

 University of Groningen

Architecture decisions
Heesch, Uwe van

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2012

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Heesch, U. V. (2012). Architecture decisions: the next step. Groningen: s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-11-2019

https://www.rug.nl/research/portal/en/publications/architecture-decisions(c1b5ccaf-897d-4242-90c3-d9ce4eccbe19).html

RIJKSUNIVERSITEIT GRONINGEN

Architecture Decisions: The next step
Understanding, modeling, supporting and reviewing architecture decisions

Proefschrift

ter verkrijging van het doctoraat in de

Wiskunde en Natuurwetenschappen

aan de Rijksuniversiteit Groningen

op gezag van de

Rector Magnificus, dr. E. Sterken,

in het openbaar te verdedigen op

dinsdag 18 december 2012

om 11:00 uur

door

Uwe van Heesch

geboren op 27 maart 1979

te Mönchengladbach, Duitsland

Promotor: Prof. dr. P. Avgeriou

Beoordelingscommissie: Prof. dr. P. Kruchten

Prof. dr. H. van Vliet

Prof. dr. C. Wohlin

ISBN: 978-90-367-5923-6

Samenvatting

Het perspectief om te kijken naar software-architectuur als het resultaat van een set ar-

chitectuurbeslissingen, wordt vandaag de dag breed gedragen onder onderzoekers. De-

salniettemin, hoewel vooruitgang is geboekt in het bepalen welke elementen een archi-

tectuurbeslissing zou moeten bevatten, is er momenteel geen algemeen geaccepteerde

aanpak voor het modelleren van deze beslissingen. Bestaande methodes houden bij de

beschrijving van een beslissing niet met alle stakeholder-belangen rekening; ze onders-

teunen het architectuurproces niet op optimale wijze en ze sluiten niet goed aan bij de

rest van de architectuurdocumentatie, die doorgaans in meerdere architectural views

wordt beschreven. Het doel van deze dissertatie is om genoemde problemen aan te

pakken door middel van een nieuwe beslissingsmodelleringsmethode. Naast integratie

in de viewpoint-gebaseerde architectuurdocumentatie, zou de modelleringsmethode

architecten moeten ondersteunen bij het nemen van beslissingen en tijdens architec-

tuurevaluaties.

Om het besluitvormingsproces te kunnen ondersteunen, moeten we eerst begrijpen

hoe beslissingen in de praktijk worden genomen en welke deficiënties in het redener-

ingsproces bestaan. Om aan dit begrip bij te dragen, rapporteert deze dissertatie over

twee surveys. Het eerste survey kijkt naar het besluitvormingsproces van laatstejaars

software engineering-studenten. De resultaten van het onderzoek worden vergeleken

met de architectuurliteratuur, om tekortkomingen in het redeneringsproces die onder-

steund zouden moeten worden door middel van systematische besluitvormingsdocu-

mentatie, te identificeren. Het tweede onderzoek kijkt naar het optimale besluitvorm-

ingsproces van professionele architecten, waaruit een set van redenerings-best-practices

wordt gedistilleerd.

Nadat we een goed beeld hebben verkregen van het besluitvormingsproces in de

praktijk, zijn we gaan kijken hoe besluitvormingsmodellering kan worden verbeterd.

Uitgangspunt was het ontwikkelen van een methode om beslissingen en de motivatie

daarachter vast te leggen, die weinig inspanning vraagt van de architect tijdens het

ontwerp-proces. Veel software-systemen zijn ontworpen aan de hand van patterns,

die veel informatie geven over de toegepaste oplossing en de motivatie daarachter in

de vorm van een probleembeschrijving en de forces die de selectie van een oplossing

beı̈nvloeden. Als een toegepast pattern kan worden geı̈dentificeerd in een architectuur-

ontwerp, dan kan een groot deel van de motivatie achter een besluit uit de pat-

ternbeschrijving worden afgeleid. Deze dissertatie beschrijft een gecontroleerd exper-

iment met mensen uit de praktijk en academici, uitgevoerd om te bekijken of een fo-

i

cus op software patterns tijdens het achterhalen van architectuurbeslissingen, tot een

hogere kwaliteit van en kwantiteit aan gevonden beslissingen leidt, in vergelijking met

dit proces zonder pattern focus. Het experiment levert statistisch significant bewijs dat

een focus op patterns de kwaliteit verhoogt, terwijl geen afdoende bewijs omtrent ver-

hoogde kwantiteit is gevonden.

Pattern-based decision recovery kan op effectieve wijze helpen om architectu-

urbeslissingen te achterhalen en te beschrijven, maar houdt geen rekening met een

aantal andere stakeholder-belangen bij het beschrijven van beslissingen. Om met deze

belangen rekening te houden, en om het modelleren van beslissingen te integreren met

andere viewpoint-gebaseerde architectuurbeschrijvingen, hebben we een beschrijvings-

framework voor architectuurbeslissingen ontwikkeld, conform de conventies van de

internationale standaard ISO/IEC/IEEE 42010. Het framework bestaat uit vijf view-

points, ieder gewijd aan verschillende stakeholder-belangen bij architectuurbeslissin-

gen. De compatibiliteit met ISO/IEC/IEEE 42010 maakt het mogelijk het framework te

combineren met andere viewpoint-gebaseerde architectuurbeschrijvingen.

In aanvulling op het gebruik voor documentatie van architectuurbeslissingen, on-

derzoekt deze dissertatie het potentieel van decision viewpoints voor het ondersteunen

van ontwerpers bij het nemen van rationele beslissingen. Daartoe is een vergelijkende

multiple-case study met vier groepen senior software engineering-studenten uitgevo-

erd. De resultaten laten zien dat studenten die decision views ontwikkelen volgens het

architectuurbeslissingsframework, meer systematisch mogelijke architectuuroplossin-

gen verkennen en evalueren dan studentgroepen die het framework niet gebruiken.

Het potentieel van decision viewpoints voor het ondersteunen van rationele

beslissingen leidt tot de aanname dat het achteraf achterhalen van decision views eval-

uatie van hoe goed besluiten aansluiten bij relevante decision forces, ondersteunt. Di-

entengevolge hebben we een architectuurevaluatiemethode ontwikkeld, die architec-

tuurbeslissingen gebruikt als primaire evaluatiedoelen. De methode, genaamd Deci-

sion Centric Architecture Review, brengt de motivatie achter de belangrijkste architec-

tuurbeslissingen aan het licht en evalueert deze, daarbij alle relevante forces die van

invloed zijn geweest in beschouwing nemende. Hierbij wordt gebruik gemaakt van

viewpoints uit het beslissingsframework om het evaluatieproces te ondersteunen. Ver-

schillende evaluaties aan de hand van de methode bij bedrijven in het distributed ma-

chine control system-domein hebben de toepasbaarheid van DCAR in grote industriële

projecten aangetoond.

Abstract

The perspective of looking at software architecture as the result of a set of architecture

decisions has gained acceptance among researchers today. Nevertheless, although no-

table progress has been made in defining which content architecture decisions should

entail, there is currently no commonly accepted approach to architecture decision mod-

eling. Existing approaches do not satisfy all stakeholder concerns in decision descrip-

tion; they do not optimally support the architecting process, and they do not integrate

well with the rest of the architecture documentation, which is usually arranged in mul-

tiple architectural views. The goal of this dissertation is to address the aforementioned

problems by means of a new decision modeling approach. Apart from integrating into

viewpoint-based architecture documentation, the modeling approach should support

architects during the process of decision-making and during architecture evaluation.

In order to support the decision-making process, we first need to understand how

decisions are made in practice, and which deficiencies exist in the reasoning process. To

contribute to this understanding, this dissertation reports on two surveys. The first sur-

vey explores the decision-making process of final-year software engineering students.

The results of the survey are compared to the architecture literature, in order to identify

shortcomings in the reasoning process that should be supported by means of system-

atic decision documentation. The second survey was conducted to explore the optimal

decision-making process of professional architects, from which we distilled a set of rea-

soning best-practices.

After gaining a good understanding of the decision-making process in practice, we

started investigating how decision modeling can be improved. We first thought about a

method to capture decisions and the rationale behind them, that does not require much

effort by the architect during the design process. Many software systems are designed

using patterns, which provide rich information about the applied solution and the ra-

tionale behind the solution in the form of a problem description and the forces that

influence the selection of a solution. If an applied pattern can be identified in an archi-

tectural design, then a great part of the rationale that went into the decision can be de-

duced from the pattern description. This dissertation describes a controlled experiment

with practitioners from industry and academia, which was conducted to find out if a

focus on software patterns during architecture decision recovery leads to higher qual-

ity and quantity of the recovered decisions, compared to recovery that is not focused

on identifying patterns. The experiment delivers statistically-significant evidence that

a focus on patterns increases the quality of recovered decisions, while no conclusive

iii

evidence concerning the quantity of recovered decisions was found.

Pattern-based decision recovery can help to recover and describe architecture deci-

sions effectively, but it does not satisfy many other stakeholder concerns in architec-

ture decision description. To address these concerns, and to integrate decision model-

ing with other viewpoint-based architecture descriptions, we developed a description

framework for architecture decisions, which follows the conventions of ISO/IEC/IEEE

42010, the international standard for (software) system’s architecture description. The

framework consists of five interrelated viewpoints, each of which being dedicated to

satisfying different stakeholder concerns in architecture decisions. The viewpoints of

the framework can be used individually, or in combination, to describe the architecture

decisions made in a software project. The framework’s compliance with ISO/IEC/IEEE

42010 allows to combine it with other viewpoint based architecture descriptions. The

framework was validated in two empirical studies, which provide evidence for the suit-

ability of decision viewpoints to satisfy typical stakeholder concerns in architecture de-

cision description.

In addition to being used for documenting architecture decisions, this dissertation

explores the potential of decision viewpoints for supporting designers in making ratio-

nal decisions. Therefore, a comparative multiple-case study was conducted with four

groups of senior software engineering students. The results show that student groups,

who create views according to the architecture decision framework, explore and evalu-

ate candidate architectural solutions more systematically than student groups who do

not use the decision framework.

The potential of decision viewpoints for supporting rational decisions lead to the

assumption that recovering decision views after-the-fact supports evaluating how well

decisions address the relevant decision forces. As a consequence, we developed an ar-

chitecture evaluation method, which uses architecture decisions as primary evaluation

targets. The method, called Decision Centric Architecture Review (DCAR), uncovers and

evaluates the rationale behind the most important architecture decisions made in a soft-

ware project, considering all relevant forces that must be addressed by the decisions. It

uses viewpoints from the decision framework to support the evaluation process. Multi-

ple executions of the method in companies from the distributed machine-control system

domain have shown the applicability of DCAR in large industrial projects.

Contents

Acknowledgements xi

I Foundations 1

1 Introduction 3

1.1 Software architecture . 4

1.2 Architecture decisions . 5

2 Research design 7

2.1 Problem Statement . 7

2.2 Design science as research methodology . 8

2.3 Practical problems and knowledge questions 9

2.4 Using empiricism to answer knowledge questions 13

2.5 Overview of this dissertation . 15

II Understanding architecture decisions 19

3 Naive architecting - understanding the decision-making process of students 21

3.1 Motivation . 21

3.2 Related Work . 22

3.3 Design of the Study . 24

3.3.1 Goal . 24

3.3.2 Study Design and Execution . 24

3.4 Analysis . 27

3.4.1 RQ1 - Architectural Analysis . 27

3.4.2 RQ2 - Architectural Synthesis . 27

3.4.3 RQ3 - Architectural Evaluation . 28

3.4.4 Open questions concerning the whole architecting process 28

3.5 Interpretation . 29

v

Contents

3.5.1 Threats to validity . 31

3.6 Conclusions and Future Work . 32

3.7 Acknowledgements . 33

4 Mature Architecting - understanding the decision-making process of archi-

tects 35

4.1 Motivation . 35

4.2 Related work . 37

4.3 Design of the study . 38

4.3.1 Goal . 38

4.3.2 Subjects and sampling . 38

4.3.3 Data collection . 40

4.4 Analysis . 42

4.4.1 Analysis RQ1 - Architectural analysis 42

4.4.2 Analysis RQ2 - Architectural synthesis 44

4.4.3 Analysis RQ3 - Architectural evaluation 45

4.4.4 Analysis of questions 17,18 and 20 in the questionnaire 45

4.5 Interpretation . 46

4.5.1 Architectural analysis . 46

4.5.2 Architectural synthesis . 47

4.5.3 Architectural evaluation . 48

4.5.4 Overall architecting process . 49

4.5.5 Threats to validity . 50

4.6 Conclusions and future work . 52

III Modeling architecture decisions 55

5 Using patterns in architecture decision recovery 57

5.1 Motivation . 57

5.2 Related work . 59

5.3 Design of the experiment . 61

5.3.1 Goal, hypotheses, parameters, and variables 62

5.3.2 Experiment design . 64

5.4 Execution . 68

5.4.1 Sample and preparation . 68

5.4.2 Data collection performed . 70

5.4.3 Validity procedure . 70

5.5 Analysis . 70

5.5.1 Descriptive statistics . 70

5.5.2 Data set reduction . 74

5.5.3 Hypothesis testing . 76

5.6 Interpretation . 76

vi

Contents

5.6.1 Evaluation of results and implications 76

5.6.2 Limitations of the study . 77

5.6.3 Lessons learned . 81

5.7 Conclusions and future work . 81

5.8 Acknowledgements . 82

6 A framework for architecture decisions 83

6.1 Introduction . 83

6.2 Concerns related to architecture decisions 85

6.3 A framework for architecture decisions . 87

6.3.1 Decision relationship viewpoint . 88

6.3.2 Decision stakeholder involvement viewpoint 89

6.3.3 Decision chronology viewpoint . 90

6.3.4 Decision detail viewpoint . 92

6.4 A case study . 94

6.4.1 Study goal, research questions and variables 94

6.4.2 Study design and execution . 101

6.4.3 Analysis . 106

6.4.4 Interpretation . 116

6.5 Related work . 119

6.5.1 Decision documentation approaches 119

6.5.2 Architecture decision views . 121

6.6 Conclusions and future work . 122

7 Forces on architecture decisions 125

7.1 Introduction . 125

7.2 A framework for architecture decisions . 126

7.2.1 ISO/IEC/IEEE 42010 . 127

7.2.2 Four viewpoints for architecture decisions 127

7.3 Decision forces viewpoint . 128

7.3.1 Forces viewpoint specification . 131

7.3.2 Stakeholder concerns versus decision forces 133

7.4 Three case studies . 134

7.4.1 Study goal and research questions 134

7.4.2 Study design and execution . 134

7.4.3 Analysis procedure and results . 138

7.4.4 Threats to validity . 142

7.5 Related work . 144

7.6 Conclusions and future work . 145

IV Supporting architecture decisions 147

8 How decision documentation affects the reasoning process 149

vii

Contents

8.1 Motivation and background . 149

8.2 Study design . 151

8.2.1 Context, research goal and conjecture 153

8.2.2 Response variables . 154

8.2.3 Case variables . 156

8.2.4 Cases, objects and subjects description 158

8.2.5 Instrumentation and data collection procedures 163

8.2.6 Analysis procedure . 165

8.3 Analysis and interpretation . 167

8.3.1 Resp1 - Identification of ASRs . 171

8.3.2 Resp2 - Requirements negotiation 171

8.3.3 Resp3 - Prioritization of requirements 173

8.3.4 Resp4 - Documentation of requirements 173

8.3.5 Resp5 - Discovery of design options 174

8.3.6 Resp6 - Balancing advantages and disadvantages of design options 174

8.3.7 Resp7 - Discussion of multiple design options in combination . . . 176

8.3.8 Resp8 - Avoidance of unnecessary complexity. 176

8.3.9 Resp9 - Validation of design options against the ASRs 177

8.3.10 Resp10 - Prototyping design options 177

8.3.11 Resp11 - Evaluation of the architecture as a whole 177

8.3.12 Variations of decision view usage 177

8.3.13 Summary of findings . 178

8.4 Validity . 180

8.4.1 Construct validity . 180

8.4.2 Internal validity . 180

8.4.3 External validity . 181

8.4.4 Reliability . 182

8.4.5 Ethical issues . 182

8.5 Related work . 182

8.6 Conclusions . 185

V Evaluating architecture decisions 187

9 Decision-centric architecture evaluation 189

9.1 Introduction . 189

9.2 Architecture Decisions . 190

9.2.1 Decision forces . 191

9.3 Introducing DCAR . 193

9.3.1 Company participants and review team 193

9.3.2 Essential steps . 193

9.4 Experiences . 198

9.5 Conclusions and Future Work . 199

viii

Contents

VI Conclusions and future work 201

10 Conclusions and future work 203

10.1 Answers to research questions and contributions 203

10.2 Ongoing and future work . 206

10.2.1 Understanding architecture decisions 206

10.2.2 Modeling architecture decisions . 207

10.2.3 Supporting architecture decisions 208

10.2.4 Evaluating architecture decisions . 208

A Appendix to Chapter 5 209

A.1 Raw data - quality ratings and decision types 210

A.2 Typical decisions recovered by the participants 214

B Appendix to Chapter 6 225

B.1 Concern analysis . 226

B.2 Decision views from the case study . 229

B.3 Viewpoint definitions and correspondence rules 231

B.3.1 Decision framework metamodel . 231

B.3.2 Decision relationship viewpoint . 232

B.3.3 Decision chronology viewpoint . 236

B.3.4 Decision stakeholder involvement viewpoint 238

B.3.5 Decision detail viewpoint . 240

B.3.6 Correspondences between viewpoints 240

B.4 Example of qualitative analysis process . 241

B.5 Question guide used during the focus group 242

C Appendix to Chapter 7 245

C.1 Integration of the forces viewpoint into the decision framework’s meta-

model . 246

C.2 Constraints for the forces viewpoint’s model kind 246

C.3 Cross-viewpoint correspondence rules . 247

D Appendix to Chapter 8 249

D.1 Question guide used during the weekly focus groups 250

D.2 Additional statistics for group assignment 250

D.3 Initial visions of the architectures . 251

Bibliography 255

Index 267

ix

Acknowledgments

Finishing a PhD thesis is not a one-man project. In the last four years, I have been

supported and inspired by so many people that I can only mention some of them here.

First of all, I would like to thank my wife Esther. Without your love, commitment,

and understanding, I could never have finished this dissertation. You have always been

a strong partner for me, who gave me back-up and support when I needed it. I thank

you for having gone this often difficult, but also great path with me, for all the sacrifices

you made in the last years, for being a devoted and loving mother for our children Leni

and Jonne, and for sharing your life with me. My parents Ursula and Wolfgang van

Heesch passed away before I started my PhD project. I wholeheartedly thank them for

everything they have done for me.

Next, I want to thank Paris Avgeriou. You are the prototype of a great PhD super-

visor. In particular, I thank you for all the time you spent on our countless meetings

and skype calls, for giving me direction when I needed it, for always pushing me to

strive for perfection, for introducing me to the right people, for standing up for me, and

for being a friend. If I ever get to supervise PhD students, I will take you as a shining

example.

Especially in the beginning of my PhD research, my namesake Uwe Zdun provided

great ideas, support, and feedback on my early work. It was inspiring to get to know

you and to collaborate with you. I also thank my colleagues and former colleagues from

the SEARCH group: Peng Liang, Neil Harisson, Trosky Callo Arias, Ahmad Waqas Ka-

mal, Klaas-Jan Stol, and Zheng Liang. Special thanks go to Matthias Galster and Dan

Tofan for reviewing many of my papers. I also thank the secretaries Desiree Hansen,

Esmee Elshof, and Ineke Schelhaas for all the friendly and reliable support in organiza-

tional matters.

I am truly thankful for the support of the Fontys Hogescholen, who provided me

with a stipend that allowed me to conduct research in parallel to my job as a lecturer. In

particular, I thank Christiane Holz, Henk van den Heuvel, and Hans Aarts for granting

me financial support. Special thanks go to each one of my colleagues and former col-

leagues in the software engineering study program for support and back-up: Richard

van den Ham, Pieter van den Hombergh, Thijs Dorssers, Ferd van Odenhoven, Marc

Dessi, Gregor Schwake, Jan Jacobs, Sander Bruinsma, Edi Klein, Cees van Tilborg, and

Jeu van Loon. Richard van den Ham deserves special acknowledgements for translating

xi

the abstract of this dissertation.

I would also like to thank the members of my reading committee, Prof. dr. Philippe

Kruchten, Prof. dr. Hans van Vliet, and Prof. dr. Claes Wohlin. I appreciate your

valuable time and comments on the thesis. My paranymphs Moritz van Heesch and

Timo Meinen deserve special thanks for assisting me during the defense ceremony.

I also appreciate the fruitful discussions and the good advice from my friends Binne

and Widura Schwittek, and Romina and Claas Rettinghausen. You guys are great con-

sultants. I thank Heinz and Heinz Bömler for letting me and my family live at such a

wonderful place, which has been a rich source of inspiration for me.

I thank all the other people who cooperated with me in the last years: Veli-Peka Elo-

ranta, Kai Koskimies, Rich Hilliard, and Antony Tang. You have certainly contributed

to the success of my research projects.

Finally, I want to thank the students who put so much effort into implementing and

improving the tool support for my research approaches. In particular Ben Ripkens,

Christian Manteuffel, Martin Verspai, Stefan Arians, and Michel de Jong.

I believe that the events of life are determined by the people we meet and accompany

for a while. I am full of appreciation for all the great people I have met. You all are

indispensable for where I am and who I am now.

Uwe van Heesch

Groningen

November 12, 2012

Part I

Foundations

Chapter 1

Introduction

The front cover of this dissertation shows a snapshot of an approximately 100-year old

building1, taken during construction work. I chose this picture to explain some of the

main problems with software architecture decisions, using an analogy to building ar-

chitecture decisions.

During the construction work shown in the picture, an intermediate floor level was

built and parts of an outer wall were replaced by floor-to-ceiling windows, to convert

parts of the building into living space. In its original form, the right part of the building

did not have any windows or intermediate floors, and multiple iron rods went through

the inside, attached to the outer walls using plate-sized metal washers and nuts. The

outer walls are up to one meter thick and get slightly thinner from the bottom to the

top of the building. The decisions to design the building this way were made by an

anonymous architect in the late 19th century.

The building used to be part of a watermill. It served as a silo, which was used to

store tons of linseed that were processed into oil. The back cover of this dissertation

shows a picture taken in that time. Without this context information, the thickness of its

walls, the iron rods, and the fact that no windows and intermediate levels were present,

can hardly be understood. The river that powered the mill was redirected in 1933; today,

there is almost no sign that the building was ever part of a watermill.

Nevertheless, when planning the construction work shown on the front cover, the

architect was confronted with the decisions of his or her predecessor. Questions like the

following came up: why are the walls so abnormally thick?; what is the purpose of the iron rods

that go through the building?; what are the consequences if the iron rods are removed? In short:

what is the rationale behind the original architect’s decisions? These questions had to be

answered before changing the architecture of the building. In this case, the thickness of

the walls can be explained by the tons of seed that pushed against the walls from inside

the silo; the iron rods and washers attached to the walls served as additional protection

against the pressure of the seeds, by holding two opposing sides of the silo together.

Thus, the changes shown on the cover picture could be made without compromising

the structural stability of the building, because the seed does not press against the walls

anymore. At the same time, the architectural impact of the changes was so huge that

the building could not be used for its original purpose again. The original architectural

integrity is destroyed.

Similar questions and problems can arise during the evolution of software systems.

1The building is part of the “Viller Mühle” complex in Goch, Germany.

4 1. Introduction

They are even more likely to arise, because software systems are substantially more

complex than the building shown on the cover. While the architecture decisions made

for the building can be understood from the fact that it was designed to be used as

a silo, software systems consist of so many intertwined architectural elements that the

rationale behind each and every one cannot be understood just by knowing the system’s

purpose. This is particularly problematic, because software is subject to continuous

change during its lifetime, for instance to maintain the system, or to adapt it to changing

requirements. A software architect, who is designing the change, might ask questions

like: what is the purpose of this component?; why was this subsystem designed like this, instead

of doing it a different, apparently more efficient way?; what are the dependencies between two

subsystems? Contemporary software architecture documentation rarely answers such

questions regarding the purpose, or the rationale of architectural elements.

The title of this dissertation is an allusion to Bosch’s position paper “Software ar-

chitecture: The next step” (Bosch 2004), in which he promotes the explicit documen-

tation of software architecture decisions as the next step in software architecture re-

search. The fundamental principle of this thesis is that the documentation of architec-

ture decisions remedies a great part of the earlier hinted problem, which Bosch refers to

as architectural knowledge vaporization (Bosch 2004). Bosch, and subsequently other

researchers in the software architecture field, have introduced the concept of archi-

tecture decisions as first-class entities in architecture description (Bosch 2004, Tyree

and Akerman 2005, Kruchten 2004a), and proposed approaches for managing and

maintaining decisions (Jansen 2008, Zimmermann, Gschwind, Küster, Leymann and

Schuster 2007, Farenhorst and de Boer 2009). As a next step in architecture decision re-

search, we need to understand better how architecture decisions are made in practice,

and how they can be modeled to integrate with other types of architectural descrip-

tion. Additionally, modeling architecture decisions can have immediate benefits for the

initial architectural design process and it can support architecture evaluation, as I will

show in the remainder of this dissertation.

This dissertation deals with architecture decisions: how they are made, how they

can be modeled to support architecture decision-making, and how they can be reviewed

efficiently. It is a next step towards tapping the full potential of architecture decisions in

the software architecture research field.

In the remainder of this chapter, I give a brief introduction to software architecture

and software architecture decisions.

1.1 Software architecture

Every software system has an architecture (Bass et al. 2003, Rozanski and Woods 2005,

Taylor et al. 2009). Yet, no agreement has been reached on how to exactly define soft-

ware architecture. The Software Engineering Institute has collected far more than 100

definitions for software architecture from the software architecture community2. Rather

2see http://www.sei.cmu.edu/architecture/start/glossary/community.cfm

1.2. Architecture decisions 5

than adding yet another definition to this long list, I briefly discuss two of the most

adopted definitions in the field.

The first definition takes a purely product-oriented perspective on architecture: “The

software architecture of a program or computing system is the structure or structures of

the system, which comprise software elements, the externally visible properties of those

elements, and the relationships among them.” (Bass et al. 2003). Software elements

can be subsystems, layers, packages, or components in the sense of component-based

software engineering, for instance. The properties of these elements, as referred to in

the definition, are behavioral properties (what the system does), and quality proper-

ties (how the system does it) (Rozanski and Woods 2005). Finally, the definition takes

into account the relationships among the software elements, e.g. how they interact, or

depend on each other.

The second architecture definition is taken from the international standard for ar-

chitecture description, ISO/IEC/IEEE 42010, which defines architecture as the “funda-

mental concepts or properties of a system in its environment embodied in its elements,

relationships, and in the principles of its design and evolution” (ISO/IEC/IEEE 2011).

This definition is wider than the previous one. Apart from elements, relationships, and

properties, it takes the principles into account that govern the design and evolution of

a system. A principle is not necessarily of technical nature. An example for a non-

technical principle could be: maximize financial benefit to the company. In contrast to the

previous definition, which considers only the end product (the software system) in the

architecture definition, ISO/IEC/IEEE 42010 acknowledges that the main propositions

that serve as the logical fundament for all decisions made during the design and evolu-

tion of the system, are also part of the system’s architecture.

In this dissertation, the second definition of software architecture is used. The next

section elaborates the concept of architecture decisions.

1.2 Architecture decisions

Long before ISO/IEC/IEEE 42010 was formulated, Perry and Wolf described the ratio-

nale that went into the various choices made in designing an architecture, as an integral

part of the architecture (Perry and Wolf 1992). Although this view was adopted by re-

searchers and practitioners (e.g. (Kruchten 1995, Garlan et al. 1997, IEEE 2000)), there

was little advice on how to preserve the rationale that went into an architecture. The fo-

cus of most architecture approaches was on documenting architectural design elements,

often manifested in architectural views.

Starting in 2004, the rationale that went into the architectural choices came into

the focus of software architecture research. In his previously mentioned position pa-

per “Software Architecture: The Next Step”, closely followed by Tyree, Akerman, and

Kruchten (Tyree and Akerman 2005, Kruchten 2004a), Bosch suggested to treat architec-

ture decisions as first-class entities in software architecture representation (Bosch 2004).

Architecture decision representations were primarily introduced to avoid the loss of

6 1. Introduction

information about decisions and the decision-making process, e.g. patterns or archi-

tectural styles that were applied, problems that had to be solved, considered alterna-

tives, addressed requirements, and which implications a decision has. This information

has been considered vital to ease the communication between stakeholders (Tyree and

Akerman 2005), and also particularly during system evolution, to make sure that ear-

lier decisions are not violated (Bosch 2004). Since then, the management of architectural

knowledge, including architecture decisions as a major part, has been investigated by

many researchers in the software architecture field, e.g. (Jansen 2008, Farenhorst and

de Boer 2009, Clerc 2011). Since 2006, the annual workshop on SHAring and Reusing

architectural Knowledge (SHARK Workshop 2012) takes place to advance architecture

knowledge management approaches in practice and academia.

This dissertation follows up on the idea of treating architecture decisions as first-

class entities in architecture description. After analyzing how architecture decisions are

made in practice, it illustrates a way to practically realize decision description as part

of a software architecture. Finally, it shows that decision modeling can support the

architectural design process and architecture evaluation.

Chapter 2

Research design

This chapter presents the main problem addressed in the dissertation, the research

methodology used, and the research questions dealt with. Additionally, the usage of

empirical research methods in this research project is discussed.

2.1 Problem Statement

Other researchers have made great progress in describing architecture decisions (Tyree

and Akerman 2005, Kruchten 2004a, Jansen 2008) and different approaches and tools

were proposed to model and manage architecture decisions, e.g. by Jansen et al. (Jansen,

de Vries, Avgeriou and van Veelen 2008), Capilla et al. (Capilla et al. 2007), Tang et

al. (Tang et al. 2007), Zimmermann et al. (Zimmermann et al. 2008), and Fahrenhorst

and van Vliet (Farenhorst and van Vliet 2009). All these approaches and tools satisfy

some stakeholder concerns in architecture decision modeling and documentation (Ap-

pendix B.1 presents a comprehensive list of decision-related concerns), but none of them

satisfies all. As an example, the decision documentation template proposed by Tyree

and Akerman (Tyree and Akerman 2005) is a good way of documenting the rationale

behind a single architecture decision, but it is ineffective for getting an overview over

all decisions made, or for performing impact analyses. On top of that, with few excep-

tions, such as the decision view proposed by Kruchten, Capilla, and Dueñas (Kruchten

et al. 2009), most approaches to architecture decision documentation do not integrate

well with other types of architecture descriptions (Tang, Avgeriou, Jansen, Capilla and

Ali Babar 2010), which are typically organized using different architectural viewpoints.

Apart from preserving information about the architecture decisions made, e.g. for

later analysis during architecture evolution, architecture decision modeling should sup-

port architectural design activities. By architectural design activities, I refer to architectural

analysis, architectural synthesis, and architectural evaluation, as defined in Hofmeister

et al.’s general model of architecture design (Hofmeister et al. 2007).

The following statement summarizes the previously mentioned problems. It is the

basis for the research questions described in Chapter 2.3:

“Existing architecture decision modeling approaches do not satisfy all stakehold-

ers’ concerns, they do not integrate with viewpoint-based architecture descriptions, and

they do not optimally support architectural analysis, architectural synthesis, and archi-

tectural evaluation.”

8 2. Research design

2.2 Design science as research methodology

The research project, documented in this dissertation, adopts the design science frame-

work described by Wieringa (Wieringa 2009). Design science is a technology-oriented

discipline that seeks to create or improve “things” that serve human purposes (March

and Smith 1995, Wieringa 2009). In the original definition, design science comprises two

central activities: building and evaluating for the purpose of contributing to a domain’s

knowledge base. Building refers to the construction of an artifact for a specific human

purpose; evaluation determines how well the artifact suits this purpose (March and

Smith 1995). Wieringa’s framework contains the additional activity problem investiga-

tion; it seeks to understand the given problem without changing it yet (Wieringa 2009).

Although design science originated from the information systems field (March and

Smith 1995), it is not limited to this domain. In fact, the design science cycle, which

is comprised of the three activities problem investigation, building, and evaluation, is

very similar to the software architecture design process. According to Falessi et al.,

software architecture design includes the activities understand the problem, find a solution

for the problem, and evaluate the solution (Falessi et al. 2010). Hofmeister et al. refer to the

same activities as architectural analysis, architectural synthesis, and architectural evaluation

(Hofmeister et al. 2007).

