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Abstract 
 
Airway inflammation and remodelling are major features of COPD, while 
pulmonary hypertension is a common comorbidity associated with a poor disease 
prognosis. Recent studies in animal models have indicated that increased 
arginase activity contributes to features of asthma, including allergen-induced 
airway inflammation and remodelling. Although cigarette smoke and 
lipopolysaccharide (LPS), major risk factors of COPD, may increase arginase 
expression, the role of arginase in COPD is unknown. 
This study aimed to investigate the role of arginase in pulmonary inflammation 
and remodelling using an animal model of COPD.  
Guinea pigs were instilled intranasally with LPS or saline twice weekly for 12 
weeks and pretreated by inhalation of the arginase inhibitor 2(S)-amino-6-
boronohexanoic acid (ABH) or vehicle.  
Repeated LPS exposure increased lung arginase activity, resulting in increased L-
ornithine/L-arginine and L-ornithine/L-citrulline ratios. Both ratios were 
reversed by ABH. ABH inhibited the LPS-induced increases in pulmonary IL-8, 
neutrophils and goblet cells as well as airway fibrosis. Remarkably, LPS-induced 
right ventricular hypertrophy, indicative of pulmonary hypertension, was 
prevented by ABH. 
In conclusion, increased arginase activity contributes to pulmonary 
inflammation, airway remodelling and right ventricular hypertrophy in a guinea 
pig model of COPD, indicating therapeutic potential for arginase inhibitors in 
this disease. 
 
 

Introduction  
 
Chronic obstructive pulmonary disease (COPD) is characterized by a progressive 
decline in lung function and airflow limitation that is not fully reversible. Chronic 
inflammation, characterized by increased numbers of neutrophils, macrophages, 
CD8+ and CD4+ T lymphocytes and B cells in the lung, could contribute to 
structural changes underlying the airflow limitation, including emphysema and 
airway remodeling (1). Airway remodeling in COPD is predominantly 
characterized by mucus cell hyperplasia and peribronchiolar fibrosis (2). In 
addition, pulmonary hypertension, a comorbidity present in a large proportion of 
COPD patients, may lead to right ventricular hypertrophy and pulmonary 
vascular remodeling (3-5). 
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Recent studies in animal models (6-11) and in patients (8, 10, 12-16) have 
indicated a major role for increased arginase activity in the pathophysiology of 
asthma. Increased activity of arginase, which converts L-arginine to L-ornithine 
and urea, decreases the L-arginine bioavailability to constitutive and inducible 
isoforms of nitric oxide synthase (NOS) in the airways. This results in decreased 
production of bronchodilatory NO as well as increased synthesis of 
proinflammatory and procontractile peroxynitrite, which contribute to the 
development of allergen-induced airway hyperresponsiveness (AHR) (6, 9, 11). 
Treatment with inhaled arginase inhibitors strongly protected against allergen-
induced airway obstruction, AHR and airway inflammation in guinea pig (7) and 
mouse (14, 17) models of acute allergic asthma in vivo. Using repeatedly allergen-
challenged guinea pigs, we recently demonstrated that increased arginase activity 
also has a major role in airway remodeling in chronic asthma, as indicated by 
effective inhibition of these features by the inhaled arginase inhibitor 2(S)-
amino-6-boronohexanoic acid (ABH) (18). In addition to changes in NO 
metabolism, this may involve increased production of L-ornithine downstream 
products such as polyamines and L-proline, that cause cell proliferation and 
collagen synthesis, respectively (10).  
 
Although several studies have revealed the important role of arginase, 
particularly arginase I, in the pathophysiology of asthma, little is known about its 
role in COPD (8). However, increased arginase activity was already demonstrated 
in the late 1970s in sputum from patients with chronic bronchitis (19, 20) and 
more recently in bronchoalveolar lavage (BAL) fluid (21) and platelets (22) from 
COPD patients. Interestingly, cigarette smoke has been shown to induce arginase 
I expression in rat lung (23) and in airways from patients with mild asthma (24). 
High constitutive expression of arginase I has been demonstrated in azurophilic 
granules from human neutrophils (25), which are known to be released in COPD 
(26). Increased arginase activity and decreased NO synthesis have also been 
implicated in pulmonary arterial hypertension (26), a comorbidity of COPD. 
 
