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Abstract—Port-based network modeling of a large
class of complex physical systems leads to dynamical
systems known as port-Hamiltonian systems. The key
ingredient of any port-Hamiltonian system is a power-
conserving interconnection structure (mathematically
formalized by the geometric notion of a Dirac struc-
ture) linking the pairs of conjugate port variables of
the various ports corresponding to energy storage (de-
fined by a Hamiltonian function depending on en-
ergy variables), resistive effects, external interaction,
etc. The interconnection of port-Hamiltonian systems
defines a new port-Hamiltonian system with Dirac
structure determined by the Dirac structures of the
constituent parts. For thermodynamic systems this
framework needs modification by extending the space
of energy variables, as used for port-Hamiltonian sys-
tems, into a space of energy and co-energy variables
together with an additional coordinate needed for the
formulation of the energy. Geometrically this extended
space is formalized as a contact manifold. The thermo-
dynamic properties of the system are given by a Legen-
dre submanifold of the contact manifold. Furthermore
a contact Hamiltonian is defined, related to the inter-
nal power-conserving interconnection structure, whose
resulting dynamics leaves invariant the Legendre sub-
manifold. Finally, interaction contact Hamiltonians
are defined together with port-conjugated pairs of in-
put and output variables modeling the interaction of
the system with its environment. Interconnection of
such thermodynamic systems is shown to lead to a
thermodynamic system with the same structure.

1. Introduction

The work reported in this brief paper is part of
a continuing line of research on the geometric and
coordinate-free formulation of network models of phys-
ical systems. The aim is to provide a geometric frame-
work for the systematic description of complex phys-
ical systems with interacting components stemming
from different physical domains (mechanical, electro-
magnetic, hydraulic, etc.) The derived type of math-
ematical models are thought to be of importance for
analysis and simulation, since they make explicit the
underlying physical characteristics of the system (en-
ergy balance, existence of conserved quantities, volume

preservation, etc.). Furthermore, they form a natural
starting point for control where the dynamical proper-
ties of the system are sought to be influenced by the
interconnection with additional control components.

The present work is devoted to such a geometric
network description of open thermodynamic systems.
In this case the established port-Hamiltonian frame-
work for the description of complex physical systems
needs modifications by extending the space of energy
and co-energy variables into a contact manifold.

2. Control Contact Systems

In this section we briefly recall the basic concepts of
contact geometry (following [5] and [1]) in the context
of thermodynamics (see [6] and the references herein).
Afterwards, we shall recall the definition of control
contact systems. These systems are control systems
where the drift vector field and the input vector fields
are contact vector fields satisfying the condition that
they leave invariant some Legendre submanifold.

They are also an extension of port-Hamiltonian sys-
tems defined with respect to Dirac structures [8, 3],
systems associated with reversible thermodynamics
transformations [6], and systems associated with ir-
reversible thermodynamic transformations [4].

First we recall the canonical state space, called ther-
modynamic phase space, in which the thermodynamic
properties of a system are defined. It has a canon-
ical structure, called contact structure, which plays
an analogous role as the symplectic structure for La-
grangian or Hamiltonian systems.

Let N be an n-dimensional, connected, differen-
tiable manifold of class C∞ and define the associated
thermodynamic phase space T as the 1-jet bundle from
N into R. T may be identified with R × T ∗N ([5])
whose elements are denoted (x0, x, p). It has a canon-
ical contact structure defined by the contact form

θ = dx0 −
n
∑

k=1

pkdxk, (1)

where d denotes the exterior derivative. We recall the
following useful characterization of a contact form [5].

Proposition 1 A 1-form θ on a 2n + 1-dimensional

2005 International Symposium on Nonlinear
Theory and its Applications (NOLTA2005)

Bruges, Belgium, October 18-21, 2005

485



manifold is a contact form if and only if θ ∧ (dθ)n is
a volume form.

Such structures appear in the differential-geometric
representation of thermodynamic systems [6, 4]. In-
deed, x0 is associated with a thermodynamic potential,
such as the energy U , the enthalpy H , etc., and (xi, pi)
denotes the pairs of conjugated extensive and inten-
sives variables. In this case the contact form is closely
related to the Gibbs’ relation obtained from the van-
ishing of the contact form : dU = TdS−PdV +µidN i.
Actually the Gibbs’ relation corresponds to the defini-
tion of a canonical submanifold of a contact structure,
called Legendre submanifold, and playing an analogous
role as Lagrangian submanifolds for symplectic struc-
tures.

Definition 1 A Legendre submanifold of a contact
manifold (T , θ) is an n-dimensional submanifold of T
that is an integral manifold of θ.

Legendre submanifolds are locally generated by a gen-
erating function.

Theorem 1 ([1]) For a given set of canonical co-
ordinates and any partition I ∪ J of the set of in-
dices {1, . . . , n} and for any differentiable function
F (xI , pJ) of n variables, i ∈ I, j ∈ J , the formulas

x0 = F − pJ

∂F

∂pJ

, xJ = −
∂F

∂pJ

, pI =
∂F

∂xI
(2)

define a Legendre submanifold of R
2n+1. Conversely,

every Legendre submanifold of R
2n+1 can be defined in

a neighborhood of every point by these formulas, for at
least one of the 2n possible choices of the subset I.

