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Abstract

The Danckwerts-plot technique [Danckwerts et al., 1963. Chemical Engineering Science 18, 63–72] is used in chemical engineering
to simultaneously obtain the mass transfer parameters,kL anda, from mass transfer experiments. This method requires variation of the
reaction kinetics by adding different amounts of catalyst. Although the method is known for several decades, it was never verified that the
variation of the amount of catalyst does not affect the hydrodynamics of the system under investigation. To study this, absorption of CO2
in a carbonate/bicarbonate buffer solution was performed simultaneously with desorption of oxygen from this solution, after verification
that absorption and desorption are processes, taken place at identical rates, but in a different direction. It was shown that the addition of
catalyst did not affect the desorption rate of oxygen. The obtainedkLa for oxygen was, however, 64% higher compared to thekLa of
carbon dioxide. This was probably due to a lower effective interfacial area, caused by the complete depletion of small bubbles containing
CO2. Mass transfer experiments with oxygen, with a low gas phase conversion, are therefore to be preferred, as the measured mass transfer
parameters are less affected by the gas phase RTD and the shape of the bubble size distribution.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The Danckwerts-plot technique was originally proposed
by Danckwerts et al. (1963)and is a recognized method for
simultaneous determination of the gas–liquid mass transfer
coefficient (kL) and the specific interfacial area (a). From
the measurements of the gas absorption rate,RA (mole/s),
at different apparent first-order reaction rate constants the
values ofkL anda can be determined simultaneously using
the Danckwerts surface renewal model (Danckwerts, 1950)
with a (pseudo)-first-order reaction:

(
RA

mAcAVL

)2
= (kLa)2 + k1,appDAa2. (1)
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When the left-hand side of Eq. (1) is plotted versus the ap-
parent first-order rate constant times the diffusion coefficient
of the gas into the liquid (k1,appDA), the slope equals the
squared specific gas liquid interfacial area (a2) and the in-
tercept matches the square of the volumetric mass transfer
coefficient(kLa)2. The reactivity of the solution (the appar-
ent first-order rate constant) is, therefore, changed by varia-
tion of the catalyst concentration in a catalyzed pseudo-first-
order reaction or by changing the bulk concentration of the
reactant that is used in excess in a pseudo-first-order reac-
tion.A reaction system that is very suitable for this technique
is the absorption of CO2 in carbonate/bicarbonate buffer so-
lutions. The dissolved CO2 can react with water as well as
with hydroxyl ions, which are formed from the equilibrium
between carbonate and bicarbonate ions. The overall reac-
tion that occurs is

CO2 + CO2−3 + H2O→ 2HCO−
3 . (2)

http://www.elsevier.com/locate/ces
mailto:g.f.versteeg@utwente.nl
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The reaction of CO2 and water can be catalyzed by a num-
ber of compounds, e.g. hypochlorite, arsenite, carbonic an-
hydrase and different sugars. The apparent first-order rate
constant for this system is given by

k1,app= kH2O + kOH−[OH−] + kc[cat]. (3)

From this equation it must be concluded that the apparent
first-order reaction system is in fact a much more complex
system. For a more detailed description of this reaction sys-
tem the reader is referred toCents (2003). For a convenient
and accurate description of the absorption process it is im-
portant that the reaction can be assumed to be pseudo-first-
order in the hydroxyl and/or catalyst concentration. To con-
sider the reaction to be pseudo-first order, it is important that
the concentrations of all the ionic species (CO2−

3 , HCO−
3 ,

H+ and OH−) up to the interface are uniform and identical
to the bulk concentrations, i.e. no depletion of ionic species
within the mass transfer zone. The criterion that determines
whether the concentrations of all ions are uniform, through-
out the mass transfer zone, was derived byDanckwerts and
Sharma (1966):

m[CO2]
(

1

[CO2−3 ] + 2

[HCO−
3 ]

)

×


√√√√(1+ DCO2k1,app

k2L

)
− 1


 	 1. (4)

