach is motivated by the observational evidence
discussed in the previous section. We return to this point at the end of §2.4.

The full shallow-water equations are a system of 6 partial differential equations
for the horizontal velocity field uℓ, vℓ and thickness hℓ for ℓ = 1, 2. Forcing is
modelled as relaxation to an apparent westerly wind and orography is included in the
bottom layer. Orography height and the forcing zonal wind strength are controlled
by parameters h0 and U0 respectively. Working with a shallow-water model, instead
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of the more traditional quasi-geostrophic models, offers the advantage that physically
relevant values can be used for h0: this parameter is bound to be small in the quasi-
geostrophic models traditionally used to study low-frequency variability, due to the
perturbative nature of orography in quasi-geostrophic theory (Bannon, 1983).

2.1.3 Summary of the results

The major achievement in this work is to propose a characterisation of low-frequency
atmospheric behaviour in terms of intermittency due to bifurcations of waves. Non-
propagating planetary waves arise in our model from the interaction of zonal flow
with orography. The waves are associated to mixed baroclinic/barotropic instabili-
ties, where the baroclinicity is not that associated to midlatitude synoptic systems
(indeed, wave number 3 is not the most unstable baroclinic mode). Rather, insta-
bilities here bear resemblance to the orographic baroclinic instability (see Cessi and
Speranza (1985) and references therein).

Low-frequency behaviour with the appropriate time scales (10-200 days, where
the lower frequency components of 60-200 days can be interpreted as harmonics of
the higher frequency components of 10-60 days) is exhibited by our ‘minimal model’
for physically relevant values of the parameters (U0 ≈ 15 m/s and h0 ≈ 1000 m).
Here, the dynamics of our minimal model takes place on strange attractors which
are formed through sequences of bifurcations of periodic orbits (waves) as the forcing
wind speed U0 increases.

The model dynamics is stationary for U0 ≤ 12.2 m/s due to the presence of a sta-
ble equilibrium corresponding to a steady westerly wind. This steady flow becomes
unstable through Hopf bifurcations (associated with mixed baroclinic/barotropic in-
stabilities) as the forcing U0 increases. This gives rise to two types of stable waves:
for lower orography (about 800 m), the period is about 10 days and there is east-
ward propagation in the bottom layer; for more pronounced orography, the period is
longer (30-60 days) and the waves are non-propagating. These waves remain stable
in relatively large parameter domains and bifurcate into strange attractors through
a number of scenarios (see below) in the parameter quadrant U0 ≥ 14.5 m/s and
h0 ≥ 850 m. The dynamics on these strange attractors is associated with irregularly
recurring vorticity patterns, which are inherited from the periodic orbit that gives
birth to the strange attractor.

The Lyapunov diagram (top panel of Figure 2.1) shows a classification of the
dynamical behaviour in the different regions of the (U0, h0)-plane. Bifurcations of
equilibria and periodic orbits (bottom panel) explain the main features of the Lya-
punov diagram (see Appendix B for the algorithms). The two Hopf curves H1,2 give
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Figure 2.1. Organisation of the (U0, h0) parameter plane of the low-order model. Top: Lya-
punov diagram for the attractors of the system. Bottom: bifurcation diagram of attractors,
same parameter window as above. The marked locations are codimension-2 bifurcations.
See Table 2.1 for the grey tone coding; see Appendix B for the algorithms.
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Colour Lyapunov exponents Attractor type
grey 2 0 > λ1 ≥ λ2 ≥ λ3 equilibrium
grey 3 λ1 = 0 > λ2 ≥ λ3 periodic orbit
grey 1 λ1 = λ2 = 0 > λ3 2-torus
black λ1 > 0 ≥ λ2 ≥ λ3 strange attractor
white escaping orbit
Colour Bifurcation type Bifurcating attractor
grey saddle-node and Hopf equilibrium
black period doubling, Hopf-Nĕımark-Sacker, and periodic orbit

saddle-node

Table 2.1. Grey scale coding for the Lyapunov diagram and bifurcation diagram in Fig-
ure 2.1.

birth to stable periodic orbits. In turn, these periodic orbits bifurcate into strange
attractors through three main routes to chaos:

• period doubling cascade of periodic orbits (the curves P1,2,3);

• Hopf-Nĕımark-Sacker bifurcation of periodic orbits (the curve T2), followed by
the breakdown of a 2-torus;

• saddle-node bifurcation of periodic orbits taking place on a strange attractor
(the curve SP4), the so-called intermittency route (Pomeau and Manneville,
1980).

Similar routes have been described in many studies of low-order atmospheric models
(Broer et al., 2002; Legras and Ghil, 1985; Lucarini, Speranza and Vitolo, 2007; De
Swart, 1989; Van Veen, 2003). We here establish a new link between intermittency
due to nonlinear instability of waves and low-frequency variability.

This chapter is structured as follows. In §2.2.1 we present the derivation of the
low-order model from the 2-layer shallow-water equations. The bifurcation diagram
of the low-order model is discussed in §2.3.1, followed by analysis of the routes to
chaos in §2.3.2. In §2.3.3 we explain the model phenomenology in terms of mathe-
matical concepts (bifurcations, intermittency) and §2.3.4 provides a physical inter-
pretation. Finally, in §2.4 our results are discussed in the context of the literature.
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2.2 Model

We consider atmospheric flow in two layers. In each layer the velocity field (u, v)
is 2-dimensional. The thickness h of each layer is variable, which is the only 3-
dimensional aspect of this model. The governing equations are given by a system of
six partial differential equations. By means of truncated Fourier expansions and a
Galerkin projection we obtain a low-order model which consists of a 46-dimensional
system of ordinary differential equations.