Design Science

Practical

 problems

Knowledge

questions

Figure 2.1: Design science framework adopted from Wieringa (Wieringa 2009)

Figure 2.1 conceptualizes the design science framework developed by Wieringa, as

a refinement of Hevner et al.’s framework (Hevner et al. 2004). Design science is inher-

ently practice-oriented, taking needs from the environment as a starting point. Wieringa

distinguishes two types of topics, design science deals with: practical problems, and

knowledge questions. A practical problem is defined as “a difference between the way

the world is experienced by stakeholders and the way they would like it (the world) to

be”; a knowledge question is “a difference between current knowledge of stakeholders

about the world and what they would like to know” (Wieringa 2009).

An example of a practical problem in the software architecture domain could be: de-

sign an architecture description language (ADL) for distributed machine-control systems. It is

a practical problem, because its aim is to change the world by creating something new;

however, it also implicitly entails at least two knowledge questions: what are the stake-

holders’ concerns in the ADL to be designed?; and for evaluation purposes: does the designed

ADL satisfy the stakeholders’ concerns? These are knowledge questions, because they do

2.3. Practical problems and knowledge questions 9

not aim at changing the world, but at changing the knowledge about the world. This is

one example for the nested nature of practical problems and knowledge questions, as

also expressed in Figure 2.1.

Design science projects seek to solve existing practical problems from the environ-

ment. In order to achieve that, they either apply knowledge from a domain’s knowl-

edge base to answer knowledge questions; or, by conducting original research, they

contribute to the knowledge base of a domain.

Design science is iterative: The researcher analyzes a practical problem from the en-

vironment, proposes a solution, evaluates the solution, and then starts over again. The

analysis of a practical problem, and the evaluation of the solution are both knowledge

questions. Design science researchers refer to these iterative activities as design cycle

(Hevner 2007). The repetitive rounds through the cycle stem from the fact that the eval-

uation activity may uncover that aspects of the original problem were not addressed, or

additional practical problems or knowledge questions could emerge.

The design science framework is particularly suitable for describing long-term re-

search like PhD projects, because it allows to present the evolution of research questions

and solutions at the same time. While a PhD project has an initial problem statement as

a starting point, more concrete research questions usually emerge when the researcher

gains a deeper understanding of the problem and develops partial solutions, which in

turns lead to new research questions. In the following section, this PhD project is de-

scribed using Wieringa’s design science framework (Wieringa 2009).

2.3 Practical problems and knowledge questions

This section explains the practical problems and knowledge questions addressed in this

PhD project, and how they emerged from each other. Figure 2.2 visualizes the prob-

lems and questions; grey boxes represent knowledge questions, white boxes represent

practical problems. Furthermore, hollow arrows denote sequence, solid arrows denote

decomposition. In the remainder of this section, I refer to both practical problems and

knowledge questions as research questions. The research questions are labeled with

numbers from one to five. With the exception of number four, each research question is

decomposed into two to four sub-questions, labelled with letters from a to d.

The problem statement in Section 2.1 describes that contemporary decision model-

ing approaches do not satisfy all stakeholder’s concerns, do not integrate in viewpoint-

based architecture descriptions, and that they do not support architecture activities. Be-

fore we looked into ways on how to improve decision modeling approaches in order

to address these problems, we first had to understand how decisions are really made.

Therefore, RQ 1 (How are ADs made?) is concerned with finding out how architecture

decisions are made in practice, i.e. how architects reason and which deficiencies exist

in the reasoning process of inexperienced designers. RQ 1 is decomposed into two sub-

questions. In order to explore the innate decision-making process, which is unbiased by

architecting approaches and company policies, in RQ 1.a (How do students make ADs?),

10 2. Research design

Figure 2.2: Research questions addressed in this research project

we studied the most inexperienced subjects from the target population: final-year soft-

ware engineering students. Studying beginners helped us to identify problems and

shortcomings in the decision-making process. RQ 1.b (How do professionals make ADs?)

explored the professional decision-making process by investigating how architects from

the industry make decisions.

After gaining a good understanding of the decision-making process, including typi-

cal shortcomings, we started addressing the problem of how architecture decision mod-

2.3. Practical problems and knowledge questions 11

eling can be improved in a way that it integrates in viewpoint-based architecture de-

scription, while satisfying all stakeholders’ concerns in decision description. Hence,

RQ 2 is How to improve the way ADs can be modeled? Following Wieringa’s classification

(Wieringa 2009), RQ 2 is a practical problem. It requires a change in the world, rather

than a change in knowledge. RQ 2 is decomposed into four sub-questions RQ 2.a -

RQ 2.d.

As a first attempt to make architecture decision modeling more efficient, we thought

about a method to capture decisions and the rationale behind them in a way that re-

quires less effort by the architects than filling in decision templates during the architect-

ing process. Inspired by Harrison et al. (Harrison et al. 2007), who describe the benefits

of using software patterns to capture architecture decisions, we dealt with the question

if decisions can be effectively recovered by focussing on identifying applied patterns

in an architecture. Many software systems are designed using patterns, which provide

rich information about the applied solution and the rationale behind the solution in the

form of a problem description and the forces that influence the selection of a solution.

If an applied pattern can be identified in an architectural design, then a great part of

the rationale that went into the decision can be deduced from the pattern description.

Therefore, we hypothesized that a pattern focus during architecture decision recovery

significantly increases the quality and the quantity of recovered architecture decisions,

compared to decision recovery that has no special focus (RQ 2.a).

Although patterns can be used to recover and describe architecture decisions effec-

tively, many other concerns in decision modeling remained unaddressed. As a conse-

quence, we decided to develop a new architecture decision modeling approach to solve

the central research problem stated in Section 2.1. RQ 2.b - RQ 2.d refer to the three

design science activities problem investigation, building, and evaluation. RQ 2.b (What

are the stakeholder concerns in decision modeling approaches?) is the problem investigation;

RQ 2.c (Design an AD modeling approach that meets the SH concerns) refers to the building

activity; and RQ 2.d (Is the AD modeling approach valid?) refers to the evaluation activ-

ity. As a result of RQ 2, we created a framework for architecture decisions, which can

be used to model ADs using multiple viewpoints, each of which addressing specific

stakeholder concerns.

The evaluation of the framework in RQ 2.d (Is the AD modeling approach valid?) pro-

vided evidence that the viewpoints satisfy most of the concerns identified as a result

of RQ 2.b (What are the stakeholder concerns in decision modeling approaches?), but at the

same time it became evident that concerns related to decision-requirements traceabil-

ity and concerns related to decision-design traceability could not be addressed by the

framework. Decision-requirements traceability is the subject of RQ 3, which is a prac-

tical problem concerned with the extension of the decision modeling framework to sat-

isfy concerns related to decision-requirements traceability; decision-design traceability

is subject to our ongoing research described in Section 10.2.

In the studies conducted to find out how ADs are made in practice (RQ 1), we had

found out that architecture decisions are not only driven by requirements, but also by

additional influencing factors, e.g. the development team’s previous experience with

12 2. Research design

specific architectural solutions. To acknowledge this finding, we extended RQ 3 by ad-

dressing decision-force traceability rather than only addressing decision-requirements

traceability. Decision forces capture any non-trivial impact on an architect when mak-

ing decisions. Thus, even though all architecture-significant requirements are decisions

forces, there are numerous other kinds of forces. Decision forces are discussed in detail

in Chapter 7. According to the design science cycle, RQ3 is decomposed into a building

activity (RQ 3.a: Design a decision viewpoint dedicated to decision-force traceability), and an

evaluation activity (RQ 3.b: Is the decision-forces viewpoint valid?). In this case, the prob-

lem investigation had already taken place as part of RQ 2.d (Is the AD modeling approach

valid?).

Apart from decision-design traceability, the developed framework for architecture

decisions, and the additional viewpoint for decision-force traceability, satisfy all previ-

ously identified stakeholder concerns in decision modeling. In RQ 4 and RQ 5, we exam-

ined if decision viewpoints can also support architectural analysis, synthesis, and eval-

uation, as described in the problem statement in Section 2.1. In RQ 4, we investigated if

architecture decision modeling, using our decision framework and the forces-viewpoint

extension, can support more rational decision-making regarding architectural analysis

and architectural synthesis. The evaluation of the forces viewpoint in RQ 3.b (Is the

decision-forces viewpoint valid?) had already given us first indications for the supportive

effect of decision view modeling on the decision-making process.

The results from RQ 4 showed that the decision framework and the forces viewpoint

provided at least partial support for architectural analysis and architectural synthesis.

Architecture evaluation is addressed in RQ 5, which is a practical problem concerned

with the question how architecture evaluation can be supported by means of decision

models. We started from the premise that recovering decision views after-the-fact can

support evaluating how well decisions address the relevant decision forces. The valida-

tion of the decision framework (RQ 2.d: Is the AD modeling approach valid?) had shown

us already that particularly the decision relationship viewpoint provides support for

architecture reviews, as it was found to be well suited for identifying important and

critical decisions, performing impact analyses, and finding dependencies between deci-

sions. As a result, in order to answer RQ 5, we used the decision relationship viewpoint

and the decision detail viewpoint for performing systematic architecture evaluation us-

ing ADs as primary targets of the evaluation. The concept of forces, which was devel-

oped as part of RQ 3 (How to extend the AD modeling approach to satisfy concerns related

to decision-force traceability?), and which played an important role in the results of RQ 4

(Does modeling ADs using viewpoints lead to more rational ADs?), was adopted as a central

concept for capturing and evaluating the rationale that went into the architecture deci-

sions under examination. The answer to RQ 5 is an architecture evaluation approach

that overcomes some of the limitations of existing evaluation approaches, by using de-

cision viewpoints and forces as central concepts.

This section outlined the thread of research questions addressed in this dissertation.

The answers to the research questions contribute to the software architecture knowledge

base (see Figure 2.1); furthermore, the answers to each question were used as input for

2.4. Using empiricism to answer knowledge questions 13

the subsequent research questions, as described in this section.

2.4 Using empiricism to answer knowledge questions

The previous section summarized the research questions addressed in this dissertation.

As the overview of research questions in Figure 2.2 shows, the majority of research (sub-

) questions, we dealt with, fall into the category of knowledge questions. In contrast to

practical problems, which cause a change in the world, knowledge problems seek to

provide knowledge relevant to a particular subject domain (Wieringa 2009). In this

section, I discuss the usage of empiricism to answer the stated knowledge questions.

Compared to its use in other disciplines, like medicine or social sciences, the use of

empiricism is rather novel in the software engineering and software architecture fields.

Nevertheless, it has been suggested as a means to evaluate and understand methods,

processes, techniques, and tools we develop and use, by many researchers in the field,

e.g. by (Perry et al. 2000, Wohlin et al. 2012, Kitchenham et al. 2002).

In spite of the fact that the software engineering discipline is lacking commonly

accepted guidance on how to rigorously conduct different types of scientific studies

(Shaw 2002), a number of guidelines have been published, particularly for empiri-

cal research in software engineering (Wohlin et al. 2012, Wohlin et al. 2003, Höst and

Runeson 2007, Easterbrook et al. 2008). In the following, we describe the empirical

methods covered by these guidelines, and the criteria that should be taken into consid-

eration when selecting between them.

Experiment: Experiments are particularly suitable for establishing cause-effect rela-

tionships between multiple study variables (Wohlin et al. 2003). They require

the specification of one or more hypotheses, tested in a controlled environ-

ment, in which confounding factors can be eliminated to the best possible degree

(Easterbrook et al. 2008, Wohlin et al. 2012). Experiments are usually conducted to

confirm the researcher’s view on contemporary events (Yin 2003).

Survey: Surveys are suitable for investigating broad subject populations (Easterbrook

et al. 2008). They are usually conducted using individual interviews, group inter-

views, or questionnaires as data collection methods. Depending on the concrete

research design, surveys can deliver qualitative or quantitative data, be descrip-

tive, explanatory, or explorative (Wohlin et al. 2012, Wohlin et al. 2003). In contrast

to experiments, surveys do not require control over behavioral events (Yin 2003),

but they bare the risk of sampling bias, if the researcher selects subjects that are

likely to confirm his or her research conjecture, rather than striving for a sample

that is representative for the target population. The thorough design of questions

is important in surveys. Badly designed or indicative questions are threats to the

internal validity of the survey results (Easterbrook et al. 2008).

Case study: Case studies are suitable for investigating contemporary phenomena in

their real-life context. They enable the researcher to gain a deep understanding of

14 2. Research design

the case under study (Easterbrook et al. 2008). Case studies are mostly explorative

in nature, answering how and why questions (Yin 2003, Easterbrook et al. 2008).

Like surveys, they do not require control over behavioral events. Case studies

are easier to plan than experiments or surveys, but they are also more difficult to

generalize, as the subject population is usually small and confounding factors can

hardly be eliminated (Wohlin et al. 2012, Wohlin et al. 2003).

Kitchenham et al. describe a variant of case study research, we refer to as compar-

ative case studies, used for method and tool evaluation (Kitchenham et al. 1995).

They combine experiments, which are usually the first choice for confirmative re-

search questions, with the advantages of case studies, which allow to gain a more

holistic view of a phenomenon in its natural environment (rather than a laboratory

environment). Yet, as Kitchenham et al. point out, single case studies are inappro-

priate for doing comparisons, because they are lacking a reference that can be used

as a basis for the comparison (Kitchenham et al. 1995). Therefore, Kitchenham et

al. propose a study design that relies on multiple case studies, in which the results

of a subset of the cases serve as a baseline for the comparison, while the tool or

method under evaluation is only applied in the rest of the cases.

Grounded theory: Grounded theory is an empirical research method that generates

theories, mainly from qualitative data (Glaser and Strauss 1967). When applying

grounded theory, and its associated constant comparative method (Glaser 1965),

the researchers develop theories about phenomena exclusively based on the col-

lected data, following a rigorous analysis process, in which temporary theories

that emerged from pieces of collected data are constantly checked against the rest

of the collected data. Thus, grounded theory is inherently explorative. Using

grounded theory, the researchers are not looking for evidence supporting previ-

ously formulated theories, but they seek to produce new theories. Used as a data

analysis method, grounded theory can be combined with the previously men-

tioned research methods, as long as the collected data holistically captures the

phenomenon under study and was not pre-filtered, e.g. with respect to specific

research questions.

Compared to experiments, surveys and case studies, grounded theory is rarely

used in software engineering research. Nevertheless, recent studies have demon-

strated the applicability of grounded theory in this field (Urquhart et al. 2010,

Adolph et al. 2011), as well.

Each of the empirical methods, described above, was used to answer specific knowledge

questions posed in this research project. With the exception of grounded theory, the

methods listed above are currently the most prevalent empirical methods used in soft-

ware engineering research. Other methods like action research (Avison et al. 1999, East-

erbrook et al. 2008) and ethnography (Sharp et al. 2010) have also been suggested for

use in software engineering. Yet, they did not serve the purposes of the knowledge

questions we identified.

2.5. Overview of this dissertation 15

Table 2.1: Empirical methods used to answer the knowledge questions

Code Knowledge question Empirical method Described in

RQ 1.a How do students make ADs? Survey Section 3.3.2

RQ 1.b How do professionals make

ADs?

Survey Section 4.3

RQ 2.a Is a focus on patterns beneficial

for AD recovery?

Controlled experi-

ment

Section 5.3

RQ 2.b What are the SH concerns in AD

modeling approaches?

Literature review Appendix B.1

RQ 2.d Is the AD modeling approach

valid?

Case study Section 6.4

RQ 3.b Is the decision-forces viewpoint

valid?

Multiple-case

study, grounded

theory

Section 7.4

RQ 4 Does modeling ADs using view-

points lead to more rational

ADs?

Comparative case

studies, grounded

theory

Section 8.2

RQ 5.a What are the limitations of exist-

ing architecture evaluation ap-

proaches?

Literature review Section 9.1

RQ 5.c Is the developed AD-centric

evaluation approach valid?

Survey Section 9.4

Table 2.1 shows which research methods were used for the knowledge questions

described in Figure 2.2. Additionally, it contains references to the sections in this dis-

sertation, where the study design using the respective method is described. It must

be noted that the literature reviews conducted to answer RQ 2.b and RQ 5.a were not

systematic, but covered only sources we regarded as particularly important.

2.5 Overview of this dissertation

This dissertation is divided into multiple parts. The first part, Foundations, includes the

introduction to software architecture and architecture decisions, as well as the research

design, which were presented earlier in this chapter. The main body of the dissertation

contains four additional parts: Understanding ADs, Modeling ADs, Supporting ADs, and

Evaluating ADs. Table 2.2 shows the research questions and the chapters, in which they

are addressed.

Chapters three to nine are based on scientific journal or conference articles, which are

either published, or currently under revision. In the following, each chapter is briefly

outlined.

Chapter 3 is based on a long, peer-reviewed conference paper in the proceed-

16 2. Research design

Table 2.2: Overview
Research question Chapter

Part 1: Understanding architecture decisions

RQ1: How are ADs made?
Chapter 3

Chapter 4

Part 2: Modeling architecture decisions

RQ 2: How to improve the way ADs can be modeled?
Chapter 5

Chapter 6

RQ 3: How to extend the AD modeling approach to satisfy

concerns related to decision-force traceability?

Chapter 7

Part 3: Supporting architecture decisions

RQ 4: Does modeling ADs using viewpoints lead to more

rational ADs?

Chapter 8

Part 4: Evaluating architecture decisions

RQ 5: How to support architecture evaluation using AD

models?

Chapter 9

ings of the fourth European Conference on Software Architecture (van Heesch and

Avgeriou 2010). The chapter reports on a study conducted with students to understand

their innate reasoning process during architectural design. Chapter 4 is based on a long,

peer-reviewed conference paper in the proceedings of the ninth Working IEEE/IFIP

Conference on Software Architecture (van Heesch and Avgeriou 2011). The chapter de-

scribes a survey, conducted with industrial software architects, to find out how they

reason when making architecture decisions in real software projects.

Chapter 5, based on a peer-reviewed journal publication in Science of Computer Pro-

gramming (van Heesch, Avgeriou, Zdun and Harrison 2012), is a joint work with Uwe

Zdun and Neil Harrison. The chapter describes a controlled experiment conducted to

find out if a focus on identifying applied patterns during architecture decision recovery

leads to higher quality and quantity of recovered ADs. I was the lead author in this

publication and designed the entire study upfront. The co-authors assisted during the

execution of the study, contributed with ideas, and reviewed the manuscript.

Chapters 6 and 7 are a joint work with Rich Hilliard. Chapter 6 presents a documen-

tation framework for architecture decisions using the conventions of ISO/IEC/IEEE

42010 (ISO/IEC/IEEE 2011). It is based on a peer-reviewed publication in the Journal

of Systems and Software (van Heesch, Avgeriou and Hilliard 2012a). Chapter 7 presents

an extension to this work, an architectural viewpoint dedicated to architecture decision -

forces traceability. It is based on a peer-reviewed long conference paper in the Joint 10th

Working IEEE/IFIP Conference on Software Architecture & 6th European Conference

on Software Architecture (van Heesch, Avgeriou and Hilliard 2012b). Apart from being

the lead author of both publications, I developed the entire decision viewpoint frame-

work and designed the empirical studies conducted. The co-authors of the publications

contributed with ideas and reviewed the manuscripts.

2.5. Overview of this dissertation 17

Chapter 8, which is in revision for the Journal of Systems and Software, presents a

comparative multiple-case study, conducted to find out if modeling ADs, using archi-

tecture decision viewpoints, supports senior software engineering students in following

a rational design process. The chapter is a joint work with Antony Tang. Apart from be-

ing the lead author, I designed the entire study. The co-authors contributed with ideas

and assisted during the data analysis.

Chapter 9 describes a decision-centric architecture review method, which was devel-

oped together with Veli-Pekka Eloranta, Kai Koskimies, and Neil Harrison. The chapter

is currently in revision for the IEEE Software Magazine. Veli-Pekka Eloranta and myself

are the lead authors of this publication. Apart from this, all authors contributed equally

to the development of the method.

The dissertation ends with Part 5, Reflection and Conclusions. It summarizes the an-

swers to the research questions raised in Section 2.3 and outlines areas of ongoing and

future work.

Part II

Understanding architecture decisions

Based on: U. van Heesch and P. Avgeriou – “Naive architecting-understanding the reasoning process of
students: a descriptive survey”, Proceedings of the 4th European conference on Software architecture, pp.
24-37, 2010.

Chapter 3

Naive architecting - understanding the
decision-making process of students

Abstract

Software architecting entails making architecture decisions, which requires a lot of experi-

ence and expertise. Current literature contains several methods and processes to support

architects with architecture design, documentation, and evaluation, but not with the design

reasoning involved in decision-making. In order to derive a systematic reasoning process,

we need to understand the current state of practice and propose ways to improve it. In this

chapter, we present the results of a survey that was conducted with undergraduate software

engineering students, aiming to understand the innate reasoning process during architect-

ing. The results of the survey are compared to the architecture literature, in order to identify

promising directions towards systematic reasoning processes.

3.1 Motivation

One of the responsibilities of software architects is to make decisions, which are usually

called architecture decisions (Bosch 2004, Jansen and Bosch 2005, van der Ven, Jansen,

Nijhuis and Bosch 2006) and determine the overall structure and behavior of the sys-

tem. Making architecture decisions involves understanding and addressing relevant

requirements, business goals and issues, identifying and choosing among alternative

solutions, while adhering to constraints and mitigating risks. Architecture decisions

form the basis for all other detailed decisions and are crucial for the success or failure of

the whole project. This decision-making process is one of the major challenges during

architecting, since it requires a lot of experience and expertise by the architect.

Various methods exist to support software architects in their work. Hofmeister et

al. derived a common model for architecture design from five industrial approaches

(Hofmeister et al. 2007), including the Rational Unified Process (Kruchten 2004b) and

Attribute-Driven Design (Bass et al. 2003). Other approaches deal with documenting

the architecture in terms of multiple architectural views or with the help of architec-

ture frameworks (IEEE 2000, Clements et al. 2010, Kruchten 1995). Furthermore, dif-

ferent methods exist to support the systematic evaluation of architectures (Kazman

et al. 2000, Kazman et al. 1994, Williams and Smith 2002). More recently, some ap-

proaches proposed the documentation of the actual decisions as first-class entities by

defining their attributes and relations (Bosch 2004, Tyree and Akerman 2005). How-

ever, all of these approaches deal with the core part of architecting: prioritizing ar-

22 3. Naive architecting - understanding the decision-making process of students

chitecturally significant requirements, selecting architecture patterns, styles and tactics,

partitioning the system into components and connectors, assessing the design and doc-

umenting the result with architectural views, frameworks and architecture description

languages. In contrast, there has been very little research on the reasoning part of the

decision-making process; one can only find fragments about sound reasoning in the

literature.

Recent work emphasizes the importance of design reasoning and design rationale

(Bosch 2004, Tang et al. 2006). Ideally, a systematic reasoning process can shorten the

gap between experienced and inexperienced architects: design reasoning can support

designers step-by-step in making sound decisions and subsequently documenting the

rationale behind them as first class entities. However, so far architects are not trained on

how to reason: making architecture decisions is often described as an ad-hoc creative

process (Bosch and Molin 1999, Zdun 2007, Zimmermann et al. 2008) that relies heavily

on the personal experience and expertise of the architect. Research is required to ex-

plore the current state of practice in design reasoning and subsequently to find ways to

enhance it.

Our work is towards this direction: investigating how the reasoning process takes

place and identifying potential areas for improvement. This can be done either by

studying beginners (bottom-up), or experienced architects (top-down). The former case

allows to establish the baseline reasoning process that is based on common sense instead

of experience. The latter case allows to discover best practices in successful architecting

examples and to synthesize them into an ideal reasoning process. Eventually, one can

propose an approach to close the gap between the baseline and the ideal process and

package it appropriately to train current or future architects.

This chapter deals with the former case; the latter case is presented in Chapter 4.

In particular, we have studied the most inexperienced subjects: software engineering

students. We asked 22 students to design an architecture for a large web application.

After that, the students were interviewed about the way they thought and acted to come

up with a software architecture. As a result, we identified the basic reasoning process

of inexperienced designers, which we compared to established architecting processes in

the literature, in order to come up with promising directions for improvement.

The rest of this chapter is organized as follows. Section 3.2 presents related work. In

Section 3.3, the design of the study is introduced. The next section presents an analysis

of the results, which are interpreted in Section 3.5. The chapter ends with conclusions

and directions for further work.

3.2 Related Work

The survey presented in this chapter is related to the software architecture research

field, namely architecting processes, architecting practice in the industry, and design

reasoning.

Hofmeister et al. derive a general model of architecture design from five industrial

3.2. Related Work 23

approaches (Hofmeister et al. 2007). They identify the following common activities: ar-

chitectural analysis is concerned with identifying architecturally significant requirements

from architectural concerns and system contexts; architectural synthesis is the activity of

finding candidate solutions for architecturally significant requirements; architectural

evaluation makes sure that the candidate solutions are the right ones.

Jansen et al. specialize this generic model from the perspective of architecture de-

cisions (Jansen, Bosch and Avgeriou 2008). They describe the architecting process as a

cycle of activities that are followed iteratively until the architecture is complete. In ac-

cordance with Hofmeister et al.’s categorization, in architectural analysis, the problem

space is scoped down to problems that can be solved by single architecture decisions.

Candidate decisions are proposed during architectural synthesis, while decisions are

chosen during architectural evaluations, which also entails modifying and describing

the architecture in multiple architectural views. In addition to Hofmeister et al.’s ap-

proach, which focuses mainly on architecting activities and artifacts, Jansen et al. indi-

cate reasoning processes within the activities.

Various studies have attempted to define the role of software architects in the in-

dustry (Kruchten 1999, Clerc et al. 2007, Hoorn et al. 2011, Kruchten 2008, Clements

et al. 2007). Clerc et al. have conducted survey-based research (Clerc et al. 2007) to gain

insights in the daily working processes of architecture practitioners. They found out

that architecture use cases (van der Ven, Jansen, Avgeriou and Hammer 2006) concern-

ing risk assessment and requirements trade-off analysis are not regarded as particularly

important by the architects. In contrast, use cases concerned with requirements, ar-

chitecture design and implementation, and the traceability among these were rated as

important. The authors reckon that the architects’ workflow follows a linear approach

to designing architecture that satisfies the requirements subsequently.

In a different survey, Hoorn et al. (Hoorn et al. 2011) describe that more experienced

architects, in terms of working years, are more often involved in auditing activities and

quality assurance. Kruchten defines the typical roles and responsibilities that architects

should take in software projects (Kruchten 2008). Besides making architecture decisions,

other central activities of architects include maintaining the architectural integrity, risk

assessment and risk mitigation.

Finally, Clements et al. compare duties, skills, and knowledge of software archi-

tects from the perspectives of literature, education and practice (Clements et al. 2007).

They found that architecture evaluation and analysis are regarded as less important

in architecture practice, whereas knowledge of technologies and platforms, as well as

technology-related duties are regarded more important in architecture practice than in

the literature and education. We will revisit these results on architecting practice and

relate them to our findings in Section 3.6.

The significance of design reasoning in software architecture has been recently em-

phasized. Tang and Lago describe design reasoning tactics (Tang and Lago 2010) to sup-

port architects in structuring architectural problems and extracting design issues. In his

previous work, Tang declares the importance of design reasoning and design rationale

in the area of software architecture (Tang et al. 2006, Tang et al. 2008). It supports archi-

24 3. Naive architecting - understanding the decision-making process of students

tects in making well-founded decisions and provides guidance to explore and manage

the solution space. They state that the use of a reasoning approach significantly im-

proves the quality of architectural design, especially for inexperienced architects (Tang

et al. 2006).

3.3 Design of the Study

3.3.1 Goal

The goal of the study is to get insight into the innate reasoning that students follow

while they are architecting. To make this goal more concrete, we need to consider the

fundamental reasoning activities that take place during the architecting process. As a

reference architecting process, we use the one defined by Jansen et al. (Jansen, Bosch

and Avgeriou 2008), which explicitly takes into account the reasoning aspects and maps

onto the process of Hofmeister et al. (see Section 3.2). We thus refine our research goal

into the following three research questions:

RQ1: How do students scope and prioritize the problem space during architectural

analysis?

RQ2: How do students propose solutions during architectural synthesis?

RQ3: How do students choose among solutions during architectural evaluation?

RQ1 is concerned with finding out how students scope and prioritize requirements

and issues to define concrete problems that are small enough to be addressed by sin-

gle architecture decisions. RQ2 applies to finding candidate solutions based on the

problems identified in the previous step. Finally, the aim of RQ3 is to discover how

students make choices between the candidate solutions and how they evaluate their

choices with respect to previously made decisions. It is noted that the requirements

engineering activity, though closely related, was performed before the architecting pro-

cess and is therefore out of the scope of this study. An initial set of requirements was

made available to the students. Furthermore, the activity of modifying and describing

the architecture (see (Jansen, Bosch and Avgeriou 2008)) was omitted, because of time

constraints in conducting the study.

3.3.2 Study Design and Execution

To find answers to the research questions, a descriptive survey (Wohlin et al. 2003) was

conducted with students from the seventh semester, in a four-year software engineer-

ing program of study at the Fontys University of Applied Science in Venlo, The Nether-

lands. At that time, the students had at least 3 years of object-oriented programming

experience from small software development projects within the study program. Some

of them had additional experience from side jobs. They had followed two lectures (three

3.3. Design of the Study 25

hours in total) specifically on software architecture. The following topics were covered

in this course: the 4+1 architectural views (Kruchten 1995), the recommended prac-

tice for architectural description of software-intensive systems (IEEE 2000), the concept

of architecture decisions mainly using the template by Tyree and Akerman (Tyree and

Akerman 2005), and software architectural patterns (Buschmann et al. 1996). In total, 22

students took part, who were divided into 11 pairs.

To produce an architecting experience, we asked the students to create the software

architecture of a non-trivial software system (later referred to as phase one). Right after

that, the students were asked to fill in a questionnaire, in order to report about their

individual architecting experiences (phase two). The questionnaire was designed and

evaluated according to the guidelines by Lethbridge et al. (Lethbridge et al. 2005).

The architecting case, used in phase one, was a document describing architecturally

relevant functional and non-functional requirements for an online selling platform com-

parable to Amazon.com (Amazon.com Inc. 2012). The case study included require-

ments for user management, selling books, multimedia and other products, searching

for products, notification of sellers and buyers. The non-functional requirements in-

cluded interoperability, availability, performance and security. In total, nine functional

and nine non-functional requirements were given. The students were explicitly allowed

to supplement or modify the given requirements, for example because of specific trade-

offs.

The architecting activity (phase one) in the experiment took 60 minutes. The stu-

dents were asked to make all necessary architecture decisions and to document the pro-

cess of decision making in a mind map. The purpose of the mind map (created on flip

charts) was to conserve as much reasoning and as many thoughts of the participants

during the decision making process, as possible. No architecting method was imposed

on them, nor did they have knowledge about any existing systematic approaches. Ad-

ditionally, the students were asked to document design options and decisions using

a decision template, we provided to them. Laptops with an internet connection were

allowed to search for arbitrary information, e.g. to find design options like software

patterns or technologies. To gather data in phase two of the experiment, a group-

administered questionnaire (Trochim 2001) was handed out to the students right af-

ter they finished phase one. The students used their documented decisions and the

mind map as help to reflect on the process, while answering the questions. The ques-

tionnaire contained a mix of structured and un-structured questions. The structured

questions had a five-point interval-level response format, also referred to as Likert-scale

(Trochim 2001). To mitigate the risk of ambiguous or hard to understand questions,

which comes along with questionnaires (Lethbridge et al. 2005), an instructor explained

the questions to the participants one by one. That way, the students could clarify ques-

tions before answering. Table 3.1 shows a mapping of the questions in the questionnaire

to the research questions formulated in Section 3.3.1. Some questions have a relation to

more than one research question; in these cases, the bold-faced ’X’ denotes the most

relevant research question (except for Q16 and Q17, where all three research questions

are equally relevant), while a capital ’S’ denotes a secondary research question. Ad-

26 3. Naive architecting - understanding the decision-making process of students

Table 3.1: Question Mapping

Code Question RQ1 RQ2 RQ3

Q1 Have you understood and considered the

given requirements?

