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1 Bayesian Model Selection

This chapter provides an answer to the question what it is, philosophically
speaking, to choose a model in a statistical procedure, and what this amounts
to in the context of a Bayesian inference. Special attention is given to Bayesian
model selection, specifically the choice between inequality-constrained and un-
constrained models based on their Bayes factors and posterior model proba-
bilities .

Many of the foregoing chapters have provided examples of model selection
by means of Bayes factors, and chapter 4 has provided a thorough introduc-
tion to the subject. For the sake of completeness, and in order to introduce
some terminology that will be used in this chapter, we will briefly rehearse
Bayesian model selection here. Say that we have some data E, and that we
think these data are sampled from a distribution pµpµs(E), characterized by
two parameters µp ∈ [0, 1] and µs ∈ [0, 1]. We say that each pair of values
for µp and µs presents a specific hypothesis Hµpµs

concerning the data. By
contrast, a statistical model consists of a set of hypotheses. One possible sta-
tistical model for the data allows for all possible values of both parameters,
that is, 〈µp, µs〉 ∈ [0, 1]2. Call this modelM0; it consists of the entire range of
hypotheses Hµpµs . Another possible model, M1, imposes the restriction that
µp > µs; this model is restricted by an inequality constraint . Note that both
models consist of a particular set of statistical hypotheses Hµpµs

, each of which
fixes a fully specified distribution for the data, p(E|Hµpµs

) = pµpµs
(E). Their

difference is that the latter restrict the possible values for the parameters µp
and µs. How can we compare these two models?

The Bayesian model selection procedure, as discussed in this book, presents
an answer to the latter question. This answer employs the so-called marginal
likelihoods of the models:
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p(E|Mj) =
∫ 1

0

∫ 1

0

p(E|Hµpµs
)pj(Hµpµs

) dµpdµs

=
∫ 1

0

∫ 1

0

pµpµs
(E)pj(Hµpµs

) dµpdµs, (1)

where j = 0, 1 indexes the models. Notice that for both models, the inte-
gration runs over the whole domain [0, 1]2. However, the prior for the two
models is different: p0(Hµpµs)dµpµs = 1 while p1(Hµpµs)dµpµs = 2 if µp > µs
and p1(Hµpµs

)dµpµs = 0 otherwise. Both these priors integrate to one, but
the prior for M1 is such that only the distributions for which µp > µs are
included in the computation of the marginal likelihood. Finally, it must be
emphasized that the marginal likelihood for a model is different from the or-
dinary likelihood of a hypothesis, although both are probabilities of the data
E. The likelihood of a hypothesis is the well-known expression p(E|Hµpµs).
The marginal likelihood of a model is essentially a mixture of the likelihoods
of hypotheses that are included in the model, weighted with the probability
of the hypotheses.

We may now use these expressions of the marginal likelihood to compute
the Bayes factor for the models, M0 and M1:

BF01 =
p(E|M0)
p(E|M1)

. (2)

It may then turn out that BF01 � 1, in which case the unrestricted modelM0

seems strongly favored over the restricted model M1. But here we may won-
der: what support exactly is provided by the high value of the Bayes factor?
It must be emphasized that the comparison of two models , for example M0

versusM1, is not the same as a comparison between two rival hypotheses, for
example H1/21/2 versus H1/32/3, because models are not themselves hypotheses,
rather they are sets of hypotheses. In the case of hypotheses, a comparison by
means of a Bayes factor makes perfect sense. But a Bayes factor may not be
suitable for the comparison between models. This point is particularly press-
ing for comparisons of inequality-constrained models, because they contain
partially overlapping sets of hypotheses.

In this chapter we set out to investigate this latter question from a founda-
tional perspective. We discuss what statistics was supposed to deliver in the
first place, and in what way Bayesian statistics delivers this. After we have
got clear on Bayesian statistics in its ordinary application, we can discuss the
application of Bayesian statistics in the context of model selection, and in
particular in the context of comparing models with different inequality con-
straints. It will be seen that this leads to a challenging question on the exact
use, or function, of Bayes factors for models.

The chapter is set up as follows. In Section 2 we spell out the philosoph-
ical setting for statistical inference, dealing with the problem of induction
and with the answers to this problem provided by Popper and Carnap. Sec-
tion 3 presents a parallel between statistical inference and another system of
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reasoning, deductive logic. In Section 4, based on this parallel, we describe
the role of a statistical model in a Bayesian statistical inference as a spe-
cific type of premise in an inductive. We can thereby identify elements of
the views of both Popper and Carnap in Bayesian statistical inference, and
extend Bayesian inference to model selection, in particular the selection by
means of Bayes factors. This leads to a discussion of some problematic as-
pects of Bayesian model selection procedures in Section 5. We will address
two specific worries. Firstly, a comparison of models in terms of their poste-
rior model probabilities does not seem to make sense if the models overlap.
We will remedy this by organizing the space on which the models are defined
a bit differently. Secondly, and in view of this reorganization, we ask how we
can interpret the probability assignments to hypotheses.

2 Statistics and the Problem of Induction

This section deals with statistics, its relation to the problem of induction, and
the solutions that Popper and Carnap provided for this problem, drawing on
standard textbooks in the philosophy of science such as Bird [2] and Curd and
Cover [6]. We will see that these solutions, in this context termed inductivism
and rationalism, are endpoints in a spectrum of positions, and that as such
they both miss out on an important aspect of statistical reasoning.

2.1 The Problem of Induction

Induction is a mode of inference that allows us to move from observed data
to as yet unknown data elements and empirical generalizations. A typical
example of an inductive inference is presented in statements 1 and 2:

1. The sun has risen every morning up until now.
2. So, the sun will also rise tomorrow.
3. Even stronger, it will rise on all future days.
4. Alternatively, it will probably rise on all future days.
5. Or at least it will probably rise tomorrow.

Here the observed data is expressed in 1, namely that the sun has always risen
up until now. This observed data may be viewed as the sole premise of the
inference. On the basis of it we may want to affirm several other statements,
labeled 2 to 5, all of which can be viewed as conclusions of an inductive
inference.

Premises and conclusions are statements, and as such they may be true or
false. Of an inference, however, we cannot say that it is true or false. Rather
we say that it is valid or invalid, where validity means that the inference
provides a certain kind of guarantee: if the premisses are true and the inference
from these premisses to a conclusion is valid, then we have the guarantee
that the conclusion is true. When applied to the inductive inferences above,
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validity means the following: if the sun has indeed always risen up until now,
and if the inductive inference is valid, then we can rely on the truth of the
conclusion, namely that the sun will also rise tomorrow. The trouble with
inductive inference, as presented above, is that its validity is very hard to
establish. Nobody will seriously doubt the truth of the statement that the
sun will rise tomorrow. But when asked whether on the basis of all its past
risings we can validly infer, and hence whether we are justified to believe, that
the sun will rise tomorrow, we are met with embarrassing difficulties.

Let us examine these difficulties in some more detail. David Hume asked
himself the question how we can derive new observations from observations
that we have done in the past. He argued in An Enquiry Concerning Human
Understanding [15]: ”But why this experience should be extended to future
times, and to other objects, which for aught we know, may be only in appear-
ance similar; this is the main question on which I would insist” (pp. 33–34).
In other words, inductive inferences seem to presuppose that a sequence of
observations in the future will occur as it always has in the past. However,
even very long series of the same observation are perfectly consistent with the
next observation being quite different. The problem of induction is that no
further basis can be found in the observations themselves for this presupposed
constancy of the observations. To illustrate again with the example, we might
conclude from the observations that the sun has risen every morning up until
now that the next morning the sun will also rise. But what justification can
there be for presupposing this constancy? In the next subsection we will try
to provide some possible answers to this question, and we will show how these
answers fail.

2.2 Uniformity Assumptions

A first possible answer is to justify the presupposition of constancy, and hence
inductive inference, by using induction itself. That is, we could say that an
inductive inference will work in the future because it has worked in the past.
For example, we made many inductive inferences about many different topics,
for example that the sun has always risen, and until now all these inferences
led to true conclusions. Or closer to scientific practice, we have often used a T-
test successfully in the past, and so we may conclude that it will be a valuable
method in the future as well. However, if we justify induction on the grounds
that it has worked in the past, then we enter a vicious circle. The argument
fails to prove anything, because it takes for granted what it is supposed to
prove. We can therefore run the exact same criticism of induction again, this
time on the level of the inferences: there is, again, no logical necessity that
the previous success of the inferences guarantees future successes.