2.2.1 The 2-layer shallow-water equations

The constants H1 and H2 denote the mean thickness of each layer, and the fields η′1
and η′2 denote deviations from the mean thickness, where primes indicate that the
variable is dimensional. The thickness fields of the two layers are given by

h′1 = H1 + η′1 − η′2, (2.1)

h′2 = H2 + η′2 − h′b, (2.2)

where hb denotes the bottom topography profile; see Figure 2.2. The pressure fields
are related to the thickness fields by means of the hydrostatic relation

p′1 = ρ1g(h
′

1 + h′2 + h′b), (2.3)

p′2 = ρ1gh
′

1 + ρ2g(h
′

2 + h′b), (2.4)

where the constants ρ1 and ρ2 denote the density of each layer.
The governing equations are nondimensionalised using scales L, U , L/U , D, and

ρ0U
2 for length, velocity, time, depth, and pressure, respectively, and are given by

∂uℓ

∂t
+ uℓ

∂uℓ

∂x
+ vℓ

∂uℓ

∂y
= −∂pℓ

∂x
+ (Ro−1 + βy)vℓ

− σµ(uℓ − u∗ℓ) +Ro−1EH

(
∂2uℓ

∂x2
+
∂2uℓ

∂y2

)
− σrδℓ,2uℓ

∂vℓ

∂t
+ uℓ

∂vℓ

∂x
+ vℓ

∂vℓ

∂y
= −∂pℓ

∂y
− (Ro−1 + βy)uℓ

− σµ(vℓ − v∗ℓ ) +Ro−1EH

(
∂2vℓ

∂x2
+
∂2vℓ

∂y2

)
− σrδℓ,2vℓ

∂hℓ

∂t
+ uℓ

∂hℓ

∂x
+ vℓ

∂hℓ

∂y
= −hℓ

(
∂uℓ

∂x
+
∂vℓ

∂y

)

(2.5)
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Figure 2.2. Layers in the shallow-water model.

where uℓ and vℓ are eastward and northward components of the 2-dimensional velocity
field, respectively. In addition, the nondimensional pressure terms are given by

p1 =
ρ1

ρ0

F (h1 + h2 + hb),

p2 =
ρ1

ρ0
Fh1 +

ρ2

ρ0
F (h2 + hb).

Several nondimensional numbers appear in the governing equations: the advective
time scale σ, the nondimensional β-parameter, the Rossby number Ro, the horizontal
Ekman number EH , and the inverse Froude number F . These parameters have the
following expressions in terms of the dimensional parameters:

σ =
L

U
, β =

β0L
2

U
, Ro =

U

f0L
, EH =

AH

f0L2
, F =

gD

U2
.

Standard values of the dimensional parameters are listed in Table 2.2.
The dynamical equations will be considered on the zonal β-plane channel

0 ≤ x ≤ Lx/L, 0 ≤ y ≤ Ly/L.

Suitable boundary conditions have to be imposed: we require all fields to be periodic
in the x-direction. At y = 0, Ly/L we impose the conditions

∂uℓ

∂y
=
∂hℓ

∂y
= vℓ = 0.

24



Parameter Value
AH momentum diffusion coefficient 1.0 × 102 [m2 s−1]
µ relaxation coefficient 1.0 × 10−6 [s−1]
r linear friction coefficient 1.0 × 10−6 [s−1]
f0 Coriolis parameter 1.0 × 10−4 [s−1]
β0 planetary vorticity gradient 1.6 × 10−11 [m−1 s−1]
ρ0 reference density 1.0 [kg m−3]
ρ1 density (top) 1.01 [kg m−3]
ρ2 density (bottom) 1.05 [kg m−3]
g gravitational acceleration 9.8 [m s−2]
α1 zonal velocity forcing strength (top) 1.0 [–]
α2 zonal velocity forcing strength (bottom) 0.5 [–]
Lx channel length 2.9 × 107 [m]
Ly channel width 2.5 × 106 [m]
H1 mean thickness (top) 5.0 × 103 [m]
H2 mean thickness (bottom) 5.0 × 103 [m]
L characteristic length scale 1.0 × 106 [m]
U characteristic velocity scale 1.0 × 101 [m s−1]
D characteristic depth scale 1.0 × 103 [m]

Table 2.2. Standard values of the fixed parameters.

The model is forced by relaxation to an apparent westerly wind given by the profile

u∗1(x, y) = α1U0U
−1(1 − cos(2πyL/Ly)), v∗1(x, y) = 0,

u∗2(x, y) = α2U0U
−1(1 − cos(2πyL/Ly)), v∗2(x, y) = 0,

where the dimensional parameter U0 controls the strength of the forcing and the
nondimensional parameters α1 and α2 (Table 2.2) control the vertical shear of the
forcing. For the bottom topography we choose a profile with zonal wave number 3:

hb(x, y) = h0D
−1(1 + cos(6πxL/Lx)),

where the dimensional parameter h0 controls the amplitude of the topography. We
require that the bottom topography is contained entirely in the bottom layer which
implies the restriction h0 ≤ H2/2.

