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a b s t r a c t

Results on the problem of stabilizing a nonlinear continuous-time minimum-phase system by a finite
number of control or measurement values are presented. The basic tool is a discontinuous version of the
so-called semi-global backstepping lemma.We derive robust practical stabilizability results by quantized
and ternary controllers and apply them to some control problems. Estimates on the required bandwidth
are also provided.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The problem of controlling systems through a limited band-
width channel has recently raised a great interest in the commu-
nity, as thoroughly surveyed in [1]. A possible approach to the
problem for continuous-time systems consists in partitioning (a
subset of) the state space into a finite number of regions and trans-
mitting information whenever the state crosses one of the bound-
aries. The resulting system is known as a quantized control system,
and the focus of this paper is on this class of systems.Many authors
have contributed to the topic, and we refer the interested reader
to [1] for an exhaustive bibliography. Among the papers which are
important to our derivations we recall [2–5].
In [2], adopting a time-varying quantization, and relying

on input-to-state stability of the system, the author shows
asymptotic convergence to the origin. In [4,5], the role of
static logarithmic quantization [3] to prove practical semi-
global stabilizability of nonlinear stabilizable systems has been
investigated. The two papers mainly differ in the type of solution
adopted. In particular, the paper [5] establishes a few connections
between quantized control and discontinuous control systems,
investigating Carathéodory andKrasowskii solutions in the context
of quantized control systems, while the authors of [4] propose
a hysteresis-based implementation of the quantized control. The
twopapers also present resultswhich rely on notions of robustness
different from input-to-state stability. Finally in [4], an adaptive
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control scheme for nonlinear continuous-time uncertain systems
is proposed.
In this paper, we establish a few results on the problem

of stabilizing a nonlinear continuous-time system by quantized
control robustly with respect to uncertainties. A discontinuous
version of the semi-global backstepping lemma of [6], in which the
measured state is logarithmically quantized, is applied to show
that minimum-phase nonlinear systems, possibly with uncertain
parameters, can be robustly semi-globally practically stabilized by
a quantized function of partial-state measurements. The control
techniques introduced in the papers previously discussed cannot
be directly applied to the problem considered here, and the
resulting quantized control we propose is new to the best of our
knowledge. In the scenario in which the feedback information
travels through a finite-bandwidth channel, it is important to
calculate the bandwidth needed to implement the quantized
controller. The solutionwepropose has the additional advantage of
allowing us to estimate an upper bound on the required bandwidth.
We also show that semi-global practical stabilization is possible
even using a simple switched ternary controller. The backstepping
lemma of [6] has played a fundamental role in the design of many
robust nonlinear control schemes [7]. We conclude the paper by
presenting a few examples where the quantized backstepping
lemma is used to solve some of these robust nonlinear control
problems in the presence of quantization.
Preliminary facts are presented in Section 2. In Section 3, the

semi-global backstepping tool in the presence of quantization is
proven. An upper bound on the bandwidth associated with the
quantized control scheme we propose is estimated in Section 4.
The ternary controller is introduced in Section 5. Some examples
are illustrated in Section 6.

http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
mailto:depersis@dis.uniroma1.it
http://dx.doi.org/10.1016/j.sysconle.2009.04.003
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2. Preliminaries

The system we focus our attention on is of the form

ẋ = F(x, µ)+ G(x, µ)ζ
ζ̇ = q(x, ζ , µ)+ b(x, ζ , µ)u (1)

with x ∈ Rn−1, ζ ∈ R, µ an unknown parameter ranging over the
compact set P , u ∈ R, b(x, ζ , µ) ≥ b0 > 0 for all (x, ζ , µ). The
role of these kinds of systems is to solve many important control
problems and how several classes of nonlinear control systems can
be reduced to the form (1)will be emphasized later on (cf. Section 6
in this paper, and also [6,7], Chapters 11 and 12). We suppose
that the upper subsystem satisfies the following property ([6], see
also [7]), which claims that the upper subsystem with ζ = 0 is
asymptotically stable with a given region of attraction:

Definition. The system ẋ = F(x, µ), x ∈ Rn−1, satisfies a Uniform
Lyapunov Property (ULP) if there exists an open set A ⊂ Rn−1, a
real number c ≥ 1, a continuously differentiable definite positive
function V : A→ R+ such that Γc+1 := {x : V (x) ≤ c + 1} ⊂ A
and ∂V

∂x F(x, µ) < 0, for all x ∈ Γc+1, x 6= 0, for all µ ∈ P . C

Introduce the Lyapunov function [6]

W (x, ζ ) =
cV (x)

c + 1− V (x)
+

dζ 2

d+ 1− ζ 2

defined on the set {x : V (x) < c + 1} × {ζ : ζ 2 < d + 1},
for some d ≥ 1, and definite positive and proper therein. For an
arbitrary σ > 0, consider the set S = {(x, ζ ) : σ ≤ W (x, ζ ) ≤
c2+d2+1}. The set iswell defined, because ifW (x, ζ ) ≤ c2+d2+1,
then V (x) < c + 1 and ζ 2 < d + 1. In [6] (see also [8]) it is
proven that a linear high-gain partial-state feedback u = k̄ζ exists
which makes Ẇ (x, ζ ) negative on S (thus allowing the authors to
conclude that any trajectory starting in S is attracted by Ωσ :=

{(x, ζ ) : W (x, ζ ) ≤ σ }). In this paper, we are interested in carrying
out an analogous investigation in the case in which the feedback
information ζ is available in a ‘‘limited’’ form, namely it undergoes
quantization.
Following [6], consider the derivative Ẇ (x, ζ ) = (∂W/∂x)ẋ +