In this equation full dissociation of the catalyst ion is as-
sumed, which is generally the case when sodium hypochlo-
rite is used as a catalyst (Danckwerts et al., 1963). The va-
lidity of this criterion is discussed more thoroughly byCents
et al. (in press).
The Danckwerts-plot technique has been applied for a

long time in literature (Richards et al., 1964; Mehta and
Sharma, 1971; Kon and Sandall, 1978; Alper et al., 1980;
Benadda et al., 1994) and usually a straightline is obtained,
when plotting Eq. (1), which suggests that the method is
valid for the systems used. In order to validate the Danck-
werts method,Kon and Sandall (1978)and Alper et al.
(1980)used gas absorption in a liquid with a flat interface
to test the technique by comparison of the known geometric
gas–liquid interfacial area with the area as determined by
the Danckwerts-plot. The first authors found the interfacial
area determined with the Danckwerts plot to be consider-
ably less than the actual geometric interfacial area, although
they obtained straightlines using Eq. (1).Alper et al. (1980),
however, performed similar experiments and found straight-
lines, but only uptok1,app= 6 s−1. Beyond this value the
slope of the line decreased, due to non-uniform ion concen-
trations (the criterion in Eq. (4) was no longer satisfied), at
least according to the authors. The slope of the plot up to
k1,app=6 s−1 was indeed equal to the square of the geometric
gas–liquid interfacial area.Alper et al. (1980)also discussed
in detail the results ofKon and Sandall (1978)critically and

concluded that the results of the latter authors were not re-
liable because the criterion in Eq. (4) was not fulfilled.
This example shows that obtaining a straightline from

the Danckwerts plot does not automatically imply that all
requirements for successful application of the technique are
fulfilled. Alper et al. (1980)have tested the method only
up to catalyst concentrations of 0.02M. That means that
no experimental evidence is provided that the addition of
larger amounts of catalyst (which is necessary in systems
with a higher mass transfer coefficient), does not influence
the physical properties that may affect the hydrodynamics of
the system, which could lead to erroneous determinations of
the mass transfer parameters. It is not possible to test this at
concentration above 0.02M using gas absorption in a stirred
cell with a flat interface, because then the criterion in Eq.
(4) can never be fulfilled due to the relatively low value of
the mass transfer coefficient.
To study the influence of the catalyst on hydrodynam-

ics, the mass transfer rate of a non-reactive gas can be de-
termined simultaneously with the chemical absorption of a
reactive gas. When the gas–liquid mass transfer rate of the
non-reactive gas is not influenced by the addition of the cat-
alyst, the assumption that the catalyst does not change the
hydrodynamics of the system is very likely to hold. The
main objective of the present study is therefore to validate
the results obtained byCents et al. (2001)by showing that
the hydrodynamics of the reaction system used were not af-
fected, by adding different amounts of catalyst, when the
Danckwerts-plot technique is applied.

2. Experimental

To study the influence of the catalyst on hydrodynamics,
themass transfer rate of a non-reactive gas can be determined
simultaneously with the chemical absorption of the reactive
gas. The reactive system used in this work is the chemi-
cal absorption of CO2 in potassium carbonate/bicarbonate
solutions in which the reactivity was varied using different
concentrations of sodium hypochlorite as a catalyst.

CO2 + CO2−3 + H2O
NaOCl→ 2HCO−

3 . (5)

The simultaneously occurring physical mass transfer experi-
ment for a non-reacting gas phase component should now be
selected and designed. In order to arrive at an optimum sys-
tem for this purpose, a more detailed analysis is presented
here.

2.1. Design criteria for physical mass transfer experiments

In order to obtain an accurate determination ofkLa for
the non-reactive gas, design criteria for physical mass trans-
fer experiments are derived. In case of a chemical system
the liquid can often be operated batchwise. This method of
operation can also be used in case of physical mass transfer
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measurements (dynamic methods, e.g.Linek et al. (1987)),
but a continuous operation of the liquid phase is more ac-
curate, and will therefore be used in this work. Two choices
must be made to arrive at the most accurate method to deter-
mine the mass transfer rate: firstly, the outlet concentration
can be measured in the gas phase or in the liquid phase and,
secondly, the direction of mass transfer of the gas phase com-
ponent (absorption or desorption) is a degree of freedom,
under the assumption that these are mirror image processes.
For the first selection a criterion is derived based upon the
relative change in outlet concentration with a variation in
kLa. If it is assumed that the accuracy of the measurement
in the liquid phase is equal to the measurement in the gas
phase, the variation of the outlet concentration withkLa de-
termines the overall accuracy of the measurement. In a sys-
tem with a continuous and well-mixed liquid phase and a
continuous well-mixed gas phase the steady-state mass bal-
ances for the component to be transferred in the gas and the
liquid phases, respectively, are:

0= �G
VL
(cG,0 − cG)− kLa(mcG − cL), (6)

0= �L
VL
(cL,0 − cL)+ kLa(mcG − cL). (7)

From these two balances, the volumetric mass transfer coef-
ficient can be determined by making use of the steady-state
concentration in the gas- or in the liquid phase outlet stream,
which will be measured experimentally.
ThekLa based on gas phase analysis is then given by

kLaGAS

= cG,0 − cG
(VL/�G)(mcG − cL,0)+ (VL/�L)(cG − cG,0) (8)

and thekLa based on liquid phase analysis equals:

kLaLIQ

= cL − cL,0
m(VL/�G)(cL,0 − cL)+ (VL/�L)(mcG,0 − cL) .

(9)

For both these cases it is possible to calculate the change
in the outlet concentration in the steady state with a small
variation in kLa (thus dc/d(kLa)). This ratio is shown in
Figs. 1A and B in case of desorption for two different values
of the distribution coefficient,m (m= 0.9 resembles carbon
dioxide andm= 0.032 resembles oxygen).
A large value for dc/d(kLa) means that a small variation

in kLa causes a relatively large change in the experimentally
measured outlet concentration, which improves the accuracy
of the measurement. It is clear fromFig. 1 that in case of
oxygen desorption, measurement of the concentration in the
liquid phase is more accurate and in case of desorption of
CO2 the concentration is preferably determined in the gas
phase.
In general, a relation can be derived from the ratio of this

parameter using gas phase analysis and when using liquid
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Fig. 1. The variation of the normalized concentration (C = c/c0) with
kLa as a function ofkLa. (A) m= 0.032, (B)m= 0.9. VL/�G = 100 s
andVL/�L = 40 s in both cases.

phase analysis. This ratio can be determined, and is identical,
for both absorption (cL,i = 0) and desorption (cG,i = 0)
experiments and equals:

dcG/d(kLaGAS)

dcL/d(kLaLIQ)
= m�L

�G
. (10)

Using this relation it can be seen that form�L >�G con-
centration measurement in the gas phase is favourable and
vice versa.
The second selection (absorption or desorption) depends

upon the first one, because desorption is favoured in case of
liquid concentration measurement and absorption in case of
gas phase measurement. This can be shown from a sensitiv-
ity analysis for the effects of small disturbances in temper-
ature and pressure on determination of the volumetric mass
transfer coefficient (for details, seeCents, 2003). In general,
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Table 1
Design criteria for physical mass transfer experiments

Favourable Gas phase Liquid phase
measurement measurement

Absorption m�L >�G Never
Desorption Never m�L <�G

it is favourable when the dimensionless concentration ratio
in the reactor (c/c0) can be used, which means that absorp-
tion should be used for gas phase analysis and desorption
for liquid phase experiments. The design criteria for physi-
cal mass transfer experiments are summarized inTable 1.
In the present study oxygen was selected as the non-

reactive gas and by using the above criteria it was calculated
that the influence of the addition of catalyst in the chemical
absorption of CO2 can best be studied with the desorption of
O2 using liquid phase analysis. An important prerequisite is
that absorption and desorption are mirror-image processes.
This aspect will be studied first (and the validity of this as-
sumption will be demonstrated) by comparing absorption
and desorption rates of oxygen in water.

2.2. Physical parameters

The estimation of the physical parameters that are re-
quired for simultaneous determination ofkL and a using
the Danckwerts-plot at 21◦C are presented elsewhere (Cents
et al., 2001). All experiments are conducted at a total pres-
sure close to and just above atmospheric pressure. The mole
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Liquid outlet
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2

V
E

N
T
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3

V
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N
T
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CO2 N2

1

V12

1. Reactor

2. Oxygen analyser (liquid phase)

3. Settler

4. Cold trap

5. Gas analysers (O2 and CO2)

N2

V3

Fig. 2. Experimental set-up.

fraction of oxygen in water at 1 atm partial pressure of oxy-
gen is taken from IUPAC Solubility Data Series (Lorimer,
1979). The distribution coefficient of oxygenmO2 in water
was derived from the mole fraction and was calculated to
be 0.0326 at 21◦C. The salting out effect that decreases the
oxygen solubility was estimated using the Sechenov equa-
tion and the parameters were taken fromWeisenberger and
Schumpe (1996). The oxygen distribution coefficient in the
0.6/0.6M potassium carbonate/potassium bicarbonate buffer
was determined to be 0.0160 at 21◦C.