2.2.2 The low-order model

The governing equations (2.5) form a dynamical system with an infinite-dimensional
state space. We reduce the infinite-dimensional system to a system of finitely many
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ordinary differential equations by means of a Galerkin projection. This amounts
to an expansion of the unknown fields uℓ, vℓ, hℓ in terms of known basis functions,
depending only on spatial variables, with unknown coefficients, depending only on
time. An orthogonal projection onto the space spanned by the basis functions gives
a set of finitely many ordinary differential equations for the expansion coefficients.

As basis functions we use Fourier modes with half wave numbers. For an integer
k ≥ 0 and a real number a these functions are given by

sk(x; a) =

√
2

a
sin(kπx/a), ck(x; a) =






√
1

a
if k = 0,

√
2

a
cos(kπx/a) if k 6= 0,

(2.6)

where x ∈ [0, a], and the numerical factors serve as normalisation constants.
Deciding which Fourier modes to retain in the Galerkin projection is a non-trivial

problem. A priori it is not known which choice captures the dynamics of the infinite-
dimensional system in the best possible way. In Puigjaner et al. (2004, 2006, 2008)
this problem has been addressed in the setting of a Rayleigh-Bénard convection
problem by checking qualitative changes in dynamical behaviour and quantitative
information on the location of branches of equilibria and their bifurcations, while
increasing the number of retained modes. In this work we choose a different ap-
proach: first of all, we construct a minimal model, retaining only those Fourier
modes which are essential to reproduce atmospheric low-frequency behaviour. Ob-
servational evidence (see §2.1.1) suggests that the fundamental physical processes
involved in low-frequency behaviour manifest themselves at zonal wave numbers less
than 5 (Benzi and Speranza, 1989). For the above reasons, we choose wave numbers
m = 0, 3 in the zonal direction, and the wave numbers n = 0, 1, 2 in the meridional
direction. Let

R = {(0, 0), (0, 1), (0, 2), (3, 0), (3, 1), (3, 2)}
denote the set of retained wave number pairs. Moreover, set a = Lx/L and b = Ly/L.
Then all nondimensional fields are expanded as

uℓ(x, y, t) =
∑

(m,n)∈R

[
ûc

ℓ,m,n(t)c2m(x; a) + ûs
ℓ,m,n(t)s2m(x; a)

]
cn(y; b),

vℓ(x, y, t) =
∑

(m,n)∈R

[
v̂c

ℓ,m,n(t)c2m(x; a) + v̂s
ℓ,m,n(t)s2m(x; a)

]
sn(y; b),

hℓ(x, y, t) =
∑

(m,n)∈R

[
ĥc

ℓ,m,n(t)c2m(x; a) + ĥs
ℓ,m,n(t)s2m(x; a)

]
cn(y; b).
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In this way the truncated expansions satisfy the boundary conditions.

By substituting the truncated expansions in (2.5) and projecting (with respect to
the standard inner product) the governing equations on the Fourier modes, we obtain
a system of ordinary differential equations for the time-dependent Fourier coefficients.
With the above choice of the retained wave numbers, we need 9, 6, and 9 coefficients
for the fields uℓ, vℓ, and hℓ, respectively. However, due to conservation of mass, it
turns out that the coefficients ĥℓ,0,0 are constant in time and therefore they can be
treated as a constant. Hence, the low-order model is 46-dimensional. Formulas to
compute the coefficients of the low-order model are presented in Appendix A.2.

2.3 Results

We here investigate the dynamics of the low-order model, starting from a description
of the bifurcations in Figure 2.1 (§2.3.1). It is shown how low-frequency dynamical
behaviour is linked to strange attractors, which occur in a relatively large parameter
domain. The onset of chaotic dynamics is explained in terms of bifurcation scenarios
(‘routes to chaos,’ §§2.3.2, 2.3.3). Lastly, physical interpretation of the dynamics is
given in terms of atmospheric low-frequency variability (§2.3.4).

2.3.1 Organisation of the parameter plane

In this section we give a detailed description of the bifurcation diagram and we ex-
plain how this clarifies various parts of the Lyapunov diagram. The bifurcations de-
tected in our model are standard, and they are discussed in detail in, e.g., Kuznetsov
(2004).

Lyapunov diagram. The top panel of Figure 2.1 contains the Lyapunov diagram of
the attractors of the low-order model. This is produced by scanning the (U0, h0)-
parameter plane from left to right and classifying the detected attractor by means
of Lyapunov exponents, see Appendix B.3.1 and Broer et al. (2008a,b) for details.
Along each line of constant h0 we start with a fixed initial condition when U0 = 12
m/s. For the next parameter values on this line we take the last point of the previous
attractor as an initial condition for the next one.

We do not exclude the possibility of coexisting attractors, but this can not be
detected by our procedure. More refined procedures, with varying initial conditions,
detect coexistence of attractors as well. For large values of the parameter U0 orbits
can escape to infinity (see the white parts in Figure 2.1), but this also depends on the
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chosen initial condition. These unbounded orbits also appear in a low-order model
of Lorenz (1980).