(∂W/∂ζ )ζ̇ . It is possible to obtain the following inequality to hold
for all (x, ζ ) ∈ Ωc2+d2+1:

Ẇ (x, ζ ) ≤
c
c + 1

∂V
∂x
F(x, µ)+ w(x, ζ , µ)ζ

+ 2
d(d+ 1)

(d+ 1− ζ 2)2
ζb(x, ζ , µ)u, (2)

wherew(x, ζ , µ) = c(c+1)
(c+1−V (x))2

∂V
∂x G(x, µ)+ 2

d(d+1)
(d+1−ζ 2)2

q(x, ζ , µ).
Because of the ULP property, if the state belongs to S0 =

{(x, ζ ) ∈ S : ζ = 0}, then Ẇ (x, ζ ) < 0. By continuity, there
exists a neighborhood U of S0 where the sum of the first two
terms c

c+1
∂V
∂x F(x, µ) + w(x, ζ , µ)ζ on the right-hand side of

the inequality above remains strictly negative. Without loss of
generality, we can suppose that a constant η > 0 exists such that
U = {(x, ζ ) ∈ S : |ζ | < η} (see Fig. 1). Then, to show that Ẇ (x, ζ )
is negative on S, it is enough to investigate the sign of Ẇ (x, ζ ) on
S̃ := S \ U only.

3. Stabilization by quantized control

In what follows, we consider the case in which the control k̄ζ ,
or the measurement ζ , is quantized by a logarithmic quantizer. Let
x

Fig. 1. The figure represents the sets of interest in the paper. The outer contour is
the boundary of Ωc2+d2+1 , while the inner contour is the boundary of Ωσ . S is the
region between the two. The two horizontal segments are the sets of points such
that ζ = ±η. The open set U is emphasized by oblique solid lines. The regions at
the top, center and bottom, delimited by the boundary of Ωc2+d2+1 and the two
horizontal solid lines, are respectivelyΩ− ,Ω0 ,Ω+ .

u0 ∈ R+, j ∈ N and 0 < δ < 1 be constants to be designed. Also let
ui = ρ iu0, with ρ = 1−δ

1+δ [3]. The following map is the quantizer

Ψ (r) =


ui

1
1+ δ

ui < r ≤
1
1− δ

ui, 0 ≤ i ≤ j

0 0 ≤ r ≤
1
1+ δ

uj
−Ψ (−r) r < 0,

(3)

and u = −Ψ (k̄ζ ) is the quantized input. We do not define the
quantizer for k̄ζ > (1− δ)−1u0, since u0 will be designed in such a
way that this bound is never exceeded. Observe that it is equivalent
to consider either the quantized control law u = −Ψ (k̄ζ ) or the
control law u = −k̄Ψ̄ (ζ ), function of the quantized partial-state
Ψ̄ (ζ ), provided that Ψ̄ is appropriately defined. As amatter of fact,
define Ψ̄ as Ψ in (3), but with a new set of quantization levels ūi
(instead of ui) defined as ūi = ρ iū0, with ū0 = k̄−1u0. Then, it is
easy to show that k̄Ψ̄ (ζ ) = Ψ (k̄ζ ), and all the results drawn with
u = −Ψ (k̄ζ ) also hold for u = −k̄Ψ̄ (ζ ). In what follows, we only
refer to the quantized input u = −Ψ (k̄ζ ).
Observe that the quantizer has 2j+ 3 quantization levels, with

u0, j, k̄ to be determined. Of course, the size of the deadzone of the
quantizer, i.e. the region around the zero where Ψ = 0, decreases
as j increases. The parameter δ can be viewed as a function of
the quantization density (see [3]), and we do not assume any
constraint on its value (cf. the remark below to see why, for open-
loop unstable systems, assuming that δ ∈ (0, 1) does not appear
to be restrictive). The closed-loop system is

ẋ = F(x, µ)+ G(x, µ)ζ
ζ̇ = q(x, ζ , µ)− b(x, ζ , µ)Ψ (k̄ζ ). (4)

The following quantities are useful below:

w̄ = max
(x,ζ )∈Ωc2+d2+1,µ∈P

|w(x, ζ , µ)|,

b̄ = max
(x,ζ )∈Ωc2+d2+1,µ∈P

|b(x, ζ , µ)|, ζ̄ = max
(x,ζ )∈Ωc2+d2+1

|ζ |.
(5)

Observe that the vector field on the right-hand side of (4) is
discontinuous and solutions of the system must be intended in
some generalized sense. In this section, we focus on Krasowskii
solutions, but other types of solutions are possible (see e.g. [5] and
the references therein). The main reason to consider Krasowskii
solutions lies in the fact that a rather complete Lyapunov theory
for the study of the stability of these solutions is available.