In the present study we investigated the role of arginase in features of pulmonary 
inflammation, airway remodeling and pulmonary hypertension in a guinea pig 
model of lipopolysaccharide (LPS)-induced COPD (Chapter 5). LPS, a 
contaminant of cigarette smoke and environmental pollution, has been 
implicated in the development of COPD (27-31), and LPS exposure of 
experimental animals may induce various features of this disease, including 
inflammation, airway remodeling and emphysema (32-34). In addition, LPS has 
been shown to induce increased arginase expression in alveolar macrophages (35, 
36) and lung tissue (37, 38).  
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Materials and Methods 
 
Animals                                                                                                         
Outbred, male, specified pathogen-free Dunkin Hartley guinea pigs (Harlan, 
Heathfield, United Kingdom) weighing 350-400 g were used. All protocols were 
approved by the University of Groningen Committee for Animal Experimentation. 
 
Experimental protocol                                                                                                     
Guinea pigs were challenged by intranasal instillation with either 200 μl LPS (5 
mg/ml in saline) or 200 μl saline twice weekly, for 12 consecutive weeks (Chapter 
5). Thirty min before each instillation, animals received a nebulised dose of the 
arginase inhibitor ABH in phosphate-buffered saline (PBS) (25 mM nebulizer 
concentration, 15 min) or PBS (15 min), using a DeVilbiss nebulizer (39). 
Twenty-four h after the last instillation, the guinea pigs were humanely 
euthanized by experimental concussion, followed by rapid exsanguination. Heart 
and lungs were immediately resected and kept in Krebs-Henseleit buffer or on 
ice, respectively, for further processing.  
 
Arginase activity assay 
Arginase activity, expressed as pmol urea produced per mg protein per min, was 
determined in lung homogenates, by measuring the conversion of [14C]-L-
arginine to [14C]-urea at 37°C (9). 
 
Amino acid quantification 
Frozen lung tissue was homogenized in Tris-HCl buffer (50 mM Tris-HCl, 150 
mM NaCl; pH 7.5) and centrifuged (12 000 x g; 20 min; 4°C) to remove insoluble 
material. In the supernatants, concentrations of the amino acids L-ornithine, L-
arginine and L-citrulline were determined using high performance liquid 
chromatography followed by tandem mass spectrometry (HPLC-MS/MS) as 
described recently (18).  
 
Interleukin-8 determination 
Interleukin-8 (IL-8) was determined in lung homogenates using an enzyme-
linked immunosorbent assay (ELISA) for guinea pig IL-8 according to 
manufacturer’s instructions (Cusabio Biotech, Wuhan, China). 
 
Tissue analysis                                                                                             
Transverse frozen cross-sections (4 µm) of the middle right lung lobe were used 
for histological and immunohistochemical analyses. Neutrophils were identified 
by staining sections for TNAP (tissue non-specific alkaline phosphatase activity) 
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(40). MUC5A/C antibody (Neomarkers; Fremont, CA, USA) was used to identify 
MUC5A/C-expressing goblet cells (41). Sections were counterstained with 
haematoxylin. Airways within sections were digitally photographed (40-200x 
magnification) and classified as cartilaginous or non-cartilaginous. 
Measurements were performed using ImageJ or NIS (Nikon) quantification 
software. Neutrophils in the airway adventitia and sub-mucosa were expressed as 
number of positively stained cells/mm basement membrane length (34). 
Parenchymal neutrophils were expressed as a percentage of total cell counts (34). 
MUC5A/C-positive cells in the epithelium were expressed as number of cells/mm 
basement membrane length (Chapter 5).  
 
The upper right lung lobe was inflated and fixed with formalin at 25 cm H2O 
constant pressure for 24 h, and embedded in paraffin. For evaluation of 
pulmonary vascular dimensions, sections (4 µm) were stained with Weigert’s 
elastin (resorcin/fuchsin) and Van Gieson stain (42). Pulmonary vessel 
dimensions were determined as described in Chapter 5. For evaluation of airway 
wall collagen, sections were stained with Sirius Red and counterstained with 
haematoxylin. The positively stained area in the airway wall, from the adventitial 
border to the basement membrane, of non-cartilaginous airways was determined 
as described in Chapter 5. The airway wall collagen area was normalized to the 
square of the basement membrane length. 
 
To evaluate right ventricular hypertrophy, Fulton’s index, i.e. the ratio of the 
right ventricle weight and the sum of the septum and left ventricle weights, was 
determined.  
 
Hydroxyproline assay                                                                                              
Lungs were analysed for hydroxyproline as an estimate of collagen content, using 
chloramine T and Erlich’s solution (Chapter 5).  
 