X

Q2 Have you reasoned about the most challeng-

ing requirements?

X

Q3 Have the quality attribute requirements

played a prominent role during the design?

X

Q5 Have you considered alternatives for the de-

cisions you made?

X

Q6 Have you relaxed requirements to have more

design options?

S X

Q7 Have you thought about the pros and cons of

each alternative that you have considered?

X

Q9 Have you preferred well-known solutions

rather than searching for better alternatives?

X

Q10 Have you sometimes made multiple decisions

at the same time?

S X

Q11 Have you rejected decisions? X

Q12 Have you made trade-offs, while making de-

cisions, between multiple requirements?

S X

Q13 Have you come across dependencies between

decisions?

S X

Q14 How long did it take since you had a first ar-

chitectural vision in mind?

X

Q15 Does the final architecture significantly differ

from your initial vision?

X

Q16 How have you come from one decision to the

next decision?

X X X

Q17 What has gone on in your head when you

have thought about the architecture?

X X X

ditionally, two more questions were asked, which do not directly map to the research

questions: “Do you have the skills to design and program the given system?” (Q4) and

“Are you confident that your decisions and the resulting design are sound?” (Q8).

The participation in the study was mandatory. The students received grades for

the architecture documentation on the flip charts. It was clearly communicated to the

students that the answers in the questionnaire in phase two were not taken into consid-

eration for the grading. This issue will be further discussed in Section 3.5.1.

3.4. Analysis 27

�� �� ��

��

���

���

���

���

���

	��

��

���

���

����

������
�� � ��������

�� � ��������

�������

��������

������
��������

Figure 3.1: Cumulative frequencies of answers to questions related to RQ1

3.4 Analysis

We use descriptive statistics to visualize the collected data in the analysis. This section

contains one subsection for every research question. Subsection 3.4.4 presents results

concerning all three research questions. There are 11 valid data points for each question,

one for each student pair.

3.4.1 RQ1 - Architectural Analysis

Questions Q1,Q2 and Q3 from the questionnaire are primarily related to the treatment of

architecturally relevant requirements during architectural synthesis. Figure 3.1 shows

a stacked bar chart presenting cumulative percentage frequencies of answers to the re-

spective questions. The vast majority of the participants (> 90%) affirmed that they

understood and considered the given requirements (Q1). The median answer was ‘af-

firmation’. The answers to question two, concerning the reasoning about the most chal-

lenging requirements, do not show a clear trend (Q2, median ‘neutral’). More than 80%

affirmed that quality attribute requirements played a prominent role during the design

(Q3, median ‘strong affirmation’).

3.4.2 RQ2 - Architectural Synthesis

Figure 3.2 shows the frequencies of answers to questions Q5, Q6 and Q9, related to

finding candidate solutions during architectural synthesis (RQ2). More than 70% of the

participants affirmed that they considered alternatives for the decisions they made (Q5,

median ‘affirmation’). The majority of participants did not relax requirements to have

more design options (Q6, > 90%, median ‘strong negation’) and, without any negations,

more than 70% of the participants affirmed that they preferred well-known solutions

28 3. Naive architecting - understanding the decision-making process of students

�� �� ��

��

���

���

	��

��

���

���

���

���

���

����

������
�� � ��������

�� � ��������

�������

��������

������
��������

Figure 3.2: Cumulative frequencies of answers to questions related to RQ2

rather than searching for better alternatives (Q9, median ‘affirmation’).

3.4.3 RQ3 - Architectural Evaluation

Questions Q7, Q10-Q15 refer to the choices between candidate solutions and the evalu-

ation of the choices with previously made decisions. Figure 3.3 shows the frequencies of

answers. The answers to Q7, referring to the consideration of pros and cons of alterna-

tive solutions, show a clear tendency towards affirmation (median ‘affirmation’). Q10,

related to making multiple decisions at the same time, does not receive a clear result.

Although the most frequent answer was ‘affirmation’, the median answer was ‘neu-

tral’. 100% of the participants negated the question about rejecting decisions (Q11, me-

dian ‘strong negation’). The students also did not consciously make trade-offs between

requirements (Q12, > 60%, median ‘negation’). The answers to question 13, concern-

ing dependencies between decisions, do not show a clear tendency (median ‘neutral’).

Question 14 did not have predefined answers. The participants were asked how long

it took in minutes since they had a first architectural vision in mind (Q15 refers to this

vision). On average, the participants took 13.36 minutes for a first vision. The standard

deviation is 9.067 (min: 5min, max: 30min). Finally, without a single affirmative answer,

more than 70% negated that the final architecture significantly differed from the initial

architectural vision (Q15, median ‘negation’).

3.4.4 Open questions concerning the whole architecting process

Besides structured questions, we asked the participants to answer two open questions

(Q16 and Q17) that concern all three research questions.

In question 16, we asked the students to describe how they got from one decision

to the next decision. Four of the pairs stated that they made decisions along the re-

3.5. Interpretation 29

�� ��� ��� ��� ��� ���

��

���

���

���

	��

���

��

���

���

���

����

������
�����������

�����������

�������

��������

������
��������

Figure 3.3: Cumulative frequencies of answers to questions related to RQ3

quirements (e.g. “Reading requirements one by one”). Two groups mentioned that they

used common combinations of technologies as orientation in the decision making pro-

cess (e.g. Spring as web framework, then Hibernate as object-relational mapper), one

group explicitly stated that they first created a list of things to be decided and then made

the decisions one by one.

In question 17, the students were asked to freely describe what went on in their

heads when they thought about the architecture. The following workflow of decision

making can be derived from the given answers: Analyze requirements, find candidate

solutions based on own experience, search for alternative solutions, evaluate pros and

cons of all candidate solutions, make decision. Exemplary verbatim answers are: “We

started with own knowledge and experience, then we thought about alternatives and

made pros and cons lists.”, “We thought about what was necessary to fulfill require-

ments, we thought about known technologies, we tried to find some alternatives for

these”, “Based on the requirements we think about the decisions to take. Then we think

of known solutions/technologies and research on further solutions. Finally, we evaluate

the different possibilities and make the decisions”.

3.5 Interpretation

In this section, the behavior of the students is interpreted and compared to existing

approaches in the architecture literature. The section is organized according to the three

architecting activities. Findings on Q16 and Q17 that concern all three activities are

mentioned where appropriate.

30 3. Naive architecting - understanding the decision-making process of students

Architectural Analysis

Architectural analysis involves articulating (Hofmeister et al. 2007) and scoping down

(Jansen, Bosch and Avgeriou 2008) architecturally significant requirements (ASR). The

quality attribute requirements play a prominent role in this activity (Bass et al. 2003,

Hofmeister et al. 2009). Usually the ASRs are further prioritized (Jansen, Bosch and

Avgeriou 2008) to identify key issues or problematic requirements (Hofmeister et al.

2009, Kruchten 2004b) that require special attention, because they are critical for the

architecture. They sometimes become risks (Kruchten 2004b).

The analysis of the students’ results showed that most of them intuitively followed

these activities. They tried to understand and consider the ASRs and put emphasis on

the quality attribute requirements. The only discrepancy is that many students did not

identify the most challenging requirements, nor did they prioritize them. It is noticeable

that the students do not seem to be aware of risks and consequently do nothing to miti-

gate them. However, two student pairs strongly affirmed that they did think about the

most challenging requirements. A correlation analysis (Kendall’s tau) showed that stu-

dents who affirmed the statement also had strong confidence in the soundness of their

resulting designs (Q8) (corr.-coefficient 0.618, sig. 0.023), which allows the conclusion

that risk assessment leads to higher confidence in the quality of the architecture.

Architectural Synthesis

Architectural synthesis is the process of finding candidate architectural solutions

that (partially) address the distilled ASRs (Hofmeister et al. 2007, Jansen, Bosch and

Avgeriou 2008). This activity requires the architect to identify and distill relevant

knowledge from own experience and external knowledge repositories (Hofmeister

et al. 2007, Tang and Lago 2010). To have more design options, it is sometimes ad-

visable to relax requirements that put too many constraints on possible solutions (Tang

and Lago 2010).

The students affirmed that the identification of design options was driven by the

requirements. However, they did not relax requirements to have more design options

and they also declared that they preferred well known solutions over unknown alterna-

tives. Also, they did not seem to be aware of limitations and constraints that solutions

impose on other decisions. Their answers to the open questions reflect that the require-

ments were used as a kind of checklist to ensure that all of them were covered by at

least one solution, without taking into account the relationships and dependencies be-

tween decisions. A similar behavior was observed for practicing architects by Clerc et

al., who state that the architects’ workflow follows a linear approach that satisfies the

requirements sequentially (Clerc et al. 2007).

Architectural Evaluation

During architectural evaluation, the candidate solutions are weighed against the ASRs

(Hofmeister et al. 2007) to make a design decision. Therefore, the pros and cons of each

3.5. Interpretation 31

design option have to be considered (Jansen, Bosch and Avgeriou 2008, Tang and Lago

2010). Choosing solutions can entail making trade-offs (Hofmeister et al. 2007, Jansen,

Bosch and Avgeriou 2008) between requirements. This activity also involves iden-

tifying and documenting constraints that decisions impose on future decisions (Bass

et al. 2003). Evaluation further ensures that a decision does not violate previously made

decisions. Therefore, the architecture is regularly evaluated as a whole after a few itera-

tions (Hofmeister et al. 2009). Some approaches emphasize the need of risk assessment

during architectural evaluation (Kruchten 2004b, Tang and Lago 2010) to ensure that

no hidden assumptions or constraints behind decisions exist and to assess if additional

risks are introduced by a decision.

The study shows strong deviation of the students’ behavior from these activities. Al-

though they weighted pros and cons for the design options, they did not consciously

make trade-offs between requirements and also neglected to validate the decisions

against each other. This explains why the students did not reject decisions. They do

not seem to be aware of dependencies and relationships between architecture decisions.

Only few students stated that they came across dependencies. In line with these ob-

servations, the students quickly came up with a first architectural vision (13mins) and

did not significantly deviate from this vision any more. This is another indicator that

students do not critically evaluate their decisions. This is not very surprising. As men-

tioned in Section 3.2, Clerc et al. (Clerc et al. 2007) found out that even practicing archi-

tects do not regard risk assessment and requirements trade-off analysis as particularly

important.

Additionally, we observed that no clear statement was made about the question if

they made multiple decisions at the same time. Some students described that they used

a kind of reference architecture they knew from comparable projects as a basis, others

started from scratch and made decisions strictly sequentially. A correlation analysis

(Kendall’s tau) showed that students who made multiple decisions at the same time also

relaxed requirements to have more design options (corr.-coefficient 0.584, sig. 0.045).

3.5.1 Threats to validity

In this section, possible limitations of the study are presented by discussing internal

validity, construct validity and external validity (Kitchenham et al. 2002, Shull et al.

2008).

With respect to internal validity, the questionnaire design and the fact that an in-

structor verbally explained the questions before they were answered, ensured that the

questions were unambiguous and focused on the research questions. The fact that the

study was done as a classroom assignment introduces a potential risk. The students

received grades for the performance in phase one of the study. Although the question-

naires were not taken into consideration for the grading, some students might have

tried to impress the lecturer by giving specific answers. This risk, however, is consid-

ered rather low: no evidence in favor of it could be found in the results; and it was

not possible for the students to determine which answer would be rated positively or

32 3. Naive architecting - understanding the decision-making process of students

negatively.

Concerning construct-validity, the fact that only one specific architecting experience

was used as a basis for the study introduces the risk that the cause construct was under-

represented. The architecting process could be different for other architecting case stud-

ies. In this study, the students already had experience building simple web applications.

In totally unknown domains, they would have been forced to uncover design options

they did not know before. However, the risk is regarded as rather low as working in

unknown domains is unrealistic especially for inexperienced designers. It can further

be assumed that the architecting process for the used system is representative for those

of large and medium-size software projects. We also used multiple variables to cross-

check the results concerning the research questions. The risk of researcher’s bias was

mitigated for the most part, as the structured questions with pre-defined answers do

not leave space for interpretation. However, some open questions do exist that were

interpreted by the researchers.

With respect to external validity, the subject population in the study might not be

representative for the larger population of inexperienced software architects. The par-

ticipants of the study were undergraduate students in the last year of a software en-

gineering study program. Their state of knowledge is comparable to the lowest level

of architecture knowledge that software engineers in practice have. Thus, it can be as-

sumed that this risk is mitigated.

The instrumentation used in phase one of the study might have been unrealistic or

old-fashioned. This risk was mitigated by creating a working environment that corre-

sponds to those of practicing architects. The students were allowed to use laptops with

internet connections without any restrictions and they could discuss all issues with their

partners. In real software projects however, additional constraints (e.g. time, cost, cor-

porate culture, politics) exist that can hardly be simulated in a classroom environment.

3.6 Conclusions and Future Work

To gain insights into the innate reasoning processes of students during architectural

design, we conducted a descriptive survey with software engineering students. The ar-

chitecting process the students followed was compared to existing architecture practices

in the literature.

The comparison showed that the students’ activities during architectural analysis

mostly match with the activities advocated in existing architecture approaches. How-

ever, during architectural synthesis and architectural evaluation large discrepancies

were observed. As pointed out, some of these were also observed in studies with pro-

fessional architects, which leads to the conclusion that the problems do not only result

from the low level of experience. To move towards a systematic reasoning process, we

list the areas that need to be improved and invite the research community to work on

providing the necessary methodological and tooling support:

• Prioritize requirements (Jansen, Bosch and Avgeriou 2008) and identify risks in

3.7. Acknowledgements 33

terms of the most challenging requirements (Hofmeister et al. 2009, Kruchten

2004b) that are hard to fulfill.

• Relax requirements to have more design options, where required (Tang and Lago

2010).

• Search for alternatives, even if known solutions exists that seem to solve the design

issue.

• Document why one option was chosen over another one (Tang and Lago 2010) to

ensure that design options were not only chosen because of personal bias towards

known solutions.

• Reason about possible limitations and constraints that solutions impose on future

decisions (Bass et al. 2003).

• Actively consider relationships and dependencies between decisions (Hofmeister

et al. 2009, Jansen and Bosch 2005).

• Identify situations, in which decisions cannot satisfy two requirements at the same

time. Try to find optimal trade-offs between the requirements (Hofmeister et al.

2007, Jansen, Bosch and Avgeriou 2008, Kazman et al. 2000).

• Determine constraints that decisions impose on future solutions (Bass et al. 2003).

• Assess and actively mitigate risks throughout the architecting cycle (Kruchten

2008).

We hypothesize that systematic support in these areas can verifiably improve the

reasoning process. As mentioned in the introduction, we also conducted a study to

understand the reasoning practices of successful architects, in order to derive an ideal

reasoning process. This study is presented in Chapter 4.

3.7 Acknowledgements

We would like to thank the students from the 2009 course on the Java Enterprise Edition

(JEE) at the Fontys University of Applied Sciences Venlo for taking part in the study.

Based on: U. van Heesch and P. Avgeriou – “Mature Architecting - A Survey about the Reasoning Process of
Professional Architects”, Proceedings of the Ninth Working IEEE/IFIP Conference on Software
Architecture, pp. 260-269, 2011.

Chapter 4

Mature Architecting - understanding the
decision-making process of architects

Abstract

Architecting is to a large extent a decision-making process. While many approaches and

tools exist to support architects during the various activities of architecting, little guidance

exists to support the reasoning part of decision-making. This is partly due to our limited

understanding of how professional architects make decisions. We report on findings of a

survey conducted with 53 industrial software architects to find out how they reason in real

projects. The results of the survey are interpreted with respect to the industrial context and

the architecture literature. We derive reasoning best practices that can support especially

inexperienced architects in optimizing their decision-making process.

4.1 Motivation

A software architecture is the result of a complex system of inter-dependent archi-

tectural design decisions (van der Ven, Jansen, Nijhuis and Bosch 2006, Jansen and

Bosch 2005). These decisions are made by architects who strive towards an optimal

balance between the forces acting on the decisions, including financial and technical

constraints. Architecture decisions are the corner stone for the whole software archi-

tecture and as such they are vital for the achievement of the system’s key drivers and

goals.

Architecture decisions are made during the iterative and incremental process of ar-

chitecting. Hofmeister et al. derived three general, recurring architecting activities,

which are common in five industrial architecture approaches (Hofmeister et al. 2007):

Architectural analysis, which is concerned with identifying architecturally significant re-

quirements (ASR) from a set of architectural concerns and the business context; archi-

tectural synthesis, which concerns finding candidate solutions for the ASRs; and finally

architectural evaluation in which decisions are made and validated against the architec-

ture as a whole. These three activities are iteratively performed by moving back and

forth between the problem and the solution space (Nuseibeh 2001).

Various approaches have been proposed to support the three architecture design ac-

tivities. They are either concerned with the architecting process as a whole, or they

focus on one of the three activities. Well known examples of the former category are

the five processes used as reference in Hofmeister et al.’s general model of architec-

ture design (Hofmeister et al. 2007): RUP, ADD, Siemens’ 4 Views, BAPO and ASC.

36 4. Mature Architecting - understanding the decision-making process of architects

The latter category includes approaches for architecture evaluation like ATAM, SAAM,

or CBAM (Bass et al. 2003); approaches for architecture analysis like the goal-oriented

paradigm (e.g. (Van Lamsweerde 2001)); and various methods supporting architects

in identifying candidate solutions during architectural synthesis, e.g. architectural

patterns (Buschmann et al. 1996), styles (Bass et al. 2003) and reference architectures

(Muller 2004).

All of the aforementioned approaches, however, either ignore the reasoning process

behind decision-making, or take design decisions into account only as input or output

for individual architecture activities (ATAM for instance evaluates the role of design de-

cisions in quality attribute scenarios). To the best of our knowledge, there is no holistic

reasoning process that includes all three major architecture activities (analysis, synthesis

and evaluation); nor can one be derived from the combination of multiple approaches,

as the whole is more than the sum of the parts. In fact, with a few exceptions (e.g. (Tang

et al. 2006, Tang and Lago 2010, Tang et al. 2008)), very little research has been done on

the reasoning part of decision-making so far.

Design reasoning is a logical process that designers follow when developing archi-

tectural solutions (Tang et al. 2008). It applies to all three architecture activities and

allows for systematic and disciplined decision making, based on argumentation instead

of intuition. Furthermore, if the output of reasoning is documented, it can support

stakeholders who were not involved in the decision making process to comprehend

decisions and the resulting design. The lack of such reasoning processes, forces soft-

ware architects to follow an ad-hoc, creative process (Brooks 2010, Tang, Aleti, Burge

and van Vliet 2010) relying heavily on their personal experience and expertise. As a

consequence, rather inexperienced software architects go through a long and painful

succession of sub-optimal decisions, before they can successfully reason about the de-

sign options and make informed, well-balanced trade-offs. Training practitioners to

follow a systematic reasoning process could narrow the gap between expert architects

and novice ones.

In our previous work, reported in Chapter 3, we started analyzing the reasoning

process that inexperienced architects follow when they are architecting (van Heesch

and Avgeriou 2010). Our aim was to establish a baseline reasoning process that is based

on common sense instead of experience. In this chapter, we present the results of a

descriptive survey that we conducted with 53 industrial software architects from end-

October 2010 until mid-January 2011. We investigate how experienced architects reason

in the context of industrial projects and interpret the data according to the industrial

context and theory from the literature. Eventually we refine the findings and summarize

them into a set of reasoning best practices that junior architects can use to improve their

reasoning skills.

The rest of this chapter is organized as follows. Section 4.2 presents related work. In

Section 4.3, the design of the study is introduced. The next section presents the analysis

of the results, which are interpreted in Section 4.5. The chapter ends with conclusions

and directions for future work.

4.2. Related work 37

4.2 Related work

Our research is related to three areas within software architecture: architecting pro-

cesses, architecting practice in the industry and design reasoning.

In order to study the reasoning process, we use the general model of architecture de-

sign by Hofmeister et al. as a reference process (Hofmeister et al. 2007). This model

consists of three main architecture activities from industrial approaches, namely ar-

chitectural analysis, architectural synthesis and architectural evaluation. Jansen et al.

adopt the model to describe architecture activities from the perspective of architecture

decision making (Jansen, Bosch and Avgeriou 2008). They suggest that architecture de-

cisions are the result of a decision-making process comprised of the activities defined in

Hofmeister et al. ’s general model. Our work is complementary to these approaches, as

we explicitly focus on the reasoning process related to each of the architecture activities

when making decisions.

The role and duties of software architects in the industry have been analyzed in mul-

tiple studies (Clerc et al. 2007, Hoorn et al. 2011, Kruchten 2008, Clements et al. 2007).

Findings include that risk assessment and architecture evaluation is not regarded very

important by practicing architects and that architects mainly follow a non-iterative ap-

proach that subsequently satisfies requirements (Clerc et al. 2007). Hoorn et al. refine

those findings, stating that auditing and quality assurance activities are regarded more

important with increasing years of experience (Hoorn et al. 2011). Clements et al. sug-

gest that evaluation and analysis are regarded less important in practice than in the lit-

erature (Clements et al. 2007). In this study, we also observe the behavior of practicing

architects in the context of industrial projects. However, the emphasis in the aforemen-

tioned papers is to find out what architects do, i.e. which activities they follow while

they are architecting. In our study, we try to understand how architects perform the

activities in order to derive reasoning practices.

As pointed out in Section 4.1, little work has been done in the field of design rea-

soning in software architecture. Tang et al. look at design reasoning from a more gen-

eral perspective, not only specific to software architecture and also take psychological

aspects into consideration to explain human behavior during design activities (Tang,

Aleti, Burge and van Vliet 2010). In earlier work, they declared the importance of de-

sign reasoning in software architecture (Tang et al. 2008, Tang et al. 2006, Bu et al. 2009).

The results were used by Tang and Lago to describe an initial set of design reasoning

tactics that can be used by software architects to improve their reasoning process (Tang

and Lago 2010). Our work also emphasizes the importance of reasoning processes in

software architecture. As opposed to Tang et al., who look at design reasoning from

a very general, cognitive perspective, our aim is to understand and describe concrete

reasoning practices within the three architecting activities found by Hofmeister et al.

(Hofmeister et al. 2007) that can be used as guidelines for inexperienced architects.

38 4. Mature Architecting - understanding the decision-making process of architects

4.3 Design of the study

4.3.1 Goal

The goal of this survey is to understand the reasoning process that industrial software

engineering practitioners follow while they are architecting. To make the research goal

concrete, the reasoning process is mapped onto the general model of architecture de-

sign by Hofmeister et al. (Hofmeister et al. 2007). The three activities in the model are

iteratively performed by architects when making decisions. We aim at understanding

the reasoning practices behind these activities, i.e. how each of the three activities is

performed, which leads to the following research questions:

RQ1 : How do software architects scope and prioritize the problem space during archi-

tectural analysis?

RQ2 : How do software architects propose solutions during architectural synthesis?

RQ3 : How do software architects choose among solutions during architectural evalu-

ation?

Research question one considers the involvement of architects in requirements engi-

neering activities such as: requirements elicitation, evaluation of the importance and

prioritization of quality attribute requirements and functional requirements and the def-

inition of concrete problems that are small enough to be addressed in the architectural

synthesis. The aim of research question two is to find out how architects search for

and choose design options based on the output of the architectural analysis. Finally,

research question three applies to the assessment of candidate solutions and the evalu-

ation of the architecture as a whole during architectural evaluation. The scope of this

question includes architecture reviews and risk management.

4.3.2 Subjects and sampling

The population under study are industrial software engineering practitioners, who have

been working in the industry for at least five years and who have been responsible for

software architectural design for at least two years. As an additional constraint, sub-

jects were excluded from the study if their daily tasks do not include at least one of the

following: requirements engineering, system architecture/design, or software design

and specification. To evaluate, if the subjects fit into the target population, we asked the

questions shown in Table 4.1. To find appropriate subjects, we used chain referral sam-

pling (also known as snowballing) (Mack et al. 2005): the authors asked professionals

from their own network to forward the participation request to other professionals who

fit the sampling requirements. In total, 53 people took part in the survey, out of which

the results from seven people were excluded, because they did not satisfy the sampling

requirements. On average, the remaining participants have worked 18.22 years in the

4.3. Design of the study 39

Table 4.1: Questions for sampling

Question Response format

How many years have you been working

as an IT professional?

Positive natural numbers includ-

ing zero

How many years have you been working

as a software architect / designer?

Positive natural numbers includ-

ing zero

As an architect / designer, which of the fol-

lowing are your tasks?

Possible answers:

• project management

• requirements engineering

• software architecture

• software design and specifi-

cation

• test planning and design

• reviewing / auditing

• programming

• others

and 50
employees 8,70%

Between 50
and 250

employees 26,09%

More than 250
employees 63,04%

Less than
10
employees

Between 10
and 50
employees

Between 50
and 250
employees

More than
250
employees

Figure 4.1: Number of employees in participating companies

IT-industry (min: 6, max: 35), and on average 10.59 years as a software architect/ de-

signer (min: 4 , max: 30). For statistical means, we asked the participants to specify the

numbers of employees in their companies using an interval scale ranging from less than

10 to more than 250 employees. Figure 4.1 shows the distribution of answers. The majority

of participants work in large companies.

40 4. Mature Architecting - understanding the decision-making process of architects

4.3.3 Data collection

To collect data, a web-based questionnaire was designed with questions that map to the

defined research questions. Table 4.2 shows the questions from the questionnaire along

with the response format and their relation to the research questions. Some questions

have a relation to more than one research question; in these cases, the bold-faced ’X’

denotes the most relevant research question (except for Q17 to Q20, where all three

research questions are equally relevant), while a capital ’S’ denotes a secondary research

question.

Using web questionnaires, the subjects and researchers do not have to synchronize

in time and place. Participants can fill them in, whenever they find time. A potential dis-

advantage of questionnaires is that in the case of ambiguous and poorly-phrased ques-

tions, there is no interviewer to explain the questions and make sure they are well un-

derstood. To mitigate this risk, Lethbridge et al. propose to pilot-test the questions and

then re-design those questions that were interpreted wrongly (Lethbridge et al. 2005).

We followed this advice and tested the questionnaire initially with one participant from

the target population. Right after the questionnaire was filled in online, we had a video

conference with the person and asked him to explain how he understood every single

question. After this, all questions that were poorly understood were re-designed and we

provided additional help texts explaining the questions. Then we repeated the proce-

dure with three additional participants from the target population until every question

was explained back to us just the way we aimed it to be understood.

The URL of the questionnaire was sent to the participants by e-mail. It contained a

mix of structured and un-structured questions. The structured questions had a five-

point interval-level response format, also referred to as Likert-scale (Trochim 2001),

whereas the un-structured questions requested numeric input or free-text.

In the questionnaire, we asked respondents to reflect on one specific software project

they were involved in as a software architect and which is representative for the way

they are working. The whole set of questions in the questionnaire referred only to this

concrete project. To focus the participants on this project, we asked them to estimate

the project size and specify the domain of the project. The characteristics of the chosen

projects are further described in Section 4.4. Furthermore we explicitly requested them

to reflect upon their personal thoughts and their personal actions instead of describing

their company policies, or what the whole development team did. They were also asked

to skip questions they did not understand.

Table 4.2: Mapping of questions and research questions

No Question Resp. Format RQ1 RQ2 RQ3

Q1 How much were you involved

in the requirements elicitation of

the project?

Likert (Com-

pletely to Not

at all)

X

4.3. Design of the study 41

Table 4.2 – continued from previous page

No Question Resp. Format RQ1 RQ2 RQ3

Q2 Have you understood the rea-

soning behind the requirements

of the project?

Likert (Com-

pletely to Not

at all)

X

Q3 Compared to other influenc-

ing factors, how important

were the requirements as

input/motivation for your

architecture decisions?

Likert (Very

important to

Unimportant)

X

Q4 To what extent did you reflect on

identifying which of the require-

ments were hardest to fulfill?

Likert (To the

largest possible

extend to Not at

all)

S X

Q5 How important were the func-

tional requirements for your ar-

chitectural design?

Likert (Very

important to

Unimportant)

X

Q6 How important were the quality

attribute requirements for your

architectural design?

Likert (Very

important to

Unimportant)

X

Q7 Have you searched for alterna-

tive design options, when mak-

ing decisions?

Likert (Always

to Never)

X

Q8 Have you searched for alterna-

tive design options even if you

already had a solution in mind?

Likert (Always

to Never)

X

Q9 Have you thought about the

pros and cons of the design op-

tions you found?

Likert (Always

to Never)

S X

Q10 Have you preferred solutions

that you are familiar with, in fa-

vor of others that you are not so

familiar with?

Likert (Always

to Never)

X

Q11 Did you relax requirements? Likert (Always

to Never)

X

Q12 How confident are you that the

architecture decisions you made

are sound?

Likert (Very

confident to

Not confident)

X

Q13 How often did you decide on

multiple architectural solutions

at the same time?

Likert (Always

to Never)

S X

42 4. Mature Architecting - understanding the decision-making process of architects

Table 4.2 – continued from previous page

No Question Resp. Format RQ1 RQ2 RQ3

Q14 How often did you withdraw

solutions that you decided on

earlier in the project?

Likert (Always

to Never)

X

Q15 How often did you make trade-

offs, while making decisions, be-

tween multiple requirements?

Likert (Always

to Never)

X

Q16 How often did you come across

dependencies between architec-

tural solutions you decided on?

Likert (Always

to Never)

X S

Q17 How long did it take until you

had a first vision of the overall

software architecture in mind?

numeric (% of

the whole proj.

duration)

X X X

Q18 Does the final software architec-

ture significantly differ from this

initial vision?

Likert (Com-

pletely to

Never)

X X X

Q19 What are the three most impor-

tant things in decision making

for you?

Open X X X

Q20 How have you come from one

decision to the next?

Open X X X

4.4 Analysis

We use descriptive statistics and qualitative analysis to describe the collected data. This

section is divided according to the research questions. As described in the study design,

the participants were asked to reflect on one representative project they had worked on.

Table 4.3 shows some characteristics of the chosen projects.

4.4.1 Analysis RQ1 - Architectural analysis

Figure 4.2 shows a stacked bar chart with cumulative frequencies of answers to ques-

tions primarily related to RQ1. The colors and hatchings represent the answers to the

Likert-scale questions. Depending on the concrete question ”1” stands for positive an-

swers (completely, very important, to the largest extend, always, or very confident), while ”5”

represents negative answers (not at all, unimportant, never or not confident). Please refer

to Table 4.2 for the scalings of the respective questions.

Approximately 60% of the architects stated that they were involved either com-

pletely or a lot, in requirements elicitation (Q1). More than 80 % understood the rea-

4.4. Analysis 43

Table 4.3: Characteristics of the chosen projects

Variable N Value

Project size in SLOC 19 Min: 50K, Max: 15mill., Med: 400K

Project size in person-

months

43 Min: 2, Max: 8000, Med: 150

No of architects involved 46 Min: 1, Max: 100, Med: 3

Domain of the project 46 Top six domains:

• Embedded systems (13.04%)

• Healthcare (13.04%)

• Transportation (13.04%)

• Enterprise Computing (10.87%)

• Realtime (10.87%)

• Telecommunication (10.87%)

Q1 Q2 Q3 Q5 Q6 Q11

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5

4

3

2

1

Figure 4.2: Cumulative frequencies of answers to questions related to RQ1

soning behind requirements well (Q2). With more than 70% of affirmation, the require-

ments were regarded important for architecture decisions compared to other influenc-

ing factors like technology constraints, budget, or company culture (Q3). About 57% of

the participants found the functional requirements important or very important (Q5).

The quality attribute requirements were found important or very important by 81% of

the respondents (Q6). Finally, the vast majority stated that they seldom or never relaxed

requirements to have more design options (Q11).

Apart from the structured questions, some answers to the open question Q19 are

related to architectural analysis. The following procedure was used to analyze the open

44 4. Mature Architecting - understanding the decision-making process of architects

Q7 Q8 Q10 Q16

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5

4

3

2

1

Figure 4.3: Cumulative frequencies of answers to questions related to RQ2

answers. We browsed the answers and searched for comments related to the research

question. From the comments, we derived single concrete statements expressing what

the respective participant answered. Finally, we counted the occurrences of the derived

statements.

With respect to RQ1, the following statements were made. We only mention state-

ments that were concordantly made by at least three participants. The numbers in

brackets express the number of participants who made that comment: understand the

problem domain (12 times), have well-defined requirements (7 times), consider non-technical

requirements like time and resource limitations, political issues and return on investment (7

times), involve stakeholders in the decision making process (7 times), regard performance (4

times), consider functional- and non-functional requirements equally (3 times), negotiate and

relax requirements (3 times). In total, 48 comments were related to architectural analysis.