604 C. De Persis / Systems & Control Letters 58 (2009) 602–608
Definition. A curve ϕ : [0,+∞)→ Rn is a Krasowskii solution of
a system of ordinary differential equations ẋ = G(t, x), where G :
[0,+∞)× Rn → Rn, if it is absolutely continuous and for almost
every t ≥ 0 it satisfies the differential inclusion ẋ ∈ K(G(t, x)),
where K(G(t, x)) = ∩δ>0 coG(t, Bδ(x)), coG is the convex closure
of the set G and Bδ(x) is the open ball of radius δ centered at x. C

In the present case, Krasowskii solutions are absolutely
continuous functions which satisfy the differential inclusion (see
e.g. [9,5])(
ẋ
ζ̇

)
∈

(
F(x, µ)+ G(x, µ)ζ

q(x, ζ , µ)

)
+

{(
0

−b(x, ζ , µ)

)
v, v ∈ K(Ψ (k̄ζ ))

} (6)

where (see [9], Lemma 2, and [5]) K(Ψ (k̄ζ )), with k̄ζ ≥ 0 (and
symmetrically for k̄ζ ≤ 0), coincides with the singleton {Ψ (k̄ζ )}
at the points where Ψ (k̄ζ ) is continuous, and with co{ui, ui+1}, at
the points k̄ζ = ui

1+δ , with 0 ≤ i ≤ j and uj+1 := 0, where Ψ (r) is
discontinuous. As a result, K(Ψ (k̄ζ )) satisfies the inclusion:

K(Ψ (k̄ζ )) ⊆

{(1+ λδ)k̄ζ , λ ∈ [−1, 1]}
uj
1+ δ

< |k̄ζ | ≤
u0
1− δ

{λ(1+ δ)k̄ζ , λ ∈ [0, 1]}
uj
1+ δ

≥ |k̄ζ |.
(7)

In the analysis below we let v in (6) range over the set on the left-
hand side of (7). In this way, the results we establish in the paper
hold no matter how the quantization levels are chosen within the
sector bound, and in particular this allows us to infer the same
results even in the presence of hysteresis (see Section 4).

Remark. Assuming that δ ∈ (0, 1) does not appear to be restric-
tive. In fact, in the differential inclusion above, because of the
quantization, the ‘‘high-frequency’’ gain becomes b(x, ζ , µ)(1 +
λδ), with λ ∈ [−1, 1] (similar arguments hold for the case when
the gain is b(x, ζ , µ)λ(1+ δ), λ ∈ [0, 1]). If we allow δ to be larger
than 1, then we should design a control law which stabilizes the
system in the presence of a high-frequency gain which takes any
value in a set which includes the zero, a task which is considerably
difficult, if not impossible, to accomplish for open-loop unstable
systems by the class of controllers we consider in the paper. C

Then we claim the following version of the so-called ‘‘semi-
global backstepping lemma’’ in [6] with quantized feedback:

Proposition 1. For any δ ∈ (0, 1) and anyσ ∈ (0, c2+d2+1), there
exist positive numbers k∗, j∗, and u0 such that, for any gain k̄ ≥ k∗ and
any number of quantization levels j ≥ j∗, any Krasowskii solution ϕ
of the system (4) is such that, if ϕ(0) ∈ Ωc2+d2+1, then there exists
T > 0 such that ϕ(t) ∈ Ωσ for all t ≥ T .

Proof. Let 1

k∗ =
d+ 1
d

w̄

b0

1
η(1− δ)

,

j∗ =

⌈
log

(
d2

(c2 + d2 + d+ 1)2
η

4
b0
b̄

)
log

(
1− δ
1+ δ

)−1⌉
fix k̄ ≥ k∗ and j ≥ j∗, and choose u0 = (1 + δ)k̄max(x,ζ )∈S̃ |ζ |.
To prove the convergence of the state toΩσ , we need to prove [5]
that, for any (x, ζ ) ∈ S, for any v ∈ K(Ψ (k̄ζ )),

1 The symbol dre denotes the smallest integer not smaller than r . The definition
of j ≥ j∗ yields that ( 1−δ1+δ )

j
≤

d2

(c2+d2+d+1)2
η

4
b0
b̄
.

Ẇ (x, ζ ) =
c(c + 1)

(c + 1− V (x))2
∂V
∂x
(F(x, µ)+ G(x, µ)ζ )

+
d(d+ 1)

(d+ 1− ζ 2)2
2ζ · (q(x, ζ , µ)− b(x, ζ , µ)v)

≤
c
c + 1

∂V
∂x
F(x, µ)− 2

d(d+ 1)
(d+ 1− ζ 2)2

k̄b(x, ζ , µ)ζ 2

+w(x, ζ , µ)ζ − 2ζ
d(d+ 1)

(d+ 1− ζ 2)2
b(x, ζ , µ)[v − k̄ζ ] < 0. (8)

Note first that, if (x, ζ ) ∈ S̃, where S̃ = S \ U is introduced
at the end of Section 2, then |k̄ζ | ≤ u0. Hence, depending on
the number j ≥ j∗ of quantization levels, two cases are possible,
namely that the set Ŝ := {(x, ζ ) ∈ S : uj/(1 + δ) < |k̄ζ | ≤ u0}
is strictly contained in S̃ or it is not. Consider the former case. By
definition of K(Ψ (k̄ζ )), we have v− k̄ζ = λδk̄ζ , and therefore, for
(x, ζ ) ∈ Ŝ ⊂ S̃, the inequality above rewrites as (recall (5))

Ẇ (x, ζ ) ≤
c
c + 1

∂V
∂x
F(x, µ)− 2

d(d+ 1)
(d+ 1− ζ 2)2

× (1+ λδ) · k̄b(x, ζ , µ)ζ 2 + w(x, ζ , µ)ζ

≤
c
c + 1

∂V
∂x
F(x, µ)− 2

d
d+ 1

(1− δ)k̄b0ζ 2 + w̄|ζ |.