2.3. Experimental set-up

The absorption and desorption experiments were per-
formed in a set-up which consisted of a liquid storage
vessel, in which the aqueous solution was saturated with the
gas, a stirred reactor with a maximum working volume of
3.5 l and an analytical section. A schematical representation
of the set-up is presented inFig. 2. The liquid is pumped
into the reactor from the storage vessel and the oxygen
content of the liquid leaving the reactor can be measured
using a dissolved oxygen meter. Gas entering the reactor is
brought to the desired composition using mass flow con-
trollers and the outlet carbon dioxide gas concentration can
be determined using an infrared gas-analyzer (UNOR, Mai-
hak). The gas phase oxygen concentration was determined
by a paramagnetic oxygen analyzer. Before the gas is sent
to the analyzers it was cooled to−6◦C to remove water.
In the reactor a six-bladed Rushton turbine and four baffles
ensure adequate mixing and the power input can be set to
any desired level. All dimensions are given inTable 2. In all
experiments a volume fraction of 1.7% CO2 was used and
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Table 2
Standard reactor dimensions

Parameter Symbol Value Dimension Remarks

Tank diameter T 0.149 m
Impeller diameter D 0.049 m
Liquid volume V 2.53 dm3

Impeller blade width W 9.3 mm
Impeller blade length LB 12.3 mm
Baffle width B 15.0 mm
Impeller height above bottom HI 0.049 m
Impeller power number NP 5.8 —
Diameter of the sparger ds 3 mm 1 hole below the impeller
Height of the sparger hs 20 mm Above the bottom

oxygen was introduced as air (20.9%). The total pressure
was just above atmospheric pressure (1.05–1.2 bar).

3. Results and discussion

3.1. Physical mass transfer experiments

To test the experimental technique a mass balance check
was performed using gas- and liquid phase oxygen analysis
in both absorption and desorption experiments. An example
of an experiment is presented inFig. 3. The maximum error
in the mass balance experiments was 2% of the total moles
of oxygen, which is sufficiently accurate.
To validate that absorption and desorption are exactly

identical processes, but in a different direction, absorption
and desorption experiments of oxygen in water were com-
pared at different liquid hold-up volumes (1.5–3.5 l), dif-
ferent gas flow rates (0.27–11.8 l/min) and different gassed
power inputs (1–7×103W/m3). The results of these exper-
iments are presented inTable 3.
FromTable 3it can be seen that absorption and desorp-

tion are mirror image processes for all the conditions used
in this research. As expected from the design criteria for
physical mass transfer experiments desorption experiments
are somewhat more accurate than absorption experiments.
The determinedkLa values for both absorption and des-

orption, respectively, can be compared with the results from
the work of Linek et al. (1987), who measured oxygen
mass transfer coefficients using different methods and com-
bined these data with experimental results from literature to
obtain:

kLa = 4.95× 10−3
(
Pg

VL

)0.593
u0.4G . (11)

In this correlation,uG is the superficial gas velocity and
Pg/VL is the gassed power input per unit of volume. The
ungassed power input (P) is given by

P =NP�N3D5. (12)
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Fig. 3. Mass balance experiment (VL = 3.49× 10−3m3, �L = 2.15×
10−5m3/s, �G = 4.48× 10−6m3/s, T = 21◦C, p = 1.05bar).

Hughmark (1980)correlated an extensive amount of data
on the influence of the sparged gas on the power input and
found the following relation:

Pg

P
= 0.10

(
�G
NVL

)−1/4
(
N2D4

WgV
2/3
L

)−1/5

. (13)

A comparison between the data obtained in this work and
the correlation ofLinek et al. (1987)is shown inFig. 4 in
a parity plot. From this figure it can be concluded that the
range of the obtained mass transfer coefficients is in agree-
ment with Eq. (11), but the deviation from the correlation is
rather large (an average relative deviation of 32%). The root
cause of this deviation can probably be found in the non-
standard tank dimensions and the wide range of conditions
used in the experiments. The standard dimensions of the ex-
perimental set-up included thatVL=2.53dm3, which means
that the clear liquid height is equal to the tank diameter
(HL=T ) and the distance from the bottom to the impeller is
one-third of the clear liquid height (HI =1/3HL). In the ex-
periments with standard dimensions (2,6,7 and 9) the trend
of Eq. (11) is well followed, but a somewhat higherkLa is
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Table 3
Comparison of absorption and desorption rates of oxygen in water