4.4.2 Analysis RQ2 - Architectural synthesis

Figure 4.3 illustrates cumulative frequencies for Likert-scale questions related to archi-

tectural synthesis (RQ2).

With only one exception, all participants (74% plus 22% neutral) indicated that they

usually search for alternative design options when making decisions (Q7). Significantly

less participants (46%) search for alternative design options if they already have a suit-

able solution in mind (Q8). The respondents concordantly prefer well-known solutions

in favor of unknown alternatives (Q10, 68% affirmation, 4% negation); more than 50%

answered that they often come across dependencies between architectural solutions

they decide on (Q16).

As for RQ1, we qualitatively analyzed the answers given to Q19 with respect to RQ2.

The following statements were made by at least three participants: Know the solution

space (7 times), find multiple design options (7 times), discuss design options with colleagues

4.4. Analysis 45

Q4 Q9 Q12 Q13 Q14 Q15

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5

4

3

2

1

Figure 4.4: Cumulative frequencies of answers to questions related to RQ3

(5 times) and choose the simplest design (5 times). In total, 31 comments were related to

architectural synthesis.

4.4.3 Analysis RQ3 - Architectural evaluation

The results with respect to RQ3 are shown in Figure 4.4.

With roughly 10% of negation, more than 60% strongly reflected on identifying the

most challenging requirements (Q4) and thought about the pros and cons for each of

the considered design options (Q9). Likewise, more than 80% had strong confidence

in the soundness of their decisions (Q12). The question if multiple decisions are at

the same time was answered less clearly. Approximately 50% negated the question,

while less than 30% stated that they usually make multiple decision at the same time

(Q13). With strong significance, the vast majority of the respondents (76%) did not

withdraw decisions they decided on earlier in the project (Q14). Q15 does not show

a clear tendency. The mode answer was neutral with a tendency towards affirmation

(39% compared to 24% negation).

Concerning Q19, the following statements were made by at least three participants:

Understand pros and cons of each design option (7 times), validate decisions in reviews (3

times). In total, 16 comments were related to evaluation.

4.4.4 Analysis of questions 17,18 and 20 in the questionnaire

Questions 17,18 and 20 in the questionnaire cannot be clearly assigned to a specific

research question. We asked the participants how long it took, relative to the whole

duration of the architecture phase, until they had a first vision of the architecture in

mind (Q17), how much they derived from this initial vision after having completed the

architecture (Q18), and how they came from one decision to the next (Q20).

46 4. Mature Architecting - understanding the decision-making process of architects

Forty-four answered question Q17. On average, it took the architects 17.2 % (min:

5%, max: 75%, med: 12.5 %) of the time spent on architecture to develop a first vision

of the overall system. The same number of people answered question 18. The mode an-

swer to this Likert-type question was “moderately” (39%), 11% answered that the final

architecture differed from the first vision completely (2%) or a lot (9%). The remaining

46% answered, that the final architecture differed slightly (35%) or not at all (11%).

The open answers to Q 20 describe the overall process that architects follow. For the

qualitative analysis of the answers, we use the same procedure as for Q19, i.e. we derive

statements from the answers and count the occurrences of every statement.

The following statements were made by at least two participants. The number in

brackets is the number of occurrences of the respective statement: requirements should

be prioritized. The important ones should be regarded first (6 times), architecture is iteratively

refined and improved (6 times), there is no specific order in decision making (6 times), the

requirements guide the decision making process (5 times), some decisions have to be made in

combination (3 times), sometimes, candidate solutions should be prototyped to find the right

one (3 times), some decisions have strong dependencies (3 times), decisions from other projects

can guide the decision making process (3 times), the decision making process is driven by risks

(2 times).

4.5 Interpretation

In this section, we interpret the findings from the analysis. Specifically, we interpret the

architects’ answers and compare them to existing approaches in the software architec-

ture literature. The section is organized according to the three architecting activities.

4.5.1 Architectural analysis

The purpose of architectural analysis is to define and scope the problems that have to

be solved by the architecture (Hofmeister et al. 2007, Jansen, Bosch and Avgeriou 2008).

The outcome of this activity is a set of architecturally significant requirements that serve

as input for the architectural synthesis.

The analysis of RQ1 showed that practicing architects are usually involved in the

requirements elicitation of the project (Q1); this means that they do not just receive

requirements and constraints as artifacts from requirements engineers, but they are

actively involved in the communication with customers. This differs from architec-

ture approaches in the literature, which generally assume that a set of requirements is

given to the architects as input for the architectural design (see for instance ADD (Bass

et al. 2003)).

The involvement in requirements elicitation partially explains the results of Q2: the

vast majority of architects stated that they understood the reasoning behind require-

ments very well. The answers to Q19 also showed that architects find it very important

to understand the problem domain and have well defined requirements. These state-

4.5. Interpretation 47

ments were the most frequent answers to Q19, which allows the conclusion that a deep

understanding of the requirements and the problem space is regarded as essential by

most industrial architects.

Requirements are an important input factor for architecture decisions (Q3). This

includes functional and quality attribute requirements (Q5, Q6), although the quality

attribute requirements are clearly found more important than the functional require-

ments. Apart from the functional and quality attribute requirements the architects men-

tioned non-technical concerns like time and resource limitations, political issues and

return on investment as important drivers for architecture decisions. This is compre-

hensible, as industrial practice is constrained by factors like budget and time limitations,

development teams being experienced in specific technologies and customers who indi-

cate the use of specific software systems, because of in-house software licenses. Conse-

quently, this means that an architecture that perfectly fulfills the functional and quality

attribute requirements is not necessarily the right architecture in every organizational

context. This finding stresses the need to document the rationale of design decisions,

as decisions influenced by non-technical concerns may seem irrational or at least in-

comprehensible to stakeholders who are unfamiliar with those concerns. In Chapter 7,

we describe the concept of decision forces, which we promote as first class entities, to

capture all of these impacts on architecture decisions.

Most of the architects answered that they seldom relax requirements (Q11). This

sounds surprising in the first place, as relaxing requirements that are too constraining

would be a means to get more design options (Tang and Lago 2010). However, it is

in accordance to the answers to Q1 and Q2: architects who are highly involved in the

requirements engineering activity for a project gain deep knowledge about the problem

space and have presumably already ensured that the requirements are not unrealistic

or too challenging. Nevertheless, three architects mentioned that negotiating and relax-

ing requirements is one of the most important activities (Q19). A correlation analysis

showed, that the three architects who made this comment were less involved in the re-

quirements elicitation (med: 3 compared to med:2), understood the requirements worse

than the average (med:3 compared to: med:2) and relaxed requirements more often

than the average(med:3 compared to med:4). This means that architects who are less in-

volved in the requirements elicitation process have to relax and negotiate requirements

more often later.

4.5.2 Architectural synthesis

Architectural synthesis is the main activity in architectural design as it is concerned

with identifying candidate solutions for the architecturally significant requirements

(Hofmeister et al. 2007). Architects have to make use of their existing design knowledge,

or create new knowledge by consulting external knowledge repositories (Hofmeister

et al. 2007, Tang and Lago 2010) in order to find candidate solutions. Tang et al. suggest

that creative design requires architects to refine and formulate the problem and solution

space at the same time (Tang, Aleti, Burge and van Vliet 2010), in line with the “Twin

48 4. Mature Architecting - understanding the decision-making process of architects

Peaks” model (Nuseibeh 2001). This implies that architectural analysis and architectural

synthesis are closely coupled activities.

The architects who took part in the study very frequently searched for multiple de-

sign options when making decisions (Q7). However this happened significantly less

often if the architects already had a solution in mind (Q8). This might be due to the

fact that searching for design options is an effort-intensive task, for which designers

often do not afford the resources to perform adequately. Furthermore, designers need

to search for design options on external knowledge repositories and choose candidate

solutions based on unproven assumptions. In line with this finding, architects prefer

solutions they are familiar with, instead of unfamiliar alternatives (Q10). It is less risky

to select known solutions, even if they have known shortcomings, because these can be

assessed and mitigated. Unfamiliar alternatives require substantial effort to reflect on

and analyze, which is not always possible within the tight budget of a project.

The analysis of Q19 showed that architects find it very important to know the so-

lution space and have multiple design options. This supports the finding by Cross

(Cross 2004) and Tang (Tang et al. 2008), who concordantly found that designers cre-

ate better designs when they explicitly take multiple design options into consideration.

In cases where the participants of our study did not have enough knowledge about the

solution space to find candidate solutions on their own, they stated that they discussed

design options with colleagues. They also emphasized that the simplest design for a

problem should be chosen. This indicates that the concerned systems have such a great

size and complexity that simplicity of design solutions is of paramount importance to

manage this complexity.

The answers to the open question Q20 and to the structured question Q 16 reflect that

architects are aware of dependencies that exist between some of the decisions. Three ar-

chitects suggest that dependencies have to be considered when finding candidate solu-

tions. In addition, some architects consider that certain dependencies are so significant,

that the related decisions can only be made in combination. The analysis of dependen-

cies between decisions is not supported in current architecting processes (Hofmeister

et al. 2007), but it has been discussed extensively within the architecture knowledge

community (Jansen et al. 2009).

4.5.3 Architectural evaluation

During architectural evaluation, the candidate solutions from the synthesis activity are

validated against the architecturally significant requirements (Hofmeister et al. 2007).

This entails considering advantages and disadvantages of the candidates (Jansen, Bosch

and Avgeriou 2008). Some of the candidate solutions require trade-offs to be made

between multiple requirements (Hofmeister et al. 2007, Tang and Lago 2010). Depen-

dencies between decisions and constraints for future decisions should be analyzed and

documented thoroughly (Bass et al. 2003). Many architecture approaches regard risk

assessment as integral part of architectural evaluation, e.g (Tang and Lago 2010) and

(Kruchten 2004b). Finally, the architecture as a whole should be evaluated regularly to

4.5. Interpretation 49

make sure that decisions are consistent with each other, e.g. that older decisions do not

harm constraints that came up after they were made.

With respect to the evaluation of candidate solutions, almost all architects stated that

they usually think about the pros and cons of design options (Q9). Some emphasized the

necessity of prototyping different candidate solutions, before making a decision (Q20).

They also had high confidence in the soundness of their design (Q12), which indicates

that they had made an informed choice with respect to the pros and cons of the design

options. Comparably few architects often decide on multiple decisions at the same time

(Q13), although the majority of architects was aware of dependencies between decisions

(Q16). A correlation analysis (Kendall’s tau) did not show a significant correlation be-

tween Q13 and Q16 (corr.-coefficient 0.256, sig. 0.066), which means that architects who

were aware of dependencies between decisions did not necessarily make more decisions

in combination. This may also be due to the complexity of the various problems and

their solutions; each design decision may be complex enough in its own right, making

it difficult to take into account its dependent decisions.

Regarding Q14, the results are clear: architects seldom reject decisions they made

before. This is in line with the findings of Tang et al., who suggest that designers are re-

luctant to changing their minds (Tang, Aleti, Burge and van Vliet 2010). This, however,

could indicate that previously made architecture decisions are seldom revisited, i.e. the

architecture is not validated at the end as a set of decisions. One comment to Q19 is

a strong affirmation of this attitude: “once the decision was made it is not allowed to

re-discuss it”. This may be again due to the time and budget constraints of the projects:

there is simply not enough time and resources to continue reflecting on past decisions;

the architects need to consider them finalized and move on.

In general, architecture evaluation seems to be less important for practicing archi-

tects than the other two activities. This assumption is supported by the fact that only 16

out of 95 comments to Q19 (the most important thing in decision making) concerned ar-

chitecture evaluation (31 for architectural synthesis, 48 for architectural analysis). Only

three architects mentioned the necessity for reviews. Additionally to this finding, we

observed that architects do not seem to pay particular attention to risks. In the answers

to Q19, the word “risk” was not mentioned at all. In a survey with Dutch software

architects, Clerc et al. also found that risk assessment was not regarded particularly

important (Clerc et al. 2007). However, some of our results show that architects at least

unconsciously perform risk mitigation, for instance by reflecting on identifying the re-

quirements that are hardest to fulfill (Q4) and preferring well-known solutions in favor

of unknown alternatives (Q10). In question 20, six architects explicitly answered that re-

quirements should be prioritized and that the most important ones should be addressed

first, which is also a means to minimize risks.

4.5.4 Overall architecting process

To understand the reasoning followed within the overall decision-making process, we

interpret the findings from open question Q 20, in which we asked the participants to

50 4. Mature Architecting - understanding the decision-making process of architects

describe freely how they come from one decision to the next. One of the most frequent

comments was that the prioritized requirements guide the decision making process.

This, however, does not imply a sequential approach to decision making. Instead, many

architects stated that architecture is iteratively refined and improved, which is in line

with architecture approaches in the literature (Hofmeister et al. 2007). The iterative na-

ture of architectural design is also indicated by the answers to Q17 and Q18. Architects

rather quickly develop a first vision of the overall architecture (<20% of the time for

the complete architecture phase, Q17) and then refine this vision until the architecture

is complete without significantly deriving from the initial vision any more (Q18).

As opposed to the architects who used the requirements to imply the order of de-

cisions, the same amount of architects reflected that there was no specific order in

decision-making. This is an indication that the decision-making process follows an ar-

bitrary reasoning path; we argue that further research should be conducted to provide

practicing architects with effective methods and tools to structure their decision-making

sequence.

Finally, only one respondent named a concrete architecture approach he followed (in

his case the rational unified process). This could indicate that a great part of the partic-

ipants does not follow one particular architecture approach from the literature; instead

they at least partially adopt architecture activities to define their own customized ap-

proach to architecture. This conjecture, however, must be validated in further research.

4.5.5 Threats to validity

To describe the internal validity of empirical results, it is important to exclude, or at

least explain confounding variables and other sources of potential bias (Kitchenham

et al. 2002). Surveys generally bare the risk of poorly controllable variables (Ciolkowski

et al. 2003), at least if online questionnaires are used as a data collection method. In

such cases, the only means to control variables is by exclusion or by randomization. In

this study we used both: participants who were not sufficiently experienced in software

architecture were excluded from the study, and other potential variables were random-

ized by using snowballing as sampling technique. Other potential threats to internal

validity (especially construct validity) in questionnaires are ambiguously and poorly-

worded questions (Lethbridge et al. 2005). To mitigate this risk, we pilot-tested our

questionnaire in multiple iterations until the respondents understanding of the ques-

tions matched our intentions (see Section 4.3 for more details).

An addition threat to internal validity is the fact that the answers to the open ques-

tion Q19 (the three most important things in decision making) could have been influ-

enced by the structured questions, we had asked before. However, the majority of the

answers were complementary to the questions. Few of the answers indeed demonstrate

such a correlation, but in these cases, the participants still had to make a choice that

reflected their personal behavior.

An additional limitation of questionnaires is the uncertainty, whether or not the par-

ticipants answer truthfully. We tried to keep this risk low by ensuring the respondents

4.5. Interpretation 51

that no data was gathered that would allow us to draw conclusions with respect to the

identity of the respondent. Moreover, if people are not willing to be honest, they usually

do not volunteer for such a survey. However, this risk can never be excluded totally.

External validity is the extent, to which conclusions can be generalized and capture

the objectives of the study (Kitchenham et al. 2002). It is primarily concerned with the

representativeness of the sample for the target population (Ciolkowski et al. 2003). The

target population of this study were software architects, who have been working in the

industry for at least five years and who have been responsible for software architectural

design for at least two years. We presume that our findings concerning the reasoning

process can be generalized to the population of architects who fit to these sampling

criteria. However, one might argue that the reasoning process is not just influenced

by the experience of the architect, but also by the characteristics of the software project

(e.g. size and domain) and the culture of the company, in which the project is carried

out. The demographics of the participants demonstrate that they worked in a variety of

application domains and companies, as discussed in the following two paragraphs.

The influence of the company culture is limited by the fact that multiple companies

took part, which were not chosen by us directly. We know of at least eight different

companies who took part in the study, because respondents from eight different orga-

nizations across Europe and the USA sent us e-mails after participating, to state their

interest in obtaining the study results. Data about the domain and size of the project

that the architects considered in the study was collected in the questionnaire. The av-

erage project size was 1441 person-months (1.4 mill SLOCs), which means that mainly

large projects were regarded.

The domains of the project included software engineering (17%), embedded systems

(13%), transportation (13%), healthcare (11%), realtime (11%), command and control

(9%), enterprise computing (9%), telecommunication (9%), finance (8%), e-commerce

(6%) and manufacturing (6%). Thus, a wide range of projects from different domains

was covered. To understand the influence that the project domain had on the results, we

correlated the domains with the dependent variables (Spearman’s rho). At the signifi-

cance level of 0.05 (2-tailed), the domains finance, transportation and healthcare showed

correlations. Architects from the finance domain reflected less on identifying which of

the requirements were hardest to fulfill (Q4, corr.-coeff: -.291, sig. 0.05), they spent less

effort on searching for alternative design options, if they already had a solution in mind

(Q8, corr.-coeff: -.306, sig. 0.039) and had less confidence in the soundness of their de-

cisions (Q12, corr.-coeff.: -.303, sig. 0.041). Architects from the healthcare sector more

often searched for alternative design options, if they already had a solution in mind (Q8,

corr.-coeff: .307, sig. 0.038). In the transportation domain, architects reflected more on

identifying which of the requirements were hardest to fulfill (Q4, corr.-coeff: .298, sig.

0.044) and also thought more about the pros and cons of design alternatives (Q9, corr.-

coeff: .296, sig. 0.049). However, the fact that only few correlations were found shows

that project domains seem to have no significant influence on the reasoning process.

52 4. Mature Architecting - understanding the decision-making process of architects

4.6 Conclusions and future work

We conducted a descriptive survey with industrial software architects from several com-

panies and project domains to get insight in the reasoning process followed during ar-

chitectural design. The results were interpreted according to the pragmatic constraints

in the industry, as well as established architecting approaches in the literature. As ex-

plained in Section 4.1, our aim was to define reasoning best practices guiding especially

inexperienced architects in the three architectural activities. The following best practices

were derived from our results:

• Architectural Analysis: A deep understanding of the requirements and the prob-

lem space is essential for successful architecting. If possible, architects should get

involved in the requirements elicitation to gain a better understanding of the re-

quirements and other architectural drivers like time and budget-constraints. If,

for some reason, they cannot get involved in requirements gathering, they should

make sure that requirements are not too constraining or unrealistic and eventually

negotiate and relax them with the respective stakeholders. Requirements should

be prioritized; the most important ones and the ones that are hardest to fulfill

should be regarded first, as they bare potential risks. Requirements are an impor-

tant part of the rationale behind architecture decisions and as such they should be

documented adequately.

• Architectural Synthesis: It is advisable to search for multiple design options and

get to know the solution space well when making decisions. In cases where time

and budget is very limited it is sometimes practical to consider less design op-

tions, if the architect already has a working solution in mind that has proven itself

in prior projects. In cases where multiple design options equally fit to the de-

sign problem at hand, it is less risky to stick to a solution the architect knows

well. When weighing pros and cons of design options, a colleague can act as a

sounding board to make sure that choices are informed and unbiased by personal

preference. In cases where multiple decisions have strong dependencies, they can

be discussed as a whole, i.e. the total of such strongly-dependent decisions can

be treated as a single decision. Finally, as in other design disciplines, simplicity

should be a key goal in software architecture; unnecessary complexity should be

avoided.

• Architectural Evaluation: In architectural evaluation, candidate solutions must be

validated against the ASRs to make a decision. In situations, in which a decision

cannot satisfy two requirements at the same time, the optimal trade-off between

those requirements has to be found. Prototyping design options or combinations

of design options can help understanding solutions and provides additional ratio-

nale for informed choices. Apart from evaluating design options, the architecture

should regularly be evaluated as a whole to ensure consistency between the de-

cisions and to uncover hidden constraints. If this is not possible due to time and

4.6. Conclusions and future work 53

budget constraints, it should at least be done once at the end of the architecture

phase. A thorough documentation of architecture decisions can reduce the effort

needed for their evaluation.

There is one more best practice that spans through all three activities of architecture de-

sign and concerns the iterative refinement and improvement of an architecture. Archi-

tects should try to develop an overall vision of the complete architecture rather quickly,

and then revisit the constituent parts of the vision to finalize the decisions. Decisions

from comparable projects can serve as a starting point to develop the vision and can

furthermore help to make sure that no important considerations were forgotten.

In Chapter 6, we present a framework for architecture decisions, which was devel-

oped to effectively support software engineers in the different activities of architectural

design.

In our previous work, we started analyzing the reasoning process of inexperienced

software engineers (van Heesch and Avgeriou 2010) (see Chapter 3). We performed

additional studies with graduate students who have followed lectures specifically in

software architecture and undergraduate students who have not had any software ar-

chitecture education. This distinction was made to find out in how far software archi-

tecture education influences the way students reason about architecture (Section 10.2.1

elaborates on this study). We assume that students who have had some kind of soft-

ware architecture training adopt at least some of the practices and methods they were

taught, while others are ignored. We plan to use these results and compare them with

the findings presented in this article, in order to propose appropriate training material

for inexperienced architects.

Acknowledgements

The authors would like to thank all respondents of the survey for their participation.

Especially, we thank Philippe Kruchten, Antony Tang, Christian Dietrich and Kevin

Erhardt for pilot-testing and discussing the questionnaire with us.

Part III

Modeling architecture decisions

Based on: U. van Heesch, P. Avgeriou, U. Zdun and N. Harrison – The supportive effect of patterns in
architecture decision recovery - A controlled experiment, Science of Computer Programming, 77(5):555-576,
2012.

Chapter 5

Using patterns in architecture decision recovery

Abstract

The documentation of software architecture decisions is important to help the stakeholders

understand the system and the rationale behind architectural solutions. In practice, the

documentation of such decisions is regularly done after the fact, or skipped completely. To

support software maintenance and evolution, the decisions have to be recovered and de-

scribed. This is often hindered by the fact that the original architects are not available any

more, or they do not completely remember the reasons for making the decisions. Addition-

ally, the whole process is very expensive. In this chapter, we hypothesize that architecture

decision recovery can be more efficient by focusing on recovering decisions related to apply-

ing architecture patterns. To test this hypothesis, we designed a controlled experiment that

was conducted to analyze the impact of architecture patterns on the quality and quantity

of architecture decisions recovered after the fact. We are able to provide statistical evidence

that a focus on patterns significantly increases the quality of decisions, while no conclusive

evidence concerning the quantity of decisions was found.

5.1 Motivation

During the architectural design of a software, many decisions are made that influence

the fundamental structure and behavior of the software system to develop. The archi-

tects responsible for making these decisions have to take into consideration the concerns

of the most important stakeholders, quality attribute requirements, architecturally-

significant functional requirements and constraints that limit the potential outcome of

the decisions. Architecture decisions satisfy some of the concerns while they may po-

tentially violate others. As a consequence, architecting involves negotiations between

stakeholders and making trade-offs between different requirements and concerns that

have to be satisfied during the software design. The perfect solution does not exist; the

rationale of architecture decisions explains the related trade-offs and optimizations.

While architects consciously and subconsciously make these decisions, they regu-

larly neglect to document them appropriately (Hoorn et al. 2011). In some cases, the

outcome of decisions is represented in architecture documentation, various UML de-

sign diagrams, or at the very least in the source code; however, the exact problem that

is solved, the concerns that were considered, and the rationale behind the decision are

usually omitted (van der Ven, Jansen, Nijhuis and Bosch 2006).

After some time, when the project advances, even the architect who originally

made the decisions will have difficulties remembering all the details and eventually

58 5. Using patterns in architecture decision recovery

the knowledge gets lost to a great extent. In the literature, this problem is called archi-

tectural knowledge vaporization (Harrison et al. 2007, Hoorn et al. 2011, Jansen, Bosch and

Avgeriou 2008, van der Ven, Jansen, Nijhuis and Bosch 2006).

This phenomenon becomes especially problematic when software systems are main-

tained or extended. During software evolution, developers must understand the exist-

ing system well in order to make informed decisions on changes and extensions. New

requirements and changing system behavior make it necessary to carefully review the

original architecture decisions before making additional ones. In absence of decent

project documentation, the architectural knowledge and especially the past decisions

have to be recovered. Otherwise, new architecture decisions may conflict or override

existing ones, or may repeat past mistakes. Therefore, recovering architecture decisions

is important for a successful system evolution.

Unfortunately, recovering architecture decisions presents several challenges. If the

project documentation is poor, the recovery of architecture decisions is a resource-

intensive task that requires a lot of experience and has a high risk for ambiguity and mis-

understandings. If architecture decisions were not explicitly documented by the origi-

nal architects, the new software development team, responsible for making changes to

the system, typically has to rely on the running application, the source code, incomplete

textual documentations, end-user manuals, and fragmentary or out-of-date design dia-

grams (e.g., in UML).

It is often challenging enough to identify architectural solutions and the correspond-

ing decisions on the basis of these artifacts. Finding out why they were chosen, which

requirements and concerns they satisfy, and which consequences the implementation of

the approaches has, requires vast knowledge and experience from the analysts. To make

matters worse, many architectural solutions cannot be understood in isolation; they are

pieces of a larger puzzle that only make sense if they are examined in the architecture

as a whole.

One way to efficiently recover architecture decisions is to look for patterns applied in

the architecture and reuse their extensive documentation, which can be found in the pat-

tern literature, in the context of the system under study. Patterns typically describe the

problem space in which they are applicable and give advice for applying the solution

they propose. In that respect, architectural patterns capture many important aspects of

the decision to apply them in an architecture (Harrison et al. 2007). Once the pattern is

identified during decision recovery, the pattern description can be used to explore the

pattern’s problem space, the consequences of applying it, related decisions, and pos-

sible trade-offs the original architects made. Of course, not all architecture decisions

are related to applying patterns; but some of the most important ones are. We conjec-

ture that architecture decision recovery based on patterns is more efficient than ad-hoc,

intuitive decision recovery.

The goal of this chapter is to empirically validate whether architecture decision re-

covery is more efficient regarding the quality and quantity of architecture decisions, if

the recovery focuses on identifying applied patterns. Specifically, we intend to answer

the following research question:

5.2. Related work 59

Are the quality and quantity of recovered architecture decisions higher if the recovery focuses

on identifying applied architectural patterns than in the general case?

To answer this research question, we conducted a controlled experiment during the

European Conference on Patterns Languages of Programs (EuroPLoP) (Hillside Europe

e.V. 2009) in July 2009 and during a software architecture workshop for industrial prac-

titioners in Venlo, the Netherlands, in April 2011. In total, 33 software engineering

experts from academia and from the industry took part. They were asked to recover

architecture decisions on the basis of an architectural documentation of the JBoss J2EE

application server (JBoss.org 2012). Half of the participants were explicitly asked to fo-

cus on identifying patterns in the architecture, while the other half was told to rely on

their experience and intuition when performing the recovery. The data from the experi-

ment was analyzed, and the quality and quantity of the recovered architecture decisions

were compared.

The results of the experiment provide strong evidence for the benefits of using pat-

ters concerning the quality of recovered decisions. The study did not provide conclusive

evidence concerning the quantity of decisions.

The rest of this chapter is organized as follows: Section 5.2 presents related work.

Section 5.3 explains the design of the controlled experiment including the introduction

of variables and hypotheses, while the next section presents details about the execution

of the experiment. We analyze the results of the study and present the hypotheses test-

ing in Section 5.5. Section 5.6 contains an interpretation of our findings, a discussion of

threats to validity, and finally observations and lessons learned. Section 5.7 concludes

and presents future work.

5.2 Related work

The design of this experiment and the theoretical background of the hypotheses pre-

sented in Section 5.4 are related to multiple research areas: software architecture, archi-

tecture recovery and software patterns.

Within architecture recovery, we distinguish between architectural reconstruction

and architecture decision recovery. The former concerns the reconstruction of an ar-

chitecture, which was never documented by the architects, or whose documentation is

no longer synchronized with the system “as-is” (Bass et al. 2003). The latter mostly fo-

cuses on recovering the decisions regarding architectural solutions and the reasoning

behind the latter; especially concerning the satisfaction of requirements. It does not

only answer the question what the architecture is like, but also why it is like that. Thus,

architecture decision recovery is complementary to architectural reconstruction. The

following paragraphs discuss the related work in each of the aforementioned areas.

Many definitions exist for software architecture. In ISO/IEC/IEEE 42010

(ISO/IEC/IEEE 2011), the international revision of IEEE Std 1471-2000 (IEEE 2000), the

architecture of a system is defined as “fundamental concepts or properties of a system

in its environment embodied in its elements, relationships, and in the principles of its

60 5. Using patterns in architecture decision recovery

design and evolution”. In the software architecture literature, it is also described as the

result of making a set of design decisions that impact the overall structure and behavior

of a software system (Bosch 2004, Jansen and Bosch 2005, van der Ven, Jansen, Nijhuis

and Bosch 2006). These decisions are usually called architecture decisions. While some

approaches mainly document the outcome of these architecture decisions in different ar-

chitectural views (e.g. (Clements et al. 2010, ISO/IEC/IEEE 2011, Kruchten 1995), others

focus on documenting the decisions themselves (Tyree and Akerman 2005, van der Ven,

Jansen, Nijhuis and Bosch 2006).

However, these approaches focus on the documentation of software architecture

during the architecting process, or at least by the architect himself. They primarily con-

cern forward engineering scenarios and try to conserve knowledge that is, or might be-

come, useful in the future. In contrast to this, during architecture recovery, this knowl-

edge, and often also the people possessing it, are partially or totally unavailable.

Several approaches exist that mainly use source code as a basis for architecture re-

construction (Kazman and Carrière 1999, Krikhaar et al. 1999). Krikhaar et al. propose

an approach that uses the source code and naming and coding conventions to extract

the architecture of a system ex post (Krikhaar et al. 1999). Although the original ar-

chitects, if available, can make a contribution to this process, the goal is not to recover

rationale, but to expose the architecture of a system in suitable representations to al-

low impact analyses on quality attributes and to incrementally improve the architec-

ture. Kazman and Carrière present an approach to reconstruct architecture that centers

around “Dali”, a suite that integrates multiple tools to extract and analyze software ar-

chitecture (Kazman and Carrière 1999). Again, the approach involves the extraction of

possibly multiple models from the source code and other programming artifacts that

describe the architecture including elements, relationships, and attributes of relevant

entities. These models can be seen as different views on the architecture.

In contrast to the static source code analyzes approaches presented above, dynamic

system analysis focuses on the runtime behavior of systems. Yan et al. describe an ap-

proach called “DiscoTect” (Yan et al. 2004). The architecture of a running system is an-

alyzed using state-machines to identify common patterns of runtime behavior in moni-

tored system events. As a result, DiscoTect identifies applied architectural styles, whose

runtime patterns have been defined in state machines. Other outcomes of the method

are different views representing the architecture of the system at runtime.

In all aforementioned approaches, and mainly in all other architecture reconstruction

approaches (Koschke 2009), the source code, system events and other artifacts used to

configure and run the system are automatically processed using tool support to build

different types of models that represent the architecture of the analyzed system as-is.

They do not aim at recovering the problem space of the architectural constructs or even

the rationale behind them. Architecture decisions are not made explicit.

Jansen et al. present an approach to recover architecture decisions (Jansen, Bosch

and Avgeriou 2008). The described method involves reconstructing detailed designs

and several architectural views on a level of abstraction that is suitable for recovering

architecture decisions. Source code, and information from the original architects, form

5.3. Design of the experiment 61

the basis for the architecture reconstruction. This approach has a different focus than

the previously mentioned ones, as representations of the architecture are solely created

for the purpose of recovering architecture decisions. Depending on the purpose of the

models, they can remain on a high level of abstraction. In contrast, this chapter focuses

on the recovery of architecture decisions based on existing architecture documentation

that was created manually and is not necessarily a result of source code analysis. Addi-

tionally, the recovery of decisions is done manually and profits from interpretation skills

that humans have in contrast to machines. This makes the approach applicable for situ-

ations, in which the documentation neither involves multiple architectural views, nor a

detailed design of the whole system, but fragmentary textual descriptions that include

box-and-line diagrams and other sketches of aspects of the system. Moreover, it explic-

itly supports the recovery of the problem space and the rationale behind decisions, not

just the specifically applied solutions.

