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5
Grammatical Inference II:

Context-Free Grammars

AS WE HAVE SEEN in the previous chapter, grammatical inference is the problem of learning
an acceptor for a language based on a set of samples from that language. In that chapter,

genetic algorithms were used to find one such type of acceptors, pushdown automata.
This chapter presents a different approach. It introduces a genetic algorithm that directly infers
context-free grammars from legal and illegal examples of a context-free language.

First, Section 5.1 outlines the adaptation of a genetic algorithm to infer context-free gram-
mars. It discusses the representation of grammars in the form of chromosomes and the genetic
operators used. Furthermore, it gives different fitness functions to evaluate the performance of
the grammars.

Next, Section 5.2 describes the experiments conducted to test the algorithm’s performance.
In these experiments, the same test languages are used as in Chapter 4. Finally, Section 5.3
presents a discussion of the results of the experiments, and compares the inference of context-
free grammars with the results on pushdown automata of the previous chapter.

This chapter is based on [96, 98, 99, 100].

5.1 A Genetic Algorithm for the Induction of Grammars

5.1.1 Representation

In representing the production rules of a context-free grammar in the form of a chromosome,
we have two options. The first is to use a low-level binary representation of these rules, prefer-
ably in such a way that each bitstring is guaranteed to represent a legal production rule. The
second is to take a high-level representation in which each chromosome is a list of barely
encoded production rules, such as the one used by [157], or the marker-based encoding of
[77].

To encode grammars as bitstrings, an interval encoding is used that represents a vector
of integers in one bitstring-encoded number. Suppose we want to encode an integer vector
p = [p0, . . . , pn] with 8i : 0 � pi < mi. We can do this by successively subdividing the
interval [0, 1). At each level k, the subinterval corresponding to pk is used as the basis for the
next stage, i.e., if we want to encode an integer pk at stage k, we divide the interval [ak, bk)
into mk equal subintervals, and we choose the pk’th subinterval [ak+1, bk+1) � [ak, bk) with
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ak+1 = ak + pk � (bk� ak)=mk and bk+1 = ak +(pk + 1) � (bk� ak)=mk. The number E(p) that
encodes the complete vector is contained in the final interval and is computed as follows:

E(p) =
n

∑
i=0

0
@pi �

i

∏
j=0

1
mj

1
A . (5.1)

This yields a real number in the interval [0, 1), which can easily and unambiguously be decoded
into the corresponding vector. It is easy to verify that we need at least
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bits to represent E(p).
If we want to encode a grammar rule, the vector p consists of the size of the rule and the

numbers of its symbols. Suppose we want to encode the rules of a grammar G = hN, Σ, P, Si
with a set of nonterminal symbols N = fXi j 0 � i < nNg, a set of terminal symbols
Σ = fXj j nN � j < nN + nΣg, and rules with a maximum number of nRHS right-hand side
symbols. Let ρ = Xq0 ! Xq1 . . . Xqk (0 � k � nRHS ) be a grammar rule, with qi being the
index in N [ Σ of the i’th symbol of the rule, Xq0 2 N, and Xqi 2 N [ Σ (1 � i � k). This
rule is encoded as follows:
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Finally, the bitstrings encoding the individual rules are concatenated to form a chromosome
that represents the grammar.

The symbolic encoding is more straightforward. A special symbol, say ξ , is used to denote
the end of the right-hand side of a rule, and a vector of symbol numbers represents each
rule. These vectors are concatenated to form a chromosome. If each rule consists of a left-
hand and at most nRHS right-hand symbols, a grammar of r rules is encoded as a vector of
r � (nRHS + 1) symbols. In decoding, we first decode the left-hand symbol, and decode the
right-hand symbols from left to right until we observe a ξ .

5.1.2 Genetic Operators

Selection

Selection is carried out by a stochastic universal sampling algorithm [9], using rank-based
selection [153]. Furthermore, an elitist strategy is employed in which the best individual of
the population always survives to the next generation.