Statistical analysis 
Data are presented as mean ± SEM. Statistical differences between means were 
calculated using an unpaired two-tailed Student’s t-test or one-way ANOVA, 
followed by a Boniferroni or Newman Keuls multiple comparison test, as 
appropriate. Differences were considered significant when P<0.05. 
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Results 
 
Arginase activity and amino acid concentrations in the lung 
LPS induced a 2.2-fold increase in arginase activity in lung homogenates ex vivo 
(Figure 1A). Both in LPS- and in saline-challenged animals in vivo treatment 
with inhaled ABH did not significantly change the arginase activity measured ex 
vivo (Figure 1A). Repeated LPS challenge also increased the L-ornithine/L-
arginine and  L-ornithine/L-citrulline ratio’s in the lung (Figure 1B&C), indicating 
that the endogenous arginase activity is increased and that the balance between 
arginase and NOS activity is shifted towards arginase. ABH treatment did not 
affect the amino acid ratios in saline-challenged animals. However, in the LPS-
challenged animals, ABH treatment reduced both the L-ornithine/L-arginine 
ratio and the L-ornithine/L-citrulline ratio to levels below those observed in the 
PBS-treated, saline-challenged animals (Figure 1B&C). Collectively, these data 
indicate that LPS instillation induces increased arginase activity in the lung, 
which is inhibited by ABH in vivo.  
 
Table 1: Levels of L-arginine, L-ornithine and L-citrulline in lung homogenates of guinea 
pigs following repeated saline or LPS challenge and treatment with either inhaled PBS or 
ABH. 

  PBS-treated  ABH-treated 

  Saline 
challenged 

LPS 
challenged 

 Saline 
challenged 

LPS 
challenged 

L-Arginine  
(μmol/mg protein) 

  3.77±1.02   3.85±0.42   3.36±0.66 4.34±0.44 

L-Ornithine 
(μmol/mg protein) 

  3.99±1.08   4.13±0.40   2.66±0.70 1.29±0.52*,† 

L-Citrulline 
(μmol/mg protein) 

  2.54±0.51   1.92±0.12   1.92±0.39 2.57±0.27 

Data represent means ± SEM of 5-8 experiments. *P<0.05 vs saline-challenged control; 
†P<0.05 vs LPS-challenged control. 
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Figure 1: Arginase activity (A) and L-
ornithine/L-arginine (B) and L-
ornithine/L-citrulline (C) ratios in 
lung homogenates from guinea pigs 
challenged repeatedly with LPS or 
saline and treated with inhaled ABH or 
PBS (control). Data represent means ± 
SEM of 5-8 experiments performed in 
duplicate. *P<0.05 vs saline-
challenged control; †††P<0.001 vs LPS-
challenged control. 

 
Inflammation 
Neutrophils are a major inflammatory cell type involved in COPD pathogenesis 
and are a rich source of arginase (25). Repeated LPS instillation increased the 
neutrophil number in both cartilaginous (2.9-fold) and non-cartilaginous (3.2-
fold) airways as well as in the parenchyma (2.0-fold) (Figure 2). ABH treatment 
reduced the neutrophil numbers in these compartments by 83%, 60% and 56%, 
respectively (Figure 2). ABH treatment did not affect neutrophil numbers in 
saline-challenged animals. In order to assess potential mechanisms involved in 
arginase-induced neutrophilia in the LPS-challenged animals, we determined 
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levels of the neutrophil chemoattractant IL-8 in lung homogenates. Figure 3 
indicates that the induction of neutrophil infiltration by repeated LPS instillation 
is associated with a significant increase of IL-8 in the lung, which was fully 
inhibited by inhalation of ABH. As with neutrophilia, no effects were observed in 
saline-challenged animals (Figure 3). These data indicate that LPS-induced 
arginase activity contributes to neutrophilia by increasing IL-8 levels.   
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Figure 2: Neutrophil numbers in the 
cartilaginous (A) and non-
cartilaginous (B) airways and in lung 
parenchyma (C) of guinea pigs 
challenged repeatedly with LPS or 
saline and treated with inhaled ABH or 
PBS (control). Data represent means ± 
SEM of 5-8 experiments. *P<0.05; 
**P<0.01; ***P<0.001 vs saline-
challenged control; †P<0.05; ††P<0.01 
vs LPS-challenged control. 
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Figure 3: IL-8 levels in lung 
homogenates from guinea pigs 
challenged repeatedly with LPS 
or saline and treated with 
inhaled ABH or PBS (control). 
Data represent means ± SEM of 
5-8 experiments performed in 
duplicate. **P<0.01 vs saline-
challenged control; †††P<0.001 
vs LPS-challenged control. 