Bifurcations of equilibria. The transition from stationary to periodic behaviour in
the Lyapunov diagram (Figure 2.1) is explained by Hopf bifurcations where an equi-
librium loses stability. Bifurcations are computed here with the AUTO–07p software
(Doedel and Oldeman, 2007). A stable equilibrium is found for U0 = 0 m/s and
remains stable up to U0 = 12.2 m/s. The equilibrium undergoes one or more Hopf
bifurcations for U0 > 12.2 m/s approximately: loss of stability occurs at curves H1

and H2 in Figure 2.1 (we only focus on bifurcations leading to loss of stability here).
Periodic orbits born at the H1 curve have periods of about 10 days, whereas periodic
orbits born at the H2 curve have periods in the range of 30-60 days; see Figure 2.3
and Figure 2.4, respectively.1

A pair of degenerate Hopf points occurs at the tangencies between the Hopf curves
H1,2 and the curves SP1 and SP2 of saddle-node bifurcations of periodic orbits. The
bifurcation type on H1,2 changes from supercritical to subcritical at the degenerate
Hopf points. Two branches of stable periodic orbits are thus formed on either of
SP1,2 or H1,2.

Two curves SN1 and SN2 of saddle-node bifurcations of equilibria meet in a
cusp. This leads to a domain in the parameter plane for which three equilibria
coexist. The boundaries of this domain are tangent to the Hopf curves H1 and H2 at
three different Hopf-saddle-node bifurcation points. Moreover, a Bogdanov-Takens
point occurs along one of the saddle-node curves, where one additional real eigenvalue
crosses the imaginary axis.

Bifurcations of periodic orbits born at H1 or SP1. The periodic orbits born at the
curves H1 or SP1 lose stability through either Hopf-Nĕımark-Sacker or saddle-node
bifurcations. The Hopf-Nĕımark-Sacker curve T1 originates from a Hopf-Hopf point
at the curve H1, where two pairs of complex eigenvalues cross the imaginary axis.
The saddle-node curves SP3,4 are joined in a cusp, and the curve SP4 forms part
of a boundary between periodic and chaotic behaviour in the Lyapunov diagram.
Moreover, the curve SP4 becomes tangent to the Hopf-Nĕımark-Sacker curve T1 at
a Hopf-saddle-node bifurcation point of periodic orbits.

1Unless specified otherwise, attractors are plotted on directions of maximal amplitude. See
Appendix B.3.1 for details. Since the projection is computed numerically, labels for the axes are
omitted.
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Bifurcations of periodic orbits born at H2 or SP2. The periodic orbits born at the
curves H2 or SP2 may lose stability through either a period doubling bifurcation
or Hopf-Nĕımark-Sacker bifurcations. The former occurs on curve P1, which is the
first of a cascade leading to a chaotic attractor, see the next section. Hopf-Nĕımark-
Sacker bifurcations occur on curves T2 and T3 in Figure 2.1: T2 is tangent to the
period doubling curve P1 at a 1:2-resonance point, and T3 originates from a Hopf-
saddle-node bifurcation point of periodic orbits.
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Figure 2.3. Periodic orbit born at Hopf bifurcation H1 (U0 = 13.32 m/s, h0 = 800 m) and
its power spectrum. The period is approximately 10 days.
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Figure 2.4. Periodic orbit born at Hopf bifurcation H2 (U0 = 14.64 m/s, h0 = 1400 m) and
its power spectrum. The period is approximately 60 days.
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2.3.2 Routes to chaos

We have identified three different routes from orderly to chaotic behaviour. All of
them involve one or more bifurcations of the stable periodic orbits described in the
previous section.

Period doublings. The periodic orbits born at the Hopf bifurcation H2 lose stability
through a period doubling bifurcation (see previous section). Three period doubling
curves P1,2,3 are shown in Figure 2.1, and we expect that they are the first of an
infinite cascade. Indeed, a magnification of the Lyapunov diagram (Figure 2.5)
reveals a large chaotic region at the right of P3, interrupted by narrow domains
of periodic behaviour. Occurrence of these windows of periodicity is confirmed in
the diagrams in Figure 2.6. However, these gaps disappear for lower values of the
parameter h0, and chaotic behaviour seems to be persistent on a continuum.
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Figure 2.6. The three largest Lyapunov exponents λ1 ≥ λ2 ≥ λ3 (non-dimensional) as a
function of U0. The value of the parameter h0 is fixed at h0 = 800 m (top left), h0 = 1000
m (top right), h0 = 1200 m (bottom left), and h0 = 1400 m (bottom right).

Figure 2.7 shows a twice-doubled stable periodic orbit along the cascade and a
strange attractor after the end of the cascade. The dynamics on the strange attractor
exhibits low-frequency behaviour in the range 20-200 days (see the power spectrum
in Figure 2.7). The peaks around 100 and 200 days are ‘inherited’ from the twice-
doubled periodic orbit. In turn, these originate from the same branch of periodic
orbits as in Figure 2.4: just before the first period doubling bifurcation P1 (U0 = 13.9
m/s, h0 = 1200 m) this stable periodic orbit has a period of approximately 50 days
(not shown).

Broken torus. Two-torus attractors occur in a narrow region separating periodic
from chaotic behaviour in the Lyapunov diagram (Figure 2.5). The 2-torus attractors
branch off from periodic orbits at the Hopf-Nĕımark-Sacker bifurcations on curve T2.
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Figure 2.7. Attractors (left panels, same projection) and their power spectra (right) for
h0 = 1200 m. Top: periodic orbit after two period doublings (U0 = 14.48 m/s). Bottom:
strange attractor after a period doubling cascade (U0 = 15 m/s).