A second possible answer is to justify the constancy of observations by
assuming an overall uniformity of nature. For example, we might say that
the sun has always risen in the past and that since nature is uniform, this
pattern will continue into the future. Note, however, that this is quite a strong
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assumption. It is not just questionable whether nature really is uniform, it is
also dubitable whether we can apply this assumption to the natural and the
human sciences alike. Uniformity could hold for the natural sciences, like the
sunrise example, but whether it is also applicable to human science remains
discussable. Is it for example true that the positive correlation between social
isolation and aggression, as it might be established in psychology, continues
to hold after the introduction of internet? To infer by induction, we have to
assume a rather strong uniformity in nature.

Moreover, even while the assumption of uniformity must be very strong,
one might argue that it is still not strong enough. Just stating that nature
is uniform does not yet determine the exact patterns that will continue in
future times. This problem is nicely brought out by Goodman’s [11] so-called
new riddle of induction, which we will present briefly. Say that the predicate
Green belongs to emeralds which appear to have the color green at any time.
Suppose that up until the year 2008 we have observed many emeralds to be
Green. We thus have evidence statements that emerald 1 is Green, emerald
2 is Green, etc. The standard inductive inference then is that all emeralds
examined before the year 2008 were Green, so emeralds after that year will be
Green as well. In this case we call the predicate Green projectable: findings
of the past can be projected unto the future. But now consider a somewhat
different predicate: an object is Grue if either it has been observed before
2008 and it appeared green, or it has been observed after 2008 and appeared
blue. Similarly, something is Bleen if observed before 2008 appearing blue, or
after 2008 appearing green. We may redescribe what we observed until now
as emerald 1 is Grue, emerald 2 is Grue, etc. So with the very same inductive
inference just used on Green, but now taking Grue to be the projectable
predicate, we might conclude that emeralds observed after 2010 will be Grue,
so that we predict emeralds observed after 2010 will appear blue to us! It thus
seems that simply assuming the uniformity of nature is not specific enough.
If we are to apply the uniformity assumption, we must stipulate the exact
predicates with respect to which nature is uniform.

In reaction to Goodman’s riddle, we might argue that we can make a
principled distinction between candidate predicates on grounds of their sim-
plicity, defending induction by saying nature is uniform and simple. It seems
that a model where emerald are Green before time 2010 and are also Green
after 2010 is simpler. However, we might also describe this model in a com-
plicated way, saying that emeralds are Grue before time 2010 and are Bleen
after 2010: in both cases the result is that emeralds appear green throughout.
Goodman points out [11] (pp. 74–75) that predicates such as Grue and Bleen
only appear to be more complex than the predicate Green or Blue. This is be-
cause we have defined Grue in terms of blue and green, whereas the predicate
Green is only defined in term of the color green. In other words, the model
we favor depends on which predicates are established in our language, leaving
inductive inference relative to the language in which they are formulated. The
ultimate question is therefore what predicates are considered the natural ones.
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Hence we cannot salvage inductive inference by imposing further simplicity
constraints. We need a decision on the projectability of certain patterns or
predicates.

This last remark concludes our discussion on the philosophical problem of
induction. The fact that in inductive inference we must always make a choice
for a specific projectable predicate will reappear in later Sections.

2.3 Induction in Science

We now explain the problem of induction and its relevance to scientific prac-
tice, by identifying inductive inference within a more scientific example. The
first thing to note here is that, especially in the social sciences, scientists make
probabilistic inferences. In terms of the example of subsection 2.1, from the
data expressed in statement 1, they generally derive statements like 4 and
5. This is because in the social sciences, the data often show patterns that
are not completely stable. However, we can still say that such probabilistic
inferences are inductive.

To illustrate induction, we will use a rather simplified version of the ex-
ample provided in Chapter 1 about amnesia in Dissociative Identity Disor-
der (DID) . The research question of Huntjens et al. [16] is to determine
whether DID is a genuine disorder or rather a iatrogenic disorder, that is, a
pseudo-disorder caused by the influence of the therapist on suggestible indi-
viduals. The design allowed the authors to compare the overall memory per-
formance, called the Recognition Scores, between true DID-patients, controls,
DID-simulators, and true amnesiacs. Let us say we are now only interested in
the question whether the memory performance of DID-patients differs from
the performance of DID-simulators. If the performance of DID-patients is
higher than that of DID-simulators, we conclude that DID is not a iatrogenic
disorder. To investigate this difference, the researchers selected a sample from
a population of people diagnosed with DID, and also a sample of ’normal’
people who are asked to simulate DID. The memory performance of the two
groups was observed in a number of trials and, based on the difference in the
memory performance, a generalized statement was made about the existence
of DID.

With this scientific example of Dissociative Identity Disorder in place, we
can restate the problem of induction. Suppose that the observations until now
show that the entire group of DID-patients is better in memory performance
than the group DID-simulators. By induction we might then infer that all
DID-patients are better in memory performance than DID-simulators, and
hence that DID is a real disorder. Or alternatively, suppose that on average
the DID-patients are better in memory performance than the DID-simulators.
In that case we might infer, again by induction, that this average difference
holds for the entire populations of DID-patients and DID-simulators, and
hence that a randomly chosen DID-patient can be expected to have better
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memory performance than a randomly chosen DID-simulator. This expecta-
tion is typically spelled out in terms of a probability assignment; in the social
sciences, such probabilistic conclusions are much more common than strict
universal generalisations.

Because such general or predictive conclusions concerning DID-patients
and DID-simulators are arrived at by induction, they are subject to the prob-
lem, sketched in the foregoing, that they are very hard to justify. More in
particular, as the discussion of Goodman’s riddle suggested, justifying such
conclusions involves the explicit choice for predicates that are projectable.
We will argue in the next two Sections that the statistical justification of con-
clusions in the DID example requires such a choice. The predicates at issue
are the test scores of the DID-patients and DID-simulators respectively: if we
want these test scores to be indicative of what is going on in the populations
at large, we must somehow assume that they are based on, or refer to, some
stable properties of the individuals in that population. As already announced,
we return to this in later sections. In order to properly discuss the assump-
tion, we first turn to two well-known responses to the problem of induction,
by Carnap and Popper respectively.

2.4 Carnap on the Problem of Induction

The philosophical discussion on the justification of induction is rich and mul-
tifaceted. In the following we will not provide an overview of this discussion,
but rather we will present a specific take on it in order to portray statistics as
a particular solution. For this we will first visit two important figures in the
debate on induction, Karl Popper and Rudolf Carnap.

Carnap was one of the central figures of logical empiricism, a philosoph-
ical movement that dominated the philosophy of science in the first half of
the twentieth century. In this movement, two discussions took center stage:
one concerned the nature of science and its demarcation from pseudo-science,
and the other concerned the justification of science, which was intimately con-
nected to the justification of conclusions arrived at by inductive inference. For
the logical empiricists, as the name suggests, the main features of science were
its firm foundation in primitive empirical fact, and the further feature that
more general scientific claims can be derived from these empirical facts by log-
ical means. Hence the logical empiricists faced a double challenge: to establish
the firm foundations of science in primitive empirical fact, and to provide a
logical system that would allow us to derive more advanced scientific claims
from these primitives.

Carnap’s contribution to the second part of the logical empiricist pro-
gramme is also the salient part of the programme for present purposes [4] [5].
Carnap tried to find the degree of confirmation that a given set of empirical
evidence gives to some scientific hypothesis. To this aim he used both logic
and probability theory. Both evidence and hypotheses were expressed in terms
of a formal logical language, and the degree of confirmation was subsequently
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expressed in terms of a probability function over this language, the so-called
confirmation function c(H,E). The function c(H,E) is the degree to which
hypothesis H is supported by evidence E, or in other words, c is the degree
to which someone is rationally entitled to believe in the hypothesis H on the
basis of full belief in the evidence E. The crucial ingredient in the determina-
tion of this function is Carnap’s notion of logical probability: the probability
assignment over the language in which H and E are sentences is fully de-
termined by the structure of the language itself and symmetry requirements
on the probability function with respect to the language. The confirmation
function c(H,E) can therefore be determined by a priori arguments from the
language.