Consider the particular case of a generating function F

which is a differentiable function on N . The Legendre
submanifold is then the set

LF :=

{

x0 = F (x), x, p =
∂F

∂x
(x)

}

. (3)

For thermodynamic systems, the generating functions
are potentials such as U , H , etc., while the associ-
ated Legendre submanifold defines the thermodynamic
properties of some system, for instance of an ideal mix-
ture of perfect gas.

Finally we recall the definition of the class of vector
fields, called contact vector fields, which preserve the
contact structure. They may be characterized using
the following result.

Proposition 2 ([5]) A vector field X on (T , θ) is a
contact vector field if and only if there exists a differ-
entiable function ρ such that

L(X) θ = ρ θ, (4)

where L(X) denotes the Lie derivative with respect to
the vector field X.

It is worth noting that the set of contact vector fields
forms a Lie subalgebra of the Lie algebra of vector
fields.

Analogously to the case of Hamiltonian vector fields,
there exists a mapping between contact vector fields
and differentiable functions on T . This mapping as-
sociates to a contact field X a function called contact
Hamiltonian. Conversely, to every function f on T
one associates a contact vector field denoted Xf and
expressed in canonical coordinates as follows

Xf =

(

f −
n
∑

k=1

pk

∂f

∂pk

)

∂

∂x0
+

∂f

∂x0

(

n
∑

k=1

pk

∂

∂pk

)

+

n
∑

k=1

(

∂f

∂xk

∂

∂pk

−
∂f

∂pk

∂

∂xk

)

.

(5)
Furthermore this mapping is an isomorphism from the
Lie algebra structure of the contact vector fields to the
Lie algebra structure on the space of contact Hamilto-
nians defined by the following bracket:

{f, g} = i([Xf , Xg])θ, (6)

where i denotes the interior product and [·, ·] is the
usual Lie bracket of vector fields.

We recall next the definition, given in [2], of a class
of systems called control contact systems which ex-
tend port-Hamiltonian systems defined with respect
to a Poisson bracket [8] and reversible thermodynamic
transformations [6] [4]. The definition of a control
contact system is obtained by augmenting the inter-
nal contact vector field with additional input vector
fields.

Definition 2 Let (T , θ) be a contact manifold and L
a Legendre submanifold. A conservative control con-
tact system on T is determined by an input space
U = R

m and input functions uj, j = 1, .., m, together
with m+1 contact Hamiltonian functions : K0 the in-
ternal contact Hamiltonian and Kj, j = 1, . . . , m the
interaction contact Hamiltonians, all satisfying the in-
variance condition : Kl|L ≡ 0, l = 0, . . . , m. The dy-
namics of the conservative control system is given by
the differential equation

d

dt
(x0, x, p)t = XK0

+
m
∑

j=1

uj XKj
. (7)

In the context of thermodynamic systems, this system
may be interpreted as follows. The Legendre submani-
fold L represents the thermodynamic properties of the
system. The internal contact Hamiltonian K0 repre-
sents the law giving the fluxes in the closed system
due to non-equilibrium conditions in the system (for
instance due to heat conduction or chemical reaction
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kinetics). Finally the interaction contact Hamiltoni-
ans Kj provide the flows due to the non-equilibrium
of the system with its environment.

The invariance condition only implies that the con-
trol contact system obeys the first principle. The
above formulation of the invariance condition comes
from the following theorem.

Theorem 2 ([6]) Let (T , θ) be a contact manifold
and L a Legendre submanifold. Then Xf is tangent
to L if and only if f is identically zero on L.

3. Port Contact Systems

In this section we recall the losslessness properties
of conservative control contact systems and the defini-
tion of port outputs conjugated to the inputs. In the
same way as for input-output and port-Hamiltonian
systems, the differential geometric structure of the
system induces the energy balance equation from
which the definition of the port-conjugated outputs
follows. However, contrary to input-output and port-
Hamiltonian systems, for conservative control contact
systems the energy balance will only be considered on
its restriction to the Legendre submanifold (where the
thermodynamic properties are satisfied).

Let us first compute the time derivative of a differ-
entiable real function V on T with respect to a con-
servative control contact system. A straightforward
calculation leads to the following balance equation [2].

dV

dt
=

m
∑

j=1

uj y
j
V + σV , (8)

where y
j
V is the V -conjugated output variable :

y
j
V = {Kj, V } + V

∂Kj

∂x0
, (9)

and σV is a source term defined by :

σV = {K0, V } + V
∂K0

∂x0
. (10)

We now define a conserved quantity for which the
source term is zero. However, there is no reason to
require the source term to be zero on the entire state
space but rather on the Legendre submanifold (see [2]
for more details and examples).

Definition 3 A conserved quantity of a control con-
tact system is a real-valued function V on T such that
σV |L = 0.

Using the definition of a port-conjugated output (9),
we are now able to define a port contact system in the
same manner as in the input-output Hamiltonian case.