Mutation

In the case of a binary encoding, a mutation rate of 1=` is used throughout all experiments (`
being the number of bits in the chromosome), following [116].

For the symbolic encoding, this heuristic cannot be employed. Instead, an analogous muta-
tion probability of 1=m is used, where m = r � (nRHS + 1) is the length of the chromosomes
(see Section 5.1.1). This mutation is purely random: every symbol can be mutated to every
other symbol in the gene’s domain.
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Recombination

Both the binary and the symbolic representation schemes presented in Section 5.1.1 allow
crossover operations to break the right-hand side of production rules. From (5.3), it follows
that lower order bits encode grammar symbols at the end of the right-hand side of the rule,
whereas higher order bits encode symbols closer to the beginning, or even the left-hand sym-
bol. However, bits are not guaranteed to be part of the encoding of a single symbol. Hence,
symbols surrounding a crossover point might be influenced.

Crossover within an individual right-hand side of a production rule has the advantage of
creating a larger variety of right-hand sides in the population. Moreover, it might be beneficial
to construct a new right-hand side from parts of the parents’ right-hand sides. Not allowing
this crossover to occur, [157] had to rely on mutation alone to change the right-hand sides of
production rules.

In all experiments, standard two-point crossover (see Section 2.4.2) is used with a crossover
probability of 0.9.

5.1.3 Fitness Evaluation

The most important issue in constructing a genetic algorithm is the choice of a particular fitness
function. Suppose we have sets S+ of positive and S� of negative examples of a language
L, and a grammar G = hΣ,V, P, Si. Defining the fraction of correctly analyzed sentences as
follows,

cor(G, σ) =

(
1 if σ 2 L \ L(G) or σ 2 L \ L(G) ,
0 otherwise ,

cor(G, S) =
1
jSj ∑

σ2S
cor(G, σ) , (5.4)

a simple fitness function would be

F1(G, S+, S�) = cor(G, S+)� cor(G, S�) , (5.5)

which yields fitness values between 0 and 1.
However, to evaluate the fitness of a particular grammar with respect to the positive and

negative training examples, it does not suffice to simply count the correctly accepted (rejected)
positive (negative) examples. Thus a grammar that can analyze large parts of the examples
correctly, but fails to recognize the complete sentences, would receive a very low fitness value.
Although recombination of such a partially correct grammar might yield a better result, this
low fitness will cause it to be thrown away, thereby destroying valuable information.

To evaluate a grammar, we would like to credit grammars for accepting part of an input
sentence. The longer the part of the input sentence that is consumed in a left-to-right scan of
the input (as is performed by Earley’s context-free parsing algorithm [45] that is used in the
fitness computation), the higher the grammar’s fitness should be. This leads us to the following
definitions:

pref(G, a1 . . . an) = max
n

k
��� S )�

G a1 . . . akδ , δ 2 (Σ [V )�
o

, (5.6)
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and

pref(G, S) =
∑w2S pref(G, w)

∑w2S jwj
, (5.7)

which yields 1 if all input sentences are parsed correctly. Since this is only meaningful for
legal examples, the new evaluation function is defined as

F2(G, S+, S�) = (cor(G, S+)=2 + pref(G, S+)=2)� cor(G, S�) , (5.8)

which again yields values between 0 and 1.
Additionally, we might include information on the generative capacity of a grammar. We can

use the grammar G to generate a set of strings SGEN (G) and test whether these strings belong
to the language. The evaluation function can be augmented with this information, yielding

F3(G, S+, S�) = F2(G, S+, S�)� cor(SGEN (G)) (5.9)

Unfortunately, this requires a teacher with prior knowledge of the underlying structure of the
language for which we want to infer a grammar.

5.2 Experiments

5.2.1 Test Data

To assess the performance of the genetic algorithm, it was tested on the same languages as
employed in the experiments on pushdown automata of Chapter 4, listed in Table 4.2. For a
lengthier discussion of the use of these languages by other researchers, see Section 4.5.1.