Software architectural patterns1, like all patterns, capture generic solutions to re-

curring problems in specific contexts (Alexander 1979, Buschmann et al. 1996, Gamma

et al. 1995). They provide reusable architectural knowledge for a particular application

domain (Schmidt and Buschmann 2003). Architectural patterns reason about design

alternatives, consequences, and trade-offs concerning software qualities, which are per-

formed when applying them (Buschmann et al. 1996). Architectural patterns explicitly

discuss the consequences of their usage concerning the quality attributes of the target

architecture and mention related patterns (Buschmann et al. 1996).

A comparison of patterns and architecture decisions is presented in (Harrison

et al. 2007). In this paper, the advantages of documenting patterns applied in a

software architecture are discussed. Other approaches exist that also make use of

patterns as source of architectural knowledge (Babar and Gorton 2007, van Heesch

and Avgeriou 2009, Zimmermann, Grundler, Tai and Leymann 2007, Zimmermann

et al. 2008). However, all presented approaches propose to document the usage of pat-

terns during the architecting process, while this chapter focuses on using patterns in

architecture decision recovery, where large parts of the original reasoning is not explic-

itly available any more.

5.3 Design of the experiment

For the design of the experiment, the guidelines by Kitchenham et al. (Kitchenham

et al. 2002) and Wohlin et al. (Wohlin et al. 2012) were used. The former present general

guidelines for software engineering experimentation and give some advice concerning

the design, execution, analysis, and presentation of empirical studies without going

into detail. The latter present the phases in more detail, discuss statistical tests and

their suitability for different types of studies. In this experiment, Kitchenham et al.’s

guidelines were primarily used in the planning phase of the experiment, while Wohlin

1In the remainder of this chapter, for simplicity, we will use the word pattern meaning software archi-

tectural pattern

62 5. Using patterns in architecture decision recovery

et al.’s advice was used as a reference for the analysis and interpretation of the results.

Jedlitschka’s and Pfahl’s reporting guidelines (Jedlitschka and Pfahl 2005) are used to

describe the experiment in this chapter. The following subsections of the proposed tem-

plate were left out, because they were not applicable, or the content was already pre-

sented in other sections: Inferences are discussed Section 5.6; impacts of the approach

on time and quality are discussed in Section 5.5; interpretation and general limitations

of the study are discussed in Section 5.6.2. The usage of this template introduces a

certain level of redundancy, because a distinction between the design and the actual ex-

ecution of the experiment is made. Some subsections of the execution phase are similar

to corresponding subsections of the design phase.

5.3.1 Goal, hypotheses, parameters, and variables

The goal of the experiment is to find out, if architecture decision recovery that is based

on systematic identification of patterns in the architecture leads to higher quality or

quantity of recovered decisions compared to architecture decision recovery that is per-

formed ad hoc and intuitively. Although systematic approaches for architecture deci-

sion recovery exist (e.g. (Jansen, Bosch and Avgeriou 2008)), practitioners in the indus-

try still perform recovery in an ad-hoc, intuitive way.

The study goal led to the following null hypotheses and corresponding alternative

hypotheses:

H01: Focussing on identifying patterns in architecture decision recovery leads to lower

or equal quality of recovered decisions compared to ad-hoc, intuitive recovery.

H1: The quality of recovered decisions is higher when the recovery focuses on identify-

ing patterns in the architecture, compared to ad-hoc, intuitive recovery.

H02: Focussing on identifying patterns in architecture decision recovery leads to lower

or equal quantity of recovered decisions compared to ad-hoc, intuitive recovery.

H2: The quantity of recovered decisions is higher when the recovery focuses on identi-

fying patterns in the architecture, compared to ad-hoc, intuitive recovery.

Dependent variables

Two dependent variables were observed during the experiment, as shown in Table 5.1:

the quality and the quantity of recovered architecture decisions.

The following aspects are taken into consideration to measure the quality of the re-

covered decisions:

• Problem / Issue: The architectural design issue that is addressed by the decision.

• Decision: The outcome or solution imposed by the decision.

• Alternatives: Possible alternative solutions addressing the design issue.

5.3. Design of the experiment 63

• Arguments: A justification for the chosen decision instead of the alternatives.

• Requirements: Functional and non-functional requirements that are satisfied or

affected by the decision.

• Related Decisions: Decisions that are related to or imposed by the current decision.

The quality of the recovered decisions was assessed by two independent experts in the

field of software architecture, later also referred to as analysts, using a five point Likert-

scale (see (Trochim 2001) for a description of Likert-scales) that ranges from one for

very poor to five for very high quality. The ratings were left to their own experience

and interpretation, but they were asked to take the aforementioned aspects of decision

quality into consideration.

Quantity of architecture decisions is defined as the number of recovered architecture

decisions. Decisions that both analysts concordantly rated as non-architectural would

be excluded from the analysis. As it is hard to clearly estimate in how far a design deci-

sion concerns the architecture of the system, we provided some examples of architecture

decisions and left further evaluation to the expertise of the analysts.

Description Scale Type Unit Range

Quantity of recovered decisions ratio decisions Positive natural

numbers including

zero.

Quality of recovered decisions interval n.a. Five point Likert-

scale. One for very

poor, Five for very

high.

Table 5.1: Dependent variables

Independent variables

The goal of the experiment was to discover the influence of patterns on the quality and

quantity of decisions, obtained from architectural recovery. Therefore, two different

treatments were defined for the participants. One group of participants was explicitly

told to focus on identifying patterns in the architecture documentation; the participants

in the other group did not get any specific advice, but they were allowed to perform

this task as they would normally do it. The first group is referred to as pattern group, the

latter as control group.

Table 5.2 shows other variables that could have an influence on the dependent vari-

ables. They relate to characteristics of the participants and mainly concern previous

experience. In the design of the study, these variables were eliminated by defining

blocking rules to balance the characteristics among the pattern group and the control

group.

64 5. Using patterns in architecture decision recovery

Description Scale Type Unit Range

Group nominal n.a. Possible values: Pat-

tern group, Control

group.

Affiliation nominal n.a. Possible values:

university/academia,

industry, other

Programming experience ordinal years 4 classes: 0, 1-3, 3-7,

> 8

Architecture experience ordinal years 4 classes: 0, 1-3, 3-7,

> 8

Middleware experience ordinal years 4 classes: 0, 1-3, 3-7,

> 8

Frequency of pattern usage in projects ordinal percent 4 classes: 0%, < 25%,

> 25%, 100%

Number of well known patterns ordinal patterns 4 classes: < 5, 5-10,

11-20, > 20

Table 5.2: Independent variables

5.3.2 Experiment design

To test the hypotheses, we conducted two executions of a controlled experiment (Boehm

et al. 2005) using exactly the same study design. The first execution took place at Eu-

roPLoP 2009 (Hillside Europe e.V. 2009); the second execution took place during a soft-

ware architecture workshop at the Fontys University of Applied Science in Venlo, the

Netherlands, in April 2011.

Participants

The schedule of the EuroPLoP conference, where the first execution of the study took

place, had reserved time slots for so called focus groups (FG). Attendees could propose

topics in advance and publish them on the conference website. Multiple FGs were

scheduled concurrently, so participants had to make a selection. We announced a fo-

cus group in advance and stated explicitly that we were planning to do an experiment

on architecture recovery, based on an existing architecture documentation. The partici-

pation in the focus group was voluntary, but all participants who took part in the focus

group also had to take part in the experiment. It was assumed that the primary motiva-

tion for taking part in the experiment was personal interest in architecture recovery. We

expected to have 10 to 15 participants, based on experience from former focus groups.

A background in at least one software-engineering discipline was presumed.

The second execution during the software architecture workshop in Venlo was an-

5.3. Design of the experiment 65

nounced as a practical session on architecture decision recovery. The participation in

the workshop was free. Invitations were sent to alumni students from the hosting uni-

versity of applied science, and colleagues from their companies. We assumed that the

greatest part of the participants would have a significant industrial background and

expected between 15 and 30 attendees.

The experiment design described in the following subsections was followed in the

same way in both executions of the experiment.

Object

The basis for the architectural recovery was a five page document about the JBoss J2EE

application server version 2.2.4, an excerpt of a research article on the JBoss architecture

written by Jenny Liu from the University of Sydney in April 2002 (Liu, J. 2002).

JBoss, in the described version, is a free open source application server implementing

the J2EE specification. The documentation does not explicitly mention the usage of

any pattern, but hints exist in form of component names. The name RequestBroker for

example hints at the usage of the Broker pattern (Buschmann et al. 1996).

The document describes the conceptual architecture and lists technologies and

frameworks used in the implementation. Besides text, some box-and-line diagrams are

used to illustrate components, and control- and data-flow in parts of the architecture.

The participants received a print-out of the document.

The architecture of the used JBoss server is dominated by a microkernel, which was

implemented using the Java Management Extension (JMX). The major JBoss services are

encapsulated in so called MBeans, which are managed by an MBean server that is part

of JMX. JMX itself has a layered architecture; the agent layer contains the MBean server.

The bottom layer communicates directly with the Java virtual machine. Please refer to

(Liu, J. 2002) for the detailed description of the architecture.

Blocking

To be able to explicitly analyze the influence of patterns in architecture recovery, we

split the participants into two groups. One group was asked to identify and document

architecture decisions related to patterns, whereas the other group did not get corre-

sponding advice. The goal was to reduce the effect of independent variables that might

influence the results of the analysis.

Because of the rather small sample size, we decided not to assign the participants to

the groups randomly, but to balance the groups explicitly based on affiliation (univer-

sity, industry, other), programming experience (0 years, 1-3 years, 3-7 years, 8 or more

years), architecture experience (0 years, 1-3 years, 3-7 years, 8 or more years) and expe-

rience with object-oriented middleware (0 years, 1-3 years, 3-7 years, 8 or more years).

66 5. Using patterns in architecture decision recovery

Instrumentation

Table 5.3 shows an overview over the instruments used in the three phases of the ex-

periment. In the introduction phase, we asked all participants to fill in a questionnaire

Table 5.3: Instrumentation overview

Phase Instrument Purpose

Introduction First questionnaire Gather information needed for block-

ing

Example decision To explain the concept of architecture

decisions

Experiment Blank decision templates Used by the participants to document

the recovered decisions

Pattern catalog Provided to the pattern group as pat-

tern reference

Wrap-up Second questionnaire Gather information needed for inter-

pretation and validation of the results

prior to the recovery exercise, to gather information needed to perform the blocking

(affiliation, programming experience, architecture experience and middleware experi-

ence). Unique random numbers were attached to the questionnaires to identify the

participants throughout the experiment. They were also mapped to every recovered

architecture decision.

In the same phase, we introduced the concept of architecture decisions to all atten-

dees and presented one elaborate example on how to recover and document a decision,

based on a small part of an architecture documentation. The example decision was

handed out to all participants, so they could use it as a guideline during the experi-

ment. The template used to document the decision was taken from Tyree and Akerman

(Tyree and Akerman 2005).

In the next phase, the participants were asked to document the recovered decisions

based on the same template. Therefore, we handed out as many blank templates on pa-

per, as needed by the participants. Some fields in the template were optional, whereas

Problem/Issue, Decision, Arguments, and Related Requirements were marked as mandatory

fields. We encouraged the participants to provide as much information as possible re-

garding at least the mandatory fields.

Every member of the pattern group additionally received a printed copy of the most

well-known architectural patterns (Avgeriou and Zdun 2005, Buschmann et al. 1996).

Using the catalog to identify patterns was optional. It was assumed that many of the

participants had knowledge about architecture patterns anyway. However, the catalog

was provided to serve as a reference and as a reminder for the participants to focus

on patterns. Any patterns or architectural styles were allowed that were used to solve

an architectural problem. As described in Section 5.3.1, we left it up to the analysts to

5.3. Design of the experiment 67

judge, whether a recovered decision was architectural, or not.

An additional questionnaire, which we later also refer to as second questionnaire,

was designed to gather further information from the participants after the experiment

in the wrap-up phase. It contained questions concerning previous experience with soft-

ware patterns and the usefulness of patterns during the recovery. Although this data is

not needed for testing the hypotheses, it is useful for the interpretation and validation of

the results. We asked these questions after the experiment for two reasons. First, because

the questions regarding patterns could have influenced the participants of the control

group (the non-pattern group) prior to the experiment; they could have guessed that

patterns play an important role in the other group, and consciously or unconsciously

also focus on patterns. Second, because we were interested in the way the participants

actually performed the recovery.

Blinding

To eliminate subjective bias on the part of the participants and the experimenters,

double-blinding was applied in the experiment. Although the participants had to re-

alize that there are two different groups, they were not able to understand the purpose

of the group division, the difference in treatments, and if they belong to the experimen-

tal group or the control group. To prevent the experimenters from being biased, the

participants handed in the results using a participant number that would not allow to

draw conclusions on their real identity. The participant numbers were assigned to them

on the first questionnaire.

Because the experimenters necessarily know which participant number belongs to

which group, the quality ratings of the results were done by two independent experts.

We asked two people from our professional network to do the analysis. Table 5.4 sum-

marizes the relevant experience of the analysts. The data was gathered using a web

questionnaire.

The analysts did not get any specific information about the experiment. They were

just asked to rate the quality of some documented decisions on a scale from one to five,

as described in the variables section. Before handing the decisions out to the analysts,

we pseudonymized them a second time by attaching a unique random number to every

decision, and by internally mapping it to the participant number. That way, it was

impossible for the analysts to find out which decision belongs to which participant,

which decisions belong together, and which decisions belong to the pattern group. As

mentioned earlier, the fact that there were two groups was not communicated to the

analysts either.

Data collection procedure

After 30 minutes of introduction and grouping, the participants started with the recov-

ery. The provided templates had to be used to document the recovered architecture

decisions on paper. The participants of the groups were distributed over two separate

68 5. Using patterns in architecture decision recovery

Table 5.4: Characteristics of the analysts

Characteristic Analyst 1 Analyst 2

Working experience in the industry 9 years 33 years

Experience in the field of software architecture 9 years 12 years

Experience with object-oriented middleware like

J2EE

5 years 3 years

Involved in making architecture decisions (5-

point Likert-scale from very frequently to very

rarely)

very fre-

quently

frequently

Involved in documenting architecture decisions

(5-point Likert-scale from very frequently to very

rarely)

very fre-

quently

frequently

Involved in the analysis of architecture decisions

(5-point Likert-scale from very frequently to very

rarely)

very fre-

quently

frequently

rooms according to the group membership. Two experimenters were present in each

room to answer questions related to the instructions and to take care that participants

did not communicate with each other. Once the session was completed, the documented

decisions were collected by the experimenters. Finally, a wrap up session was planned

to collect comments on the experiment and to fill in the questionnaires about pattern

experience and pattern usage mentioned in Section 5.3.2. Including a 30 minute break,

the experiment lasted three hours.

5.4 Execution

5.4.1 Sample and preparation

As described in the design section, the experiment was announced as a focus group

during EuroPLoP 2009 and as a practical session on architecture decision recovery at

the workshop in Venlo.

At EuroPLoP, twelve people were willing to take part in the experiment, from which

one had to be rejected because of a lack of software engineering experience. Twenty-two

people took part in the practical session in Venlo, from which none had to be rejected.

All participants filled in the first questionnaire and were afterwards assigned to ei-

ther the pattern group or the control group. The blocking procedure went as expected,

according to the experimental design.

Figure 5.4.1 shows previous experience and affiliation of the participants, as as-

signed to the pattern group and the control group. The figures accumulate the data

from all participants from the two executions of the experiment.

5.4. Execution 69

./(∃#/0,1#/2∋ !∀∃∃+#(,1#/2∋

3

4

5

6

7

−3

−4

3

384

385

386

387

−

−84

−85

−86

−87

4

3,?+∀#)

−≅Α,?+∀#)

Α≅Β,?+∀#)

7Χ,?+∀#

=+>%∀(

Programming experience

./(∃#/0,1#/2∋ !∀∃∃+#(,1#/2∋

3

4

5

6

7

−3

−4

3

384

385

386

387

−

−84

−85

−86

−87

4

3,9+∀#)

−:;,9+∀#)

;:<,9+∀#)

7=,9+∀#

>+?%∀(

Architecture experience

./(∃#/0,1#/2∋ !∀∃∃+#(,1#/2∋

3

4

5

6

7

−3

−4

3

384

385

386

387

−

−84

−85

−86

−87

4

3,9+∀#)

−:;,9+∀#)

;:<,9+∀#)

7=,9+∀#

>+?%∀(

Middleware experience

./(∃#/0,1#/2∋ !∀∃∃+#(,1#/2∋

3

−

4

5

6

7

8

9

:

;

<(%=+#)%∃>

?(≅2)∃#>

Α∃Β+#

Affiliation

Figure 5.1: Distribution of participants

Subfigures (a) to (c) show the previous experience of the participants concerning pro-

gramming, architecture and middleware. Additionally to the total numbers of partici-

pants in each class, median values are shown for each group. The medians are aligned

to the right vertical axis, whereas all other values are aligned to the left vertical axis.

Medians were calculated as follows. First, each of the year-intervals was assigned to a

single value in an ordinal scale ranging from zero to three. ‘0 years’ was assigned to the

value 0, ‘1-3 years’ was assigned to 1 and so on. Then medians were calculated based

on the ordinal scale. In total, the median programming-, architecture- and middleware

experience for both groups is two, which means that the participants in the groups were

balanced concerning their previous knowledge.

At the same time, the participants from both groups were introduced to the concept

of architecture decisions using the prepared recovered decision. The introduction took

approximately 15 minutes.

70 5. Using patterns in architecture decision recovery

5.4.2 Data collection performed

The data collection at the EuroPLoP execution was performed as planned in the design.

No participants dropped out and no deviations from the study design occurred.

In the workshop execution in Venlo, one of the participants from the control group

did not hand in the recovered decisions after the experiment. Consequently, his data

could not be taken into consideration. Other than that, everything went as planned.

5.4.3 Validity procedure

The experiment took place in a controlled environment. The participants were assigned

to two different rooms according to their group (pattern, or control group). At least one

experimenter was present in each room during the whole experiment time to assure

that participants did not use forbidden material and did not talk to each other. After

the experiment, all documented decisions were collected by the experimenters before

any of the participants left the room. There were no situations in which participants

behaved unexpectedly.

5.5 Analysis

5.5.1 Descriptive statistics

We use descriptive statistics to visualize the collected data as a first step in the analysis.

The first two subsections are related to the hypotheses tests: Section 5.5.1 presents an

analysis of the quality of documented decisions. Section 5.5.1 concerns the quantity of

decisions. The last subsection presents an analysis of the data gathered in the second

questionnaire, in which the participants were asked about their previous experience

and the usefulness of patterns during architecture recovery. The results are compared

to those of the analysis of the quality and quantity of the recovered decisions.

Quality of recovered decisions

As explained in the design section, the quality of knowledge in every recovered decision

was rated by two independent experts using a five point Likert-scale, ranging from one

for very poor quality to five for very high quality.

The level of scaling (e.g. nominal, ordinal, interval, ratio) for Likert-scales is hard to

determine. It is common sense that Likert-scales are at least ordinal in nature (Goldstein

and Hersen 2000). For the quality ratings in this experiment, this is given. A decision

that was rated with five has a higher quality than a decision rated with four. However, to

be able to use parametric statistical tests like the t-test, at least an interval scale (Stevens

1946) character of the scale must be assumed. This is the case, if equal distances between

the points on the scale can be assumed, e.g. the difference between the ratings five and

four would be the same as the distance between ratings two and three. In our specific

5.5. Analysis 71

3 345 1 145 6 645 7 745 5

8

5

38

35

18

15

68

65

Absolute distribution Control Group

3 345 1 145 6 645 7 745 5

8

5

38

35

18

15

68

65

Absolute distribution Pattern Group

Figure 5.2: Frequency: quality of decisions

case we assume that this holds true.

In the analysis of the experiment, a t-test for independent variables (O’Gorman 2004)

is used to calculate the significance of the found results. Levene’s significance test is

used to find out whether equal variances of the quality ratings can be assumed.

Based on the data in Table A.1, the following descriptive statistics apply for the qual-

ity of knowledge. Figure 5.2 shows the frequency of rated quality for the decisions re-

covered by the pattern group and the control group. From the figure, we see that the

quality of decisions in the pattern group seems to be higher than the quality of decisions

in the control group. Moreover, the most frequent quality ratings in the pattern group

are 2.5 (33.3%) and 3 (18.9%), compared to 1 (22.0%) and 2 (22.0%) in the control group.

Table 5.5: Additional descriptive statistics

Control Group Pattern Group

N 100 90

Mean 2.185 2.611

Std Dev 1.032 .752

Variance 1.064 .566

Median 2.000 2.500

As argued before, we interpret the Likert-scale as an interval scale; so the mean,

standard deviation, variance, and range apply as measures. Additionally, the median

value is calculated, which would also be applicable for ordinal scales. Table 5.5 shows a

comparison between the statistics for the control group and the pattern group. Besides

the fact that the average quality of decisions in the pattern group is higher than in the

control group, the variance in the control group is much higher than the variance in the

pattern group. This means that the dispersion of quality ratings is higher in the control

group.

72 5. Using patterns in architecture decision recovery

Quantity of recovered decisions

Table 5.6: Descriptive analysis quantity of decisions

Control Group Pattern Group

N 16 15

Mean 6.25 6.0

Std Dev 4.386 3.359

Variance 19.267 11.286

The quantity of recovered decisions is measured counting all architecture decisions

that were not excluded as being non-architectural by both analysts. One of the analysts

excluded some decisions as being non-architectural, whereas the other analysts did not

exclude decisions at all. Because there was no mutual agreement on any of the cases to

be excluded, we included all decisions in the quantitative analysis.

The number of participants in the two groups is shown in Table 5.6, together with

the mean values, the standard deviations, and the variances for the respective group.

The mean quantity of decisions, which is measured in terms of the number of recovered

architecture decisions, is slightly higher in the control group than in the pattern group.

The standard deviation in the control group is considerably higher than in the pattern

group.

Analysis of second questionnaire

In this section, the results from the second questionnaire, which was filled in after the

experiment took place, are presented.

Figure 5.3 (a) shows the frequencies of answers to the question: How often do you

apply software patterns in your software projects? Possible answers were Never, In less than

25% of the projects, In at least 25% of the projects, In every project. Additionally to the

frequency of answers, median values are shown. They were determined by assigning

each of the answers to a single value in an ordinal scale ranging from zero to three and

calculating the medians based on these numbers. While all other values are aligned to

the left vertical axis, the medians are aligned to the right vertical axis. The figures show

that the median for the control group is higher than for the pattern group. This means

that the participants had more pattern and recovery experience than the participants in

the pattern group.

The frequencies of answers to the question: How many software patterns do you know

well? are shown in Figure 5.3 (b). Possible answers were Less than 5 patterns, Six to ten

patterns, Eleven to twenty patterns and More than 20 patterns.

The participants were also asked whether they did architectural recovery before. The

results are shown in Figure 5.3 (c).

The next two questions from the second questionnaire concerned the usage and

helpfulness of patterns and show a small delta between the groups. First, the partic-

ipants were asked to rate the helpfulness of patterns during architecture recovery on a

5.5. Analysis 73

./(∃#/0,1#/2∋ !∀∃∃+#(,1#/2∋

3

4

5

6

7

−3

−4

3

389

−

−89

4

489

:

;+<+#

=,49>

?,49>

≅0Α∀Β)

Χ+∆%∀(

(a) How often do you apply patterns in

projects?

./(∃#/0,1#/2∋ !∀∃∃+#(,1#/2∋

3

4

5

6

7

−3

−4

3

384

385

386

387

−

−84

−85

−86

−87

4

9,:

6,;,−3

−−,;,43

<,43

=+>%∀(

(b) How many patterns do you know well?

./(∃#/0,1#/2∋ !∀∃∃+#(,1#/2∋

3

4

5

6

7

−3

−4

−5

−6

3

389

−

:+)

;/

<+=%∀(

(c) Have you done architecture recovery be-

fore?

Figure 5.3: Pattern and architecture recovery experience

scale from one for not helpful to five for very helpful. The median in both groups is four.

These results are subjective in nature, as they express opinions. However, it shows that

the members of both groups generally consider patterns as very useful in architecture

recovery.

In the next question, the participants were asked to estimate how extensively they

used patterns during the recovery. Possible answers ranged from one for almost never to

five for very often. The median answer in the pattern group is three, the median answer

in the control group is two.

We looked into the types of the recovered decisions to see if the subjective estima-

tions of the participants reflect the reality or not. In particular, the decisions were classi-

fied into pattern-related decisions, if the name of a pattern is literally mentioned in the

documented decisions, and others, i.e. non pattern-related decisions. The results of this

analysis can be found in Table A.1.

74 5. Using patterns in architecture decision recovery

The average number of pattern-related decisions per participant in the pattern group

is 4.6 compared to 1.88 in the control group. The average number of other decisions per

participant in the pattern group is 2.07 compared to 4.38 in the control group. The ratio

of the pattern-related type to the other type is 2.23 in the pattern group compared to 0.43

in the control group. This shows that the members of the pattern group clearly focused

more on patterns than the members of the control group. Independently from the group,

in which decisions were taken, the median quality of pattern-related decisions is 2.5, the

median quality for other decisions is 2. This analysis of decision types has two results.

It verifies that the pattern group focused on identifying pattern-related decisions and it

shows that the difference in quality of decisions presented above can be ascribed to the

focus on patterns.

Finally, we asked the participants to briefly describe how the recovery was per-

formed. This was primarily done to confirm that the pattern group followed a pattern-

based approach and to find out if the control group used any other systematic way to

identify and describe decisions. Although the amount of qualitative data for this ques-

tion was low (roughly one sentence per participant), we use the constant comparative

method, as originally described by Glaser and Strauss (Glaser and Strauss 1967) to sys-

tematize the analysis of the answers. Therefore, we grouped (partial) answers to the

question how the recovery was performed into categories. Each answer was compared

to the previously coded answers in the same and other categories to gain a better under-

standing of the decision recovery process they describe. Finally, the categories elicited

from the control group were compared to the categories from the pattern group.

The results imply that the control group followed an intuitive approach, which was

mainly driven by personal experience. Four participants answered that they searched

for buzzwords that would remind them of a familiar technical solution. Three respon-

dents stated that they read the textual descriptions in the architecture document to mine

decisions; two analyzed the given UML diagrams. Three participants from the control

group explicitly answered that they searched for patterns in the architecture. The other

answers were not assigned to a specific category. However, one of these answers ex-

tremely represents the impression we gained during the analysis of the answers of the

control group: “It looks like decision -¿ it is decision”.

The answers of the pattern group reflect the focus on patterns. Thirteen out of 18

answers explicitly described an approach that centers on patterns. Six participants an-

swered that they searched the UML diagrams for potential pattern participants. Four

respondents identified candidate pattern decisions in the architecture documentation

and then read up on the pattern in the pattern catalog, before they documented the

decision using the given template.

5.5.2 Data set reduction

Outliers are potential candidates for dataset reduction, i.e. data points that are either

much higher, or much lower than other data points. To find potential outliers, we cal-

culated the average quality of decisions for each participant. Figure 5.5.2 shows bar

5.5. Analysis 75

charts for every member of the control and the pattern groups for both executions of

the experiment. The first two figures represent the participants at EuroPLoP 2009, the

latter two represent the participants from the software architecture workshop in 2011.

The numbers in the legends are the participant numbers.

∗

∗+,

%

%+,

−

−+,

.

.+,

/

,/

,.

3∗

,%

,0

,−

Avg quality EuroPLoP Control Group

∗

∗+,

%

%+,

−

−+,

.

.+,

/

,,

,0

,1

,2

0%

Avg quality EuroPLoP Pattern Group

∗

∗+,

%

%+,

−

−+,

.

.+,

/

&%−,

&%∗%

&%∗0

&%∗/

&%−∗

&%%−

&%∗1

&%%2

&%%.

&%%3

Avg quality SWA WS Control Group

∗

∗+,

%

%+,

−

−+,

.

.+,

/

&%%∗

&%−−

&%∗.

&%−.

&%%%

&%%,

&%∗,

&%%/

&%∗−

&%∗0

Avg quality SWA WS Pattern Group

Figure 5.4: Average quality per participant

Two participants from the control group at EuroPLoP (Figure 5.4 reached a signifi-

cantly higher quality than the other members of this group. A closer analysis showed

that most of their decisions concerned patterns. Three out of five decisions from par-

ticipant 54 were pattern decisions; six out of eight decisions from participant 53 were

pattern decisions. This could lead to the conclusion that the high decision quality of

these two participants results from the focus on patterns. However, their decisions were

not excluded as outliers, because the difference to the other participants was not strong

enough. Additionally, excluding the data points would have introduced a potential

vulnerability of the study results.

76 5. Using patterns in architecture decision recovery

5.5.3 Hypothesis testing

The two hypotheses, regarding higher quality and quantity of recovered decisions when

architecture recovery is focused on identifying patterns, are evaluated using t-tests.

Quality of decisions

Table 5.7: Independent t-test for quality of decisions

Factor Mean diff. t-value p-value

control group vs. pattern group -0.4261 -3.222 0.001

The results from the t-test (unpaired, two-tailed) are shown in Table 5.7. It provides

strong evidence that H01 can be rejected. There is a noticeable difference in the quality

of the recovered decisions between the pattern group and the control group. The p-

value is very low, so the results are highly significant. Even if the classification of the

used Likert-scale for the quality ratings of the decisions as interval scale could not be

accepted, the descriptive statistics would still strongly support the result of the t-test, as

the median value and the frequency of measured quality both support a result in favor

of the pattern group.

Quantity of decisions

Table 5.8: T-Test independent samples test quantity of decisions

Factor Mean diff. t-value p-value

pattern group vs. control group -0.250 -0.177 0.861

Hypothesis H02 was also evaluated with a t-test (unpaired, two-tailed). The results

are shown in Table 5.8. Although slight differences in terms of the mean values can

be observed, we are unable to show that this result is significant. An exclusion of the

cases that were rated as non-architectural by one of the analysts would not have had an

impact on this result.

5.6 Interpretation

5.6.1 Evaluation of results and implications

Quality of decisions

Hypotheses H01 and H1 concern the quality of recovered decisions. As pointed out in

Section 5.5, we are able to provide strong evidence that the null-hypothesis H01 can be

rejected.

5.6. Interpretation 77

Thus, the quality of decisions gained during architecture recovery is higher if the

recovery focuses on identifying applied patterns. Additionally to the generally higher

quality, the variance in the pattern group is much lower than in the pattern group.

We interpret our findings as follows. Patterns provide rich information about their

problem- and solution spaces as well as reasoning for applying them in a system. They

contain a great part of the architectural knowledge that is relevant for the system, in

which they were applied. If a pattern was identified during the recovery process, then

the pattern documentation or the personal knowledge about the pattern helps to recover

the intent of the original architect, who decided to apply it. Of course, it still takes

some effort to identify the pattern and customize the pattern’s documented knowledge

for the system at hand; but a large part of that high-quality knowledge is reused, not

invented. The fact that the variance in the pattern group is relatively low shows that

patterns help to reduce the dependency on individual abilities of the person doing the

recovery. A certain quality level can be achieved even by people who do not have a

strong background in architecture recovery. Consequently, the higher variance in the

control group might stem from the different abilities of the participants.

Quantity of decisions

Hypotheses H02 and H2 concern the quantity of recovered decisions. The results do not

provide evidence to confirm or reject the null-hypothesis H02. We are unable to show

that the focus on patterns in architecture recovery has a significant effect on the number

of recovered decisions. This result is surprising to us. As described in the introductory

section, we assumed that the quantity of recovered decisions would be higher in the

pattern group. The results might stem from the fact that the participants in the pattern

group took more time to document every single decision than the participants in the

control group and thus had less time left to identify decisions. They also needed time

to study the pattern catalog. This effect could possibly be eliminated by adjusting the

study design. We will discuss this in Section 5.6.3.

The variance of the quantity was much higher in the control group than in the pat-

tern group (19.267 compared to 11.286). This is another indicator for the lower depen-

dency on the recoverer’s personal skills and abilities as already discussed for the quality

of decisions.

5.6.2 Limitations of the study

Several levels of validity have to be considered in this experiment. We consider the

classification scheme for validity in experiments by Cook and Campbell (Cook and

Campbell 1979). Internal validity concerns the cause effect relationship between the

treatment and the dependent variables measured in an experiment. External validity

focuses on the generalizability of the results for a larger population. Conclusion va-

lidity focuses on the relationship between treatment and outcome and on the ability to

draw conclusions from this relationship. Finally, construct validity is about the suitabil-

78 5. Using patterns in architecture decision recovery

ity of the study design for the theory behind the experiment. All threats to validity are

categorized according to this classification.