Exp. Volume Gas flow Liquid flow N (rpm) # of des. # of abs. kLa kLa Relative
liquid, VL rate,�G,0 rate,�L desorption (s−1) absorption (s−1) deviation (%)
(dm3) (dm3/min) (dm3/min)

1 3.49 0.628 3.1 1000 2 3 0.017±2% 0.018±4% − 6
2 2.53 0.628 3.1 1000 5 8 0.028±3% 0.029±10% − 2
3 3.38 3.73 1.26 1060 1 1 0.036 0.038 − 5
4 3.49 0.27 1.26 1830 3 2 0.037±13% 0.039±1% − 4
5 1.69 0.635 3.1 1010 5 12 0.046±5% 0.047±8% − 2
6 2.53 0.628 3.1 1300 5 4 0.056±4% 0.059±3% − 5
7 2.53 11.7 1.25 1090 7 5 0.071±6% 0.078±2% − 8
8 1.69 0.635 3.1 1330 6 10 0.119±3% 0.124±9% − 4
9 2.53 11.7 1.23 1620 2 2 0.166±5% 0.158±12% + 6
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k L
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8
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desorption
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Fig. 4. Comparison of absorption and desorption experiments with the
correlation ofLinek et al. (1987). T = 21◦C.

obtained in this work. The main deviation from the correla-
tion is observed for the experiments with non-standard tank
dimensions:VL = 3.49dm3 (HL/T = 1.38, exp:1,4), and
whenVL = 1.69dm3 (HL/T = 0.67, exp:5,8).
These results suggest that the effect of the liquid volume

is not taken into account correctly. This phenomenon was
also observed bySchlüter and Deckwer (1992)who sug-
gested that instead of the superficial gas velocity (uG) the
space velocity of the gas (�G = �G/VL) should be used in
the data correlation. Doing so, the average relative deviation
decreased by more than 50%. The best values for the coef-
ficients were obtained by a least-squares regression analysis
of the experimental values, which resulted in:kLa = 1.5×
10−3(Pg/V )

0.67�0.4
G . The exponent for the power input per

unit volume (0.67) obtained in this correlation is in reason-
able agreement with the work ofLinek et al. (1987), 0.593
and with the work ofSchlüter and Deckwer (1992), 0.62.
The influence of the space velocity on the volumetric mass
transfer coefficient is larger in this work (exponent of 0.4)

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0.03

0.04

0.05

0.06

k1,app DCO2 x107 (m2/s2)

RCO2

((m cCO2,G - cCO2,L)VL)2
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Fig. 5. Danckwerts plot with batchwise operation of the liquid phase,
T = 21◦C.

compared to the correlation ofSchlüter and Deckwer (1992)
(0.23). The effect of the gas flow rate, which is present in
uG as well as in�G, is, however, exactly equal to the effect
in the work ofLinek et al. (1987).

3.2. Chemical absorption ofCO2 compared to physical
desorption ofO2

In the first set of experiments for the Danckwerts-plot, the
liquid phase was operated batchwise. As a buffer solution
0.5/0.5M potassium carbonate/potassium bicarbonate was
chosen. Using different molarities of sodium hypochlorite
the Danckwerts-plot as given inFig. 5was determined. The
experimental conditions are given inTable 4.
From the slope and the intercept of this graph the fol-

lowing results are obtained, when both phases are assumed
to be ideally mixed:kL = 2.0× 10−4m/s,a = 403m2/m3,
kLa = 0.079 s−1. Cents (2003)has shown that the absolute
values of the individual mass transfer parameters,kL and
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Table 4
Experimental conditions used in the chemical absorption/physical desorp-
tion experiments in a 0.6/0.6 M potassium carbonate/bicarbonate buffer
solution

Continuous Batch

Gas flow rate,�G (m3/s1) 1.98× 10−4 1.95× 10−4

Liquid flow rate,�L (m3/s1) 5.17× 10−5 —
Liquid volume reactor,VL (m

3) 2.53× 10−3 2.53× 10−3

Impeller speed,N, (rps) 18.3 18.3
Temperature,T ( ◦C) 21.0 21.0
Reactor pressure,p (bar) 1.18 1.18
Catalyst concentration,ccat (mol/m3) 0–178 0–92
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Fig. 6. Validation of the Danckwerts-plot technique by comparison of the
absorption rate of carbon dioxide and the desorption rate of oxygen at
different catalyst (NaOCl) concentrations.T = 21◦C.