For languages 1–6, we used Tomita’s training cases, S0
+

and S0
�

, as listed in Table 4.4.
For each of the other languages, we randomly generated two training sets S+ and S� of 100
positive and 100 negative examples, with no duplication, a maximum sentence length of 30,
and a Poisson-like length distribution (see Figure 4.1). Two similarly generated test sets, T+
and T�, disjoint with S+ and S�, were used to assess the quality of the solutions found by
the GA for all experiments, including those on languages 1–6. These training and test sets are
the same as those used in the experiments of the previous chapter (see Section 4.5.1).

Domain knowledge was used to determine the terminal symbols and the size—i.e. the max-
imum size of the right-hand sides of rules and the number of rules1 and nonterminals—of the
grammars to be inferred. These features could also be encoded on the chromosomes, but that
would impose an extra computational burden upon the genetic algorithm. Table 5.1 lists the
parameters of the algorithm for the different test cases.

5.2.2 Results

A first experiment with the micro-NL language, using 100 positive and 100 negative example
sentences, a population of 100 individuals, and fitness function F2 (5.8), did not result in a
correct grammar. Neither enlarging the population nor using more examples could improve
the results significantly.

1An additional rule containing the start symbol S was added to each grammar after decoding.
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No. Population Rules Symbols RHS Bits Fitness func.
1 50 4 4 2 44 F2
2 50 14 8 2 154 F2
3 50 14 7 2 154 F2
4 50 14 10 2 154 F2
5 50 8 6 2 88 F2
6 50 8 7 2 88 F2
7 50 8 5 3 88 F2
8 50 4 4 2 28 F2
9 50 4 4 3 40 F2

10 100 10 8 2 140 F3

Table 5.1: Parameters of the algorithm.

S ! A
A ! ( B
A ! ε
B ! A )
B ! A B

Table 5.2: Grammar inferred for the parentheses
language.

S ! X
X ! X Y
X ! Y X
X ! ε
Y ! X
Y ! a Y b
Y ! b X a

Table 5.3: Grammar inferred for the a’s & b’s
language.

Some grammars evolved that scored a high fitness value by analyzing all examples correctly,
but generated many illegal sentences and scored low on the negative examples of test set T�.
The cause of this problem is that the language is sparse, i.e., the set of correct sentences forms
a very small part of the total set of sentences that can be formed from the given nonterminals.
Therefore, restricting the grammar just by training it on illegal sentences is a very hard job.
To overcome this problem, evaluation function F3 as defined in (5.9) was used. This function
includes information on the generative capacity of the grammar at hand, and yielded a dramatic
improvement of the results.

Examples of the grammars inferred for the parenthesis and the a’s & b’s language are shown
in Tables 5.2 and 5.3, respectively. To illustrate the discontinuous character of the convergence
of the GA, a graph of the fitness function during one of the runs is shown in Figure 5.1. Small
changes to a grammar can cause it to parse many more of the examples correctly, which
explains the sometimes quite substantial jumps in the convergence process.

Tables 5.6 and 5.7 show the results of the genetic algorithm with binary and symbolic rep-
resentation, tested on all 10 example languages, averaged over 5 runs2 of at most 2000 gen-
erations each.

2The experiments on both binary and symbolic representations used the same 5 (randomly generated) initial
populations.
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Figure 5.1: Convergence of the binary GA for language no. 4 of Table 4.2. Average and best fitness
vs. number of generations.

The best individual obtained in each of the 5 runs was saved. The tables give the best and
average fitness of these 5 individuals, the average number of generations until these individuals
were found, and their average scores on the four sentence sets. In these and subsequent tables
and figures, the error bounds are determined from the 95% confidence interval given by a
standard t-test. No significant difference between the binary and symbolic approach can be
distinguished in these results.