The choice of k∗ above gives Ẇ (x, ζ ) ≤ −w̄η. Consider now the
subset of points in S̃ such that |k̄ζ | ≤ uj/(1+ δ). Such a set is non-
void because Ŝ ⊂ S̃ by hypothesis. For these points, we have

|v − k̄ζ | ≤ |k̄ζ | ≤ uj/(1+ δ) ≤
u0
1+ δ

(
1− δ
1+ δ

)j
,

and the bound on Ẇ (x, ζ ) becomes

Ẇ (x, ζ ) ≤
c
c + 1

∂V
∂x
F(x, µ)−

d
d+ 1

k̄b0ζ 2

+ 2
u0
1+ δ

(
1− δ
1+ δ

)j
(c2 + d2 + d+ 1)2

d(d+ 1)
b̄|ζ |.

The choice of u0 and j∗ guarantees that for j ≥ j∗ the last term on
the right-hand side of the inequality is not larger than the second
term, and this gives Ẇ (x, ζ ) ≤ − 12

d
d+1 k̄b0η

2
≤ −

w̄η

2(1−δ) .

Consider now the case when Ŝ 6⊂ S̃, and let first (x, ζ ) ∈ Ŝ ∩ S̃.
This case is the same as (x, ζ ) ∈ Ŝ when Ŝ ⊂ S̃. Then as before

Ẇ (x, ζ ) ≤
c
c + 1

∂V
∂x
F(x, µ)+ w(x, ζ , µ)ζ

− 2
d
d+ 1

(1− δ)k̄b0ζ 2 < 0.

On the other hand, if (x, ζ ) 6∈ Ŝ ∩ S̃, then necessarily (x, ζ ) ∈ U .
Then we have

Ẇ (x, ζ ) ≤
c
c + 1

∂V
∂x
F(x, µ)+ w(x, ζ , µ)ζ

−


2
d
d+ 1

(1− δ)k̄b(x, ζ , µ)ζ 2,
uj
1+ δ

< |k̄ζ | ≤ u0

0,
uj
1+ δ

≥ |k̄ζ |.

Since the sum of the first two terms on the right-hand side is
negative because (x, ζ ) ∈ U , and the third term is always non-
positive, we see that Ẇ (x, ζ ) < 0. This ends the proof. �

Remark. The constant k∗ differs from the one in [6,7] by the
presence of the factor (1 − δ)−1. That is, as expected, the error
due to quantization is counteracted by raising the controller gain.
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Fig. 2. The graph illustrates how the function Ψm(u) takes values depending on u, u = k̄ζ . Each edge connects two nodes, and is labeled with the condition (guard) which
triggers the transition from the starting node to the destination node.
Furthermore, it is interesting to observe that the constant j∗, that is
the number of quantization levels, only depends on the size of the
domain of attraction and of the target set. C

4. An estimate on the bandwidth

The stabilization technique examined in the previous section
has two main ingredients: the selection of the set of control
values, and the switching law which schedules them. A possible
performance measure of the control law can then be taken the
number of times the controller switches to a new value within an
interval of time divided by the length of the interval itself. Such a
measure is given the name of bandwidth, because of the obvious
implication in the scenario in which the quantized control is fed
back to the process through a finite-bandwidth communication
channel. TheKrasowskii solutions considered above donot exclude
the possibility to have accumulation of switching points in finite
time. To circumvent the possible occurrence of chattering or Zeno
phenomenon, we introduce a modified quantizer following [4].
The modified quantizer is obtained from (3) to which, for each
quantization level, a new one is added, to obtain the following
multi-valuedmap (see [4], Figure 3.4, for a pictorial representation
of the map):

Ψm(u) =



ui
1
1+ δ

ui < u ≤
1
1− δ

ui, 0 ≤ i ≤ j
1
1+ δ

ui
1

(1+ δ)2
ui < u ≤

1
(1+ δ)(1− δ)

ui, 0 ≤ i ≤ j

0 0 ≤ u ≤
1
1+ δ

uj

−Ψm(−u) u < 0.

(9)

Since the map above is multi-valued, we need to specify the law
according to whichΨm(u(t)) changes its value as u(t) evolves. This
law is illustrated by the graph in Fig. 2. At time t = 0, we set
Ψm(u(0)) = Ψ (u(0)). This value of Ψm(u(0)) identifies a node
of the graph. If the value of u(0) fulfills one of the conditions of
the edges leaving the node, then a transition is triggered and the
quantizer takes the new value – which is denoted by Ψm(u(0+))
– given by the destination node. For t > 0, Ψm(u(t)) remains
constant until u(t) triggers a transition of Ψm(u(t)) to the new
value, denoted by Ψm(u(t+)), again chosen according to the graph
of Fig. 2. We refer to [4], Section 3, for further details on the
switching mechanism.
The first observation is that the result proven in the previous

section continues to hold even in the presence of the modified
quantizer. As amatter of fact, Proposition 1was proven by showing
that the derivative(
∂W
∂x

∂W
∂ξ

)(
F(x, µ)+ G(x, µ)ζ

q(x, ζ , µ)− b(x, ζ , µ)v

)
(10)

was strictly negative for all (x, ζ ) ∈ S, µ ∈ P and v ∈ K(Ψ (k̄ζ )).
Now, if we adopt themodified quantizer defined above, the closed-
loop system becomes the switched system

ẋ = F(x, µ)+ G(x, µ)ζ
ζ̇ = q(x, ζ , µ)− b(x, ζ , µ)Ψm(k̄ζ ),

(11)
and proving the stability of the (unique) solution amounts simply
to show that (10) is still negative when v is replaced by Ψm(k̄ζ ).
This is an immediate consequence of the result in the previous
section:

Corollary 1. For any δ ∈ (0, 1) and any σ ∈ (0, c2 + d2 + 1), there
exist positive numbers k∗, j∗, and u0 such that, for any gain k̄ ≥ k∗
and any number of quantization levels j ≥ j∗, the unique solution ϕ
of the system (11), is such that, if ϕ(0) ∈ Ωc2+d2+1, then there exists
T > 0 such that ϕ(t) ∈ Ωσ for all t ≥ T .