Definition 4 A port contact system is a control con-
tact system (Definition 3), with the additional condi-
tion that there exists a generating function U of a Leg-
endre submanifold that is a conserved quantity (i.e.
σU|LU

= 0), completed with the U -conjugated outputs
defined in (9). The port contact system is denoted by
(N , U, Kj).

4. Interconnection of port contact systems

In this section we consider the interconnection or
composition of port contact systems. We only con-
sider, as a first step towards more general cases, the
composition by Dirac structures. Thereby we gener-
alize the composition of port-Hamiltonian systems by
Dirac structures [9] [7]. Dirac structures on a vector
space V are vector subspaces D of V × V∗ satisfying
the isotropy and co-isotropy condition D⊥ = D where

D⊥ = { (v, v∗) ∈ V × V∗ |< v∗ | v̂ > + < v̂∗ | v >= 0
∀ (v̂, v̂∗) ∈ D}

(11)
with <|> denoting the natural pairing between V and
its dual space V∗. They generalize the notions of Pois-
son as well as of pre-symplectic vector spaces. Physi-
cally they correspond to a power-continuous intercon-
nection structure appearing in the modelling of re-
versible physical systems.

In the sequel we only consider a particular Dirac
structure defined as the graph of a skew-symmetric
map J : V∗ −→ V . Consider now two differential
manifolds N1 and N2 of respective dimensions n1 and
n2, with coordinates xi = (x1

i , . . . , x
ni

i ) for i = 1, 2.
Each 1-jet space T i over Ni is endowed with a canoni-
cal contact structure whose contact form is denoted by
θi (recall that T i = R×T ∗Ni). We now construct the
composed state space in the same way. Denote by N
the whole product space, i.e. N = N1×N2. Then, the
1-jet bundle over N , called T , is also endowed with a
canonical contact form θ whose local expression is

θ = dx0 −
n1+n2
∑

j=1

pj dxj , (12)

where xj = x
j
1 and pj = p1

j if 1 ≤ j ≤ n1, else xj =

x
j−n1

2 and pj = p2
j−n1

if n1 + 1 ≤ j ≤ n1 + n2.

According to Definition 4, consider two port contact
systems (Ni, Ui, K

i
j) on T i with contact Hamiltonian

Ki defined as

Ki = Ki
0 +

ni
∑

j=1

ui
j Ki

j, (13)

satisfying the invariance condition with respect to the
conserved quantity Ui, i = 1, 2. We define the new
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(conserved) generating function U of the Legendre
submanifold of the composed state space as U1 + U2.

Denote by m the number of input variables involved
in the interconnection (m ≤ min(m1, m2)). Without
loss of generality we may suppose that the first m vari-
ables are involved in the interconnection.

Proposition 3 The composition of two port contact
systems (Ni, Ui, K

i
j)i=1,2 with respect to a Dirac struc-

ture D is the port contact system determined by the
contact Hamiltonian K = K1 + K2 and by the follow-
ing relations (determined by D) on the port-conjugated
variables

(

u1
j u2

j

)t
=

(

0 J

−J t 0

)

(

y
j
U1

y
j
U2

)t

, (14)

where J is an antisymmetric matrix of full rank m.

It is obvious to see that the invariance condition is sat-
isfied by K on LU . We now show that U is a conserved
quantity of the interconnected system thus obtained,
when restricted to the Legendre submanifold LU . In-
deed, let us compute its time-derivative

dU

dt |LU

=

m
∑

j=1

[

u
j
1{K

1
j , U1} + u

j
2{K

2
j , U2}

]

|LU

, (15)

which is zero by (14) and (9). It may be noted that
in the case when both port contact systems are lifted
port-Hamiltonian systems (in the sense of [3]) then the
composed system is the lifted port-Hamiltonian ob-
tained by the interconnection of the port-Hamiltonian
systems through the Dirac structure defined in (14).

Furthermore, the dynamics of the base variables xi

restricted to LU is

ẋi = −
∂K0,i

∂pi
− (−1)iJ yUi

∂Ki

∂pi
. (16)

This corresponds to the feedback interconnection of
the two port contact systems, restricted to LU1

and
LU2

respectively, by the modulated feedback (14).
It is important to note that this is no more true

for trajectories lying outside the Legendre submanifold
LU of the composed system. Indeed the projection
onto the x axis provides extra terms in eqn. (16).

5. Conclusions

A key property of port-Hamiltonian systems is the
fact that the interconnection of port-Hamiltonian sys-
tems defines a new port-Hamiltonian system with
Dirac structure determined by the Dirac structures
of the constituent parts and the interconnection
Dirac structure. In this paper we have shown that
the interconnection of port contact systems via a

skew-symmetric relation between the involved port-
conjugated input and output variables leads again to
a port contact system with the same structure. Obvi-
ously, this is only a first step towards a general theory
of interconnection of port contact systems. Further-
more, it is to be expected that the general interconnec-
tion of port contact systems will lead to more insight
into a full extension of the port-Hamiltonian frame-
work to the thermodynamic case.
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