5.2.3 Comparison with Results on Pushdown Automata

If we compare the results of this chapter with those on the inference of pushdown automata
(Chapter 4), a number of similarities and differences catch the eye. First, the grammar-based
GA does a better job extracting the exact structure of the regular languages 1–6 from Tomita’s
training sentences (see Table 5.8). For all six languages, a correct grammar was found in at
least one of the runs, whereas a correct PDA was not found for languages 2 and 6. However,
both the grammars and the PDAs show the same difficulty in generalizing from the training
examples, as demonstrated by their scores on the test sets (T+ and T�). Since this difficulty
results from the small sets of training examples (S0

+
and S0

�
), the similarity is not surprising.

On languages 7–10, results of the grammar-based GA are clearly better, both in learning
and in generalizing, as witnessed by the results on the training sets S and the test sets T (see
Table 5.9). Although the results on the inference of grammars are somewhat better than those
on PDAs, the grammar-inferring GA requires many more generations, and, due to the use of a
full-blown Earley parser, the evaluation of a single grammar takes significantly more time than
the evaluation of a PDA. The resulting computational burden is high and makes it difficult to
scale up this approach to more difficult languages and larger numbers of input sentences.
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avg. % correct on
No. Best Average Generations S0

+
S0
�

T+ T�
1 1.000 1.000 � 0.000 14 � 5 100 100 100 100
2 1.000 0.975 � 0.046 1534 � 846 93 100 75 93
3 1.000 1.000 � 0.000 68 � 64 100 100 56 88
4 1.000 0.989 � 0.031 1105 � 952 98 100 94 83
5 1.000 0.912 � 0.118 942 � 932 83 100 100 71
6 1.000 1.000 � 0.000 330 � 718 100 100 89 49

Table 5.4: Results on languages 1–6, using binary encoding and operators, averaged over 5 runs, using
the training examples of Table 4.4.

avg. % correct on
No. Best Average Generations S0

+
S0
�

T+ T�
1 1.000 1.000 � 0.000 6 � 3 100 100 100 100
2 1.000 0.967 � 0.093 925 � 1005 93 100 79 89
3 1.000 1.000 � 0.000 391 � 524 100 100 53 82
4 1.000 0.956 � 0.058 849 � 1111 91 100 89 74
5 0.938 0.938 � 0.000 814 � 849 88 100 97 68
6 1.000 0.992 � 0.023 123 � 151 98 100 88 50

Table 5.5: Results on languages 1–6, using symbolic encoding and operators, averaged over 5 runs,
using the training examples of Table 4.4.

avg. % correct on
No. Best Average Generations S+ S� T+ T�

7 1.000 1.000 � 0.000 312 � 268 100 100 100 100
8 1.000 1.000 � 0.000 327 � 220 100 100 100 100
9 1.000 1.000 � 0.000 295 � 454 100 100 100 100

10 0.980 0.976 � 0.007 547 � 225 100 98 100 97

Table 5.6: Results on languages 7–10, using binary encoding and operators, averaged over 5 runs, 100
positive and negative training examples.

avg. % correct on
No. Best Average Generations S+ S� T+ T�

7 1.000 1.000 � 0.000 285 � 187 100 100 100 100
8 1.000 1.000 � 0.000 348 � 306 100 100 100 100
9 1.000 0.924 � 0.211 197 � 184 91 96 97 95

10 1.000 1.000 � 0.000 504 � 283 100 100 100 99

Table 5.7: Results on languages 7–10, using symbolic encoding and operators, averaged over 5 runs,
100 positive and negative training examples.
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PDA Grammar
binary symbolic binary symbolic

No. S0 T S0 T S0 T S0 T
1 100.0 100.0 100.0 94.5 100.0 100.0 100.0 100.0
2 90.5 73.5 87.5 71.5 96.5 84.0 96.5 84.0
3 100.0 77.5 100.0 77.0 100.0 72.0 100.0 67.5
4 99.5 58.5 98.0 60.5 99.0 88.5 95.5 81.5
5 100.0 84.0 100.0 87.5 91.5 85.5 94.0 82.5
6 88.5 57.5 87.5 63.5 100.0 69.0 99.0 69.0

Table 5.8: Average results of grammars and pushdown automata on languages 1–6, using the training
examples of Table 4.4.