Proof. By definition of Ψm and K(Ψ (k̄ζ )), for each |k̄ζ | ≤ u0(1 −
δ)−1, Ψm(k̄ζ ) ∈ K(Ψ (k̄ζ )). This ends the proof. �

Now we make the notion of bandwidth more precise. Let first
0 = t0, t1, t2, . . . be the sequence of switching times, that is the
times at which the control law u = −Ψm(k̄ζ ) changes its value,
and B(tκ) the number of quantization levels used to encode the
control at time tκ (but we could equivalently use the number of
bits used to encode the value transmitted at time tk). For each t , let
κ be the largest integer for which t ≥ tκ , and define the average
data rate over the interval [t0, t] as the quantity Rav[t0, t] =
(
∑κ
j=0 B(tj))/(t−t0), that is the total number of values taken by the

quantized control on the interval [t0, t], divided by the duration of
the interval. Moreover, we denote as the average data rate the limit
Rav = lim supt→∞ Rav[t0, t] = lim supt→∞(

∑κ
j=0 B(tj))/(t − t0).

Under the conditions of Corollary 1, the following result provides
a bound on the average data rate needed to guarantee semi-global
practical stabilization. In the statement, we refer to the following
quantities

q̄ = max
(x,ζ )∈Ωc2+d2+1,µ∈P

|q(x, ζ , µ)|, k0 =
d+ 1
d

w̄

b0

1
η
. (12)

Proposition 2. Let k̄ = k∗. The unique solution ϕ of the system (11)
is such that, if ϕ(0) ∈ Ωc2+d2+1, then there exists T > 0 such that
ϕ(t) ∈ Ωσ for all t ≥ T , and the associated average data rate is not
greater than 4j+1DTm

, where DTm = 1
(ζ̄ ρj−1)−1 q̄+k0 b̄

δ
1+δ .

Proof. The proof boils down to estimating a lower bound on the
time which elapses between two consecutive switching times
(inter-switching time). The estimate is found by focusing on
the function of time Ψm(kζ (t)), and in particular on the value
|Ψm(kζ (t+))| and where t+ denotes |Ψm(kζ (t))| soon after the
switching. Then, the smallest distance to be covered by kζ (t)
before a new switching takes place, and the largest velocity at
which the function kζ (t) evolves are computed. It is enough to
carry out these calculations in three cases. If |Ψm(kζ (t+))| = ui,
with 0 ≤ i ≤ j, then |u| remains equal to ui for not less than
ui
1+δ

δ
1−δ

k̄(q̄+ b̄ui)
=

ζ̄

q̄+ k̄(1− δ)b̄ζ̄ ρ i−1
ρ i

δ

1− δ
,

where we have exploited the definition of ui, u0, ρ = (1− δ)(1+
δ)−1, and (12). Observe that by the definition of k∗ in Proposition 1,
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k̄(1−δ) = k∗(1−δ) = k0. Hence, the bound above becomes equal
to

ζ̄

q̄+ k0b̄ζ̄ ρ i−1
ρ i

δ

1− δ
. (13)

With similar arguments it can be shown that a lower bound on the
time |u| remains equal to ui(1+δ)−1 given by:

ζ̄

q̄+k0 b̄ζ̄ ρi−1
1
1+δ
ρ i δ
1−δ .

Finally a lower bound on the dwell time when |Ψm(kζ (t+))| = 0
is ζ̄q̄ρ

j 2
1+δ . Hence, comparing the three estimates above it is seen

that the inter-switching time cannot be less than (13) with i = j.
Indeed, the bound (13) is a monotonically decreasing function of i
and hence the minimum is reached at i = j and is equal to

DTm =
ζ̄

q̄+ k0b̄ζ̄ ρ j−1
ρ j

δ

1− δ
=

1
q̄

ζ̄ ρj−1
+ k0b̄

δ

1+ δ
.

Now let t ∈ [tκ , tκ+1), κ ≥ 1. Then κ+1, the number of switchings
in the interval [t0, t], satisfies κ ≤

t−t0
DTm
. Then

Rav = lim supt→∞ Rav[t0, t] = lim sup
t→∞

κ∑̀
=0
(4j+ 1)

t − t0

= lim sup
t→∞

(κ + 1)(4j+ 1)
t − t0

= lim sup
t→∞

(
κ

t − t0
+

1
t − t0

)
(4j+ 1)

≤ lim sup
t→∞

(
1
DTm
+

1
t − t0

)
(4j+ 1) =

4j+ 1
DTm

. �

Remark. A special case is when q(x, ζ , µ) is identically zero. In
this case it is seen that |k̄ζ (t)| is a monotonically decreasing
function as long as uj(1 + δ)−2 < |k̄ζ (t)| ≤ u0(1 − δ)−1. Hence,
at some finite time t̄ , the control becomes equal to zero, and ζ (t)
remains equal to the value ζ (t̄) for all t ≥ t̄ . As a result, switching
stops, and for t ≥ t̄ , the number κ of switchings in any interval
of time [t, t0] remains constant and finite. Hence, Rav = 0. We
conclude that in the special case q(x, ζ , µ) = 0, the control law
u = −Ψm(k̄ζ ) guarantees semi-global practical stability with an
average data rate equal to zero. C

5. Ternary controller

In this section we remark that Proposition 1 can be also
obtained by using a ternary controller. Let η be the positive
constant introduced at the end of Section 2 in the definition of the
neighborhood U , and introduce the following sets:

Ω− = {(x, ζ ) ∈ Ωc2+d2+1 : ζ ≥ η},
Ω0 = {(x, ζ ) ∈ Ωc2+d2+1 : |ζ | < η},

Ω+ = {(x, ζ ) ∈ Ωc2+d2+1 : ζ ≤ −η}.