The main achievement of Carnap was that he managed to derive a general
inductive rule on the basis of his concept of logical probability . This inductive
rule allowed him to make justified predictions of future observations on the
basis of a record of past observations. Say, for example, that we are given
a record of the memory performance of n individuals, either DID-simulators
or patients, in which a number of n0 people scored below guessing level and
n1 people scored above guessing level. We may denote each individual test
result with Qqi where q ∈ {0, 1} and 0 means scoring below, 1 means scoring
above guessing level. The record of all n results is En =

⋂n
i=1Qi. Carnap’s

c-function then gives the degree of confirmation for the next person passing
the test, the event denoted with Q1

n+1:

c(Q1
n+1, En) =

n1 + γλ

n0 + n1 + λ
, (3)

where γ is the initial probability for passing the test and λ the firmness of
that initial estimate. This degree of confirmation for Q1

n+1 is the best guess
we can make for the performance of the next individual; depending on the
data we may thus be able to conclude that the predictions for DID-patients
and DID-simulators differ. Carnap maintained that in this way he solved the
problem of induction. By casting the problem in a formal framework, defining
a function that made explicit the degree to which we are rationally entitled
to believe hypotheses on the basis of evidence, and by grounding this degree
in the structure of the logical framework, he provided a logical system that
allows us to derive predictions, albeit probabilistic ones, from the primitive
empirical facts.

One of the weaknesses of Carnap’s system is that it is fairly abstract, and
that it does not readily connect to the methods and statistical techniques used
by scientists. For the purpose of this chapter, however, we would like to point
to another set of related worries, to do with language as a determining factor in
the Carnapian system. Recall that the justification of the Carnapian inductive
inferences rests on applying symmetry principles, as determined by the notion
of logical probability, to some language. Moreover, following Goodman, we
are stuck with an assumption on which predicates are projectable once the
language is chosen. If the language adopts Grue and Bleen, then those are
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the predicates that will accumulate inductive confirmation or disconfirmation.
The obvious question is: how do we determine the exact set of predicates to
which the notion of logical probability can be applied? First of all, language in
the Carnapian system is idealized and highly artificial, whereas most scientific
theories are expressed in vague language, usually English. It is unclear how to
isolate the salient predicates from the fluid scientific discourse. Related to this,
to apply a Carnapian system we must hold this artificial language constant,
and refuse new predicates to be introduced, or otherwise we must accept that
the degree of confirmation of scientific hypotheses will change whenever new
predicates are introduced. But both options sit badly with scientific method
as we know it.

And finally, even if we accept the artificiality and the fixity of the language,
we encounter a problem with its poverty, because the notion of a statistical or
general hypothesis is virtually absent from it. The way Carnap has set up his
inductive logic and the confirmation function c(H,E) in it, both the evidence
E and the hypothesis H must be finite expressions in a language that only has
observations as primitive terms. Typically, the evidence and hypotheses are
past and future observations respectively, as in the example provided above.
Now it must be admitted that this is largely due to a philosophical predispo-
sition among the logical empiricists, namely to restrict scientific inference to
the empirical realm. In principle the formalism allows for extensions to gen-
eral hypotheses, as attested by the inductive logical systems of Hintikka [12].
However, the inclusion of general hypotheses in Carnapian inductive logic re-
mains very limited, and attempts to remedy that shortcoming have not exactly
appealed to the general philosophical public.

We conclude that within Carnapian systems we cannot formulate hypothe-
ses on possible patterns in the data, let alone change or introduce them. In the
following sections it will be seen that Bayesian statistics, as well as classical
statistics, does better than the Carnapian inductive system on the count of
both fixity and poverty.

2.5 Popper on the Problem of Induction

Before turning to statistics, we deal with another important contributor to the
debate on inductive inference, Karl Popper [17] . Popper’s views on induction
can be explained most easily in conjunction with his position in the debate
on the demarcation of science from pseudo-science. Popper rejected the view
of the logical empiricists, who argued that science is defined by its roots in
empirical fact and their logical implications, stating instead that falsifiability
is the distinguishing feature of science. According to Popper, the hallmark of
good science is that it puts itself at risk of being proven wrong. It generates
distinct predictions that can be checked against the empirical facts and can
subsequently be proven false. So, for example, the claim that the sun will rise
tomorrow is scientific, because tomorrow we may find out that the sun has
not risen, thus proving it wrong. The claim, on the other hand, that the sun
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will never rise anymore, is not scientific, because at any point in time we must
leave open the possibility of a future rising.

Popper’s views on inductive inference can be seen as the continuation of
this line of thought. From the view that claims are only scientific in virtue
of their possible falsification, it is a small step to the view that the only
claims that can be considered genuine scientific knowledge are those that result
from falsification . So according to Popper, we cannot base any knowledge on
inductive inference. In the example, we cannot conclude anything towards
future occasions of a rising sun from the fact that up until now the sun has
always risen. As Popper would say, the theory that the sun will always rise
is not yet disproved. But at best this motivates us to go on checking the
claim that the sun will always rise. If, on the other hand, the sun does not rise
tomorrow, science has truly advanced, because at that point we can be certain
that the claim that the sun will always rise is false, and hence that the claim
that on some day the sun will not rise is true. In short, Popper argues that
inductive inferences towards general claims cannot provide us with scientific
knowledge, but that deductive inferences towards the denial of general claims
do provide knowledge. Deductive inference is valid, but inductive inference is
not.

In our DID example, the question is how can we generalize towards a
conclusion on the existence of DID, on the basis of observations of the memory
performance of DID-patients and DID-simulators. Now does Popper allow us
to conclude that DID patients are universally better in memory performance
than DID-simulators and therefore that DID is a genuine disorder? Bypassing
the further difficulty that in the DID example the theory is cast in terms of
probabilities, and that probabilistic statements can strictly speaking never be
proven false, Popper would argue there is never any positive evidence for such
a general statement, let alone for concluding that DID is a genuine disorder.
We can only conclude, by means of a single counterexample, that such a
general statement is not true. So after our observation of a difference between
the two groups of DID-patients and DID-simulators, the theory that DID is
a genuine disorder is not disproved by the data and therefore the theory, for
the time being, is not rejected. But it is not proven by the data either.

Admittedly, this is a rather critical view on inductive inference. Popper’s
position has aptly been named critical rationalism. But as the term ratio-
nalism suggests, the views of Popper also have a more positive part which
is of interest to the present discussion. While Carnap put the starting point
of scientific knowledge in primitive empirical facts, as captured in a formal
language, Popper put forward the view that science always starts with a hy-
pothesis, some bold claim or general statement, which we may subsequently
attempt to falsify. He referred to this as the searchlight theory of knowledge:
the realm of empirical fact can provide some kind of knowledge, but the re-
searcher has to provide a searchlight, more specifically a guiding hypothesis
via which this realm can make itself known. Put differently, it is not the obser-
vations that come to us with their own message, rather we take the initiative
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to seek out the observations to meet our own interest. Against the empiricist
and inductivist views of Carnap, Popper’s views show a marked rationalist
tendency, in the fact that the mind rather than the world is the first cause in
the production of knowledge.

Summing up, we have dealt with two very different views on the problem
of induction in the foregoing. In the next two sections, we shall argue that
statistical inference occupies a middling position between the two views, and
that both Popper and Carnap fail to capture an important aspect of the solu-
tion inherent to statistical inference. On the one hand statistical inference is
inductivist, because it allows us to learn from the data. And on the other hand
it is rationalist, because what is learnt from the data is entirely determined
by the statistical model that we choose.

3 Bayesian Inference as Deduction

The discussion on Carnap and Popper makes clear that the opinions on how
to justify inductive inference diverge widely. Because Bayesian statistical in-
ference is a way of dealing with inductive inference as well, the question arises
how it might be positioned relative to these diverging opinions. In the next
two sections we will argue that Bayesian statistical inference contains both
falsificationist and inductivist elements. More in detail, in this section we show
that the methodology of Bayesian statistical inference can be spelled out by
framing these inferences in a probabilistic logic , following ideas of Howson [13]
[14] and Romeijn [18] [19]. It will become apparent that Bayesian inference is
similar to deductive inferences . This will lead to a discussion of model selec-
tion procedures in the next section, which will reveal the position of Bayesian
statistical inference in the spectrum between Carnap and Popper.