 
MUC5A/C expression 
Repeated LPS instillation induced a significant 2.2-fold increase in the number of 
MUC5AC-positive cells in the epithelium of cartilaginous airways (Figure 4), 
indicating mucus hypersecretion. ABH treatment fully inhibited the LPS-induced 
MUC5A/C expression, whereas it had no effect in saline-challenged animals 
(Figure 4).  
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Figure 4: MUC5A/C-positive 
goblet cell number in 
intrapulmonary cartilaginous 
airways of guinea pigs 
challenged repeatedly with LPS 
or saline and treated with 
inhaled ABH or PBS (control).  
Data represent means ± SEM of 
5-7 experiments. **P<0.01 vs 
saline-challenged control; 
††P<0.001 vs LPS-challenged 
control. 
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irway fibrosis 
ic changes, lungs were analysed for hydroxyproline as an 

d 

A
To evaluate fibrot
estimate of collagen content. Repeated LPS instillation induced a significant 1.7-
fold increase in total lung hydroxyproline content (Figure 5A). ABH treatment 
inhibited the LPS-induced increase in hydroxyproline by 75%, whereas it had no 
effect on the hydroxyproline content in saline-challenged animals (Figure 5A).  
To assess changes in collagen deposition in the airway compartment, Sirius Re
staining was evaluated in the airway wall of non-cartilaginous airways. Similar to 
the increase in hydroxyproline content, LPS induced a 1.9-fold increase in airway 
wall collagen content (Figure 5B). ABH fully inhibited the LPS-induced collagen 
deposition in the airway wall, whereas it did not affect the collagen content in the 
airway wall of saline-challenged animals (Figure 5B). 
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igure 5: Whole lung hydroxyproline content (A) and collagen content in the airway wall 

ight ventricular hypertrophy 
ht ventricular hypertrophy as indicated by a 

effect in saline-challenged animals (Figure 6). 

F
(Sirius red; B) in guinea pigs challenged repeatedly with LPS or saline and treated with 
inhaled ABH or PBS (control). Data represent means ± SEM of 5-8 experiments. 
Hydroxyproline determinations were performed in triplicate and 2 to 6 airways were 
analysed for each animal for the Sirius red staining. *P<0.05, **P<0.01 vs saline-
challenged control; †P<0.05, ††P<0.01 vs LPS-challenged control. 

 
 
R
Repeated LPS challenge induced rig
significant 1.4-fold increase in Fulton index (Figure 6). ABH treatment fully 
inhibited the LPS-induced right ventricular hypertrophy, whereas ABH had no 
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Figure 6: Fulton’s index in 
guinea pigs challenged 
repeatedly with LPS or saline 
and treated with inhaled ABH or 
PBS (control). Data represent 
means ± SEM of 4-8 
experiments. **P<0.01 vs saline-
challenged control; ††P<0.01 vs 
LPS-challenged control. 

T
and pulmonary arteriole wall area were 
embedded guinea pig lung sections stained with Weigert’s elastin and Van 
Gieson stain. Neither repeated LPS instillation nor ABH treatment affected the 
medial area of pulmonary arteries or wall area of pulmonary arterioles (Figure 7). 
In addition, there was no evidence of intimal proliferation in the pulmonary 
vessels of either classification. 
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Figure 7: Pulmonary artery medial area (A) and pulmonary arteriole wall area (B) in 
guinea pigs challenged repeatedly with LPS or saline and treated with inhaled ABH or PBS 
(control). Data represent means ± SEM of 4-8 experiments for the arteries and 3-4 
experiments for the arterioles. 
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ces of pulmonary inflammation, airway remodeling 
y hypertension in an animal model of COPD. Thus, inhaled ABH 

, as arginase is a 

Discussion 
 
This is the first study to demonstrate the effectiveness of an (inhaled) arginase 
inhibitor in preventing indi
and pulmonar
protected against neutrophil infiltration, mucus hypersecretion and airway 
fibrosis induced by repeated intranasal LPS instillation in guinea pigs. In 
addition, repeated LPS challenge induced right ventricular hypertrophy, which 
was similarly inhibited by inhalation of the arginase inhibitor.  
 