These sets are depicted in Fig. 1. Assume without loss of generality
that η is small enough such thatΩ−,Ω+ are not void. We propose
the following controller. (Similar elementary controllers have been
studied in [10] for a different class of nonlinear systems.) At the
initial time t = 0, assume that (x, ζ ) ∈ Ωc2+d2+1, and set the
control value as

u(0) =

−k̄ if ζ (0) ≥ η
0 if |ζ (0)| < η

k̄ if ζ (0) ≤ −η.
(14)
Fig. 3. The ternary switched controller.

As in the previous section, for t ≥ 0, the controller is chosen
according to the law

u(t+) =



−k̄ if ([u(t) = 0] ∧ [ζ (t) ≥ η])
∨([u(t) = −k̄] ∧ [ζ (t) > η/2])

0 if
([u(t) = −k̄] ∧ [ζ (t) ≤ η/2])
∨([u(t) = k̄] ∧ [ζ (t) ≥ −η/2])
∨([u(t) = 0] ∧ [|ζ (t)| < η])

k̄ if ([u(t) = 0] ∧ [ζ (t) ≤ −η])
∨([u(t) = k̄] ∧ [ζ (t) < −η/2]),

(15)

with k̄ > 0 a parameter to be designed. This law could also be
described by an automaton analogous to the one in Fig. 2 but with
three states only (see Fig. 3).
The stability result with the ternary controller reads as follows:

Proposition 3. There exists a choice of k̄ such that the Lyapunov
function W (x, ζ ), computed along any trajectory of the closed-loop
system (1), (14), (15) which starts in S, satisfies Ẇ (x(t), ζ (t)) < 0
for all (x(t), ζ (t)) ∈ S.

Proof. It has already been proven that, for (x, ζ ) ∈ U , Ẇ (x(t),
ζ (t)) < 0 with u = 0. On the other hand, for u = −k̄ sgn ζ ,

Ẇ (x, ζ ) =
c(c + 1)

(c + 1− V (z))2
∂V
∂x
F(x, µ)+ w(x, ζ , µ)ζ

− 2
d(d+ 1)

(d+ 1− ζ 2)2
b(x, ζ , µ)k̄|ζ |

≤
c
c + 1

∂V
∂x
F(x, µ)+ |w(x, ζ , µ)||ζ | − 2k̄b0

d
d+ 1

|ζ |,

and choosing k̄ ≥ 1
b0
d+1
d w̄, with w̄ as in (5), we have, for all

(x, ζ ) ∈ Ωc2+d2+1 such that |ζ | ≥ η, Ẇ (x, ζ , u) ≤ −w̄|ζ | ≤ −w̄η.
This concludes the proof. �

Remark. The ternary controller can be viewed as a controller of
the form u = −k̄ sgn ζ plus hysteresis, with sgn ζ = 1 for
ζ > 0 and sgnζ = −1 for ζ ≤ 0. Since the function sgn cannot
be described in terms of the quantizer (3) (the sgn function is
discontinuous at zero while Ψ is continuous at zero), the ternary
controller (15) cannot be obtained from the quantized controller
u = −Ψ (k̄ζ ) by simply adding hysteresis. This implies that
Proposition 3 cannot be derived directly from Corollary 1, and its
proof requires a (minor)modification of the arguments in the proof
of Proposition 1. C

Remark. As for quantized control, it is possible to give an estimate
on the bandwidth needed to implement the ternary controller.
Using the same arguments of Section 4, one can show that an
upper bound on the average data rate is 6(q̄η−1 + b̄k0) where k0
is the quantity defined in (12). The two estimates on the data rate
using quantized and ternary control are similar but it is difficult
to compare the two control laws. Arguably, in some cases, the
ternary control above is easier to implement than the quantized
control (cf. [11] to see howbinary control ismore robust to changes
for linear scalar systems). On the other hand, while the state is
approaching the target set, the amplitude of the changes in the
values taken by the quantized controller are less pronounced than



C. De Persis / Systems & Control Letters 58 (2009) 602–608 607
the ternary control and in some cases, to keep the state in the
vicinity of the origin, the quantized controller may require a minor
effort than the ternary controller. C

6. Applications

In this section we emphasize a number of cases to which the
previous results apply.