Internal validity

• The object in the experiment was a documentation of an object-oriented middle-

ware. In this particular case, the JBoss application server, many architectural pat-

terns were implicitly and explicitly applied in the system, which might lead to the

conclusion that the pattern group had advantages compared to the control group.

This, however, does not seem to be the case. Both groups could have identified

the architecture decisions behind the applied patterns. Also many other architec-

ture decisions were made by the original architects that do not concern patterns,

e.g. the choice of used frameworks or programming libraries. Finally, although

many patterns were applied in the JBoss server, our results do not confirm that

a focus on patterns leads to higher quantity of decisions. Thus, the fact that the

JBoss design contains a lot patterns did not have an effect in our study.

Another potential threat related to the choice of JBoss as object of the study is the

fact that many J2EE patterns exists. The former SUN catalog of J2EE patterns is

one source of such patterns (Oracle Corporation 2002). However, the J2EE patterns

support the creation of applications that conform to the J2EE specification set. To

the best of our knowledge, no pattern catalog or pattern language exists that is

specific to developing J2EE servers. In this case, the application analyzed by the

participants was a J2EE server, not a J2EE application. Thus, we do not consider

this a threat to validity.

We conclude that the choice of the object studied in this experiment is not a threat

to the internal validity of the results.

• The outcome of the experiment could have been different for systems, in which

fewer or no patterns were applied by the designers. Normally, it is more difficult

to identify pattern decisions in systems, in which not many patterns have been

applied. However, a study of pattern usage, conducted by Harrison and Avgeriou

(Harrison and Avgeriou 2008), showed that most systems have at least two archi-

tecture patterns, some have as many as eight. Furthermore, besides architecture

patterns, the pattern community has assembled a vast body of pattern knowledge

for virtually all software domains. Thus, several patterns can be potentially found

in any system. Moreover, even if patterns are not consciously used by designers,

they can still be applied unconsciously, as designers tend to reach common solu-

tions. It is unlikely that all architecture decisions in a system are pattern related,

but even in cases where only a few patterns were used, the decisions can be an im-

portant entry point for the recovery of the remaining decisions, because decisions

are usually interrelated. The threat, however, cannot be mitigated completely.

In a few rare cases, so many patterns could have been applied in an architecture

that individual patterns are hard to identify in the design. This, however, is a

5.6. Interpretation 79

theoretical problem that is not very likely to be observed in reality. We do no

consider it a threat to validity.

• Typically, there is a variation in human performance that might influence the re-

sults of the experiments. This can distort the results, because then the performance

would not arise from the difference in treatments. We tried to minimize this factor

by balancing the two groups concerning the relevant previous experience of the

participants. The groups were well balanced in all categories, namely program-

ming experience, middleware experience, architecture experience and recovery

experience. Thus, this factor is not seen as a threat to validity.

• The control group could theoretically have imitated the behavior of the pattern

group. In this particular experiment, the two groups performed in two different

rooms at the same time. The instructions that concerned the difference in treat-

ments were given to the participants after they moved into these rooms. That

way, there was no chance for the control group to consciously or unconsciously

imitate the behavior of the pattern group.

• The raters could have unconsciously ranked the pattern decisions higher than

other decisions, because patterns contain professionally edited material that is

succinct and easy to comprehend. The data gathered in both executions, however,

shows that the participants used the patterns to interpret the architectural solu-

tions found in the JBoss architecture and documented the decisions using their

own words, adapting the pattern information in the context of the JBoss system.

Therefore, decisions by and large, were not documented by copying or reusing the

text from the pattern catalogs.

External validity

• The subject population in the experiment might not be representative for a larger

population. In this case, the subjects (participants) of the first execution of the

experiment were participants of the EuroPLoP conference. They all have an aca-

demic or industrial background in several software engineering disciplines and

a strong interest in patterns. The second execution at the software architecture

workshop in Venlo was conducted mainly with industrial practitioners from dif-

ferent domains. Our results imply that the affiliation (industry or academia) does

not have an influence on the external validity of the results. No correlation be-

tween the affiliation and the quality of recovered decision could be found. Ad-

ditionally, each of the two executions analyzed in isolation would have lead to

the same conclusions, namely that a focus on patterns leads to higher quality, but

not to higher quantity. Therefore, we conclude that the pattern background of the

EuroPLoP participants does not distort the study results.

• The instrumentation and object in the experiment might have been unrealistic or

80 5. Using patterns in architecture decision recovery

old-fashioned. In this case, the architecture recovery was based on a printed ar-

chitecture documentation. Usually different tools would be used

to support architecture recovery. Code analyzers, reverse engineering tools and

dependency analysis tools are some examples. These tools are primarily used to

recover the design of a software system. In this experiment, for practical reasons,

the design of the software was readily provided in a printed document. The focus

was on architecture decision recovery, not on architecture design recovery. We

assume that the measured effect of a pattern focus during architecture decision

recovery is independent from the way, in which the design was recovered.

Another theoretical thread to validity is that the problem in the analysis might be

unrealistic and too simple to allow generalization. This was not the case here. The

object used is an excerpt from a real documentation of the JBoss server that was

not created for the purpose of this experiment.

• Finally, the experimenters could have biased the measurements of the indepen-

dent variables. We mitigated this risk by assigning the quality ratings of the deci-

sions to two independent experts that had no knowledge about the goals of the ex-

periment. Additionally, by using pseudonymization, the analysts had no chance

to guess which decisions belonged to which group. They could not even have

found out which decisions belonged together, i.e. were documented by the same

participant.

Conclusion validity

• As discussed in the design section, there is a potential threat to validity resulting

from the interpretation of the Likert-scale, which was used to rate the quality of

architecture decisions, as an interval scale. Some of the statistical tests used to

analyze the results (mean, variance, standard deviation and t-test) would not have

been valid for nominal scale types. We argue that in this particular situation the

ratings of the Likert-scale are metrically scaled, and thus have the character of

an interval scale. This means, for instance, that the quality rating four is actually

two-times higher than the quality rating two. Because this interpretation remains

critical, we also calculated the median for the quality ratings, which would also be

applicable for nominal scales.

• Another potential threat to validity is the subjectivity of the scale used to rate the

quality. We tried to mitigate this risk by asking two independent experts in the

field of software architecture to rate the quality of every recovered decision. In the

analysis, we took the arithmetic average of the two ratings per decision as a basis.

However, the null-hypothesis would also have been rejected for the results of both

analysts individually. Additionally, from the fact that our result has a very high

significance, we conclude that this potential threat is mitigated.

5.7. Conclusions and future work 81

Construct validity

• The fact that only one object; the JBoss documentation; was used in the exper-

iment, introduces the risk that the cause construct is underrepresented. Theo-

retically, the results could look different if multiple architecture documentations

would be used for the recovery. We assume that the used system and its docu-

mentation are representative for large and medium-size object-oriented systems.

The threat, however, cannot totally be ignored.

• Another potential threat to validity is the number of measures used to evaluate the

quality of recovered decisions. In our case we only used one variable to measure

the quality of the recovered decisions. This does not allow cross-checking the

results with different measures.

5.6.3 Lessons learned

The analysis of the quantity of decisions showed that, on average, the control group

recovered more decisions than the pattern group. We already presumed that one of the

reasons for this outcome might be that the participants in the pattern group took more

time to document every single decision than the participants in the control group and

therefore had less time left to identify decisions. Besides, they took time to study the

pattern material. The latter was particularly the case during the workshop in Venlo. The

participants at EuroPLoP had presumably more knowledge about patterns and conse-

quently took less time to study the pattern material.

One way of eliminating this effect would have been to assign more time to the pat-

tern group than the control group. But, as the additional time needed to document

decisions can hardly be estimated or even predicted, it would have been hard to de-

fine an adequate period of time to add it to the pattern group’s experiment run-time.

Additionally, a potential threat to validity would have been introduced.

Another possible improvement of the study design concerns the data collection. In

this experiment, we could not make use of computers or other electronic devices to

collect data. This was a handicap during the analysis. Gathering data electronically

using online surveys and electronic forms would have eased the analysis. However,

participants felt comfortable with the architecture documentation on paper, because the

paper form allowed them to take notes.

5.7 Conclusions and future work

In this chapter, we describe the results of a controlled experiment that was conducted to

find out if patterns are beneficial for architecture decision recovery. Two aspects were

specifically taken into consideration: the quality and the quantity of recovered deci-

sions. The evaluation of the experiment shows that a focus on patterns leads to sig-

nificantly higher and stable quality of decisions, compared to intuitive recovery, which

82 5. Using patterns in architecture decision recovery

leads to a lower quality with higher variance. We are unable to show that the quantity

of recovered decisions is also positively affected.

In the future, we plan to replicate the experiment with different types of software

systems from other application domains, which are less pattern-intensive than the object

used in this study.

Another direction for future work is to find out if besides patterns, there are other

forms of generic architectural knowledge that can be beneficial in architecture decision

recovery. In the context of a research project, we developed a publicly available online

repository for patterns and technologies (University of Groningen, Software Engineer-

ing and Architecture Group 2012b). The basis for the repository is a common meta

model for patterns and technologies that allows to relate patterns, pattern variants and

software technologies. We plan to use the tool for a follow up experiment, in which we

allow the treatment group to use all kinds of generic architectural knowledge, instead

of focussing on patterns.

5.8 Acknowledgements

We would like to thank Anton Jansen and Chuck Allison for analyzing the results of the

study. We also thank the members of the EuroPLoP 2009 focus group and the partici-

pants of the software architecture workshop in Venlo 2011 for taking part in the experi-

ment.

Based on: U. van Heesch, P. Avgeriou, and R. Hilliard – “A documentation framework for architecture
decisions”, Journal of Systems and Software, 85(4):795- 820, 2012.

Chapter 6

A framework for architecture decisions

Abstract

In this chapter, we introduce a framework for architecture decisions. This framework con-

sists of four viewpoint definitions using the conventions of ISO/IEC/IEEE 42010, the new

international standard for the description of system and software architectures. The four

viewpoints, a decision detail viewpoint, a decision relationship viewpoint, a decision chronol-

ogy viewpoint, and a decision stakeholder involvement viewpoint, satisfy several stakeholder

concerns related to architecture decision management.

With the exception of the decision stakeholder involvement viewpoint, the framework was

evaluated in an industrial case study. The results are promising, as they show that decision

views can be created with reasonable effort, while satisfying many of the stakeholder concerns

in decision documentation.

6.1 Introduction

With the growing complexity and size of software-intensive systems, software architec-

ture has become increasingly important. While architecture is traditionally understood

as the design of the system itself, manifested mainly in design elements and their form,

Perry and Wolf recognized the importance of (design-)rationale as an integral part of

the software architecture. They defined software architecture as follows:

Software Architecture = {Elements, Forms,Rationale} (Perry and Wolf 1992)

Kruchten adopted this definition of software architecture as a starting point for the

4+1 View Model framework (Kruchten 1995). In this framework, each of the five views

addresses various stakeholder concerns and determines the organization of a set of ar-

chitectural elements, the forms and patterns used, and the rationale behind those archi-

tectural choices. This concept of documenting software architecture as a set of views

that correspond to viewpoint (VP) definitions and address stakeholder concerns was

adopted and generalized in IEEE Std 1471:2000 (IEEE 2000), and further elaborated by

the architecture community (e.g., (Clements et al. 2010, Rozanski and Woods 2005)).

However, as in Kruchten’s 4+1, the importance of documenting decisions and their ra-

tionale along with the selected architectural concepts was only mentioned, but little

guidance was offered on how to document decisions.

84 6. A framework for architecture decisions

Bosch emphasized the importance of documenting architecture as a set of architec-

ture decisions (ADs) (Bosch 2004). In contrast to the aforementioned approaches, design

decisions as an explicit part of the software architecture description provide insight into

the reasoning process and record the rationale behind design decisions. The concept of

architecture decisions has been incorporated into ISO/IEC/IEEE 42010 (ISO/IEC/IEEE

2011), which is the international revision of IEEE Std 1471:2000 (IEEE 2000).

Today, the perspective of looking at software architecture in terms of a set of archi-

tecture decisions is widely recognized. Authors have proposed templates for the infor-

mation that is important to capture about decisions (e.g., (Jansen and Bosch 2005, Tyree

and Akerman 2005)), and various models and tools to capture and manage architecture

decisions have been proposed (Tang, Avgeriou, Jansen, Capilla and Ali Babar 2010).

Several approaches incorporate the documentation of architecture decisions in architec-

ture practice and subsequently capture and organize architecture decisions to address

various concerns, such as traceability and architectural conformance (Babar et al. 2009).

There are currently three main approaches to documenting architecture decisions:

decision templates, decision models, and annotations. We argue that all three approaches

satisfy some decision-related concerns, but none of them succeeds in satisfying all con-

cerns. Shortcomings of architecture decision documentation approaches are not sur-

prising: as with traditional architecture views, there is not a single way of documenting

architecture decisions that frames all concerns of all stakeholders in an adequate and

useful manner. We suggest that multiple dedicated viewpoints should be defined that

focus on framing specific decision-related concerns.

In this chapter, we propose a framework consisting of four viewpoints for architec-

ture decisions: A decision detail viewpoint, a decision relationship viewpoint, a deci-

sion chronology viewpoint, and a decision stakeholder involvement viewpoint. Each

viewpoint is dedicated to framing specific decision-related concerns. At the same time,

each viewpoint is integrated with the other viewpoints through a common metamodel

to offer a more complete picture of decisions and their rationale. The framework pro-

posed here is useful “out of the box”, but it can also serve as a basis for customization

or extension, by adding new decision-related viewpoints. One extension of the frame-

work, the decision-forces viewpoint, is presented in Chapter 7. This viewpoint also

builds upon the current framework metamodel. Apart from the decision stakeholder

involvement viewpoint, all viewpoints were validated in an industrial case study with

very promising results.

The rest of this chapter is organized as follows. Section 6.2 presents stakeholder

concerns related to architecture decisions. In Section 6.3, we briefly outline the proposed

viewpoints, including an example view for each of the viewpoints1. In Section 6.4, we

report on an industrial case study, which was conducted to validate the viewpoints.

Section 6.5 summarizes related work and Section 6.6 presents our conclusions and ideas

for future work.

1The whole framework in terms of a unified metamodel, the complete viewpoint definitions, and the

correspondences between those viewpoints, are specified in Appendix B.3.

6.2. Concerns related to architecture decisions 85

6.2 Concerns related to architecture decisions

Architecture decisions should be documented to complement architectural design with

rationale. Yet, how to capture decisions is still subject to discussion. This is mainly

because there is no consensus on which stakeholder concerns must be addressed by a

decision documentation approach. A concern, as used here, is any interest in a system

Table 6.1: Concerns for architecture decision documentation

Code Concern

C1 What decisions have been made?

C2 What is the current set of relevant decisions?

C3 What is the rationale for decision D?

C4 What concerns Ci does decision D pertain to?

C5 Which requirements impacted/influenced each decision?

C6 What decisions Dk are influenced by requirement R?

C7 Which requirements Rl have conflicting influences on decision D?

C8 What decisions are required by decision D (including unmade decisions)?

C9 What decisions conflict with decision D?

C10 What decisions are dependent on decision D?

C11 What decisions are related to decision D?

C12 What decisions influence decision D, or architecture element E?

C13 What decisions are impacted by a change?

C14 What decisions would be impacted when integrating a set of decisions S?

C15 How to apply a set of decisions from a different project in the target archi-

tecture?

C16 Which stakeholders are affected by decision D?

C17 What decisions affect stakeholder S?

C18 Which stakeholders were involved in decision D?

C19 What decisions are influenced by stakeholder S?

C20 What is the ordering of decisions made?

C21 What decisions have changed since time T, or milestone M?

C22 What decisions became obsolete after change CH?

C23 What decisions D or decision sub-graphs SG can be reused in other

projects?

on the part of its stakeholders. Each concern poses a question or issue that the architec-

ture description, in this case the architecture decision documentation, should be able to

answer.

In recent years, many use cases for architectural knowledge management have been

published in the literature. We argue that decisions are one type of architectural knowl-

edge. Therefore, we have analyzed three recent publications containing architectural

86 6. A framework for architecture decisions

knowledge management (AKM) use cases (Liang et al. 2009, Kruchten et al. 2006, Jansen

et al. 2007) to identify and derive concerns for architecture decision documentation. Ta-

ble 6.1 shows the resulting concerns2. The concerns were functionally grouped and,

where possible, ordered according to the authors’ estimation of their importance. The

actual importance of the concerns, however, often depends on the specific needs of the

concrete stakeholder.

The analysis procedure, as well as a complete table with the analyzed use cases, the

derived concerns, and the activities performed to derive the respective concerns, can be

found in Appendix B.1.

Table 6.2: Architecture decision concerns related to typical stakeholders

Stakeholders Concerns

Architects C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 ,C11, C12, C13, C14,

C15, C16, C17, C18, C19, C20, C21, C22, C23

Reviewers C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C16, C18,

C20, C21

Managers C17, C18, C19

Customers C3, C6, C7

Requirements Engi-

neers

C6, C7

New project mem-

bers

C3, C20

Domain experts C23

Next, the authors assigned the concerns to typical stakeholders. Table 6.2 shows

the results. Most concerns were assigned to architects and reviewers, because these

stakeholders are frequently using architecture documentation in their daily work. The

assignment of the concerns took place based on typical tasks that the stakeholders per-

form in software projects. It could be argued that requirements engineers or managers,

for instance, could also be interested in dependencies between decisions or the impact

of a change in the architecture. However, we decided to limit ourselves to the most

characteristic concerns for the respective stakeholders.

The concerns were taken as a basis for the development of the decision viewpoints,

which will be introduced in the following section. Each of the viewpoint definitions

was driven by the typical stakeholders and concerns it frames. With the exception of

the concerns that were exclusively assigned to the stakeholder involvement viewpoint

(C16, C17, and C19), all concerns for the viewpoints were validated as part of the case

study presented in Section 6.4.

2A decision sub-graph, as used in concern C23, is a subset of a bigger set of interrelated decisions

6.3. A framework for architecture decisions 87

6.3 A framework for architecture decisions

Architecture

Framework

Stakeholder

System

Concern

Architecture

Viewpoint

Architecture

Description

Correspondence

Rule

Model Kind

1..*

1

identifies

0..*1

applies to

1..*

1..*
frames

0..*

1..*

1

1..*

1

1..*

identifies

1..*

1..*

has

Figure 6.1: Architecture framework (reproduced from ISO/IEC/IEEE 42010 (ISO/IEC/IEEE

2011))

An architecture framework is a set of practices for architecture description used within

a domain or community of stakeholders (ISO/IEC/IEEE 2011). A framework typi-

cally consists of a set of viewpoints for addressing recurring or typical concerns within

that community. Figure 6.1 shows the metamodel for architecture frameworks from

ISO/IEC/IEEE 42010 (ISO/IEC/IEEE 2011).

In this chapter, we present a documentation framework for architecture decisions

which uses the conventions of ISO/IEC/IEEE 42010. It comprises all elements defined

in Figure 6.1. The four viewpoints of the framework were successively developed to

frame the concerns described in the previous section. Each of the viewpoints is dedi-

cated to concerns that are not, or not sufficiently framed by the previously created view-

point. Starting from the decision detail viewpoint, which mainly addresses concerns

related to the rationale behind decisions (C3-C6); we defined the decision relationship

viewpoint, which focusses on concerns pertaining to relationships between decisions

(C8-C15). The decision stakeholder involvement viewpoint allows to explicate the rela-

tionships between stakeholders and decisions (C16-C19). Finally, the decision chronol-

ogy viewpoint was developed to satisfy the remaining temporal concerns in decisions

(C20-C22). Apart from the key concerns mentioned here, each viewpoint addresses ad-

ditional concerns that will be described in the following subsections.

In the remainder of this section, we outline the four viewpoints and show example

views. A thorough definition of the framework can be found in Appendix B.3.

88 6. A framework for architecture decisions

<<approved>>

Shared Repository Pattern <<approved>>

MySQL

<<approved>>

MySQL Load Data Infile

<<rejected>>

MyISAM

<<approved>>

InnoDB

<<rejected>>

Hibernate

<<approved>>

Table Data Gateway Pattern

<<challenged>>

Singleton Pattern for DB Gateways

<<State>>

Decision A

<<State>>

Decision B

<<Relationship type>>

<<caused by>>

<<depends on>>
<<depends on>>

<<replaces>>

<<caused by>>

<<replaces>>

<<depends on>>

<<depends on>>

<<depends on>><<caused by>>

Figure 6.2: Detail of a relationship view

Table 6.3: Typical stakeholders and concerns for the decision relationship viewpoint

Stakeholders Concerns

Architects C1,C2, C8, C9, C10, C11, C12, C13, C14, C15, C22, C23

Reviewers C1, C2, C9, C10, C11, C12

Domain experts C23

6.3.1 Decision relationship viewpoint

The decision relationship viewpoint makes relationships between architecture decisions

explicit. It shows architecture decisions, their relationships to other decisions, and their

current states. It has no temporal component, i.e., it shows a snapshot of the system

in a particular moment in time. Typical stakeholders for this viewpoint are architects,

reviewers and domain experts. Table 6.3 shows the concerns framed by the viewpoint,

as related to the mentioned stakeholders. They center around impact, dependency and

relationship analysis. Additionally, relationship views are well-suited for getting an

overview of all decisions made. Please refer to Table 6.1 for the descriptions of the

6.3. A framework for architecture decisions 89

concerns.

Figure 6.2 shows a detail from a relationship view that was created in a preliminary

study, conducted to test the decision viewpoints. The preliminary studies are further

described in Section 6.4.

6.3.2 Decision stakeholder involvement viewpoint

<<Release>>

Iteration 2

RAID 0

Hardware RAID

Singleton for DB

Gateway

DB Gateway

Hibernate

<<Iteration endpoint type>>

Iteration

Decision A

The arrow represents an

<<Stakeholder role>>

Stakeholder

<<customer>>

Fred Frederson

<<customer>>

Tom Thomson

<<manager>>

Jacob Jacobson

<<architect>>

Peter Petersen

<<action>>

<<confirm>>

<<confirm>>

<<validate>>

<<propose>>

<<propose>>

<<propose>>

<<propose>>

<<rejected>>

Figure 6.3: Example stakeholder involvement view

90 6. A framework for architecture decisions

Table 6.4: Typical stakeholders of the decision stakeholder involvement viewpoint

Stakeholders Concerns

Reviewers C16, C17, C18

Architects C1, C16, C17, C18, C19

Managers C18,C19

The decision stakeholder involvement viewpoint shows the responsibilities of rele-

vant stakeholders in the decision-making process. Views resulting from this viewpoint

have no temporal component. They show decisions, actions and stakeholders involved

in the decision-making process, within one specific architecture iteration. This informa-

tion is important with regard to personalization of architectural knowledge, i.e., docu-

menting not the knowledge per se, but “who knows what”. For many reasons, in some

projects, it is not feasible to fully document the rationale behind all architecture deci-

sions. Other knowledge remains tacit; it is not documented at all. In these situations,

the rationale remains in the heads of the people who were involved in the decision mak-

ing process. Stakeholder involvement views make these involvements explicit. Further-

more, the viewpoint allows to analyze the impact of personnel on the success or failure

of a project. If, for instance, a large number of decisions made by one specific architect

were rejected, then this could be an indicator for a problem. As a side effect, explicitly

documenting responsibilities creates accountability, in that people assume responsibil-

ity for the decisions they are involved in. On the other hand, this might cause architects

to neglect the usage of stakeholder views, because they fear accountability.

Typical stakeholders for this viewpoint are reviewers, architects and managers. Ta-

ble 6.4 shows the concerns framed by this viewpoint, related to the respective stakehold-

ers. They center around stakeholder involvement in decisions. Please refer to Table 6.1

for the descriptions of the concerns.

Figure 6.3 shows a detail from a stakeholder involvement view that was created

in a preliminary study conducted to test the decision viewpoints. The names of the

involved stakeholders were changed for privacy reasons. The preliminary studies are

further described in Section 6.4.

6.3.3 Decision chronology viewpoint

The decision chronology viewpoint shows the evolution of architecture decisions in

chronological order. Besides decisions, it shows architecture iterations and its end-

points, which can be further specified by a type and a date. The chronology viewpoint

is the only proposed decision viewpoint that has a temporal component. Typical stake-

holders for this viewpoint are reviewers, architects and new project members, who need

to comprehend the architecting process during system evolution. Table 6.5 shows the

concerns framed by this viewpoint related to the respective stakeholders. A chronology

6.3. A framework for architecture decisions 91

Table 6.5: Typical stakeholders of the decision chronology viewpoint

Stakeholders Concerns

Reviewers C1, C2, C20, C21

Architects C1,C2, C20, C21,C22

New project members C20

<<Release>>

Web Client

September 2010

<<Milestone>>

Service Simulation

Feburary 2010

<<decided>>

Web-Application for

Configuration

<<decided>>

Python as PL for WebApp

<<discarded>>

Twisted

<<decided>>

CherryPy

<<discarded>>

Mod_Python

<<decided>>

Psycopg2

<<decided>>

YYY

<<decided>>

YYYY

<<decided>>

YYYYYYY

<<decided>>

YYYY

<<rejected>>

YYYYYY

<<decided>>

Herder-YYYYY

<<decided>>

YYYYYYY

<<Snapshot>>

Better YYYYYYY

October 2010

<<decided>>

YYYYYYYY

<<Iteration Endpoint>>

Iteration Name

Date reached

<<Status>>

Decision A

<<Status>>

Decision B

One instance of a decision with a

Figure 6.4: Partially censored detail from a chronology view created during the case study

view shows all versions of every architecture decision of a system. A version of an ar-

chitecture decision is defined as a decision with a state. For instance, a decision that was

tentative, then became decided and finally approved is represented with three instances in

one chronology view.

Figure 6.4 shows a detail from a chronology view created in the case study, which is

presented in Section 6.4.

92 6. A framework for architecture decisions

Table 6.6: Typical stakeholders of the decision detail viewpoint

Stakeholders Concerns

Reviewers C1, C2, C3, C4, C5, C6, C11,C18

Architects C1, C2, C3, C4, C5, C6, C11,C18

Customers C3, C6

Managers C18

New project members C3

Requirements Engineers C6

6.3.4 Decision detail viewpoint

Although textual decision descriptions have disadvantages, as mentioned in the intro-

duction, they are certainly useful for grasping large parts of the rationale behind de-

cisions. We propose to complement the previously described viewpoints, which only

include partial information about the decisions, with a decision detail viewpoint. Each

viewpoint frames specific stakeholder concerns, omitting information that is irrelevant

for the respective stakeholders of those specific concerns. While the other viewpoints

provide an overview over the decisions made and focus on the relationships between

decisions, the decision detail viewpoint gives detailed information about single deci-

sions.

Currently, there is no commonly accepted template in the literature to describe ar-

chitecture decisions, although many proposals exist. Shahin et al. analyzed nine archi-

tecture decision models with respect to similar description elements (Shahin et al. 2009).

They distinguish between major (e.g., decision outcome, related requirements, design

options, arguments) and minor description elements (e.g., issue, decision group, state,

related decisions, related artifacts, consequences and stakeholders). We decided to cre-

ate our own template that contains all major elements plus selected minor elements that

turned out to be useful in three pilot studies, we conducted to test the decision view-

points. The resulting set of description elements is:

• Name: A short name of the decision that serves as a key in the other views

• Current State: The current state of the decision. Please refer to Figure B.6 for a list

of all possible decision states.

• Decision Groups: A decision can be associated to one or more groups, which

share specific characteristics. Decisions could for instance be grouped by subsys-

tem, architecture team who made the decision, or quality attribute requirements.

The concept of a decision group is equal to the group concept in Tyree and Aker-

man’s decision template (Tyree and Akerman 2005), and the decision categories in

Kruchten’s ontology (Kruchten 2004a).

6.3. A framework for architecture decisions 93

!∀#∃ !∀#∃%&!∋()∗+&#,∋−∗

%&∋∋∃()∗+∃∋,−.(/∗0123∗445∃6∃∀,∃778

%&∋∋∃()∗2)∀)∃ 9::∋.;∃<∗

=∃>−,−.(∗?∋.&: !.(∃

≅∋.Α6∃#ΒΧ,,&∃ ∆Ε∃∗:ΕΦ,−>∀6∗,).∋∀Γ∃∗.(∗)Ε∃∗<∀)∀Α∀,∃∗,∃∋;∃∋∗&,∃,∗∀∗59Χ=∗Η∗>.(Ι−Γ&∋∀)−.(ϑ∗ΧΙ∗

.(∃∗.Ι∗)Ε∃∗<−,>,∗−(∗)Ε∃∗∀∋∋∀Φ∗Ι∀−6,Κ∗∀∗>.#:6∃)∃∗6.,,∗.Ι∗<∀)∀∗Λ.&6<∗Α∃∗)Ε∃∗

∃ΙΙ∃>)ϑ∗∆Ε−,∗;−.6∀)∃,∗)Ε∃∗∋∃6−∀Α−6−)Φ∗∋∃Μ&−∋∃#∃(),ϑ

=∃>−,−.(≅∋.;−<∃∗∀∗,∃>.(<∗Ε∀∋<Λ∀∋∃∗(.<∃∗)Ε∀)∗∋&(,∗1Φ2ΝΟ∗−(∗,6∀;∃∗>.(Ι−Γ&∋∀)−.(ϑ∗

∆Ε∃∗:∋−#∀∋Φ∗<∀)∀Α∀,∃∗,∃∋;∃∋∗−,∗>.(Ι−Γ&∋∃<∗∀,∗#∀,)∃∋ϑ∗

96)∃∋(∀)−;∃, ≅∃∋−.<−>∀66Φ∗Α∀>Π&:∗)Ε∃∗ΛΕ.6∃∗<∀)∀Α∀,∃∗∀,∗>.#:6∃)∃∗−#∀Γ∃∗.Ι∗)Ε∃∗,∃∋;∃∋

9∋Γ&#∃(), Θ−)Ε∗∀∗#∀,)∃∋∗,6∀;∃∗>.(Ι−Γ&∋∀)−.(Κ∗∀66∗>Ε∀(Γ∃,∗#∀<∃∗).∗)Ε∃∗#∀,)∃∋∗∀∋∃∗

∀&).#∀)−>∀66Φ∗,Φ(>Ε∋.(−Ρ∃<∗Λ−)Ε∗)Ε∃∗,6∀;∃∗,∃∋;∃∋ϑ∗ΧΙ∗)Ε∃∗#∀,)∃∋∗Ι∀−6,∗.∋∗

(∃∃<,∗).∗Α∃∗#∀−()∀−(∃<Κ∗)Ε∃∗,6∀;∃∗>∀(∗Α∃∗∋∃>.(Ι−Γ&∋∃<∗).∗∀>)∗∀,∗∀∗#∀,)∃∋∗

Λ−)Ε−(∗/Η∗,∃>.(<,ϑ∗9∗Α∀>Π&:∗Λ.&6<∗.(6Φ∗>∀:)&∋∃∗,(∀:,Ε.),∗∀(<∗∋∃>.;∃∋Φ∗

Λ.&6<∗)∀Π∃∗#&>Ε∗6.(Γ∃∋ϑ∗

5∃6∀)∃<∗<∃>−,−.(, ! ∆Ε−,∗44>∀&,∃<∗ΑΦ77∗59Χ=∗Η∗

! ∆Ε−,∗44>∀&,∃<∗ΑΦ77∗1Φ2ΝΟ∗=Σ12

5∃6∀)∃<∗∋∃Μ&−∋∃#∃(), !Τ5ΥΚ∗!Τ53Κ∗!Τ5/Κ∗!Τ5ς

Ω−,).∋Φ

#)∋.∗/0,1∗+ 23)405 #)∋)6(7)∗+∋)405

Τϑ∗Τ∋∃<,.(∗

449∋>Ε−)∃>)77

44≅∋.:.,∃77 44∆∃()∀)−;∃77 12Υ

Ξϑ∗Ξ∋−>,.(∗

449∋>Ε−)∃>)77

44+∀6−<∀)∃77 44=∃>−<∃<77 12Υ

∆ϑ∗∆Ε.#:,.(

445∃;−∃Λ∃∋77

44%.(Ι−∋#77 449::∋.;∃<77 123

Figure 6.5: Example detail model of an architecture decision

• Problem/Issue: The circumstances, under which the architect felt the need to

make a decision among one or more alternatives. In other words: the issue ad-

dressed by the decision.