It was found that repeated LPS challenge in vivo increased arginase activity in 
guinea pig lung homogenates determined ex vivo. This presumably reflects 
increased arginase expression induced by the LPS challenge
constitutively active enzyme. Unfortunately, due to lack of specific antibodies 
against (subtypes of) guinea pig arginase it was not possible to determine 
arginase protein expression in a direct manner; however, increased arginase gene 
expression in the lung induced by inhalation of LPS has previously been observed 
in mice (37, 38). The lack of effect of ABH inhalation on the induction of 
increased arginase activity by LPS as measured ex vivo (ABH not being present 
in the assay) suggests that arginase is not involved in the regulation of its own 
expression. This is in contrast with allergen-induced increase in arginase activity, 
that can be inhibited by arginase inhibitors (17, 68). This is presumably due to 
potentiation of allergen-induced IL-13 production by constitutive arginase 
activity present in the airways, which in turn may enhance arginase expression 
(10). The LPS-induced increase in arginase activity determined ex vivo was 
reflected by increased L-ornithine/L-arginine and L-ornithine/L-citrulline ratio’s 
in the lung. The LPS-induced increase in L-ornithine/L-citrulline ratio indicates 
that the increased arginase activity competes with NOS for L-arginine. Treatment 
with inhaled ABH prevented the enhanced L-ornithine/L-arginine ratio induced 
by LPS, indicating that endogenous arginase activity was indeed inhibited by 
inhaled ABH. Moreover, the reduction in the L-ornithine/L-citrulline ratio by 
ABH indicates restoration of NOS activity by the arginase inhibitor. Interestingly, 
ABH treatment of the LPS-challenged animals resulted in attenuation of both 
ratios below the levels observed for saline-challenged animals. The reduced L-
ornithine/L-citrulline ratio below baseline might be explained by LPS-induced 
iNOS activity, which results in increased L-citrulline production, as also reflected 
by the trend towards an increase of the L-citrulline concentration in the lungs of 
ABH-treated, LPS-challenged animals (Table 1). Indeed, induction of iNOS by 
LPS is well established (43). Increased expression of iNOS could also account for 
the decreased L-ornithine/L-arginine ratio, as recycling of L-citrulline is an 
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ddition to LPS, arginase expression is also 
duced by cigarette smoke as shown in rat lung (23) and rabbit cavernous tissue 

reased in COPD and correlations between airway neutrophil numbers and 
D severity have been found (26). ABH inhalation strongly inhibited LPS-

via promoting NF-кB by attenuating the 
ynthesis of NO, which inhibits this process via nitrosylation of the transcription 

important source of L-arginine, under inflammatory conditions (44, 45). This is 
also supported by the observation that argininosuccinate synthetase, an enzyme 
which plays a key role in the conversion of L-citrulline to L-arginine, is 
upregulated in the lung by LPS treatment in vivo (38, 46). Taken together, our 
findings indicate that LPS induces increased arginase activity in the lung in vivo, 
which is inhibited by inhaled ABH, thereby favoring NOS activity and increasing 
NO production. Since NO has anti-inflammatory and anti-fibrotic actions (47), 
such a mechanism may well be involved in the inhibition of LPS-induced 
neutrophil influx, collagen synthesis and mucus production by the arginase 
inhibitor, as is also discussed below. 
 
Increased arginase activity has previously been found in BAL fluid (21) and 
platelets (22) of COPD patients. In a
in
(48). Moreover, arginase expression in the airways is further increased in 
patients with mild asthma who smoke, compared to non-smoking asthmatics 
(24).  
      
Neutrophils are involved in the pathogenesis of COPD. Pulmonary neutrophils 
are inc
COP
induced neutrophilia in our model, indicating that induction of arginase by LPS 
importantly contributes to the neutrophilic inflammation. To investigate possible 
mechanisms underlying this anti-inflammatory effect of ABH, we determined 
concentrations of the major neutrophil-attracting chemokine IL-8 in whole lung 
homogenates. LPS-induced neutrophilia was associated with a increased IL-8 in 
the lung, while neutrophil influx and increase in IL-8 were both inhibited by 
ABH, suggesting that increased arginase activity may contribute to neutrophilia 
by increasing IL-8 levels in the lung.  
 