a, depend on the assumed gas phase mixing pattern. The
Danckwerts-plot technique can, however, be used to mea-
sure relative differences in the mass transfer parameters. In
addition, the absolute value for the product ofkL anda, kLa
is always obtained accurately.
The measurements for the validation of the Danckwerts-

plot technique are represented inFig. 6showing the absorp-
tion rate of carbon dioxide and the desorption rate of oxy-
gen for increasing catalyst concentration. The experimental
conditions are given inTable 4.
As is shown inFig. 6, the rate of desorption of oxygen

from the liquid phase is not influenced by the addition of
catalyst up to 178mol/m3. Deviations from the average are
most likely due to experimental errors. This is supported
by the fact that the deviations occur simultaneously for car-
bon dioxide and for oxygen and in the same direction. The
chemical absorption measurements of carbon dioxide are
somewhat more inaccurate when the reactor is operated con-
tinuously than when the liquid phase is operated batchwise
(compareFigs. 5and6), probably due to a more difficult

operation of the set-up. Also the obtained mass transfer pa-
rameters deviate (max. 20%) from the batchwise operation.
The results for carbon dioxide are (under the assumption of
an ideally mixed gas and liquid phase):
kL = 1.8× 10−4m/s, a = 451m2/m3, kLa = 0.083 s−1.
The results of the present study show very clearly that the

addition of catalyst does not influence the physical desorp-
tion of oxygen and that the application of the Danckwerts-
plot is allowed over a large concentration range.
The absolute value of the volumetric mass transfer coef-

ficient of oxygen is, however, not completely in line with
the kLa of carbon dioxide. The averagekLa for oxygen is
found to be 0.136 s−1 ± 5%, which is 64% higher than the
kLa for carbon dioxide under similar conditions. This can-
not be explained with the existing theories for mass transfer,
from which a relationship of the following form would be
expected:

(kLa)O2 = (kLa)CO2
(
DO2

DCO2

)n
, (14)

wheren is typically between 0.5 and 1. The observed large
difference in volumetric mass transfer cannot be explained
by the difference in the diffusion coefficients, because the
diffusion coefficient of oxygen is approximately only 16%
higher than the diffusion coefficient of carbon dioxide (as-
suming that the ratio in the buffer solution is equal to the
ratio in water, which was taken from the work ofDíaz et al.
(1987)). Furthermore, the observed difference inkLa can-
not be explained by the assumed gas-phase residence time
distribution (CISTR), as an analysis.Cents et al. (2003)
has shown that this difference increases with decreasing gas
phase mixing.
A possible explanation for the observed discrepancy may

be attributed to the difference in solubility in water of oxy-
gen and carbon dioxide. The solubility of carbon dioxide
is approximately 25–30 times higher when compared to the
oxygen solubility. This can cause differences in the effec-
tive gas–liquid interfacial area when the bubble size is non-
uniform and consists of a certain size distribution. Small
bubbles containing carbon dioxide deplete much faster from
the gas to be absorbed and therefore stop taking part in the
mass transfer process at an earlier stage compared to bub-
bles containing oxygen. These effects were also recognized
and analysed bySchumpe and Deckwer (1980), who com-
pared interfacial area data in bubble columns reported by
different authors that either made use of CO2 absorption in
alkali or used O2 absorption in sulphite solutions. Under
(approximately) identical conditions oxygen absorption in
sulphite solutions yields interfacial areas that are 50–500%
higher compared to absorption of carbon dioxide in alkali
solutions. An attempt was made to model these effects by
taking the size distributions and the corresponding bubble
rise velocities into account. To be able to explain the ob-
served large differences in the interfacial area very broad
size distributions should be assumed, containing a relatively
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large fraction of small bubbles, with a long residence time
in solution.
Another explanation for this phenomenon can be a smaller