The periodic orbits losing stability here belong to the branch created at the Hopf
curve H2 (see previous section). The 2-torus attractors quickly break down giving
rise to a strange attractor (Figure 2.8). This strange attractor exhibits low-frequency
behaviour in the range 10-100 days. The main spectral peaks at 56 and 11 days
are inherited from the 2-torus, which has two frequencies ω1 = 0.0178 days−1 and
ω2 = 0.0888 days−1 for parameters right after the Hopf-Nĕımark-Sacker bifurcation.
In turn the torus inherits one of the frequencies from the periodic orbit, which has
a period of approximately 56 days just before the Hopf-Nĕımark-Sacker bifurcation
(U0 = 14.74 m/s, h0 = 900 m, not shown).

The process leading to the creation of the above strange attractor involves tran-
sition through a number of phase-locking windows as U0 is increased. Figure 2.9
shows Poincaré sections for U0 = 14.750 m/s up to U0 = 14.780 m/s with step 0.001
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Figure 2.8. Same as Figure 2.7 for h0 = 900 m: a 2-torus attractor (top, U0 = 14.75 m/s)
and a strange attractor after the 2-torus breakdown (bottom, U0 = 14.78 m/s).

m/s with h0 = 900 m fixed. Densely filled invariant circles and periodic points in the
Poincaré section correspond to quasi-periodic 2-tori and periodic orbits of the flow,
respectively. Periodicity windows with with periods 16, 25, 34, 9, and 11 are crossed
as U0 is increased, until the invariant circle breaks up and the quasi-periodic dynam-
ics is replaced by chaotic dynamics. The size of the attractor is growing rapidly in
phase space as U0 is changed. The breakdown of a 2-torus typically involves homo-
and heteroclinic bifurcations; see §2.3.3 for details.

Intermittency. The saddle-node curve SP4 in Figure 2.1 forms one of the boundaries
between the regions of periodic and chaotic behaviour in the Lyapunov diagram.
Figure 2.10 (top left panel) shows a stable periodic orbit born at the curve SP1; the
period is 10 days. When the parameters cross the saddle-node curve SP4, the stable
periodic disappears and a strange attractor is found; see Figure 2.10 (bottom left).

33



-2.05

-2

-1.95

 2.9  3  3.1  3.2

U0 = 14.750 m s-1

-2.05

-2

-1.95

 2.9  3  3.1  3.2

U0 = 14.760 m s-1

-2.05

-2

-1.95

 2.9  3  3.1  3.2

U0 = 14.762 m s-1

-2.05

-2

-1.95

 2.9  3  3.1  3.2

U0 = 14.763 m s-1

-2.05

-2

-1.95

 2.9  3  3.1  3.2

U0 = 14.764 m s-1

-2.05

-2

-1.95

 2.9  3  3.1  3.2

U0 = 14.767 m s-1

-2.05

-2

-1.95

 2.9  3  3.1  3.2

U0 = 14.769 m s-1

-2.05

-2

-1.95

 2.9  3  3.1  3.2

U0 = 14.780 m s-1

Figure 2.9. Breakdown of the 2-torus attractor, visualised in the Poincaré section û2,0,0 =
1.8, projection on (û2,0,1, û2,0,2): alternation of periodic, quasi-periodic, and chaotic dy-
namics as the parameter U0 is varied with constant h0 = 900 m.
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Figure 2.10. Same as Figure 2.7 for h0 = 800 m. Top row: stable periodic orbit before
the saddle-node bifurcation (U0 = 14.87 m/s). Bottom row: strange attractor after the
saddle-node bifurcation (U0 = 15 m/s).

The dynamics on the attractor seems to consist of a sequence of passages close to
heteroclinic orbits between different objects. The attractor coexists with (at least)
the following objects:

• an unstable periodic orbit with a 2-dimensional unstable manifold (due to one
pair of complex conjugate Floquet multipliers in the right half-plane).

• three unstable equilibria with unstable manifolds of dimension 4, 3, and 2 (due
to two, one, and one pair(s) of complex conjugate eigenvalues in the right half
plane, respectively).

Time series of various observables of an orbit on the attractor are shown in Fig-
ure 2.11. At least two different regimes can be detected. Regimes of nearly regular
periodic behaviour correspond to intermittency near the formerly existing stable
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Figure 2.11. Four time series, derived from one orbit on the attractor in Figure 2.10 using
four different observables: the norms of the orbit and the vector field and the distances of
the orbit to the position of the formerly existing periodic orbit and the unstable periodic
orbit. Black bars underneath mark time intervals of intermittency near either the periodic
orbit or an equilibrium.

periodic orbit, which disappeared through the saddle-node curve SP4. Regimes of
nearly stationary behaviour are observed when the orbit approaches one of the three
equilibria mentioned above. These regimes are alternated with irregular behaviour.

The intermittency regimes often occur directly after the orbit approached one
the equilibria, but this is not always the same equilibrium. We have tested this
by computing a large number of orbits, for which the initial conditions are random
points in the tangent space to the unstable manifold of the equilibrium. The inter-
mittency regime can be reached immediately by starting near the equilibria with the
4-dimensional and 3-dimensional unstable manifolds. When starting near the equi-
librium with the 2-dimensional unstable manifold, however, the orbit shows irregular
behaviour before reaching the intermittency regime.