PDA Grammar
binary symbolic binary symbolic

No. S T S T S T S T
7 97.0 97.5 95.5 96.5 100.0 100.0 100.0 100.0
8 100.0 97.0 97.5 90.5 100.0 100.0 100.0 100.0
9 92.0 79.0 88.0 82.0 100.0 100.0 93.5 96.0

10 97.5 98.5 99.0 98.5 99.0 98.5 100.0 99.5

Table 5.9: Average results of grammars and pushdown automata on languages 7–10, 100 positive and
negative training examples.

5.3 Discussion

In this chapter, it was shown that genetic algorithms can be used to infer context-free grammars
from positive and negative examples of a language. Grammars for a set of regular languages,
the language of correct parentheses expressions, the language of equal numbers of a’s and
b’s, the two-symbol palindromes, and a tiny natural language subset were inferred. Further
experimentation will have to show whether this technique is applicable to more complex lan-
guages. In the experiments, no significant difference between binary and symbolic encodings
was observed.

It is clear that the grammar-based approach of this chapter differs substantially from the
PDA-based approach of the previous chapter. Although the results on grammars are slightly
better, the PDAs’ more efficient implementation entails smaller computational requirements.

Several extensions of the approach of this and the previous chapter on PDA inference might
be interesting. The evaluation functions used here weighed different aspects of grammars and
condensed these into a single scalar. Instead of using such a scalar fitness, we could employ
a multi-objective algorithm such as Schaffer’s Vector Evaluated Genetic Algorithm (VEGA)
[129], that uses multidimensional fitness vectors.

The fitness evaluation might further be enhanced by regarding the ‘educational value’ of
the example sentences. If many of the grammars or automata in the population can judge an
example correctly, this educational value is quite low. On the other hand, difficult sentences
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that are often misclassified should be valued higher. To include these educational values in
the fitness function, a weight factor could be assigned to each sentence, which is proportional
to the number of grammars of the population that do not analyze this sentence correctly. A
similar approach is the dynamic subset selection scheme of [56], that chooses a subset of
difficult and ‘disused’ training examples from a larger set.

Another possibly useful approach, introduced by Hillis [71], is to use the concept of co-
evolution. The example sentences form a population of parasites that compete with the popu-
lation of grammars/automata. The fitness of a sentence is based on the difficulty with which
the grammars can analyze this sentence, i.e., the more difficult a sentence is, the higher its
fitness will be.

In this approach, the reproduction of correct sentences could be implemented using De
Weger’s tree crossover (TX) operator [42], or other recombination operators analogous to those
of Koza’s Genetic Programming paradigm [93] (see Section 2.6.3). In this paradigm, Lisp
expressions are represented as parse trees, and crossover is implemented by taking suitable
subtrees and exchanging them.

Reproducing incorrect sentences is even simpler, since there is no tree structure to be pre-
served. Therefore, a straightforward recombination of parts of incorrect examples (which is
likely to result in new incorrect sentences), combined with a test whether the offspring is
incorrect, will suffice.

As Wyard already pointed out [157], a bucket-brigade algorithm [74], in which the popu-
lation consists of individual rules instead of complete grammars, might prove to be useful.
In such an algorithm, a population member’s fitness is determined by scoring its ability to
correctly analyze the examples in conjunction with the other rules of the population. This ap-
proach has been employed successfully in the inference of classifier systems [62]. A possible
advantage of this approach is that in a population of rules we only have to evaluate the merit
of different grammar rules once, as opposed to a population of grammars, in which a single
rule might appear in many different grammars. This might alleviate the computational burden
of the algorithm.