One of the mechanisms underlying enhanced IL-8 production and airway 
inflammation by arginase might be 
s
factor (49).  In addition, increased arginase activity causes uncoupling of iNOS 
and subsequent production of the pro-inflammatory oxidant species 
peroxynitrite (8), which induces IL-8 expression in various cell types (50, 51). 
Accordingly, breakdown of this oxidant reduces smoke-induced IL-8 levels in 
sheep lung (52).   
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on is observed in the airway epithelium of COPD patients and 
an be induced by cigarette smoke and LPS, as well as by neutrophil elastase and 

airflow limitation (57). Previous studies have shown that 
creased arginase expression contributes to bleomycin-induced lung fibrosis in 

trophy, a feature of pulmonary hypertension, a known co-morbidity of 
OPD (3). The LPS-induced right ventricular hypertrophy was prevented by 

Mucus hypersecretion contributes to airflow limitation in COPD. Increased 
MUC5AC expressi
c
peroxynitrite (53). ABH fully inhibited the LPS-induced MUC5AC expression in 
the guinea pig airway epithelium, indicating a major role for increased arginase 
activity in this process. The effect of ABH may be the result of the inhibition of 
IL-8 production and airway neutrophilia, which may both contribute to 
increased MUC5AC expression (54, 55). Moreover, ABH could decrease the LPS-
induced MUC5AC expression by inhibiting peroxynitrite formation and restoring 
NO production (56). 
 
Airway fibrosis is a characteristic feature of COPD, which contributes to airway 
wall thickening and 
in
mice (58), lung allograft fibrosis in rats (59) and repeated allergen challenge-
induced fibrosis in guinea pigs (68). The present study indicates that increased 
arginase activity also contributes to LPS-induced fibrosis in the lung, particularly 
in the airway wall. This may involve increased production of L-ornithine and its 
downstream product L-proline, which is a precursor of collagen (60). In 
accordance, TGF-β, a major pro-fibrotic factor, has been shown to induce 
arginase activity in the rat lung and fibroblasts (59) and TGF-β-induced collagen 
synthesis was reduced by inhibitors of arginase in lung fibroblasts of rats and 
mice (61, 62). In addition, the inhibition of fibrosis by ABH may also be due to 
the increased production of NO and decreased formation of peroxynitrite (63, 
64). 
 
Our data show that repeated LPS-challenge induces right ventricular 
hyper
C
ABH. Our data therefore suggest that repeated LPS challenge results in 
pulmonary hypertension via induction of arginase. Pulmonary hypertension and 
right ventricular hypertrophy may result from (a combination of) vascular 
remodeling and functional changes in the vessel wall, both leading to increased 
resistance in the pulmonary vasculature (3). In our model, we did not observe 
changes in pulmonary vessel dimensions after repeated LPS instillation or by 
treatment with inhaled ABH, suggesting that increased resistance in the 
pulmonary vessels and subsequent right ventricular hypertrophy in this model 
are due to exaggerated constriction of the vessels rather than remodeling. In this 
respect, endothelial dysfunction caused by reduced activity of eNOS has been 
proposed as a potential mechanism (65). Indeed, pulmonary hypertension has 
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ing and right ventricular 
ypertrophy in a guinea pig model of COPD and that arginase inhibitors may 

his study was supported by MSD, Oss, The Netherlands and The Graduate 
Cognitive Neurosciences, University of Groningen, 

roningen, The Netherlands 

 1.    Hogg JC, Timens W. The pathology of chronic obstructive pulmonary disease. Annu Rev 
Pathol 2009;4:435-459. 

S, Calverley PM, Jenkins CR, Hurd SS. Global strategy for the 
nt, and prevention of chronic obstructive pulmonary disease. 

 7.   
se inhibition protects against allergic airway obstruction, hyperresponsiveness 

and inflammation. Am J Respir Crit Care Med 2008;178:565-573. 

been associated with reduced L-arginine and NO levels (66), whereas inhalation 
of NO and oral therapy with L-arginine decrease pulmonary arterial pressure in 
primary or secondary pulmonary hypertension (67). Increased consumption of 
L-arginine by enhanced arginase II expression and activity in the endothelium 
has been shown to contribute to the reduced L-arginine and NO levels (66, 67). 
In addition, hypoxia, which is considered to play a major role in COPD-related 
pulmonary hypertension, upregulates arginase in human lung microvascular 
endothelial cells (68). Our data would suggest that increased arginase activity 
may contribute to pulmonary hypertension and right ventricular hypertrophy in 
COPD, possibly by inducing endothelial dysfunction, and that this process can be 
effectively targeted by inhalation of arginase inhibitors. 
 
In conclusion, our study demonstrates that increased arginase activity plays a 
major role in pulmonary inflammation, airway remodel
h
have therapeutic potential in the treatment of this disease. 
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