Orbits on the attractor never approach the unstable periodic orbit within a small
distance. Again we have computed a large number of orbits, for which the initial
conditions are random points in the tangent space of the unstable manifold of the
periodic orbit. In general, first a long transient of irregular behaviour is observed,
and then the orbit reaches the intermittency regime.
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2.3.3 Theoretical remarks

The results of the previous subsections are now interpreted in terms of known theory.

Bifurcations of equilibria and periodic orbits. The codimension-1 bifurcations of equi-
libria and periodic orbits we have found are standard and have been described exten-
sively in the literature; see, for instance, Broer et al. (1996); Broer and Takens (2010);
Guckenheimer and Holmes (1983); Kuznetsov (2004) and the references therein. For
each bifurcation a (truncated) normal form can be derived by restricting the vector
field to an approximation of a centre manifold. This normal form can be used to
check the appropriate genericity and transversality conditions and to study different
unfolding scenarios. This methodology is described in detail in Kuznetsov (2004);
see Simó (1990) for other methods of computing normal forms.

The codimension-2 bifurcations of equilibria (Bogdanov-Takens, Hopf-Hopf, and
Hopf-saddle-node) have been described in detail in Kuznetsov (2004). In this case,
however, the truncated normal forms only provide partial information on the dynam-
ics near the bifurcation. The Hopf-saddle-node bifurcation for diffeomorphisms has
been studied extensively in Broer et al. (2008a,b).

Period doubling route. This scenario for the birth of strange attractors is theoret-
ically well-understood, see for example Broer et al. (1998), Devaney (1989), and
references therein. Strange attractors obtained from infinite period doublings in one
direction may be reached at once by homo- and heteroclinic tangencies from another
direction (Palis and Takens, 1993). When curves of period doubling bifurcations
form unnested islands, the chaotic region can be reached by a variety of routes, in-
cluding the breakdown of a 2-torus or the sudden appearance of a chaotic attractor
(Wieczorek et al., 2001).

2-tori and their breakdown. It is well known that 2-torus attractors of dissipative
systems generically occur as families of quasi-periodic attractors parameterised over
a Cantor set (of positive 1-dimensional Hausdorff measure) in a Whitney-smooth
way (Broer et al., 1996, 1990; Broer and Takens, 2010). These attractors are often a
transient stage between periodic and chaotic dynamics.

The birth and death of periodic orbits on an invariant torus occur when the
parameters move across Arnol′d resonance tongues. These are regions in the param-
eter plane bounded by pairs of curves of saddle-node bifurcations originating from a
common resonant Hopf-Nĕımark-Sacker bifurcation. For parameters inside a tongue
the dynamics on the torus is phase locked, meaning that the invariant circle of the
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Poincaré map (defined by a section transversal to the torus) is the union of a stable
periodic point and the unstable manifolds of an unstable periodic point (see, for ex-
ample, the top right panel in Figure 2.9). The circle can be destroyed by homoclinic
tangencies between the stable and unstable manifolds of the unstable periodic point,
or the circle can interact with other objects via heteroclinic tangencies. See Broer
et al. (1993) and Broer et al. (1998) for an extensive discussion.

Intermittency. The phenomenon of intermittency near a saddle-node bifurcation is
well-known (Pomeau and Manneville, 1980), but it only explains a part of the dynam-
ics on the strange attractor in Figure 2.10. The geometric structure of the attractor
remains unclear too.

In some cases strange attractors are formed by the closure of the unstable manifold
of a saddle-like object. This Ansatz is discussed in several works, see e.g. Broer et al.
(1998); Broer and Takens (2010) and references therein. However, the structure of
the attractor in Figure 2.10 seems to be more complicated, involving interaction with
several nearby invariant objects (equilibria, periodic orbits) of saddle type. Another
possibility is that the attractor arises through a scenario studied by Zeeman (1982),
in which the main saddle of a horseshoe is annihilated by an attracting node. See
also the papers by Takens (1987) and Dı́az et al. (2001).

We consider it as an interesting problem for future research to investigate the
structure of the attractor in Figure 2.10 in more detail. At least the stable and
unstable manifolds of the equilibria and the periodic orbit should be computed, in
order to gain more insight in the structure of the attractor. Next, the ‘genealogy’ of
the attractor should be determined, e.g., by identifying whether the present shape is
created through a sequence of bifurcations. For a more thorough analysis it might
be necessary to derive a simpler model for this attractor, having a state space with
the lowest possible dimension.

2.3.4 Physical interpretation

In this section we investigate the physical aspects (mainly instability and wave prop-
agation) associated with the attractors analysed in the previous section. Hopf bi-
furcations are first interpreted in terms of geophysical fluid dynamical instabilities,
giving rise to planetary waves. The structure of these waves is then studied through
Hovmöller diagrams of the vorticity field (Hovmöller, 1949). This allows us to visu-
alise structural differences and changes, such as the onset of large-scale meanders in
the westerly wind.
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Hopf bifurcations. A fluid is said to be hydrodynamically unstable when small per-
turbations of the flow can grow spontaneously, drawing energy from the mean flow.
At a Hopf bifurcation an equilibrium loses its stability and gives birth to a periodic
orbit. In the context of a fluid this can be interpreted as a steady flow becoming
unstable to an oscillatory perturbation (such as a travelling wave). Two wave in-
stabilities are well-known in geophysical fluid dynamics: barotropic and baroclinic
instabilities. The fundamental difference lies in the source of energy: perturbations
derive their energy from the horizontal shear of the mean flow in a barotropically
unstable flow. In a baroclinically unstable flow, perturbations derive their kinetic
energy from the potential energy of the mean flow associated with the existence of
vertical shear in the velocity field. The reader is referred to standard textbooks on
geophysical fluid dynamics for a full discussion on this subject (Dijkstra, 2005, 2008;
Holton, 2004).