• Decision: The outcome of the decision. In other templates, this element is called

solution.

• Alternatives: The alternative solutions considered when making the decision.

• Related decisions: All decisions that have a relationship to the decision. The

available relationship types are defined in B.3.2.

• Related requirements: The decision detail viewpoint is currently the only view-

point that allows to trace architecturally significant requirements and architecture

94 6. A framework for architecture decisions

decisions. An additional viewpoint that specializes on traceability between re-

quirements and decisions will be discussed in Section 6.6.

• History: The history of the described decision. The history contains all state

changes, i.e., when the decision was proposed, decided, approved and so on.

Typical stakeholders for this viewpoint are reviewers, architects, customers, man-

agers, new project members and requirements engineers. Table 6.6 shows the concerns

framed by this viewpoint in relation to the respective stakeholders.

Writing elaborate decision descriptions is a resource-intensive task. However, the

flexibility of this viewpoint allows companies to document just as much as needed for

their individual purposes. Some organizations might even decide to skip this viewpoint

completely and only use some of the other proposed viewpoints to document key as-

pects of their decisions. Others might decide to use a subset of the proposed elements of

our template. The project team in our case study felt that there is no need to document

every decision in the same level of detail. They described the major and most important

decisions in detail, while putting less effort in describing minor decisions.

6.4 A case study

To validate the usage of the presented architecture decision viewpoints in a real software

project, we conducted a single case, embedded case study (Gray 2009). In a single case

design, only a single case is observed; embedded refers to the fact that multiple units of

analysis are observed in the case.

This case study is a project executed at the Institute for Internet-Security (IFIS). The

IFIS is a German organization in the Internet and network-security domain. We exam-

ined the decision viewpoints, as applied to a software project called “Sandnet” (Rossow

et al. 2011). Sandnet is a system that executes malware like viruses, worms and bots in

a controlled environment to analyze their network behavior.

6.4.1 Study goal, research questions and variables

The goal of the case study is to explore whether the architecture decision viewpoints

effectively support software architecture activities. To derive concrete research ques-

tions, we explained the decision viewpoints to the architects of the Sandnet project and

let them decide for which architecture activities they could be used in their project.

They identified the following activities: general architecture decision documentation,

communication between stakeholders, technical architecture reviews, and reusing ar-

chitecture decisions in other projects.

Then the architects of Sandnet expressed their concerns in decision documentation

with respect to these activities. These concerns were mapped to the list of concerns

shown in Table 6.1 and supplemented by concerns that the authors found important.

6.4. A case study 95

Table 6.7: Architecture activities, related concerns and viewpoints

Architecture activity Concerns Viewpoints

A1 - AD documentation All All

A2 - Stakeholder commu-

nication

C1, C2, C3, C4, C5, C6, C8,

C9, C10, C11, C12, C17,

C19, C20, C21

All

A3 - Technical architec-

ture reviews

C1, C2, C3, C5, C6, C7, C8,

C9, C10, C11, C12, C16,

C17, C18, C20, C21

All (C7 not covered)

A4 - Reusing ADs C3, C5, C8, C17, C20, C23 Relationship viewpoint,

chronology viewpoint,

details viewpoint

Finally, the authors assigned all viewpoints to the activities that were designed to frame

at least one of the concerns mentioned by the architects. Table 6.7 shows the results.

Based on the information shown in Table 6.7, the architects decided to create views

according to the decision relationship viewpoint, the decision chronology viewpoint,

and the decision detail viewpoint. They did not see additional benefit in documenting a

stakeholder involvement view. The project was small enough to remember the involve-

ment of all stakeholders. This is in-line with ISO/IEC/IEEE 42010, which propagates

the choice of viewpoints to architects using the standard, according to the prioritization

of the concerns. The concerns C16, C17, and C19 are not covered in the case study, be-

cause they are exclusively satisfied by the stakeholder involvement viewpoint. Concern

C7 (What decisions have conflicting impacts on concern C?) is currently not covered by any

of the viewpoints in the framework. We reflect on this issue in Section 6.6.

Next, we formulated concrete research questions matching the architecture activities

selected by the architects and the related viewpoints.

The four research questions are summarized in Table 6.8 and discussed in the re-

mainder of this section.

RQ1 - What is the effort of documenting architecture decisions using architecture

decision viewpoints?

Research question one (RQ1) is about the effort that architects have to make, in order

to document architecture decisions using decision viewpoints. This question is more

specific than the question “Do decision views effectively support stakeholders to docu-

ment architecture decisions?”, as could be derived from the main research goal applied

to activity A1. We made RQ1 more specific, because the effort is essential to judge the ef-

fectiveness of the decision viewpoint approach, and it can be explicitly measured. RQ1

can be refined with respect to the different viewpoints under study, i.e.,

96 6. A framework for architecture decisions

Table 6.8: Architecture activities and related viewpoints

Code Research Question Viewpoints

RQ1 What is the effort of documenting ar-

chitecture decisions using architec-

ture decision viewpoints?

Relationship VP, Chronology

VP, Details VP

RQ2 Do decision views effectively sup-

port stakeholders to understand the

architecture?

Relationship VP, Chronology

VP, Details VP

RQ3 Do decision views effectively sup-

port architecture reviews?

Relationship VP, Chronology

VP, Details VP

RQ4 Do decision views support archi-

tects to distill reusable decision sub-

graphs?

Relationship VP, Chronology

VP, Details VP

• What is the effort of creating a decision relationship view that conforms to the

decision relationship viewpoint?

• What is the effort of creating a decision chronology view that conforms to the

decision chronology viewpoint?

• What is the effort of creating a decision detail view that conforms to the decision

detail viewpoint?

One dependent variable is defined for RQ1: the effort of creating each of the views

is measured in person-hours, a common unit to express effort in software development

projects, here defined as the number of hours spent by one person. Table 6.9 summarizes

the variables. The statistical scale used to measure values for the variable is a ratio scale,

which means that the possible values for the variable are ordered, have a zero point,

and have equal intervals (Wohlin et al. 2012). The scale type is needed to determine

which statistical calculations apply for the variable. The range shows which values can

actually be assigned to the variable. In this case, the time is measured in whole hours;

thus, the variable can take positive natural numbers of hours including zero hours.

Table 6.9: Dependent variables of RQ1

Description Scale Type Unit Range

Time spent to create view Ratio Person-

hours

Positive natural numbers in-

cluding zero

Table 6.10 shows potential variables that might have an influence on the effort

needed to document the views. These independent variables relate to characteristics

6.4. A case study 97

of the architects who used the viewpoints to create views, and to the characteristics of

the software project that was documented. It is in the nature of case studies that these

variables cannot be controlled (Gray 2009), thus we describe them thoroughly so read-

ers can use them to judge the external validity of the results. This and other potential

threats to validity are discussed in Section 6.4.4.

Table 6.10: Independent variables of RQ1

Description Scale Type Unit Range

Time the architects have

worked in the IT industry

Ratio Years Positive natural numbers in-

cluding zero

Time the architects have

worked as software de-

signers/architects

Ratio Years Positive natural numbers in-

cluding zero

Number of architects who

created the views

Ratio Persons Positive natural numbers in-

cluding zero

Duration of the docu-

mented project

Ratio Months Positive natural numbers in-

cluding zero

Project size Ratio Person-

Months

Positive natural numbers in-

cluding zero

Number of made deci-

sions

Ratio Decisions Positive natural numbers in-

cluding zero

Average number of words

used to document one de-

cision in the detail view

Ratio Words Positive natural numbers in-

cluding zero

RQ2 - Do decision views effectively support stakeholders to understand the architec-

ture?

In research question two (RQ2), we investigate, if decision views, corresponding to the

decision viewpoints, support stakeholders to understand the architecture. RQ2 is de-

composed with respect to the different viewpoints under study:

• Do decision relationship views effectively support stakeholders to understand the

architecture?

• Do decision chronology views effectively support stakeholders to understand the

architecture?

• Do decision detail views effectively support stakeholders to understand the archi-

tecture?

98 6. A framework for architecture decisions

The level of understanding of an architecture that stakeholders gain after studying

the decision views is hard to measure and especially hard to quantify. As dependent

variable, we estimate the level of understanding by qualitatively analyzing questions

asked and comments expressed by stakeholders to the architects after having studied

the decision views (see Table 6.11).

Table 6.11: Dependent variables RQ2

Description Scale Type Unit Range

Level of architecture un-

derstanding by the stake-

holders

n.a. Open Open

Table 6.12 shows independent variables that could influence the dependent vari-

ables. They relate to characteristics of the stakeholders who studied the views and the

characteristics of the software project that was documented.

RQ3 - Do decision views effectively support architecture reviews?

Research question three (RQ3) aims at finding out if views, corresponding to the deci-

sion viewpoints, support activities performed during architecture reviews. According

to (IEEE 2008), a review is an evaluation of a software product by a team of qualified

personnel. Accordingly, an architecture review is an evaluation of the software architec-

ture by stakeholders who are either domain experts or architecture experts. In the case

study, we had the opportunity to observe the usage of decision views in an architecture

review. Details on the architecture review are given in Section 6.4.3.

Unfortunately, the IFIS organization had not been following an established or sys-

tematic review approach before the case study. The architects of the Sandnet project

previously performed reviews in an ad-hoc manner, without involving other stakehold-

ers and without systematically documenting review outcomes. Thus, the effect of using

decision views in the review cannot be compared to the previous practice.

RQ3 is decomposed with respect to the different viewpoints under study:

• Do decision relationship views effectively support architecture reviews?

• Do decision chronology views effectively support architecture reviews?

• Do decision detail views effectively support architecture reviews?

Two dependent variables are defined for RQ3. The level of support for the review

activities is estimated by qualitatively analyzing the transcript from a focus group, con-

ducted with the participants of an architecture review performed as part of the case

study. We also measure the number of risks that came up during the review (see Ta-

ble 6.13). An elaboration of the focus group can be found in Section 6.4.2.

6.4. A case study 99

Table 6.12: Independent variables RQ2

Description Scale Type Unit Range

Time the stakeholder has

worked in the IT industry

Ratio Years Positive natural numbers in-

cluding zero.

Time the stakeholder has

worked as software de-

signer/architect

Ratio Years Positive natural numbers in-

cluding zero.

Time the stakeholder has

worked in the network se-

curity domain

Ratio Years Positive natural numbers in-

cluding zero.

How often has the stake-

holder been involved in

the analysis of architec-

ture decisions

Ordinal n.a. Five point Likert-scale. One for

very frequently, Five for very

rarely.

Time the stakeholders

took to study the views

Ratio Minutes Positive real numbers includ-

ing zero.

Duration of the docu-

mented project

Ratio Months Positive natural numbers in-

cluding zero.

Number of made deci-

sions

Ratio Decisions Positive natural numbers in-

cluding zero.

Average number of words

used to document one de-

cision in the detail view

Ratio Words Positive real numbers includ-

ing zero.

Time spent to study a

view

Ratio Person-

hours

Positive natural numbers in-

cluding zero.

Table 6.13: Dependent variables RQ3

Description Scale Type Unit Range

Level of support for the

review activities

n.a. Open Open

Number of risks uncov-

ered during the review

Ratio Risks Positive natural numbers in-

cluding zero.

Table 6.14 shows independent variables that could influence the suitability of deci-

sion views to support architecture reviews. They relate to characteristics of the people

who took part in the review, the software project, and the review approach that is being

followed.

100 6. A framework for architecture decisions

Table 6.14: Independent variables RQ3

Description Scale Type Unit Range

Time the reviewers have

worked in the IT industry

Ratio Years Positive natural numbers in-

cluding zero.

Time the reviewers have

worked as software de-

signer/architect

Ratio Years Positive natural numbers in-

cluding zero.

Time the reviewers have

worked in the network se-

curity domain

Ratio Years Positive natural numbers in-

cluding zero.

How often have the re-

viewers been involved in

the analysis of architec-

ture decisions

Ordinal n.a. Five point Likert-scale. One for

very frequently, Five for very

rarely.

How often have the re-

viewers been involved in

architecture reviews

Ordinal n.a. Five point Likert-scale. One for

very frequently, Five for very

rarely.

Activities performed in

the architecture review

n.a. Open Open

Duration of the docu-

mented project

Ratio Months Positive natural numbers in-

cluding zero.

Number of decisions doc-

umented

Ratio Decisions Positive natural numbers in-

cluding zero.

Average number of words

used to document one de-

cision in the detail view

Ratio Words Positive real numbers includ-

ing zero.

RQ4 - Do decision views support architects to distill reusable decision sub-graphs

The last research question (RQ4) is about identifying a set of decision sub-graphs or

logically grouped architecture decisions that can be reused as a whole in other software

projects. An example for such a decision sub-graph is the choice of a database man-

agement system (DMBS), the choice of a hardware platform for the DBMS, the choice

of an operating system for the hardware platform, and a communication protocol for

accessing the DBMS. The sub-graph contains all possible design options, the chrono-

logical order of the decisions and the rationale behind each of the decisions. RQ4 is

decomposed with respect to the different viewpoints under study:

• Do decision relationship views support architects to distill reusable decision sub-

graphs?

6.4. A case study 101

• Do decision chronology views support architects to distill reusable decision sub-

graphs?

• Do decision detail views support architects to distill reusable decision sub-graphs?

To find out, if decision views support this process, we independently asked the ar-

chitects and other technical stakeholders to identify concrete reusable decisions. Subse-

quently, we counted the decisions and evaluated the level of support provided by the

views in order to identify them (see Table 6.15).

Table 6.15: Dependent variables RQ4

Description Scale Type Unit Range

Number of identified

reusable decisions

Ratio Decisions Positive natural numbers in-

cluding zero.

Level of support for iden-

tifying reusable decision

sub-graphs

n.a. Open Open

Table 6.16 shows independent variables that might have an influence on the depen-

dent variables. They relate to characteristics of the software project, and the architects

and technical stakeholders, who distilled the reusable decisions (referred to as subjects

in Table 6.16).

Table 6.16: Independent variables RQ4

Description Scale Type Unit Range

Time the subject has

worked in the IT industry

Ratio Years Positive natural numbers in-

cluding zero.

Time the subject has

worked as software

designer/architect

Ratio Years Positive natural numbers in-

cluding zero.

Number of made deci-

sions

Ratio Decisions Positive natural numbers in-

cluding zero.

6.4.2 Study design and execution

The aim of case studies in general is the investigation of contemporary phenomena

in their natural context (Robson 2011, Yin 2003). According to Robson’s classification

scheme for empirical research purposes (Robson 2011), our case study is exploratory

102 6. A framework for architecture decisions

in nature. We aim at understanding how and which architecture activities can be sup-

ported by decision viewpoints. We chose the case study method because we aim at

validating the proposed documentation framework in industrial practice, where the re-

searchers’ control on the observed events is typically low. This is in line with Gray, who

suggests that case studies are appropriate where “how” and “why” questions about a

set of events must be answered, over which the researcher has no control (Gray 2009).

Additionally, the effect of using decision viewpoints in a project might be multi-faceted,

which also makes the case study method more suitable than other empirical research

methodologies which require control over independent variables (e.g., a controlled ex-

periment) (Wohlin et al. 2003).

To elicit hidden variables and as a preparation for the study design, we conducted

three small pilot studies with the decision viewpoints. In all three projects, our view-

points were used to document the architecture decisions made. One of the authors was

involved in all of the projects.

• Open Pattern Repository (OPR): A freely usable, open source online repository

for patterns and technologies. All project artifacts including source code, ar-

chitecture decisions and design documents can be found in the project’s Google

code repository (University of Groningen, Software Engineering and Architecture

Group 2012b).

• Open Decision Repository (ODR): The ODR is an open source web documentation

tool for architecture and design decisions. Like the OPR, all project artifacts can be

found in the project’s Google code repository (University of Groningen, Software

Engineering and Architecture Group 2012a). We elaborate on the Open Decision

Repository in Section 6.6.

• Measurement collector for network traffic analysis: This so-called “raw data trans-

fer system” is part of an Internet early warning suite. The part of the system we

looked at is responsible for collecting data measured by probes that are located in

different autonomous systems that comprise the German connection to the Inter-

net. Details about the vendor as well as the software itself cannot be provided, as

the organization asked us to treat this data confidentially.

In the following subsections, the observed case and the used rchitecture dec are de-

scribed.

Case description

The IFIS, in which the case study was conducted, currently has 49 employees working in

nine main projects (as of March 2011). The project domains include cloud computing,

botnet analysis, identity management and Internet early warning. Customers of the

organization are, among others, large telecommunication providers and the German

Federal Office for Information-Security.

6.4. A case study 103

In the project under study (Sandnet), malware collected on the Internet is executed in

a prepared network for further analysis. The software provides a controlled execution

environment for the extensive analysis and safe execution of malware samples. One

of the major challenges in the project is to provide a realistic environment for malware

execution on the one hand, while preventing the malware from doing harm in exter-

nal networks. For instance, the Sandnet forwards denial-of-service or spam attacks to a

dedicated honeypot server to protect the original destination of the attack, while analyz-

ing the complete network traffic. The project started in September 2009 and is ongoing.

In total, four developers are involved in the project; two of them are responsible for the

software architecture. Important stakeholders of the system, apart from the developers

and architects, are network administrators who operate the Sandnet in their networks

and malware authors, who have a negative stake in the system, because they do not

want their malware to be analyzed. The project team does not follow a pre-defined soft-

ware development process. They work in small iterations of a few weeks and document

the system in a company-wide wiki.

Data collection

Data gathered in case studies is mainly qualitative. Because qualitative data is typi-

cally less precise than quantitative data, it is important to use triangulation to increase

the precision of the study (Runeson and Höst 2009). Triangulation provides a broader

representation of the research object under study. We use two different types of triangu-

lation: methodological and data source triangulation (Stake 1995). Methodological tri-

angulation takes different types of data collection into consideration. In this case study,

we used participant observation, focus group, interview and analysis of work artifacts

(Lethbridge et al. 2005). Data source triangulation uses multiple data sources at po-

tentially different occasions. During this case study, we collected data during multiple

sessions with the architects of the project and other stakeholders. Table 6.17 shows an

overview of the sessions, the data collection method used, the data sources, and related

research questions.

In the following, the data collection methods used are described in more detail.

• Participant observation: Participant observation is a popular data collection

method in case studies (Mack et al. 2005, Gray 2009, Yin 2003, Seaman 1999). It in-

volves systematic viewing of actions performed by the observed subjects, record-

ing, analysis and interpretation of the observed behavior. In the observation ses-

sions listed in Table 6.17, one of the researchers joined the observed subjects dur-

ing their work. The researcher had access to all documents, the subjects used

during these sessions and he listened to entire communications in cases where

multiple subjects collaborated. During these sessions, the researcher took notes

about working topics, time spent, communication issues and other observations

that could have a relation to the research questions and their corresponding vari-

ables. The session notes and copies of the project artifacts used by the observed

subjects were stored in a case study database as proposed by Gray (Gray 2009).

104 6. A framework for architecture decisions

Table 6.17: Data collection methods

Data Collection

Method

Sessions Data sources RQs

Partic. observation

Initial architecture decision

elicitation

Architect1, Ar-

chitect2

RQ1

Initial creation relationship

view

Architect1 RQ1

Refinement relationship view Architect2 RQ1

Discussion about relationship

view

Architect1, Ar-

chitect2

RQ1

Initial creation of decision de-

tail view, refinement relation-

ship view

Architect1 RQ1

Discussion of detail view, re-

finement relationship view, ini-

tial creation chronology view

Architect1, Ar-

chitect2

RQ1

Planning of architecture review

based on decision views

Architect1, Ar-

chitect2

RQ3

Revision decision views, re-

vision of architecture review

planning

Architect1 RQ1,

RQ3

Architecture review Architect1, Ar-

chitect2, three

domain experts,

two architecture

experts

RQ2,

RQ3

Focus group Conducted immediately after

the architecture review

Architect1, Ar-

chitect2, three

domain experts,

two architecture

experts

RQ2,

RQ3,

RQ4

Interview
Conducted at the end of the

case study

Architect1 RQ1-

RQ4

Conducted at the end of the

case study

Architect2 RQ1-

RQ4

Analysis of work ar-

tifacts

n.a. Existing architec-

ture documenta-

tion, produced

decision views,

outcome of the

architecture

review

RQ1,

RQ2,

RQ4

6.4. A case study 105

• Focus Group: Focus group data collection is a well-documented technique that

assembles small groups of peers to discuss particular topics. Discussion in focus

groups is largely open, but it is directed by a moderator allowing soft, or qualita-

tive issues to be explored. Kontio et al. mention additional advantages of focus

groups in comparison to other qualitative research methods (Kontio et al. 2008).

They observed that the interactive nature of the group discussions with people

from different backgrounds encourages participants to react to the comments

made by other participants, thus reflecting and building on each other’s experi-

ences. It also helps to validate comments and positions, as some points made by

participants may result in other participants confirming similar, almost similar or

opposite points. These insights would be invisible in personal interviews. The

researchers have experience in conducting focus groups from previous studies;

therefore a pilot session was not performed. The guidelines presented in (Mack

et al. 2005) were used to prepare and conduct the focus group. In particular, a

question guide was created in advance and internally reviewed by the authors.

The questions in a question guide are not asked directly, but serve as orientation

for the moderator of a focus group. Focus groups are most productive, if the par-

ticipants are encouraged to have an open discussion, while the moderator tries to

lead the discussion in a way that all important questions are answered. The used

question guide can be found in Appendix B.5.

The focus group was conducted by involving all people who took part in a techni-

cal architecture review; one of the authors was allowed to join that review. The

complete session was audio-recorded with the participants’ consent and after-

wards transcribed. Additionally, the researcher took notes about observations that

could not be captured on tape, e.g., collective nodding of participants. The audio

recording, notes and the transcript were stored in the case study database.

• Interview: Interviews allow researchers to gain in-depth knowledge about the

interview topics. Like focus groups, they enable researchers to ask interviewees

for clarification to solve potential misunderstandings (Lethbridge et al. 2005). In-

terviews are an appropriate means to collect opinions and impressions about the

object under study (Seaman 1999). The two interviews with the architects lasted

between 50 and 60 minutes each. They were conducted as videoconferences, be-

cause the architects were not on-site in their organization at that time. Both inter-

views were digitally recorded with the participants’ consent and later transcribed.

The original audio files and the transcripts were stored in the case study database.

• Analysis of work artifacts: This data collection method is used to uncover in-

formation about how the architects applied and used decision views by looking

at their output. In this particular case, we looked at architecture documenta-

tion in wikis, the decision views created by the architects, the architecture review

planning document and the architecture review report to gather data relevant for

our research questions. All collected documents were stored in the case study

106 6. A framework for architecture decisions

database. The authors of the documents were contacted to clarify questions and

issues related to the documents.

6.4.3 Analysis

We use descriptive statistics and qualitative analysis to examine the data gathered dur-

ing the case study. This section is sub-divided according to the research questions.

Analysis RQ1 - What is the effort of documenting architecture decisions using archi-

tecture decision viewpoints?

As described in the study design, the effort of documenting architecture decisions is

influenced by some independent variables. Table 6.18 shows descriptive statistics for

the variables defined in Table 6.10.

Table 6.18: Independent variables RQ1

Variable Values

Time the architects have worked

in the IT Industry

Architect1: 6 years, Architect2: 6

years

Time the architects have worked

as software designers/architects

Architect1: 4 years, Architect2: 5

years

Number of architects who cre-

ated the views

2

Duration of the documented

project

13 months

Project size 21 person-months

Number of decisions docu-

mented

56

Average number of words used

to document one decision in the

detail view

61

The duration of the documented project is the total time in calendar months spent

on the project, whereas the project size is the time spent in person-months. The variable

number of decisions documented indicates the number of decisions that have been docu-

mented using the decision view approach. To the best of our knowledge, the architects

documented every design decision they found architecturally significant in the project.

The “architectural significance” of decisions, however, is not essential for the decision

documentation approach presented here. Many definitions for architecture decisions

exist; e.g., architecture decisions are those decisions that have an impact on the sys-

tem’s quality attributes; others emphasize on the external visibility of those decisions.

6.4. A case study 107

We keep it simple by assuming that a decision is architectural in nature, if the architect

believes it is architectural and should be documented.

For the calculation of the average number of words used to document a decision,

the words used in every decision detail model were counted; thus no other views were

taken into account for this variable.

The effort, according to the dependent variable, is calculated in terms of time spent

to create the different views. Table 6.19 shows the effort in person-hours spent to create

views for the corresponding viewpoints. Decision elicitation is shown as an additional

category. This is necessary, because architecture decisions have not been documented

in the Sandnet project prior to the case study; thus, all architecture decisions had to

be elicited from existing project documentation and brainstorming sessions by the two

architects.

Table 6.19: RQ1 - Effort for creating views

Decision Elicitation Relationship view Detail view Chronology View

11 person-hours 4 person-hours 7 person-hours 2 person-hours

The total effort for creating the three views according to our viewpoint definition

was 24 person-hours, which equals 3 person-days and 0.14 person-months. The effort

has to be analyzed in the context of the project size. In this case, the project size was

21 person-months, which equals 3696 person-hours (21 months * 22 days * 8 hours).

Table 6.20 shows the effort for creating each view as percentage of the total development

effort. In this calculation, the effort for decision elicitation was portioned equally to the

three views, as it cannot be assigned to a single view.

Table 6.20: Percentage effort for creating views

View Percentage of total development effort

Relationship View 0.21%

Chronology view 0.15%

Detail View 0.29%

In our experience, the order of view creation followed in the case study works well

under the assumption that the relationship view is good for an initial documentation

of decisions. It is a lightweight view in the sense that decisions can easily be added or

removed and related to other decisions. In contrast to the decision detail view, in which

decisions have to be described in textual form, revising decisions and relationships in

the relationship view is just a matter of drawing ellipses and connectors. This allows for

subsequent refinements in quick iterations. Once the main decisions and decision rela-

tionships are documented, effort can be invested to capture the decisions in the detail

108 6. A framework for architecture decisions

view. Finally, the chronology view adds information about the evolution of the deci-

sions. Remembering the correct chronological sequence of decisions requires a lot of

reflection by the architects, if created after the fact. Therefore, in “green field” projects,

it can make more sense to create the chronology view right away and revise it iteratively

during the project.

The subjects in the case study had to overcome a learning curve, i.e., they learned

how to use the viewpoints in order to design the views. We assume that the same

subjects would be able to document decision views more quickly in future projects.

However, this assumption is subject to further empirical evaluation.

The total effort for creating the three views was approximately 0.65% of the total

development effort in person-time. In addition to the quantitative analysis of the effort

needed to create decision views, we asked the architects about their subjective estima-

tion of the effort. Moreover, we wanted to know which views they would create if they

were very limited in time.

The transcripts of the interviews with the architects were analyzed using the con-

stant comparative method (Glaser and Strauss 1967), a well-established theory generation

method in qualitative analysis (Seaman 1999). In detail, the following procedure was

followed. The original comments in the interviews were given mainly in colloquial

speech and many of them can only be interpreted in the context of the whole interview.

We browsed the transcripts of the interviews and searched for passages of text related to

the research question. The respective passages were labelled and later grouped into pat-

terns expressing their content as more formal, context-free statements. This procedure

was used for the qualitative analysis of the interviews and the focus group conducted

after the review. An example of the analysis process is given in Appendix B.4.

Finally, the original transcript, the extracted comments, and the derived statements

were given to two of the participants of the focus group for validation. They concor-

dantly acknowledged that the information in the derived statements is similar to the

information in the original comments.

The following statements were derived from text passages in the interviews with the

architects, labelled with RQ1:

• How reasonable the effort for creating decision views is, depends on the number

of team members and the duration of the project.

• The decision detail view is the most important view for the original architects.

• The decisions in the detail view can be documented with just a few attributes

(rather than all of them).

• The decision detail view is not helpful in isolation. It should be complemented at

least with a relationship view in order to create an overview of decisions for the

other stakeholders who were not directly involved in the decision making process.

• When there is no time to document all views, the architects would skip the

chronology view and only create a detail view and a relationship view.

• Important decisions should be documented in more detail than less important

decisions.

6.4. A case study 109

• The effort for creating decision views is definitely reasonable from the point of

view of the project sponsor (the organization funding the project).

• The effort for creating decision views is marginal compared to the whole develop-

ment effort of the project.

Analysis RQ2 - Do decision views effectively support stakeholders to understand the

architecture?

As with RQ1, we use descriptive statistics to describe the independent variables. Ta-

ble 6.21 shows descriptive statistics for the variables defined in Table 6.12.

Table 6.21: Independent variables RQ2

Variable Statistics

Time the stakeholders have worked in the

IT Industry

Stakeholder1: 12 years

Stakeholder2: 5 years

Stakeholder3: 15 years

Stakeholder4: 2 years

Time the stakeholders have worked as soft-

ware designers/architects

Stakeholder1: 12 years

Stakeholder2: 5 years

Stakeholder3: 0 years

Stakeholder4: 2 years

Time the stakeholder has worked in the

network security domain

Stakeholder1: 6 years

Stakeholder2: 0 years

Stakeholder3: 14 years

Stakeholder4: 2 years

How often have the stakeholders been in-

volved in the analysis of architecture deci-

sions

Stakeholder1: Rarely

Stakeholder2: Frequently

Stakeholder3: Very rarely

Stakeholder4: Rarely

Time the stakeholders took to study the

views

Stakeholder1: 70 minutes

Stakeholder2: 90 minutes

Stakeholder3: 35 minutes

Stakeholder4: 60 minutes

Duration of the documented project 13 months

Number of documented decisions 56

Average number of words used to docu-

ment one decision in the detail view

61

The support for architecture understanding provided by the views is estimated in

terms of the level of architecture understanding gained by the stakeholders after study-

ing the views. The analysis of this dependent variable is done qualitatively. During the

110 6. A framework for architecture decisions

case study, a technical architecture review was conducted with the architects, a few ex-

perts in the network security domain, and experts on software architecture. All people,

except for the architects, were not familiar with the Sandnet system at all. Two days

before the review, all participants were asked to analyze the system by studying the

decision views we provided to them. Right after the review, we interviewed all par-

ticipants in a focus group, where we also asked questions about the suitability of the

views for understanding the system. The transcript of the audio-recorded focus group

is used as a basis for the analysis. We used the constant comparative method, as de-

scribed in Section 6.4.3. The following lists show the resulting participants’ statements

for the different viewpoints under study:

Relationship viewpoint:

• Relationship views clearly illustrate relationships between decisions.

• Relationship views support impact analysis.

• Relationship views illustrate decision relationships better than decision detail

views.

• Relationship views illustrate dependencies between decisions.

• Relationships views do not contain enough information about a single decision.

• A combination of the decision detail view and the other decision views is neces-

sary.

• The relationship view is good to get an overview of decisions made.

• The relationship view helps to start understanding a system, much better than the

decision detail view.

Chronology viewpoint:

• The chronology view helps to understand the evolution of the system.

• Chronology views provide insights into the reasoning process of the architects.

• Chronology views show which solutions were considered, rejected and chosen.

• The chronology view is well suited to understand the decision making process in

complex software systems.

• Chronology views are good to analyze change of the architecture over time.

Detail Viewpoint:

• Decision Detail views are important to analyze the reasoning and the details of

every decision.

• A combination of the decision detail view and the other decision views is neces-

sary.

• Detail views are hard to handle in isolation, because they produce large amounts

of text on too many pages.

All Viewpoints:

• Decision views help to recap the decision making process for a single decision,

including considered alternatives.

6.4. A case study 111

• Decision views are helpful to communicate architecture decisions to project teams

taking over the system.

• Decision views prevent new project teams or team members from making fatal

decisions.

• Decision views help people to understand which decisions were made for which

reasons and which decisions were explicitly not made for specific reasons.

• Decision views are very helpful.

• Decision views are a good means to transfer architecture knowledge.

• The architects were amazed how much the stakeholders knew about the system

after having studied the views.

• Software engineers should be obliged to create decision views as a complement to

the other architecture documentation.

• Decision views capture architectural knowledge that cannot be recovered from

traditional views; especially discarded and rejected decisions and the reasoning

behind decisions.

Analysis RQ3 - Do decision views effectively support technical architecture reviews?

Table 6.22 contains descriptive statistics for the independent variables described in the

study design.