3.1 Deductive and Inductive Inference

Let us briefly compare deductive and inductive logic. Recall that in deductive
logic, an argument is valid if the truth of its premises guarantees the truth
of the conclusion. So a perfectly valid argument might lead to a false con-
clusion, on the ground that one of its premises is false. Take for example the
premises that all apples are fruit, and that all fruit grows on bulldozers. By
deductive inference, we therefore validly conclude that all apples grow on bull-
dozers, even while this is most certainly not true. Deduction serves to explain
and rearrange our knowledge without adding to its content. Inductive infer-
ence, by contrast, seems to add to the content of our knowledge. We obtain
observations, and then amplify and generalize them to arrive at general con-
clusions. So an important difference between deduction and induction seems
to be that while deduction is conceptually closed and only brings out the con-
clusions already present in the premises, induction adds to the content of the
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premises. As a result of this, conclusions obtained with inductive inferences
do not necessarily have the same degree of certainty as the initial premises.

Nevertheless we will investigate in this section the parallel between deduc-
tive and inductive inference. To do so, we will first study a specific deductive
argument, and after that we will introduce an argument in Bayesian logic
that can be seen as the inductive counterpart to the deductive argument. The
example of deductive inference that we will study is the so-called proof by
contraposition:

If H, then E (premise 1).
E is false (premise 2).
Therefore, H is false (conclusion).

To examine this inference in more detail, we will make use of the DID-example
we discussed earlier. The analogy between deductive and Bayesian inference
suggests that just like the deductive inference, Bayesian inference is valid.

3.2 Deduction in the DID-example

The full design of the study of Huntjes et al. allowed the authors to compare
estimations of the overall memory capacities of DID-simulators (µsim), true
DID-patients (µpat), true amnesiacs (µamn), and controls (µcon). We can for-
mulate many different general models concerning the latent memory capacities
of these groups, for example:

• M0 : µsim < µpat = µamn < µcon
• M1 : µsim = µpat < µamn < µcon
• M2 : µpat = µcon = µsim = µamn
• M3 : µpat > µcon > µsim < µamn
• . . .

Note that this is a list of models, and not of general hypotheses. The state-
ment that µsim < µpat = µamn < µcon, for example, is consistent with a
large number of different valuations of these parameters, and each of these
valuations presents a separate hypothesis. So the statement concerns a set of
hypotheses, or a model for short.

For convenience we will make the example of the present section a bit
easier. First of all, we will abstract away from the parameters µamn concerning
amnesiacs, and µcon concerning people from the control group. Second, in
this section we will not deal with models but rather with specific hypotheses,
that is, specific valuations for the parameters µpat and µsim. Third, we are
restricting attention to two hypotheses in particular, H0 and H1. For H0 we
choose particular values of the parameters such that µpat > µsim, while for
H1 we choose them such that µpat = µsim. Moreover, we assume for the time
being that one of these two hypotheses is true and thus that all the other
hypotheses are false, or in logical terms: H0 ∨ H1, where the symbol ∨ can
be read as ‘or’. This expression is the first major premise in the deductive
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argument below. Note also that from their definitions, the hypotheses H0 and
H1 are mutually exclusive, so that ¬(H0 ∧ H1), where ¬ means ‘not’ and ∧
can be read as ‘and’. This will turn out to be convenient in the representation
of the hypotheses below, but we will not use this premise in the argument.

So the inference concerns the two rival hypotheses H0 and H1. The empiri-
cal evidence, as for instance provided in the study of Huntjes et al., is now used
to adjudicate between these two hypotheses. First, we concentrate on a specific
empirical difference between these two hypotheses, namely that according to
H0 DID-simulators have a worse memory performance than true DID-patients,
while according to H1 the DID-simulators and true DID-patients have equal
capacities. Accordingly, the relevant observations are the scores of members
of the two groups, patients and simulators, on some memory test. We might
for example find that the difference of the scores of the two groups exceeds
a certain threshhold, denoted E, or otherwise we might find that it does not
exceed the threshhold, denoted ¬E. For the purpose of this example, we sup-
pose that the test scores can tell apart the hypotheses unequivocally: if H0

is true, then we are certain that the difference in scores on the memory test
exceeds a certain threshhold, or in logical parlance, H0 → E.

We can specify so called truth values for each combination of hypotheses
and evidence, based on the premises of the above. It will be convenient and
insightful to represent these premises as truth valuations over all the logical
expressions that we can conceive; see the squares of Figure 1. As further
explained in the caption, the truth values in the quadrants indicate whether
the corresponding logical possibilities, or cells in the grid, are consistent with
the premises. More specifically, given some truth valuation over the logical
possibilities, we say that a proposition is true if and only if it is true in each
of the cells that is assigned a 1. The premises H0 ∨H1 and ¬(H0 ∧H1) are
worked out in the first two squares of Figure 1. They are in a sense implicit
to the presentation of the truth valuations in the rightmost square of Figure
1, in which H0 and H1 are put side by side as mutually exclusive and jointly
exhaustive possibilities.
The latter square also expresses how the hypotheses H0 and H1 relate to
the data E. According to deductive logic, all the entailment H0 → E says
is that we cannot have the combination of H0 being true yet E being false,
so H0 → E is equivalent to ¬(H0 ∧ ¬E). In sum, the three quadrants of the
rightmost square that contain a 1 are the only logical possibilities consistent
with the premises.

With this graphical representation of the premises in place, we can bring
in the further premise presented by the observations. Say that we observed
that the scores of the two groups on the memory test are slightly different,
but that the difference does not exceed the given threshhold, so ¬E receives
a truth value of 1. In Figure 2, the corresponding truth values can be seen in
the middle square. The observation itself does not involve the hypotheses, and
therefore H0∧¬E and H1∧¬E receive the truth value 1, andH0∧E and H1∧E
receive the truth value 0. So the square on the left and in the middle of Figure 2
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H0 ∨ H1

1 0

0 1

H0 H1

H0

H1

1

1

H0

H1

1 0

H2 ∨ H3...

0

1

E ¬ E

Fig. 1. These three squares indicate summarize the premises of the logical argument.
The leftmost square indicates that H0∨H1, and thus that all other hypotheses Hi for
i > 1 are deemed false. The middle square indicates that ¬(H0 ∧H1), by setting the
quadrants in which H0 and H1 overlap to 0. Finally, the rightmost square indicates
that H0 → E, which is equivalent to ¬(H0 ∧¬E). The three quadrants labelled 1 in
the rightmost square are the only logical possibilities consistent with the premises.

express the two main premises, one concerning the hypotheses, stemming from
Figure 1, and one concerning the observations. The beauty of the graphical
representation is that combining these premises is a straightforward operation
on the truth valuations: we simply multiply the truth values of the two input
premises, as expressed in the square on the right of Figure 2.

× =
1H0

H1

E ¬ E

0

1 1

0 1

0 1

1×0=
0

0×1=
0

1×0=
0

1×1=
1

E ¬ E

H0

H1

E ¬ E

Fig. 2. This calculation with squares summarises the logical argument that runs
from the premises given previously, and the additional premise that ¬E, to the
conclusion of H1. The leftmost square is equivalent to the rightmost square of Figure
1. The middle square expresses the premise ¬E. The truth values in the rightmost
square are obtained from the values in the other two squares by multiplying the
values in each of the quadrants.

After combining the premises, we see that only H1 ∧ ¬E receives a truth
value of 1. All the other cells have a truth value 0. We can therefore conclude
all propositions that include the specific cell H1 ∧ ¬E. Of course we may
conclude ¬E, but this is hardly surprising, because it was also one of the
premises. However, we may also conclude H1. Via ¬E and H0 → E we learn
that H0 cannot be true, so ¬E falsifies H0, and by H0 ∨ H1 we can derive
that H1 must be true. We can conclude that the DID-simulators and true
DID-patients have equal capacities on memory performance.
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3.3 Choosing a Model

In the previous subsection we used deductive inference to derive a conclusion
from the premise concerning a finite set of hypotheses, and the premise on
how the hypotheses relate to evidence of the observed memory performance,
and finally a premise expressing what evidence we received. In this subsection
and the next, we will use essentially the same premises, with minor revision as
will be explained later, to derive a conclusion by means of Bayesian inference
. The conversion has two aspects, namely the use of probabilistic valuations
and of Bayes’ theorem. In this subsection we will deal with the former.