At a Hopf bifurcation the Jacobian matrix of the vector field has two eigenvalues
±ωi on the imaginary axis. Let Φ1 ± iΦ2 denote corresponding eigenvectors, then

P (t) = cos(ωt) Φ1 − sin(ωt) Φ2 (2.7)

is a periodic orbit of the vector field obtained by linearisation around the equilibrium
undergoing the Hopf bifurcation. This can be interpreted as a wave-like response to
a perturbation of the equilibrium. The propagation of the physical pattern asso-
ciated to this wave can be followed by looking at the physical fields at the phases
P (−π/2ω) = Φ2 and P (0) = Φ1. Figure 2.12 shows the layer thickness associated
with the eigenvectors at the Hopf bifurcation H1. Clearly, positive and negative
anomalies are opposite in each layer. Moreover, this is accompanied by vertical
shear in the velocity fields (not shown in the figure). Hence, we interpret this Hopf
bifurcation as a mixed barotropic/baroclinic instability. The same plot for the Hopf
bifurcation H2 is given in Figure 2.13. Here, we see again that positive and negative
anomalies are opposite in each layer. Therefore, we interpret this Hopf bifurcation
also as a mixed barotropic/baroclinic instability.

The periodic orbits. The physical patterns associated with periodic dynamics change
with the parameters U0 and h0. Namely the propagation features of the periodic
orbits in Figures 2.3 and 2.4 differ from those at the Hopf bifurcations that gave birth
to these orbits. The vorticity field associated with the periodic orbit in Figure 2.3
propagates eastward in the bottom layer, whereas it does not propagate in the top
layer, see the Hovmöller diagram in Figure 2.14. Also, the variability is stronger in
the top layer. The vorticity field associated with the periodic orbit in Figure 2.4 is
non-propagating in both layers (Figure 2.15).
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Figure 2.12. Patterns of layer thickness associated with the eigenvectors at the Hopf bifur-
cation H1, for U0 = 12.47 m/s and h0 = 800 m. The scale is arbitrary, since any scalar
multiple of (2.7) is a solution of the linearised vector field.
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Figure 2.13. Same as Figure 2.12 at Hopf curve H2, for U0 = 13.31 m/s and h0 = 1200 m.
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Figure 2.14. Hovmöller diagram of the periodic orbit of Figure 2.3. The magnitude of the
vorticity field is plotted as a function of time and longitude while keeping the latitude fixed
at y = 1250 km. Observe the eastward propagation in the bottom layer.
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Figure 2.15. Same as Figure 2.14 for the periodic orbit of Figure 2.4. Observe that this
wave is non-propagating in both layers.
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Figure 2.16. Same as Figure 2.14 for the strange attractor of Figure 2.7. The non-
propagating nature is inherited from the periodic orbit of Figure 2.3. Observe the irregular
variability in the bottom layer. This is due to the harmonics induced by the period doubling
bifurcations.
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Figure 2.17. Same as Figure 2.14 for the strange attractor of Figure 2.8. Again, the non-
propagating nature is inherited from the periodic orbit of Figure 2.3. The two fundamental
periods (11 and 56 days) of the formerly existing 2-torus can still be identified.
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Figure 2.18. Hovmöller diagrams of the strange attractor of Figure 2.10 for two different
time intervals. The magnitude of the vorticity field is plotted as a function of time and
longitude while keeping the latitude fixed at y = 1250 km. The lower panels correspond
to the intermittency regime near the vanished periodic orbit. The propagating nature
in the bottom layer is inherited from the periodic orbit of Figure 2.4. The top panels
are associated with a stationary regime, where the orbit approaches one of the nearby
equilibria.
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Period doublings. The strange attractor after the period doubling sequence is as-
sociated with non-propagating wave behaviour in both layers (Figure 2.16). The
characteristic time scale is approximately 100 days. Again the variability is stronger
in the upper layer.

Broken torus. The dynamics on the broken 2-torus attractor corresponds to non-
propagating wave behaviour in both layers (Figure 2.17). The dominant time scale
in the top layer (approximately 50 days) is longer than in the bottom layer (5 to 10
days). Both time scales are represented by peaks in the power spectrum (Figure 2.8).

Intermittency. The strange attractor in Figure 2.10 is characterised by intermittent
transitions between long time episodes of nearly stationary behaviour and episodes
with eastward propagating waves in the bottom layer and non-propagating waves in
the top layer, see Figure 2.18.