mass transfer coefficient,kL, in case of carbon dioxide.
Hallensleben (1980)measured lower values for thekL of
carbon dioxide compared to oxygen in water and showed
that the values were both dependent on the inlet concen-
trations and on the direction of mass transfer. Hallensleben
stated that the lowerkL might be due to a resistance in the
gas phase, although this was not expected at these lowkL
values (2–3×10−4m/s). To be able to explain the observed
phenomenon akG value of 1×10−3m/s should be assumed
which is an order of magnitude lower than expected (by tak-
ing for instance the correlations fromCarberry and Varma
(1987)). Furthermore, in the work by Hallensleben thekL
was determined by indirect measurement of thekLa and the
interfacial area that was determined by photography, which
means that these results only indicate that there might be a
difference between absorption of oxygen and carbon diox-
ide, but it is not clear whether this effect is due to a different
effective interfacial area or due to a different mass transfer
coefficient. Measurement of thekL for a single rising bubble
did not show a difference between O2 and CO2 that could
not be explained by differences in the diffusion coefficients
as was shown byHallensleben (1980).
To gain understanding about the nature of the measured

differences, three additional types of experiments were con-
ducted in the present study:

(1) Absorption of pure CO2 (no gas phase resistance) in
non-coalescing water–butyraldehyde solutions was per-
formed in a 600ml vessel, equipped with a gas-inducing
impeller, in order to determine the effect of the gas
phase resistance. ThekLa obtained with pure H2, CO
and propylene was on average 75% higher compared
to CO2 (after correction for the diffusion coefficients,
seeFig. 7), which indicates that (at least in this case)
the gas phase resistance is not likely to be responsi-
ble for the obtained lower volumetric mass transfer co-
efficients. The difference in these experiments is most
likely caused by the higher shrinking rate of gas bubbles
containing CO2 compared to the other gasses, which
causes a lower interfacial area.

(2) The interfacial area measured with the Danckwerts-plot
technique was compared with the area determined using
ultrasonic spectroscopy (Cents et al., 2004). Although
the absolute value of the interfacial area as determined
by the Danckwerts-plot depend on the assumed resi-
dence time distribution (RTD) of the gas phase, it was
shown that even at the RTD assumption which yields the
largest interfacial area (CISTR), the value of the interfa-
cial area measured by the ultrasonic technique is on av-
erage 70% higher. Thesemeasurements were performed
in a 60 l stirred vessel with a Rushton turbine, and the
results at two different stirring speeds are presented in
Table 5. The obtained difference is probably higher, as
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Fig. 7. Volumetric mass transfer coefficients of pure gasses.

the measured RTD curves in the non-coalescing buffer
system show increasing plug flow behaviour with in-
creasing stirrer speed (Cents, 2003). These results in-
dicate that the (effective) interfacial area as measured
by the CO2 absorption using the Danckwerts-plot tech-
nique is smaller than the actual interfacial area.

(3) An indication of the width and shape of the bubble size
distribution was obtained using the ultrasonic technique
by measurement of the profiles of the ultrasonic veloc-
ity and attenuation coefficient versus frequency. A good
fit between the measured profiles and the model could
only be obtained with a distribution that contained a
large fraction of small (<100�m) bubbles (either in a
very broad log-normal distribution or in a bimodal dis-
tribution). The presence of large fractions of small bub-
bles was also measured byMachon et al. (1997), who
used a microscope/video technique to study bubble size
distributions in coalescing and non-coalescing systems.
The bubble size distributions that were obtained, were
used in amass transfer modelling study, details of which
can be found elsewhere (Cents, 2003). In Fig. 8the con-
version per bubble class is shown for physical oxygen
absorption in the 0.6/0.6M buffer solution (m= 0.016)
and for chemical absorption of carbon dioxide in the
buffer solution (m = 0.50). In case of CO2 absorption
bubbles of 440�m are already completely (99%) de-
pleted from the gas, while in case of oxygen absorption
this is only the case for bubbles up to 100�m in diam-
eter. (These results differ slightly at different size dis-
tributions.) In case of a broad bubble size distribution
containing small bubbles, large differences in the mea-
sured mass transfer rate of oxygen and carbon dioxide
can therefore occur.
To study the effect of the ratio of the measured in-
terfacial area and the geometrical interfacial area, two
size distributions were investigated; the size distribu-
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Table 5
Comparison of the interfacial area as determined with the ultrasonic method and with the Danckwerts-plot technique (assuming ideally mixed gas phase)

kLa (s−1) a (m2/m3) kL (m/s) ε (%) d32 (mm)

430 rpm
Physical (ultrasound) — 784 — 11.8 0.90
Chemical (Danckwerts-plot) 0.055 433 1.3× 10−4 — —

550 rpm
Physical (ultrasound) — 1084 — 13.3 0.74
Chemical (Danckwerts-plot) 0.102 667 1.5× 10−4 — —
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Fig. 8. Depletion from the absorbed gas of different bubble sizes.
(Log-normal distribution (� = 0.36mm,� = 0.25mm).