6.1. Systems with uniform relative degree≥ 1

It is well known that a nonlinear input-affine system is said to
have a uniform relative degree r if it has a relative degree r at x0
for each x0 ∈ Rn. It is also well known that there exists a globally
defined diffeomorphismwhich changes the system into one of the
following form (see e.g. Proposition 9.1.1. in [12]):

ż = f (z, ξ1)
ξ̇i = ξi+1, 1 ≤ i ≤ r − 1
ξ̇r = q̄(z, ξ)+ b̄(z, ξ)u
y = ξ1

(16)

with z ∈ Rn−r , y ∈ R the output of the system, and b̄(z, ξ) ≥
b0 > 0 for all (z, ξ). Systems like the one above restricted to
the components z, ξ1, . . . , ξr−1, with ξr viewed as an input, can
be always stabilized by means of a linear high-gain partial-state
feedback ([12], Theorem 9.3.1), provided that the origin z = 0 is a
globally asymptotically stable equilibrium point for ż = f (z, 0),
i.e. system (16) is minimum phase. As a matter of fact, for any
R > 0, there exists a linear ‘‘control law’’ ξr = −aξ , with a a
row vector depending on R and ξ = (ξ1 . . . ξr−1)T, such that every
solution of

ż = f (z, ξ1)
ξ̇i = ξi+1, 1 ≤ i ≤ r − 2
ξ̇r−1 = −aξ

(17)

starting from the cube in Rn−1 whose edges are 2R long,
asymptotically converges to the origin. Perform the change of
coordinates ξr = −aξ + ζ , let x = (zT ξ T)T, and rewrite (16) as

ẋ = F(x)+ Gζ
ζ̇ = q(x, ζ )+ b(x, ζ )u, (18)

where F(x) is the vector field on the right-hand side of (17), and G,
q, b are understood from the context. The system ẋ = F(x) satisfies
the ULP property. In the case r = 1, the system (16) is already in
the form (18) with ζ = ξ1. We conclude that both Proposition 1,
Corollary 1 and Proposition 3 can be applied to system (16) to
obtain:

Proposition 4. Consider a minimum-phase nonlinear system of the
form (16). For any R > 0 and any ε > 0, there exist quantized
feedback laws u = −Ψ (k̄ζ ), u = −Ψm(k̄ζ ), or a ternary feedback
law (14), (15), with ζ = aξ + ξr , and a time T > 0, such that
any trajectory ϕ of the closed-loop system which starts in the cube
centered at the origin of side 2R lies in the cube centered at the origin
of side 2ε for all t ≥ T .

Remark. A trivial consequence of the Proposition is that, similarly
to the non-quantized case, for minimum-phase relative-degree-
one nonlinear systems, a static quantized output feedback suffices
to stabilize the system. In fact, for these systems, ζ coincides with
the output y of the system. C

In the remaining subsections, we shall refer to systems for
which similar results apply as semi-globally practically stabilizable
systems.
6.2. Robust quantized stabilization of nonlinear systems

In this section we propose a quantized controller to stabilize
nonlinear systems of the form

ż = F(µ)z + G(ξ1, µ)ξ1

ξ̇i = qi0(ξ1, . . . , ξi, µ)z +
i∑
j=1

qi,j(ξ1, . . . , ξi, µ)ξj

+ bi(ξ1, . . . , ξi, µ)ξi+1, 1 ≤ i ≤ r − 1

ξ̇r = qr0(ξ1, . . . , ξr , µ)z +
r∑
i=1

qri(ξ1, . . . , ξr , µ)ξi

+ br(ξ1, . . . , ξr , µ)u,

(19)

where z ∈ Rn−r , and bi(z, ξ1, . . . , ξi, µ) ≥ bi0 > 0 for all
(z, ξ1, . . . , ξi) ∈ Rn−r+i and µ ∈ P . We also assume that, for all
µ ∈ P , there exists P(µ) = PT(µ) > 0 such that F T(µ)P(µ) +
P(µ)F(µ) ≤ −I . The first fact we recall is the following [13,7]:

Lemma 1. Set ξ = ( ξ1, . . . , ξr−1 ). There exists an (r−1)× (r−1)
matrix M(ξ) and a 1 × (r − 1) vector δ(ξ) of smooth functions
such that ξ TM(ξ)ξ is a positive definite and proper function, and the
function V (z, ξ) = zTP(µ)z + ξ TM(ξ)ξ satisfies

(
∂V
∂x

∂V
∂ξ

)
·


f (z, ξ1, µ)

q10(ξ1, µ)z + q11(ξ1, µ)ξ1 + b1(ξ1, µ)ξ2
. . .

qr−1,0(ξ , µ)z +
r−1∑
i=1

qr−1,i(ξ , µ)ξi + br−1(ξ , µ)δ(ξ)ξ


≤ −εV (z, ξ).

By the change of coordinates ζ = ξr − δ(ξ)ξ , letting as before
xT = (zT, ξ T)T, it is immediate to see that we are in the setting of
Proposition 1 or Proposition 3, and systems of the form (19) can
be semi-globally practically stabilized by a quantized or ternary
controller.

6.3. A simple output-feedback switched stabilization scheme

Consider the nonlinear system

ẋ = F(µ)x+ G(y, µ)y+ ḡ(µ)γ (y)u
ẏ = H(µ)x+ K(y, µ)y, (20)

with x ∈ Rn, y ∈ R the measured output, and γ (y) a smooth
function bounded away from zero. Under appropriate conditions,
namely ([14,15], and also [7], Section 11.3) (i) the system has
a well-defined uniform relative degree r ≥ 2 and (ii) its zero
dynamics is globally asymptotically stable, one can prove that, for
the system above, to which it is appended the additional dynamics

ξ̇i = −λi−1ξi + ξi+1, 2 ≤ i ≤ r − 1
ξ̇r = −λr−1ξr + γ (y)u,

(21)

there exists a change of coordinates z = T (x, y, ξ , µ), linear in
(x, y, ξ , µ), which transforms the extended system into