Apart from providing us with a convenient way of representing the opera-
tion of combining premises, the graphical representation of Figures 1 and 2 can
be used to illustrate the parallel between deductive and Bayesian logic, which
we consider very telling. First consider the graphical representation itself. As
in the case of deductive inference, we take the logical possibilities provided by
the hypotheses and the evidence as starting point. We distinguish between E
and ¬E, and similarly we consider hypotheses Hj with j = 0, 1, 2, . . .. Now
we want to connect these logical possibilities to probability theory, which is
according to the standard axiomatization a function over sets, and hence we
are taking the logical possibilities as sets as well. The logical possibility H0

is the set of all those imaginable or possible worlds in which the hypothesis
H0 is true, and similarly, E is the set of all those possible worlds in which the
observation E occurred. Accordingly, instead of H0 ∧E we will write H0 ∩E.
That is, instead of working with the logical operation ∧, from now on we use
the set-theoretical operation of intersection. Similarly, we will write ¬E as Ē,
the set-theoretical complement of E.

Next consider the inference concerning the logical possibilities. Recall that
the idea of deductive inference was to find a truth valuation of certain propo-
sition, based on the truth valuations of a combination of premises. Again,
Bayesian inference does roughly the same. The key difference between deduc-
tive and Bayesian logic is that Bayesian logic does not use truth values of 0
and 1, as does deductive logic. Rather it uses probabilistic valuations p, that
is, valuations of logical possibilities within the interval [0, 1] and satisfying the
axioms of probability theory. So the cell H0 ∩E in the space of logical possi-
bility receives some probability, p(H0 ∩E) = 2/5 for instance. The probability
values of all the cells must sum to 1. But apart from that difference in valua-
tion function, the workings of Bayesian logic will turn out to be very similar to
the workings of deductive logic. Just like deductive logic, Bayesian logic com-
putes probabilistic conclusions on the basis of probability assignments over
logical possibilities.

Let us have a look at the above deductive inference to make the above
claims precise. The first premise in the foregoing is that we restrict ourselves
to two hypotheses, H0 and H1. We assigned a truth value of 1 to H0 ∨H1, so
that we ruled out all the Hj for j > 1. In Bayesian logic, we can do the same
by assigning all probability to the hypotheses H0 and H1, p(H0 ∩ H1) = 1.
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That is, only these two hypotheses receive a probability and the remaining
hypotheses H2, H3, . . . receive a probability of 0. But note that this probability
assignment is not yet specific enough: we still have many ways of allocating the
probability among the two hypotheses H0 and H1. On the basis of a symmetry
argument, we might distribute the probability evenly: p(H0) = p(H1) = 1/2.

We have now chosen the hypotheses, but we have not determined the
probability assignment on the level of logical possibilities. Both the hypotheses
H0 and H1 might allow for the occurrence of the observations E and ¬E, and
we need to specify the probability valuations of these cells. Recall that in the
deductive case we said that H0 ∧ ¬E was impossible. This was admittedly
a rather strong assumption: normally test results cannot outright falsify any
hypothesis, rather they make hypotheses more or less likely. By using the
probability valuations, we can make such weak relations between observations
and hypotheses precise. If H0 is true we think it is far more probable than not
that the difference between the DID-groups on memory performance exceeds
the threshold , but this need not be strictly implied. So we might specify
that conditional on H0 being true, E is 4 times more likely than Ē, so that
p(E|H0) = 4/5 and p(Ē|H0) = 1/5. Similarly, if H1 is true we might consider
it somewhat less probable than not that the difference between the DID-
groups on memory performance exceeds the threshold, so we might specify
p(E|H1) = 2/5 and p(Ē|H1) = 3/5.

Together with the probability assignment over H0 and H1, we have thereby
fixed the probability assignment for all the logical possibilities. We can com-
pute p(Hj ∩ E) = p(Hj)p(E|Hj) and similarly p(Hj ∩ Ē) = p(Hj)p(Ē|Hj).
This leads to the probability assignment over the logical possibility presented
in the left square of Figure 3.

4

E ¬ E

1

2 3

2/5H0

H1

E ¬ E

1/10

1/5 3/10

H0

H1

Fig. 3. The square on the left represents the probability assignment over the logical
possibilities in terms of probability mass. The square on the right provides the same
information in terms of odds.

The square on the right side of this figure effectively depicts the same prob-
ability assignment, but written down in terms of odds. The difference is that
the odds do not have to add up to 1. Only their ratios matter. In the following
we will only make use of the odds.
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Finally, we want to point to the relation of the above with Bayesian statis-
tics as we know it. In the foregoing we chose two hypotheses, defined the
probabilities of the observations conditional on them, and we chose the prob-
abilities of the hypotheses themselves. In Bayesian statistics, this comes down
to the choice of a model, or a set of possible statistical hypotheses, then the
definition of a likelihood function for each of the hypotheses in the model,
and the determination of so-called prior probabilities. Of course, statistical
models are normally much more complicated and elaborate, but the general
idea remains the same.

3.4 Bayesian Inference

As indicated, we are drawing an analogy between deductive inference and
Bayesian inference. It will be clear that the determination of probabilities, or
odds, over the logical possibilities in Figure 3 runs parallel to the first of the
two main premises in the logical argument, as summarized in Figure 1. Now
the second premise of the Bayesian inference is almost the same as the one
we used for deductive inference. We observe Ē, and in the deductive example,
¬E therefore receives a truth valuation of 1. In Bayesian inference, as will be
seen, we will say that the adapted probability for Ē must be 1. The question
is how the addition of this premise reflects on the probability assignment over
the logical possibilities, as given in Figure 3. In particular, how is the adapted
probability distributed between the hypotheses H0 and H1?

Note first that the new premise is, strictly speaking, in contradiction with
the probability assignment already given. We have p(Ē) = p(H0∩Ē)+p(H1∩
Ē) and hence p(Ē) = 2/5. To express the probabilities after we observed Ē,
we must therefore make use of a so-called posterior probability assignment,
which we will denote with pĒ . This is a new probability assignment, that is
consistent with assigning Ē unit probability. To obtain the posterior proba-
bility assignment from the prior one, we can use the combination of Bayes’
rule and Bayes’ theorem:

pĒ(·) = p(·|Ē) = p(·)p(Ē|·)
p(Ē)

. (4)

Bayes’ theorem is given by the second equality. It is a theorem of probability
theory, and as such very hard to argue with. The interesting and contentious
equality is the first one, which we might call Bayes’ rule. Note that it is not
a theorem of probability theory. Rather it relates two different probability
functions, the prior distribution p and the posterior distribution pĒ , and thus
expresses how we must adapt the probabilities if we add the further premise Ē.
In other words, Bayes’ rule expresses how we can construct a new probability
assignment pĒ which incorporates the fact that we assign a probability 1 to
the data Ē, based on the old probability assignment p, in which the data Ē
had a probability smaller than 1.
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Now let us compute some posterior probabilities, based on the fact that
we have pĒ(Ē) = 1. By Bayes’ rule, we can compute the posterior probability
for the hypotheses H0 and H1 on the basis of the prior probability and the
likelihoods. For H1 we find

pĒ(H1) = p(H1|Ē) = p(H1)
p(Ē|H1)
p(Ē)

= 1/2×
3/5
2/5

=
3
4
. (5)

In words, the observation that Ē leads to a posterior probability for H1 that
is higher than the prior probability. In this sense at least, Bayesian inference
mimics the deductive inference, where Ē also favored H1. But why are we to
believe the posterior probabilities arrived at by means of Bayesian inference?

We will now argue that there is a much more genuine sense in which
the Bayesian inference resembles the deductive inference. This resemblance
provides us with a reason to believe that the posterior probabilities are in a
sense the correct probabilities for the hypotheses after the observation of Ē.
As Figure 4 illustrates, if we represent the probability valuations as odds, we
can combine the two main premises of the Bayesian inference in exactly the
same way as in deductive inference.