Table 6
Ratio of interfacial areas

� (�m) � (�m) aCO2/ageo aO2/ageo aO2/aCO2

84 121 0.32 0.75 2.35
358 250 0.54 0.94 1.75

tion that was measured using ultra sound (log-normal,
� = 84�m, � = 121�m, with a minimum bubble size
of 10�m) and a good log-normal fit of the distribution
obtained byMachon et al. (1997)in a non-coalescing
electrolyte system (�=358�m,�=250�m). The results
are shown inTable 6. These results only indicate that
the measured lower mass transfer coefficient for CO2
in comparison O2 is likely to be due to the depletion
of small bubbles. The results in the last row ofTable
6 are in good agreement with a results that were ob-
tained using a similar analysis using the work ofMidoux
et al. (1980). The extent of this effect is quite dependent
on the size distribution and on the model assumptions.

From the observed phenomena, it can be concluded that the
most likely explanation for the obtained lower mass trans-

fer coefficient with carbon dioxide is the high gas phase
conversion, which causes almost complete depletion of
small bubbles and therefore lowers the effective interfacial
area.

4. Conclusions

In the present study, design rules for continuous phys-
ical mass transfer experiments are derived, to obtain the
highest accuracy for the determination of the volumetric
mass transfer coefficient. It was shown that concentra-
tion measurement in the liquid phase is favourable when
m�L <�G. In other cases measurement in the gas phase
is favourable (assuming the same experimental accuracy).
Furthermore, in case of liquid phase concentration mea-
surement desorption is more accurate and in case of gas
phase measurement absorption is the preferred direction of
mass transfer.
Desorption of oxygen from a carbonate/bicarbonate

buffer solution was used to study the effect of the cata-
lyst addition, for the construction of the Danckwerts-plot,
on the hydrodynamics of the system. It was confirmed
by comparing absorption and desorption rates in water
that these two processes are identical, but in a differ-
ent direction. It was shown that the addition of the cat-
alyst (up to 0.2M sodium hypochlorite) did not affect
the desorption rate of oxygen. The effect of catalyst ad-
dition on the hydrodynamics of the system is therefore
negligible.
The volumetric mass transfer coefficient of oxygen was,

however, much larger (64%) compared to thekLa of carbon
dioxide. This is most likely caused by the higher solubility of
carbon dioxide compared to oxygen, which causes a higher
gas phase conversion. In case of a broad size distribution
containing a relatively large fraction of small (<100�m)
bubbles, these small bubbles are at an earlier stage (almost)
completely depleted, when they contain carbon dioxide com-
pared to when they contain oxygen. This can cause a lower
effective interfacial area with CO2. Mass transfer experi-
ments with a low gas phase conversion (here: with oxygen),
are therefore preferred, as the measured mass transfer pa-
rameters are less affected by the gas phase RTD and the
shape of the bubble size distribution.
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Notation

a interfacial area, m2/m3

cA concentration of component A, mol/m3

d32 Sauter mean bubble diameter, m
D impeller diameter, m
DA diffusion coefficient of component A, m2/s
g gravitational constant, m/s2

k1,app apparent (pseudo)-first-order reaction rate constant,
s−1

kc forward reaction rate constant of the catalyzed re-
action of CO2 with water, m3/(mol s)

kH2O forward reaction rate constant of the reaction of
CO2 with water, s−1

kOH− forward reaction rate constant of the reaction of
CO2 with hydroxyl ions, m3/(mol s)

kL liquid phase mass transfer coefficient, m/s
m ratio of solubility in the liquid phase and in the gas

phase, dimensionless
N stirring speed, rps
NP power number, dimensionless
P, Pg (gassed) power input, W
RA absorption rate, mol/s
uG superficial gas velocity, m/s
VL liquid volume, m3

W impeller blade width, m

Greek letters

ε gas fraction, dimensionless
� mean in a log-normal distribution, m
� liquid density, kg/m3

� variance in a log-normal distribution, m
�G space velocity of the gas,�G/VL, s−1

� flow rate, m3/s

Subscripts

0 inlet
geo geometric
G gas phase
L liquid phase
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