2.4 Discussion

The results of our investigation are consistent with the hypothesis that one of the ba-
sic physical processes underlying low-frequency atmospheric variability in the north-
ern hemisphere consists of irregular planetary-scale waves with non-propagating
and temporally persistent character. Such waves are associated to mixed baro-
clinic/barotropic instabilities, where the baroclinic character is non-standard and
a fundamental role is played by the interaction of the westerly flow with orography.
These features agree qualitatively not only with observational evidence, but also with
previous theories mainly based on linear instabilities, such as orographic resonance
and orographic baroclinic instability (Benzi, Malguzzi, Speranza and Sutera, 1986;
Benzi, Speranza and Sutera, 1986; Benzi and Speranza, 1989; Cessi and Speranza,
1985; Fraedrich and Böttger, 1978; Hansen and Sutera, 1986, 1995).

We contribute novel dynamical mechanisms to the on-going discussion on the
nature of atmospheric low-frequency variability. Irregularly recurring persistent be-
haviour is explained in terms of intermittency associated to codimension-1 bifurca-
tions. Specifically, irregular waves arise from two branches of periodic orbits through
period doubling cascades, Hopf-Nĕımark-Sacker bifurcations followed by breakdown
of a 2-torus attractor, and saddle-node bifurcations taking place on strange attrac-
tors (see Figure 2.1 and §2.3.2). Dominant time scales and propagation patterns
are inherited from the periodic orbits and are in broad quantitative agreement with
observational evidence (also see §2.1.2). This intermittent behaviour persists in a
large domain of physically relevant parameter values.
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Many studies invoking the multiple-equilibria approach following Charney and
DeVore (1979) are based on barotropic models. The dynamics typically involves a
Shil′nikov homoclinic bifurcation near a Hopf-saddle-node bifurcation of an equilib-
rium, see Broer and Vitolo (2008) for an overview. We do not take a definite stance
on the multiple mode/equilibria versus single mode/equilibrium issue. The approach
in this work is more akin to the spectral analysis ideas of Benzi and Speranza (1989)
and Fraedrich and Böttger (1978), see §2.1.1. It has already been proposed that
regimes, as identified by modes of probability distribution functions, need not be
associated to (metastable) steady states of the dynamical equations (Majda et al.,
2006). We do not rule out that the intermittency phenomena described in this study
might provide a dynamical mechanisms for the onset of statistical modes unrelated
to metastable steady states. This issue deserves specific investigation.

Our modelling approach has major advantages with respect to the barotropic
quasi-geostrophic models often used to study low-frequency variability. Orography
is a perturbative (small) parameter in quasi-geostrophic theories (Bannon, 1983).
Instabilities in barotropic flows are fuelled by the kinetic energy of the flow rather
than by the available potential energy (Benzi, Speranza and Sutera, 1986). Con-
sequently, the transitions between the quasi-stable equilibria of barotropic models
either involve variations of the zonal wind which of the order of 40 m/s, which are
much larger than in reality (Benzi, Malguzzi, Speranza and Sutera, 1986; Malguzzi
and Speranza, 1981), or occur at low orography (200 m). Our usage of shallow-water
models with baroclinic-like forcing has allowed us:

1. to highlight the essential role of orography height in determining the propagat-
ing versus non-propagating character of the waves (the latter is only found for
orography larger than 850 m);

2. to identify the mixed barotropic/baroclinic character of the waves excited on
the zonal flow by the orography.

That our minimal model exhibits temporal variability in the appropriate range
is already a non-trivial accomplishment, given the strongly nonlinear nature of the
phenomena which we are trying to understand. We believe, however, that a more
important achievement is the identification of the underlying physical process, pos-
sessing qualitative features in broad agreement with the observational evidence and
previous theories. Our admittedly unrealistic ‘minimal modelling’ approach has al-
lowed us to perform an extensive dynamical analysis (see e.g. Figure 2.1) offering
the useful physical insight enumerated above. In this sense, we subscribe to the
viewpoint of Held (2005) that the price to pay for adopting models which are overly
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complex—though (potentially) more ‘realistic’—with respect to the research question
at hand is the risk of reduced understanding.

The most compelling issue at this point is to assess the consistence and robustness
of the explanation which we have identified. For example: do nonlinear interactions of
waves of different spatial scales play an essential role in the onset or the maintenance
of low-frequency atmospheric variability? We just mention one amongst the many
possible ways for this to occur: the North Atlantic Oscillation (NAO) low-frequency
large-scale pattern is found by Benedict et al. (2004) to result from breaking of
synoptic-scale waves, where the anticyclonic (cyclonic) wave breakings evolve into
the positive (negative) NAO phase, also see Athanasiadis and Ambaum (2010) and
references therein.

Future work. We summarise some of the many issues for future research work. From
the more physical viewpoint:

1. to characterise the physical patterns associated with the regular and irregular
waves, in more complex models and further away from the Hopf bifurcations;

2. to investigate nonlinear wave-wave interactions in a simple modelling frame-
work, incorporating a few, carefully selected spatial scales beyond the planetary
wave number 3 considered here;

3. to analyse the energy cycle of the waves along the lines of Lorenz (1967), see
e.g. Speranza and Malguzzi (1988);

4. to analyse the relation between multimodal statistics and the intermittency
scenarios identified here.

In this study we also did not touch a large number of important issues of a more
computational and mathematical nature. An open issue is the structure near the
organising centres of the bifurcation diagram, particularly the Hopf-saddle-node bi-
furcation of periodic orbits (see Figure 2.1). Near this point, a number of gaps
interrupts the Hopf-Nĕımark-Sacker bifurcation curve and it is unclear whether the
gaps are related to (strong) resonances or to a global mechanism as in Broer et al.
(2008a).
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