ż = F̃(µ)z + G̃(y, µ)y
ẏ = H̃(µ)z + K̃(y, µ)y+ b(µ)ξ2
ξ̇i = −λi−1ξi + ξi+1, 2 ≤ i ≤ r − 1
ξ̇r = −λr−1ξr + γ (y)u,

with b(µ) bounded away from zero. This system is in the form
(19), and therefore there exists a quantized or a ternary controller
depending on y, ξ2, . . . , ξr for it. The appended dynamics (21)
with u given by (3), (9) or (14), (15), and ζ = ξr − δ(ξ)ξ ,
ξ = (y, ξ2, . . . , ξr−1), is a dynamic output feedback controller
which semi-globally practically stabilizes the system (20). The



608 C. De Persis / Systems & Control Letters 58 (2009) 602–608
Fig. 4. In the picture on the left, the switched output feedback controller for system (20) is implemented through a network. The encoder is depicted in the picture on the
right. The block labeled with A is the automaton depicted in Fig. 2 (quantized control) or the automaton described in Fig. 3 (ternary control). The device which converts the
values generated by A into packets of bits which can be transmitted through the network is not depicted for the sake of simplicity.
implementation of the closed-loop system through a network in
the case of quantized or ternary controller is illustrated in Fig. 4.
The decoder, on the other hand, is a device which carries out the
inverse operation with respect to the encoder, and is not depicted
for the sake of simplicity.
Compared with [16], the solution proposed here does not

require a copy of the system to control, and in fact applies to a
class of systems which, although less general than the class in
[16], present model uncertainty. Moreover, the dynamics of the
‘‘encoder’’ on the sensor side is linear, and therefore it requires
less computational effort than in [16]. A similar class as (20) was
considered in [17], where the output is quantized with no pre-
processing. However, in that paper, the control law u must be
designed so as to guarantee input-to-state stability with respect
to state measurement errors, a task which may be considerably
harder than designing the control law as in Lemma 1. Observe
that we do not employ a dense quantization, that is we do not
require a small quantization error (the quantization density can be
any number in (0, 1)) to compensate for the lack of input-to-state
stability.

7. Conclusion

We have discussed results on the problem of stabilizing
nonlinear systems using a finite number of control values and
in the presence of parametric uncertainty. These results are
instrumental to solve important control problems by quantized
feedback, a few of which have been presented in the paper. The
tools presented in the paper are suitable to tackle other important
control problems by quantized feedback such as the output
regulation problem, a topic on which future research could focus.
References

[1] G. Nair, F. Fagnani, S. Zampieri, R.J. Evans, Feedback control under data rate
constraints: An overview, Proceedings of the IEEE 95 (1) (2007) 108–137.

[2] D. Liberzon, Hybrid feedback stabilization of systems with quantized signals,
Automatica 39 (2003) 1543–1554.

[3] N. Elia, S.K. Mitter, Stabilization of linear systems with limited information,
IEEE Transactions on Automatic Control 46 (2001) 1384–1400.

[4] T. Hayakawa, H. Ishii, K. Tsumura, Adaptive quantized control for nonlinear
uncertain systems, in: Proc. 2006 American Control Conference, Minneapolis,
Minnesota, 2006.

[5] F. Ceragioli, C. De Persis, Discontinuous stabilization of nonlinear systems:
Quantized and switching controls, Systems & Control Letters 56 (7–8) (2007)
461–473.

[6] A.R. Teel, L. Praly, Tools for semi-global stabilization by partial state and output
feedback, SIAM Journal on Control and Optimization 33 (1995) 1443–1488.

[7] A. Isidori, Nonlinear Control Systems, Vol. 2, Springer, London, 1999.
[8] A. Bacciotti, Further remarks on potentially global stabilizability, IEEE
Transactions on Automatic Control 34 (6) (1989) 637–639.

[9] A. Bacciotti, Stabilization by means of state space depending switching rules,
Systems and Control Letters 53 (2004) 195–201.

[10] G. Kaliora, A. Astolfi, Nonlinear control of feedforward systems with bounded
signals, IEEE Transactions on Automatic Control 49 (11) (2004) 1975–1990.

[11] K. Li, J. Baillieul, Robust quantization for digital finite communication
bandwidth (DFCB) control, IEEE Transactions on Automatic Control 49 (2004)
1573–1584.

[12] A. Isidori, Nonlinear Control Systems, 3rd edition, Springer-Verlag, New York,
1995.

[13] R.A. Freeman, P. Kokotovic, Design of ‘softer’ robust nonlinear control laws,
Automatica 32 (1993) 733–746.

[14] R. Marino, P. Tomei, Global adaptive output-feedback control of nonlinear
systems, Part I, IEEE Transactions on Automatic Control 38 (1993) 17–32.

[15] R. Marino, P. Tomei, Global adaptive output-feedback control of nonlinear
systems, Part II, IEEE Transactions on Automatic Control 38 (1993) 33–48.

[16] C. De Persis, On stabilization of nonlinear systems under data rate constraints
using output measurements, International Journal of Robust and Nonlinear
Control 16 (2006) 315–332.

[17] D. Liberzon, Observer-based quantized output feedback control of nonlinear
systems, in: Proc. MED’07, Athens, Greece, 2007.


	Robust stabilization of nonlinear systems by quantized and ternary control
	Introduction
	Preliminaries
	Stabilization by quantized control
	An estimate on the bandwidth
	Ternary controller
	Applications
	Systems with uniform relative degree  geq 1 
	Robust quantized stabilization of nonlinear systems
	A simple output-feedback switched stabilization scheme

	Conclusion
	References