× =
4H0

H1

E ¬ E

1

2 3

0 1

0 1

4×0=
0

1×1=
1

2×0=
0

3×1=
3

E ¬ E

H0

H1

E ¬ E

Fig. 4. This calculation with squares summarises the Bayesian statistical inference.
The leftmost square is equivalent to the square on the righthand side of of Figure
3. The middle square expresses the premise ¬E. The odds in the rightmost square
are obtained from the values in the other two squares by multiplying the values in
each of the quadrants.

It is not a coincidence that the results of this operation are the odds that
correspond to the posterior probabilities arrived at by Bayesian inference.
Changing the probability assignment in accordance with the observation Ē,
as laid down in Equation (4), is nothing but the rescaling of the probabilities to
the proportions of the probabilities within Ē. This is exactly what the formula
does. Bayes’ rule allows us to “zoom in” on the probability assignment over
the hypotheses within Ē.

Thus Bayesian inference is like deductive inference in two important re-
spects. Firstly, they both make use of a valuation function over a set of elemen-
tary logical possibilities, although there are also differences here. As for these
possibilities, in the case of deductive inference they are maximally specific
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propositions, and in the case of Bayesian inference they are sets of possible
worlds. And as for the valuations, in the case of deductive inference they are
truth valuations, and in the case of Bayesian inference they are probabilities.
Secondly, and most notably, the operation for combining a valuation with a
further premise, in particular with an observation such as Ē, is exactly the
same. Rather suggestively, we might say that Bayesian inference is therefore
valid in exactly the same way as that deductive inference is.

Although it has been noticed before, we want to emphasize again that
the above example is nothing like a serious Bayesian statistical inference:
usually the model contains many more statistical hypotheses, and there are
normally many more possible observations, or elements in the sample space.
However, the inferential steps are exactly the same. In Bayesian statistics
we choose a model, fix the likelihoods of the hypotheses in the model, and
finally determine a prior. Then we collect data and incorporate these data
in the so-called posterior probability assignment over the model by means of
a Bayesian update. We therefore maintain that the above example tells us
something about Bayesian statistical inference in general.

3.5 Summing up

We have discussed how to derive a conclusion based on a set of premises, first
by using deductive inference, and then by using Bayesian inference. We have
shown that Bayesian inference follows roughly the same procedure as deduc-
tive inference. This suggests that Bayesian inference, like deductive inference,
is valid. That is, if the premises are true, then so is the conclusion. In the
following we will elaborate how these ideas may be used to position Bayesian
statistics in the philosophical debate over statistics, and in particular how
they can be applied to the Bayesian model selection described in Section 1.

4 Model Selection

We have seen that Bayesian statistics can be provided with a philosophical
underpinning by portraying it as a logic. Against this backdrop we will now
explain how statistics, and Bayesian statistics in particular, unites the views
of Carnap and Popper on induction. This may well raise some eyebrows: in
what sense do we do justice to Popper’s views when we redistribute probability
over a number of hypotheses in the light of data? Recall that an important
aspect of Popper’s view is falsificationism ,which states that we can only learn
from data if the data rule out some hypothesis. Bayesian statistical inference
goes much further than that, because it allows us to learn positive facts from
the data. Nevertheless, in the following we will argue that in some important
respect Bayesian statistical inference retains the rationalist spirit.
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4.1 Models as Uniformity Assumptions

The foregoing already indicated that in a Bayesian inference, the choice for a
model can be understood as the choice of a certain kind of premise. We drew a
parallel between, on the one hand, the choice for a prior restricted to p(H0) =
p(H1) = 1/2 together with the likelihood functions of both hypotheses, and,
on the other hand, the choice for H0 ∨ H1 together with H0 → E. In this
subsection we will investigate this parallel further. In particular, we will relate
the choice of a certain model, as elaborated in Section 3, with the choice of a
certain set of projectable predicates, as discussed in Section 2.

Let us return to the nature of inductive inference as it was illustrated in
the example of Section 2.1. It can be noted that the inference from statement
1 to statement 2, by itself, seems to miss a component. It is more or less
implicit in the inference that what has happened in the past can be expected
to happen in the future. As we discussed, one possible take on the problem of
induction is that this component must be added to the inductive inference as
an explicit premise. At first glance this premise might simply be that the world
is a boring place, and that the same events will keep repeating themselves. But
it was easily seen that simply adding this premise cannot solve the problem:
we ran into predicates like Grue. As exhibited clearly in the inductive logical
systems devised by Carnap, if we want to infer anything inductively, we must
choose the exact set of predicates with respect to which the world is boring,
that is, the predicates that are supposed to stay constant. In philosophical
parlance, we must select the projectable predicates.

There is a rather nice formal relation between the Carnapian systems
and Bayesian statistical inference, which has an immediate bearing on this
point. Note first that the c-function of Equation (3) only depends on the
number of earlier results, n0 and n1, and not on the exact order in which
these results were observed. Inductive logical systems with this property are
called exchangeable. Famously, De Finetti [8] proved that any exchangeable
inductive logical system can be represented as a Bayesian inference over a
particular model, namely the model of binomial hypotheses, and furthermore
that every prior over this model singles out a unique exchangeable system. As
in the foregoing, we write Q1

n+1 for the result of person n + 1 scoring above
chance level in a memory test, meaning that this person scored better than
the expected score of filling in the test randomly. We denote the binomial
hypotheses with Hθ. These hypotheses have the following likelihoods:

p(Q1
n+1|En ∩Hθ) = θ. (6)

This means that all test results are independent and identically distributed.
The model of binomial hypotheses, which features in De Finetti’s representa-
tion theorem, includes all these hypotheses: {Hθ : θ ∈ [0, 1]}. It can be proved
that prior probability functions of the form p(Hθ) ∼ θγλ−1(1−θ)(1−γ)λ−1 lead
to the Carnapian inductive systems of Equation 3). That is,
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c(Q1
n+1, En) =

∫ 1

0

p(Q1
n+1|Hθ ∩ En)p(Hθ|En) dθ, (7)

in which c(Q1
n+1, En) is the expected value of the response of subject n + 1

given earlier responses En, p(Q1
n+1|Hθ∩En) is the likelihood of the hypothesis

Hθ for the event of this subject scoring above chance level, and p(Hθ|En) is
the posterior probability over all hypotheses Hθ in the model of binomial
hypotheses, given the earlier responses En. The interested reader may consult
Festa [9] for further details on this. For present purposes it is only important
to remember that Carnapian inductive systems can be replicated in a Bayesian
inference.

This mathematical fact provides us with crucial insight into the nature
of choosing a model. Recall that in the Carnapian system, the choice of the
predicates, in this case scoring above, on, or below chance level in the mem-
ory test, effectively determined the projectable or stable pattern in the data:
the observed relative frequencies of scoring were supposed to be indicative of
the scoring of future subjects. But we can identify exactly these projectable
patterns in the statistical model that, according to the representation theo-
rem, underpins the Carnapian system. For each of the binomial hypotheses
the probability of scoring above chance level is stable and constant over time.
The choice for this specific set of hypotheses, or this statistical model for
short, is effectively the choice for a set of projectable predicates, namely the
chance for scoring over a certain level is stable and constant over time. In our
view this is exactly the function of choosing a model as part of a Bayesian sta-
tistical inference: to fix the starting point, namely the set of hypotheses and
the associated probabilistic patterns, so that the data are allowed to select
the most fitting one.

The choice for a specific model, or for specific hypotheses to be part of
the model, reflects the interest and often the background knowledge of the
researcher. But this also means that a researcher can help herself to more
informative conclusions by choosing her hypotheses well, and similarly that
she can ruin it by choosing her model badly. For instance, she might choose
for the gruesome variants of the binomial hypotheses introduced in the above:

p(Q1
n+1 = 1|En ∩GNθ) =

{
θ if n < N,

(1− θ) if n ≥ N.
(8)

In words, the hypotheses GNθ dictate that up until the N -th observation Qqn
for n < N , the probability for q = 1 is θ, but that for n ≥ N the probability
for q = 1 is (1 − θ). We might take the model {GNθ : θ ∈ [0, 1]} for some
large N , choose a uniform prior p(GNθ)dθ = 1, and then start updating with
observations of subjects doing the memory test. For values of n+ 1 < N the
choice of this model leads straightforwardly to the Carnapian prediction rule
of Equation (3), with γ = 1/2 and λ = 2. Now say that by far most subjects
i < N pass the test, so that n1 >> n0. Using the Carnapian system and
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assuming that n < N , we have p(Q1
n+1|En)� p(Q0

n+1|En). But what can we
predict for the subject indexed i with i > N on the basis of En? Because of the
sudden reversal in the likelihood functions of the hypotheses, we effectively
swap the places of scoring on or above chance level in the prediction, so
on the basis of a large majority of people exceeding chance level in En, we
predict that subjects i > N will most likely fail! Or in mathematical words,
p(Q1

i |En)� p(Q0
i |En) for i ≥ N .

We saw in the example on gruesome predicates of Section 2.2 that the
wrong predicate choice may lead to useless predictions, and we have here seen
that the same holds for the choice of models, thus indicating how the choice of
a certain model resembles the choice of a projectable predicate. Bayesian sta-
tistical inference therefore has, at least, this one distinct Carnapian streak: it
allows for inductive inference on the basis of a specific uniformity assumption.

4.2 Models as Searchlight

In the foregoing we claimed that Bayesian statistical inference occupies a
middle position between Carnap and Popper. Partly the link with Carnap
has now been made clear, and so we turn to the relation with Popper, in
particular with his searchlight theory of knowledge alluded to in Section 2.5 .

We first identify this searchlight theory in Bayesian statistical inference,
which will point us to an important difference between Carnapian inductive
systems and Bayesian statistical inference. We have already seen how both
make use of specific uniformity assumptions. However, in the case of Car-
napian systems there seems to be very little by way of actively choosing, let
alone comparing the assumptions. In the views of Carnap, the choice for a lan-
guage, and thus the uniformity assumptions inherent to it, is a precondition
for dealing with the problem of induction in terms of a logic. In fact, accord-
ing to Carnap [3], it is a precondition for dealing with philosophical problems
in general. So it seems that for Carnapian systems, the choice for a specific
uniformity assumption is beyond the reach of logical analysis. By contrast,
in Bayesian statistical inference the choice for a uniformity assumption, by
choosing a model, is an explicit part of the logical account. As also argued
in the foregoing, the choice of a model determines the type of probabilistic
pattern that we can identify in the data. In other words, it provides us with
a searchlight looking at the data. The explicit choice for a model signals a
rationalist tendency in Bayesian statistical inference. The origin of empirical
knowledge is not naked observation, but observation within the context of a
theoretical starting point, namely a model.

We may wonder whether we can extend the parallel between the Popperian
view on induction and Bayesian statistics, in particular whether Bayesian
statistics presents us with a notion of falsification . To answer this, consider the
probabilistic inference in the example of Section 3.4. We might argue that this
Bayesian inference already exhibits a weak form of falsification: the hypothesis
H0 is proved unlikely by the data, and so we may decide to discard that
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hypothesis, or at least not use it in predictions or decision making. However,
apart from the fact that low probability is not the same as logical impossibility,
the use of the specific model {H0, H1} determines that either one of them will
accumulate most probability in the light of the data. So by discarding H0 we
can infer H1. Therefore, discarding H0 is not a falsification of the starting
point of the inference, namely the model {H0, H1}.

In the DID-example, it may happen that we find further data E′ for which
p(E′|H1) is very small, so that H1 fits badly with the data as well. In such
a case the whole model fits badly with the data. Similarly, in the example
concerning the hypotheses GNθ of the preceding Section, we may observe fur-
ther subjects i ≥ N doing the memory test. On the basis of our model choice
and the fact that subjects i < N performed very well, we expect these new
subjects to perform very badly. But it may certainly happen that the subjects
i ≥ N perform very well. We then want to conclude that something was amiss
with the model choice, e.g. that the true hypothesis is not to be found among
the hypotheses in the model. Note also that such cases do not allow us to
draw any positive conclusions: we just conclude that none of the hypotheses
in the model is any good, and that some unspecified other hypothesis would
have been better. Such cases of bad model fit come a bit closer to the idea of
falsification in Popper. Now we want to emphasize immediately that finding a
bad model fit is not the same as definitively falsifying the model, in the same
way as that finding a low probability for H0 is nothing like logically deriving
the falsehood of H0. Low probability, or even zero probability for that matter,
is entailed by, but does not entail logical impossibility. Still, the closest we can
get within Bayesian statistical inference to the idea of falsification is the idea
of bad model fit.

However, the falsification of a model is not an integral part of the Bayesian
inference machinery. The model can be chosen explicitly in the Bayesian infer-
ence, by distributing prior probability over a restricted set of hypotheses. But
the tools of Bayesian inference do not allow for changes to that initial choice
for a model. In the words of Dawid [7], the Bayesian is “well-calibrated”: in-
herent to the choice of set of hypotheses, i.e. a model, is the assumption that
the true hypothesis is among them. It is impossible to change this assumption
without after the fact changing the prior probability, which is a non-Bayesian
move. Of course we can change a statistical model in a controlled and ra-
tional way, by turning to model selection techniques [1]. There are various
criteria for model fit, and various ways of off-setting model fit against the
complexity of models. But with the exception of the Bayesian information
criterion, the standard model selection techniques do not take the explicit
form of a Bayesian inference. And even the Bayesian information criterion
only employs an approximation of posterior model probabilities.



24 Romeijn and Van de Schoot

4.3 Bayesian Model Selection

We are now ready to present Bayesian model selection , as it was presented
in Section 1, against the philosophical background of Bayesian statistics .
Concerning this philosophical background, we argued that it combines the
inductivist view of Carnap with the falsificationist view of Popper. As in the
work of Carnap, Bayesian statistics allows us to reason inductively from the
data by assuming that certain data patterns, summarized in a model, are
invariant. But this is only possible once we have made a specific selection of
hypotheses to begin with, and in this sense Bayesian statistics also have a
marked Popperian component. In the same line, the assessment of a model
against the data runs parallel to falsification in the view of Popper.

How does Bayesian model selection fit into this background? It is im-
portant to keep clear on the roles of models and hypotheses here. Bayesian
model selection deals with the assessment of model fit, that is, with the fit of
a collection of statistical hypotheses. It therefore extends the reach of stan-
dard Bayesian statistical inference, which concerns the fit of specific statistical
hypotheses once the model is given. On the other hand, in Bayesian model
selection the rival models are understood as statistical hypotheses themselves.
That is, they are somehow understood as claims about patterns in the data, as
expressed in a likelihood function. These likelihood functions are not straight-
forwardly defined, as they are in the case of a normal Bayesian statistical
inference. They are so-called marginal likelihoods , because they involve the
likelihoods of the hypotheses inside the rival models. Bayesian model selection
is thus similar to standard Bayesian statistical inference, in the sense that rival
models are treated as if they were normal statistical hypotheses. This makes
Bayesian model selection very attractive: it benefits from all the arguments
standardly given to support Bayesian statistical inference. However, the key
difference also leads to some problematic aspects, to which we will now turn.

5 A challenge for Bayesian Model Selection

This section discusses some problematic aspects of applying Bayesian inference
to models. These aspects relate directly to the philosophical background for
Bayesian statistical inference, as provided in the preceding Sections. Firstly
we have a closer look at the fact that in Bayesian model selection, models are
conceived as hypotheses. Secondly, we ask how to understand the probability
assignments over models. First we provide a tentative solution, but it will be
seen that this solution puts more weight on the second problem. The section
ends with a challenge to the proponents of Bayesian model selection.

5.1 Models as Hypotheses?

To illustrate the first of our two concerns, it is useful to recollect a well-known
finding from the psychology of reasoning, concerning the so-called conjunction
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fallacy . In an experiment done by Tversky and Kahneman [20], subjects were
presented with the following story:

Linda is 31 years old, single, outspoken, and very bright. She majored
in philosophy. As a student, she was deeply concerned with issues of
discrimination and social justice, and also participated in anti-nuclear
demonstrations. Which is more likely?
1. Linda is a bank teller.
2. Linda is a bank teller and is active in the feminist movement

Rather surprisingly, a majority of normal subjects think the second fact to
be the more likely one. This is odd, because the axioms of probability do
not allow a conjunction to be more probable than either of its conjuncts: it
is a theorem that p(E ∧ E′) ≤ p(E) for any pair of events or facts E and
E′. Clearly, people do not follow the axioms of probability in their intuitive
judgements of likeliness.

Next, consider the example of Bayesian model selection in Section 1, and
in particular the two models that are being compared, M0 and M1. Recall
that both models consisted of the same hypotheses Hµpatµsim

, that M0 con-
tained all these hypotheses, and that the modelM1 was subject to the further
constraints that µpat < µsim. At first sight, this situation is completely iden-
tical to the situation with Linda the bank teller. We may write the model
M1 as a conjunction of facts, namely the modelM0 and the further fact that
µpat < µsim. This fits well with the fact that the set of hypotheses associated
with M1 is strictly included in the set of hypotheses associated with M0. It
is, under closer scrutiny, truly remarkable that a set that is strictly included
in another set can nevertheless have a larger probability. Is Bayesian model
selection implicitly violating the axioms of probability ?

The reader will be relieved to find that the answer to this question is neg-
ative. To explain this, we simply need to cast the comparison of both models
and hypotheses in a different set-theoretical framework, as illustrated in Fig-
ure 5. As we have conceptualized the two models M0 and M1 in the above,
they are overlapping sets. Even stronger, all elements Hµpatµsim

inM1 are also
a member of M0. However, nothing prevents us from using two distinct sets
of hypotheses, labeled H0µpatµsim and H1µpatµsim , which are different from a
set-theoretical point of view by virtue of being labeled differently, even while
they have exactly the same likelihood functions over the data. The modelM0

consists of the hypotheses H0µpatµsim
, while the modelM1 consists of the dif-

ferent hypotheses H1µpatµsim
. The model M1 is further restricted by the fact

that p(H1µpatµsim) = 0 if µpat ≥ µsim. In this framework, Bayesian model
selection is not presenting a blatant violation of the axioms of probability.
However, we may now argue that something else is wrong.

The empirical content of ordinary statistical hypotheses is in their likeli-
hood function. That is, statistical hypotheses can in a sense be told apart by
the data, even though they are distinguishable only in the limit. Consider,
for example, the hypotheses of Section 4.1, as defined in Equation (6). It is
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Μ0 Μ1

µs   →

↑
µp

µs   →

↑
µp

Μ1

Μ0

µs   →

Fig. 5. The leftmost square shows the two models as nested sets of statistical hy-
potheses. On the right side, the two models are disjunct sets of statistical hypotheses,
but these hypotheses have identical likelihood functions.

logically possible that the hypothesis Hθ with θ = 1/2 is true, and that never-
theless the limiting relative frequency of passings in an infinitely long sequence
of test results is equal to some other fraction, such as 3/4; the interested reader
may consult Gaifman and Snir [10]. But the probability of this happening is
0. In close connection to this, there are the so-called convergence theorems of
Bayesian statistical inference, which show in general that if the hypothesis Hθ

is true, the posterior probability p(Hθ|En) will tend to 1 in the limit of larger
and larger data sets En. In this particular sense we can say that ordinary
statistical hypotheses can be told apart by the data.

With this notion of empirical content in place, consider the two statistical
models M0 and M1 of the DID example, which consist in part of statistical
hypotheses that have identical likelihood functions. Can they be told apart
by the data in the limit? Of course, if the true hypothesis does not satisfy the
restriction imposed by the model M1, namely that µsim < µpat, then given
sufficient data the posterior probability of modelM0 will tend to 1. However,
if the true hypothesis does satisfy the restriction imposed by the model M1,
then there is no such limiting behavior. In that case there are two hypotheses
with correct values for µpat and µsim, namely H0µpatµsim

and H1µpatµsim
.

And these two hypotheses have exactly the same likelihood function, hence
there can never be any piece of data that tells against the one and in favor
of the other. Admittedly, within the two models M0 and M1 separately, the
convergence theorems alluded to in the foregoing take care that the hypotheses
H0µpatµsim

and H1µpatµsim
will both attract all the probability. But exactly

because H0µpatµsim
and H1µpatµsim

will in the limit attract all probability
within their respective models, the initial probability ratio between the two
hypotheses H0µpatµsim and H1µpatµsim will be retained. To be precise, we have
p(H0µpatµsim)dµpatµsim = 1/2 and p(H1µpatµsim)dµpatµsim = 1, because the
prior over models is p(M0) = p(M1) = 1/2 while within the two models the
prior is uniform, and thus p(M0|En) = 1/3 and p(M1|En) = 2/3 for n → ∞.
For a more detailed treatment of this effect in the DID-example, we refer to
Chapter 4.
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Summing up, it seems that we can avoid a violation of the axioms of
probability in Bayesian model selection. We can do so by reconceptualising
the models involved in the selection. However, understanding models in this
way may leave us with an identifiability problem: if the true parameter values
satisfy the restriction at issue, the data do not single out a unique statistical
hypothesis, or a single model model for that matter. Instead we retain the
difference between the hypotheses and models that we have ourselves imposed
at the onset. We may argue that this is not a big deal. After all, once we have
gained access to true parameter values, the distinction between H0µpatµsim

and
H1µpatµsim , or between M0 and M1, may be inessential. This reaction leads
us to consider the following question: how can we interpret the intermittent
probability assignments over the two models, as long as we do not have the true
parameter values? What, if we are eventually interested in the true parameter
values, are these probability assignments about?

5.2 The Probability of a Model

Unfortunately these questions are not a cliffhanger, or some other rhetorical
device. By way of an answer we only have some suggestions to offer. However,
we do feel that these suggestions invite further research, and we are confident
that such research will not be in vain.

One rather natural answer to the above questions is that the probabil-
ity of the model presents us with a specific trade-off between two different
aspects of model selection. On the one hand, the probability of the models
measures model fit : the better the hypotheses within a model fit the data,
the higher the marginal likelihood of the model, and hence the higher the
posterior model probability. On the other hand, the probability of the model
reflects the simplicity of the model. The number of inequality restrictions in
a model is directly related to the value of the probability density function
within the model. For example, as indicated in the foregoing, the hypotheses
in M1 have a probability that is twice as large as that of their empirically
equivalent counterparts in M0, because in an intuitive sense the space oc-
cupied by M1 is half of that occupied by M0. The probability density over
the restricted model is therefore twice as large as the probability density over
the unrestricted model. Hypotheses in a restricted and hence simpler model
are thus given a head start via the prior. This is reminiscent of the standard
situation in model selection, in which typically the more complex model has
more parameters and hence occupies a larger space as well.

This view on Bayesian model selection invites a host of further questions.
One question is whether we have any reason for choosing this specific trade-
off between simplicity and model fit. It is as yet unclear whether the bonus
for simplicity that is implicit in Bayesian model selection always latches onto
our intuitive or independently motivated criteria for the model selection at
hand. If this is not the case, we may tweak the priors over the models, as
they can be used as an independent component in Bayesian model selection.



28 Romeijn and Van de Schoot

Another question is how the trade-off between simplicity and fit fares in cases
in which the two models are of different dimensionality, for example if we
compare the model M0 to a third model, M2, which has the restriction that
µpat = µsim. In such cases of differing dimensionality, we may also ask how
Bayesian model selection relates to other ways of trading off simplicity and
fit, e.g. Aikaike’s criterion which concerns differing dimensionality as well.
These are all legitimate research questions. We expect that a study into the
relation between Bayesian model selection and complexity will therefore be
very fruitful.

Apart from weighing simplicity and fit against each other, we can conceive
of another function for comparing models in a Bayesian model selection proce-
dure. It may be that eventually the interest of a Bayesian statistical inference
lies in determining the values of the parameters in a statistical model. The
employment of several models in a Bayesian model selection procedure may
be a way of finding the best estimate for some parameter efficiently. This view
on the use of several models leads us to consider an interpretation of the pos-
terior model probabilities of an entirely different nature, namely as a clever
means to enhance the convergence properties of the Bayesian inference. But
before we wholeheartedly adopt this view, it will be wise to investigate the
convergence properties of Bayesian statistical inference using multiple models
in more detail.

Whatever the exact results of either of the two research lines suggested in
the foregoing, we feel that we have already taken one step forward. By de-
scribing Bayesian model selection as the continuation of Bayesian statistical
inference, and by describing the latter as the continuation of deductive infer-
ence, we have provided a context for understanding Bayesian model selection
in a philosophical way. We hope that the ground work is laid, and that any
further investigations into understanding PMP’s posterior model probabilities
and Bayes’ factors do not have to start at square one.
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