In addition to the variables described in Table 6.22, the activities performed in the

architecture review have an effect as independent variables. In the case study, a techni-

cal architecture review was performed based on a custom architecture review method,

which will be explained in the following. The review was performed in two phases. In

phase one, the reviewers received a review-planning document containing the schedule

of the review, a description of the Sandnet project, the main stakeholders, and architec-

turally relevant requirements, as well as a network topology view and all documented

decision views (i.e., a relationship view, a chronology view and a decision detail view).

Additionally, they received a description of five technical scenarios. The scenarios had

been documented in the company wiki by the architects as possible future changes or

enhancements, prior to the case study. An example of a technical scenario, as described

in the review-planning document is:“Currently, malware samples are executed by a

sandpuppet for exactly one hour. How is the architecture of the system affected, if mal-

ware samples are executed for a complete day/week or even longer? Currently, there

are 80 virtual machine slots for parallel execution of malware samples available”. The

reviewers were asked to study the views with respect to the scenarios in advance and

write down all uncertainties and questions. Phase one was performed individually and

off-site. Phase two was the actual review conducted on-site in the organization. Ta-

ble 6.23 shows the schedule of the review and the activities performed.

During the review, the reviewers selected three scenarios out of the five available

ones, based on their own judgement of the scenarios’ importance. The detail view and

the relationship view were used to identify and analyze decisions that have an effect

on the respective scenario. The third selected scenario was skipped because of time

112 6. A framework for architecture decisions

Table 6.22: Independent variables RQ3

Variable Statistics

Time the reviewers have worked in the IT

Industry

Stakeholder1: 12 years

Stakeholder2: 5 years

Stakeholder3: 15 years

Stakeholder4: 2 years

Time the reviewers have worked as soft-

ware designers/architects

N: 4

Stakeholder1: 12 years

Stakeholder2: 5 years

Stakeholder3: 0 years

Stakeholder4: 2 years

Time the reviewers have worked in the net-

work security domain

N: 4

Stakeholder1: 6 years

Stakeholder2: 0 years

Stakeholder3: 14 years

Stakeholder4: 2 years

How often have the reviewers been in-

volved in the analysis of architecture deci-

sions

N: 4

Stakeholder1: Rarely

Stakeholder2: Frequently

Stakeholder3: Very rarely

Stakeholder4: Rarely

How often have the reviewers been in-

volved in architecture reviews

Stakeholder1: 15 times

Stakeholder2: 5 times

Stakeholder3: 1 time

Stakeholder4: 3 times

Duration of the documented project 13 months

Number of decisions documented 56

Average number of words used to docu-

ment one decision in the detail view

61

constraints. The participants planned an additional review session outside the time-

period of the case study.

The support for technical architecture reviews provided by the decision views is

estimated in terms of the number of risks that came up during the review and the level

of support for the performed reviewing activities. To estimate the number of identified

risks during the architecture review, we analyzed the risk evaluation forms filled in by

the reviewers during the scenario-based reviews. Risk evaluation forms are part of the

Software Risk Evaluation Method (SRE) (Williams et al. 1999) defined by the Software

Engineering Institute, which was used by the architects to evaluate the risks uncovered

during the review.

6.4. A case study 113

Table 6.23: Review schedule

Time Activity

14:10 Start

14:20 -

14:30

Introduction of the Sandnet project by the architects

14:30 -

14:40

Introduction of the review process and goals by the review organizer

14:40 -

14:55

One of the architects explained the evolution of the system using the

chronology view

14:55 -

15:05

Choice of three scenarios out of the five scenarios described in the review-

planning document

15:05 -

15:50

Review scenario 1 using the decision detail view and the relationship view

15:50 -

16:30

Review scenario 2 using the decision detail view and the relationship view

16:30 -

17:00

Wrap-up session including discussion and documentation of all discovered

issues

In total, the four reviewers recorded 27 distinct risks (reviewer 1: 3 risks, reviewer

2: 4 risks, reviewer 3: 12 risks, reviewer 4: 8 risks). Out of the 27 risks, the architects

regarded five risks as high or medium severe. The other risks had either low severity,

or the architects did not share the reviewer’s opinion. The analysis of the support for

reviewing activities was done based on an examination of the focus group transcripts,

in which the support for architecture reviews was explicitly discussed. For the quali-

tative analysis, we followed the same procedure as described for RQ1. The following

lists show the resulting statements assigned to the respective reviewing activities:

Activity: Architect explains evolution of the system using the chronology view

• The chronology view helps the architect to explain the evolution of the system.

• The chronology view helps to explain and remember the change of decisions over

time.

• The chronology view helps reviewers to understand the evolution of the system.

Activity: Architect clarifies questions with respect to the system

• Decision views are well suited for explaining the architecture to stakeholders.

• Decision views can make sure that nothing is forgotten when explaining the archi-

tecture.

• Decision views make sure that the architecture can be communicated in a struc-

tured and understandable way.

Activity: Review scenarios

114 6. A framework for architecture decisions

• The logical groups in the relationship view help to structure the decisions.

• The logical groups in the relationship view help to keep the overview over deci-

sions.

• The relationship view supports the architect to perform impact analyses.

• The chronology view can be used to analyze changes between architecture itera-

tions.

• The chronology view allows looking up changes between iterations quickly.

• Relationship views help reviewers to identify critical issues in the architecture.

• Relationship views visualize decision alternatives and allow reviewers to evaluate

the final choice among the alternatives.

• Without decision views, the decisions and their relationships have to be elicited

during the review.

• Decision views are a good basis for architecture reviews.

• Relationship views emphasize central decisions and decision alternatives.

• Relationship views allow identifying critical decisions quickly.

• Decision views capture architectural knowledge that cannot be recovered from

traditional views. Especially discarded and rejected decisions and the reasoning

behind decisions.

• The chronology view helps to understand changes between architectural mile-

stones.

• Decision views allow reviewers to reassess if the architects have evaluated the

right decision alternatives soundly.

• Decisions views can be used to assess if architectural problems were analyzed

correctly.

• Decision views are helpful as a complement to traditional architecture documen-

tation.

Analysis RQ4 - Do decision views support architects to distill reusable decision sub-

graphs?

As for the fourth research question, we present descriptive statistics for the independent

variables. Table 6.24 shows the results.

The support that decision views provide for distilling reusable decision sub-graphs

is estimated in terms of the number of concrete reusable decision sub-graphs identified

by the stakeholders and architects; and the level of support the decision views pro-

vide for identifying reusable decision sub-graphs. The latter is analyzed based on the

transcripts created from the focus group after the review, in which we asked the partic-

ipants to identify reusable decisions paths with the help of the documented views and

the transcripts from the interviews with the architects.

The architects and stakeholders found the relationship view helpful to identify

reusable decision sub-graphs. The relationship view documented for the Sandnet

project contains six logical decision groups with 56 decisions in total. The stakeholders

6.4. A case study 115

Table 6.24: Independent variables RQ4

Variable Statistics

Time the stakeholders have worked in the

IT Industry

Stakeholder1: 12 years

Stakeholder2: 5 years

Stakeholder3: 15 years

Stakeholder4: 2 years

Time the stakeholders have worked as soft-

ware designers/architects

Stakeholder1: 12 years

Stakeholder2: 5 years

Stakeholder3: 0 years

Stakeholder4: 2 years

Number of decisions documented 56

and architects were asked to identify concrete decision sub-graphs that could be reused

in other software projects. From the six logical groups, they selected four groups that

contain reusable decisions. Group one contains decisions about a web application

used to access analysis data and configure sandpuppets; group two contains decisions

related to the used database management system; the decisions in group three are about

the control mechanism for the herders; and group four contains decisions related to

the virtual machine technology and configuration used. The decisions in the remaining

two logical groups were regarded as being too specific for being reusable. The analysis

of the level of support was done qualitatively, similarly to the qualitative analysis de-

scribed in RQ1, RQ2 and RQ3. The first set of statements was derived from comments

made by the architects during the interviews, the second set of statements was de-

rived from comments by the other stakeholders during the focus group after the review.

Architects:

• When identifying reusable decision sub-graphs, the dependencies upon other de-

cisions can be evaluated using the relationship view.

• The relationship view provides good support for identifying reusable decision

sub-graphs.

• Decisions that are strongly coupled to concrete requirements cannot be reused.

Stakeholders:

• Decision views are helpful to derive reusable decision sub-graphs.

• Logical decision groups in the relationship view are strong candidates for reusable

paths.

• Logical decision groups in the relationship view are optimal decision combina-

tions in the given context.

• The relationship view is well suited for extracting reusable architectural knowl-

edge.

116 6. A framework for architecture decisions

• Relationship views help to speed up the start of new projects.

• Relationship views provide guidance for architects with respect to dependencies

between decisions and decision options.

• When reusing decisions from the relationship view, it is important to consider the

context in which the decisions were made.

• Decision views help architects to recap the decisions made.

• For reusing decisions from the relationship view, the decision detail view is

needed to judge if the context and the requirements behind the decision match.

• Logical decision groups in the relationship view are strong candidates for reusable

paths.

• It is important to look at the goals of the decisions before reusing them.

• Decisions can be directly reused if the architectural goals behind the decisions are

compatible with the goals of the new project.

• If the decisions’ goals of the new project are not compatible with those of the doc-

umented project, then the decision views can still be used to identify candidate

decisions that have to be reevaluated in other projects.

• Decision views provide reusable decision alternatives.

• Decision views allow reusing decisions for comparable problems.

• Decision views provide a basis for decision-making processes in other projects.

• By studying decision views for reuse, architects can make sure they do not forget

decision options.

6.4.4 Interpretation

In this section, the results of the analysis are interpreted. At the end of the section, we

discuss potential threats to the validity of this study.

Interpretation RQ1

Research question one is about the effort needed to create decision views according to

our viewpoint specifications. In the analysis, we showed that the documentation of the

decision views took approximately 0.65% of the total development effort of the software

project under study. For the Sandnet project, this means that less than one hour (39 min-

utes) out of 100 person-hours had to be spent in order to create a relationship view, a

chronology view and a decision detail view. The effort needed to create an individual

view is hard to generalize, as it depends on the order in which the views were created.

In this case study, the architects had not documented architecture decisions at all prior

to the case study; thus all decisions had to be elicited in the first place. This took by

far the greatest effort. Creating the detail view takes the second greatest effort. Finally,

the relationship view and the chronology view follow in the effort ranking. Once deci-

sions are documented in the detail view, the effort for creating the other views for the

decisions is relatively low.

6.4. A case study 117

From the interviews with the architects, we learned that they would document the

detail view first, but they would not describe every decision at the same level of detail.

Some decisions might be more important or more complicated than other decisions;

these decisions should be described in detail. Other decisions that are easy to compre-

hend do not have to be documented in detail. After the detail view, the architects would

create a relationship view. The effort for creating the chronology view, in the opinion of

the Sandnet architects, only pays off if projects are subject to long-term evolution.

It can be concluded that the effort for creating decision views is relatively low com-

pared to the complete development effort. Depending on the available time, architects

may choose not to document all views, but choose a subset depending on the character-

istics of the concrete project. The architects mutually agreed that the effort for creating

decision views is reasonable from the point of view of the project sponsors, which means

the cost-benefit ratio of the decision views is low.

Interpretation RQ2

Research question two concerns the support for stakeholder communication offered by

the views. The independent variables presented in the analysis show that the people

who used the views to study the architecture of the Sandnet project were rather inexpe-

rienced with respect to architecture decision analysis. On average, they stated that they

were rarely involved in the analysis of architecture decisions and that they have worked

in the IT industry for less than ten years, which means that they are rather inexperienced

technical stakeholders. On average, they took slightly more than one hour to study the

decision views of the Sandnet project; none of them knew the project in advance. It is

notable that the architects of the Sandnet project were astonished by the knowledge, the

stakeholders gained about the project just by analyzing decision views. This impression

is supported by the fact that the short preparation time was sufficient to identify major

risks during the architecture review. The stakeholders concordantly stated that the rela-

tionship view is well suited to get an overview of the decisions made and to understand

the relationships and dependencies between the decisions. The chronology view helped

them to understand the evolution of the system and to get an insight into the architects’

reasoning process. The decision detail view was seen as an important complement to

the other two views in order to grasp the rationale behind a single decision. Finally,

all stakeholders and the architects of the project agreed that decision views are a good

means to communicate architecture decisions.

Interpretation RQ3

RQ3 is about the suitability of decision views to support architecture reviews. With one

exception, the reviewers were rather inexperienced in performing architecture reviews.

Nevertheless, the analysis showed that they were able to find 27 risks in the current

architecture, from which the architects confirmed five risks as being important.

Decision views are beneficial for the preparation of architecture reviews, as they give

118 6. A framework for architecture decisions

an overview over decisions made, show dependencies between decisions and allow

comprehending the rationale behind single decisions. The chronology view allows re-

viewers to recap the evolution of the system and to quickly identify decisions that have

changed since the last architectural review. The relationship view was found especially

well suited for identifying important and critical decisions, performing impact analy-

ses, and finding dependencies between decisions. The fact that rejected decisions and

discarded decision alternatives are shown in the views allows the evaluation of single

decisions quickly. Moreover, decision views support the architects in communicating

the architecture to the reviewers in a structured way, thus ensuring that no important

decisions are forgotten. The participants of the review mutually agreed that decision

views are a good basis for architecture reviews that supports many review activities;

particularly the introduction of the architecture to the stakeholders and the discussion

of review scenarios.

Interpretation RQ4

Decisions views offer support for identifying reusable decision sub-graphs. Especially

the relationship view was found helpful for identifying reusable decisions. The logical

decision groups within this view are candidates for decision sets that can be reused as

a whole. However, the reusability always depends on the context, in which decisions

were made. Decisions from other projects can only be reused if the context and the

architecturally significant requirements are comparable. The information from the de-

cision detail view is essential to judge this for single decisions. One important aspect

of decision views is that they record decision alternatives. This information is often

not part of an architecture description, because many alternatives have not made it into

the final architecture. Decision alternatives constitute valuable information for deci-

sion sub-graphs as they allow one to prepare decisions for question-option-criteria trees

(MacLean et al. 1991), i.e., if requirement A then decision alternative B, if requirement

C then decision alternative D and so on. Finally, studying decision views from projects

in the same domain can help architects to make sure that no important decisions or

decision alternatives have been forgotten.

Threats to validity

Construct validity is the degree to which the case is relevant with respect to the research

questions (Runeson and Höst 2009). A frequent problem in case study research is that

the case study design fails to clearly define operational measures, which allow one to

objectively judge the collected data (Yin 2003). In this case study, we clearly defined

the research questions prior to the data collection phase. The methods for the data

collection were systematically selected in order to sufficiently address all four research

questions. Furthermore, for every research question, we defined the dependent vari-

ables used as “measurements” to judge the data as well as the independent variables

influencing those measurements.

6.5. Related work 119

We used different means to improve the internal validity of our findings. Internal va-

lidity concerns hidden factors, which affect the dependent variables (Wohlin et al. 2003).

Using different types of triangulation can increase the reliability of the study results

(Runeson and Höst 2009, Lethbridge et al. 2005). In this case study, we used several

types of data source triangulation, e.g., by performing interviews with different people

or by looking into different work artifacts. We also used methodological triangulation

by combining different types of data collection methods. With the two types of trian-

gulation, we made sure that every research question was addressed by more than one

data source and by using different collection methods.

A potential threat to internal validity is the identification of the technical scenarios

evaluated in the architecture review. The architects who defined the scenarios could

have consciously or unconsciously defined scenarios that are well supported by the

decision views. This could have resulted in a higher valuation of the decision views

by the review team. This, however, was not the case. The scenarios were defined by

the architects prior to and independent from the case study. They were documented as

potential future changes or enhancements in the company wiki. To partially eliminate

bias on the side of the architects, the review team chose three out of the five scenarios

based on their own estimation of the scenarios’ importance.

External validity is related to the generalizability of the results with respect to a

specific population. External validity is regarded as a major problem in case study re-

search because only one case is studied; which makes statistical generalization impos-

sible (Yin 2003). We believe that our findings are valid at least for projects that have a

comparable size (in person-months and development team) and use similar architecture

approaches. However, external validity can only be shown (e.g., by analytic generaliza-

tion (Yin 2003)) with at least a few replications. Although we have observed many of our

findings in the three pilot projects (see Section 6.4.2) before conducting the case study, a

systematic replication of the study in different projects and organizations is needed to

support the claim for external validity.

6.5 Related work

Our work is related to the following fields within software architecture: architecture

decision documentation and architecture decision views.

6.5.1 Decision documentation approaches

There are currently three main approaches to documenting architecture decisions. We

briefly present these approaches and describe how our proposed viewpoints relate to

each of them:

Decision Templates: Different templates have been proposed to describe architec-

ture decisions in textual form, mainly using tables (see for instance (Tyree and

Akerman 2005)). They can be used to capture relevant rationale behind decisions

120 6. A framework for architecture decisions

including, among others, assumptions, alternative decision outcomes, the deci-

sion state, related requirements, and possibly related decisions. Tabular decision

descriptions offer a certain degree of freedom for the decision documenters, be-

cause description elements can easily be added or left out. An additional benefit

is their suitability for simple automated support such as through spreadsheets or

wiki-type information systems, which offer out-of-the-box support for creating ta-

bles and linking textual elements to each other. No extra notations or special tools

are needed to document decisions in textual form. However, decision tables tend

to become very large and contain a lot of text. When many decisions are docu-

mented for one system, the overview of these decisions gets lost. Using templates,

it is also challenging to visualize or trace complex relationships between decisions

and to perform impact analyses. Especially for non-technical stakeholders and

managers, long architecture documentation may seem daunting, which discour-

ages them from reading the documentation.

The details captured using decision templates are of importance for framing a

number of concerns. We have thus decided to include a viewpoint, the de-

cision detail viewpoint, that uses a decision template similar to (Tyree and

Akerman 2005). The views resulting from applying this viewpoint are especially

important to record rationale for decisions. However, as mentioned before, they

are not sufficient. Additional views are needed to provide an overview of the de-

cisions made and to emphasize concerns that can hardly be satisfied in a table or

catalog, e.g., decision relationships, decision chronology and the impact of deci-

sions on stakeholders, on the architecture or on other decisions.

Annotations: Other approaches document architecture decisions using annotations

(see for instance the Knowledge Architect Suite (Liang et al. 2009)). The respec-

tive tools allow users to attach “comments” to other architecture descriptions such

as to UML or ADL models or to natural language text in text processing applica-

tions. They highlight elements as decisions and additionally capture relations,

attributes, and the history of decisions. An advantage of using annotations is

that architects and other stakeholders do not need not learn new tools to docu-

ment decisions. Different stakeholders can typically use their preferred tools and

attach annotations through specialized plugins to those tools. Furthermore, an-

notations are very well suited to elicit architecture decisions from existing project

documentation. On the other hand, annotations from different tools must be com-

bined with an additional decision management or documentation approach that

allows to consume decisions without browsing multiple documents using multi-

ple tools. Additionally, annotations do not provide instant support for the analy-

sis of decision relationships, lifecycle management and consistency checks. This

must be accomplished by additional tools collecting the annotated information

and preparing them for further analysis (e.g., the Microsoft Word plugin used in

(Liang et al. 2009)).

The elicited decisions from an annotation approach can serve as the raw data ba-

6.5. Related work 121

sis for creating decision views conforming to architecture decision viewpoints.

Therefore annotation approaches are complementary to the proposed decisions

viewpoints.

Decision Models: Decision models can present the same information as template-

based and annotation-based approaches, but use dedicated models to represent

decisions. Existing models within an architectural view are complemented with

a decision model, which addresses decision-related concerns specific to the par-

ticular view (Kruchten et al. 2009, Duenas and Capilla 2005, Capilla et al. 2007).

For example, in an architecture description following the 4+1 view model, a de-

cision model in the deployment view would contain decisions about system de-

ployment.

This approach provides a better overview of decisions than the aforementioned

approaches and facilitates linking decisions to other architecture description el-

ements. However, the problem remains that the existing approaches on decision

models are dedicated to existing architectural viewpoints. The concerns addressed

by the models are the same (or a subset of) concerns that are addressed by the

viewpoint they are a part of; thus are system concerns. We, however, argue that

beyond system concerns, architecture decision documentation must address addi-

tional concerns specific to architecture decisions. Nevertheless, architecture deci-

sion models can be complemented with our decision views if appropriate means

for consistency among the decisions are taken. Additionally, the decisions from

the decisions models can serve as a basis for further architecture decision elicita-

tion.

6.5.2 Architecture decision views

The idea of introducing a dedicated decision view3 to complement the traditional ar-

chitectural views (e.g., the 4+1 view model (Kruchten 1995)) has been proposed by

Kruchten, Capilla and Dueñas (Kruchten et al. 2009, Duenas and Capilla 2005). They

emphasize the importance of documenting design rationale as a part of architecture

decision documentation in architecture practice and identify a set of challenges and

benefits of decision documentation. However, no concrete guidance is provided on

how to define and construct decision views that integrate with view-based architecture

documentation (ISO/IEC/IEEE 2011). The documentation framework presented in this

chapter addresses many of the challenges identified in (Kruchten et al. 2009) and gives

concrete advice on how to construct a set of consistent architecture decision views.

3An early draft of IEEE 1471 (version D1.0, dated February 1998) contained a decision viewpoint, de-

scribed as: “The decision viewpoint documents the decisions about the selection of elements or charac-

teristics. This viewpoint records the rationale for architectural choices. Typical models include: mission

utility, cost/capability tradeoffs, element performance tradeoffs”. However, all predefined viewpoints

were removed from the standard before the final publication, leaving definition of viewpoints to its end

users.

122 6. A framework for architecture decisions

Various authors have proposed tools to visualize architectural design decisions (for

a comparison of current toolsets, see (Shahin et al. 2010)). Graphical representations of

decisions support stakeholders in understanding the architecture, as they allow them to

visually inspect the architecture (Shahin et al. 2010, Lee and Kruchten 2008).

Some tools allow visualizing architecture decisions from different perspectives. A

perspective, in this context, is a graphical representation of decisions suitable to address

a set of decision-related concerns. While the idea of showing different perspectives of

decisions has commonalities with the concept of multiple architecture decision view-

points, it is not sufficient in isolation. A viewpoint is more than a perspective on ar-

chitecture decisions, as it must provide concrete guidance on how to construct views,

and it must ensure inter-model and inter-view consistency. Most importantly, it must

integrate with other views used to document architecture. Our work is complementary

to the tools analyzed in (Shahin et al. 2010); in fact, the creation of multiple views on

decisions is only feasible in practice if appropriate tooling is provided to support the

architects. This became evident in our case study. Identifying the best technique used

to visualize the views presented in this chapter is, however, subject to further research.

Candidate techniques should adhere to viewpoint definitions and be validated in in-

dustrial case studies.

6.6 Conclusions and future work

In this chapter, we introduced a documentation framework for architecture decisions

consisting of four initial viewpoint definitions and the respective correspondence rules

to ensure consistency among them. The four viewpoints, a Decision Detail viewpoint, a

decision relationship viewpoint, a Decision Chronology viewpoint and a decision stake-

holder involvement viewpoint, satisfy several stakeholder concerns related to architec-

ture decision management. Furthermore, they can easily be integrated with other view-

points to complete the picture of architectural design, decisions and rationale.

With the exception of the decision stakeholder involvement viewpoint, we validated

the framework in an industrial case study and showed that the views can be created

with reasonable effort. Furthermore, we showed that decision views facilitate commu-

nication between stakeholders, support technical architecture reviews and enable the

reuse of architecture decisions. Although we could only find evidence for the suitability

for technical architecture reviews in the case study, we believe that decision viewpoints

are equally beneficial for non-technical architecture reviews and evaluations. Chap-

ter 9 reports on our efforts to develop a decision-centric architecture evaluation method,

which makes use of viewpoints from this framework.

The framework presented in this chapter comprises a coherent set of viewpoints that

can be used as-is to document architecture decisions. However, our analysis of stake-

holder concerns related to decision documentation (see Section 6.2) showed that some

concerns cannot be satisfied optimally within the current set of viewpoints. In partic-

ular, concerns related to decision-requirements traceability and decision-design trace-

6.6. Conclusions and future work 123

ability (C6, C7, C12) in Table 6.1 are currently under-represented and require additional

research. To partially bridge this gap, we developed an additional viewpoint focusing

on the representation of the relationships between architecture decisions and the forces

that influenced the architect when making the decisions. The so-called decision-forces

viewpoint is presented in Chapter 7.

Another direction for future research is applying the documentation framework for

creating views in different orders and at different levels of detail. When applying our

viewpoints in different projects and different organizational contexts, we observed that

the viewpoints can be used in different ways. To give an example, in one project the

decision detail view of architecture decisions was created on-the-fly during the decision

making itself. This resulted in all decisions being documented with the same effort and

the same information density. The decision relationship view was created after-the-fact

at the end of the architecture phase. In another project, the relationship and chronol-

ogy views were created on-the-fly during the architecting process, while only the most

important decisions were thoroughly documented in the detail view afterwards. We

plan to analyze the different ways of using the viewpoints in more industrial projects

to come up with parameterized guidelines on how to construct the views in different

organizational settings.

Finally, as mentioned before, effective tooling is vital for using viewpoints in the

industry. We developed an open source web application (Open Decision Repository)

to create views according to this viewpoint framework. Currently, the Decision Detail,

Decision Relationship and Decision Chronology viewpoints are supported by the tool.

The source code and documentation is located in a Google code repository and can be

found under http://opendecisionrepository.googlecode.com. We are cur-

rently evaluating the Open Decision Repository in an industrial study as a pilot for

larger-scale empirical validation.

Acknowledgement

We thank the following people for their valuable input and contribution: Stefan Ari-

ans, Dirk Bugzel, Mathias Deml, Christian Dietrich, Veli-Pekka Eloranta, Matthias Gal-

ster, Kai Koskimies, Christian Manteuffel, Dominique Petersen, Ben Ripkens, Christian

Rossow, Sebastian Schmidt, Michael Stal, Martin Verspai, and the participants of the

OPR software factory 2011.

Based on: U. van Heesch, P. Avgeriou, and R. Hilliard – “Forces on Architecture Decisions – A Viewpoint”,
Proceedings of the Joint 10th Working IEEE/IFIP Conference on Software Architecture & 6th European
Conference on Software Architecture, 2012.

Chapter 7

Forces on architecture decisions

Abstract

In this chapter, the notion of forces as influences upon architecture decisions is defined.

To facilitate the documentation of forces as a part of architecture descriptions, we spec-

ify a decision forces viewpoint, which extends our existing framework for architecture

decisions, following the conventions of the international architecture description standard

ISO/IEC/IEEE 42010. The applicability of the viewpoint was validated in three case stud-

ies, in which senior software engineering students used it to document decisions in software

projects, two of which conducted for industrial customers. The results show that the forces

viewpoint is a well-received documentation approach, satisfying stakeholder concerns related

to traceability between decision forces and architecture decisions.

7.1 Introduction

Decisions, and the rationale for those decisions, are pervasive elements of software ar-

chitecture (Kruchten 2004a). Because of their crucial role, architecture decisions and

rationale need to be captured and managed throughout the lifetime of a software archi-

tecture, as with any other important part of the architecture documentation. Moreover,

decisions and their rationale should be documented in a form that integrates with the

documentation of other types of architecture information in order to provide traceabil-

ity between decisions and those other types.

Bosch proposed to capture the rationale behind an architecture using architecture

decisions as first-class entities of architecture description (Bosch 2004). To date, different

approaches have been presented to practically realize the documentation of architecture

decisions; prominent among those are decision templates, as introduced by Tyree and

Akerman (Tyree and Akerman 2005) (see Chapter 6 for a discussion of various decision

documentation approaches).

ISO/IEC/IEEE 42010 (ISO/IEC/IEEE 2011) addresses the areas of recording archi-

tecture decisions and architecture rationale as part of an architecture description, speci-

fying general requirements for decision documentation, but not particular mechanisms.

As with any other kind of architecture information, architecture decisions and rationale

pertain to different stakeholders’ concerns. Consequently, a single form of representa-

tion is often not applicable to all concerns in a usable form; instead, different forms of

representation, arranged as architecture views, can each effectively address a subset of

concerns.

126 7. Forces on architecture decisions

Since the earliest work on the foundations of software architecture by Perry and

Wolf (Perry and Wolf 1992), and exemplified by Kruchten’s 4+1 model (Kruchten 1995),

the idea of documenting software architecture using multiple views has been widely

adopted. IEEE Std 1471:2000 (IEEE 2000) first codified this practice of multiple views,

with each view addressing specific concerns of interest to system stakeholders and in-

troducing viewpoints to establish the conventions used in each view.

Building on this practice, in our previous work, we introduced a framework for ar-

chitecture decisions using the conventions of ISO/IEC/IEEE 42010, containing an initial

set of four viewpoints for architecture decisions: a decision detail viewpoint, a decision

relationship viewpoint, a decision chronology viewpoint, and a decision stakeholder in-

volvement viewpoint, each dedicated to specific decision-related concerns (van Heesch,

Avgeriou and Hilliard 2012a) (an example of a decision-related concern is What decisions

are dependent on decision D?)

In this chapter, we extend our earlier framework with the decision forces viewpoint

(or shortly forces viewpoint), which is dedicated to establishing traceability between ar-

chitecture decisions, stakeholder concerns, and the forces driving the decisions. Forces,

in this context, include traditional requirements, but they also take the experience and

expertise of the development team, as well as business and project constraints, into

account. A force, in short, is a broad concept capturing anything that has a potential

non-trivial impact of any kind on an architect when making decisions.

The forces viewpoint was validated in three case studies conducted with groups

of senior students. Two of the groups worked independently on industrial software

projects; the third group started an open source project as part of a module on Java

EE. The results are promising, as they show that the forces viewpoint is well-received

by the students, while satisfying many decision-related stakeholder concerns. Further,

we learned that the forces viewpoint supports students in following a systematic and

rational decision making process, when being created iteratively during the architecting

process.

The rest of this chapter is organized as follows. Section 7.2 introduces the viewpoint

framework and the basic ideas behind ISO/IEC/IEEE 42010. In Section 7.3, the deci-

sion forces viewpoint is specified. Section 7.4 reports on the case studies conducted to

validate the viewpoint. In the next section, we briefly outline related work. Finally, in

Section 7.6, we conclude and present areas for future work.

7.2 A framework for architecture decisions

In this section, the main ideas behind ISO/IEC/IEEE 42010 (ISO/IEC/IEEE 2011) and

the framework for architecture decisions (van Heesch, Avgeriou and Hilliard 2012a),

which were the basis for the development of the decision forces viewpoint, are briefly

introduced.

7.2. A framework for architecture decisions 127

7.2.1 ISO/IEC/IEEE 42010

ISO/IEC/IEEE 42010 is an international standard for the description of software archi-

tectures (and other kinds of system architectures). It is based on a few principles:

1. an architecture description (AD) expresses an architecture (of a system or other en-

tity of interest);

2. an AD addresses the concerns of the system’s stakeholders for that architecture.

3. the concerns drive the selection of the representation conventions (called view-

points) used to express the architecture, each of which is dedicated to framing spe-

cific concerns;

4. consistency between the views is maintained using correspondence rules.

Building upon these principles, ISO/IEC/IEEE 42010 defines the required contents of

individual ADs, the form of architecture description languages, and architecture frame-

works.

7.2.2 Four viewpoints for architecture decisions

The framework for architecture decisions, introduced in Chapter 6, consists of an initial

set of four viewpoints, each of which being dedicated to satisfying specific stakeholder

concerns related to architecture decisions.

The decision relationship viewpoint makes relationships between architecture de-

cisions explicit. Examples of decision relationships are is caused by, depends on, or is

alternative to. Apart from relationships, views using this viewpoint document the cur-

rent state of each decision in the system (e.g., decided, approved, or rejected). The stake-

holder involvement viewpoint explains the responsibilities of specific stakeholders in

the decision-making process. For example, views of this viewpoint show the stakehold-

ers who proposed, confirmed, or validated particular decisions. The decision chronol-

ogy viewpoint shows the evolution of architecture decisions over time. It also depicts

architecture iterations and their endpoints (typically milestones, snapshots, or releases).

The chronology viewpoint is the only viewpoint with a temporal component. All other

types of views freeze a specific state of the architecture.

Whereas the previously mentioned viewpoints focus on specific aspects of architec-

ture decisions to optimally frame their related concerns, the decision detail viewpoint

is an aggregate viewpoint. This viewpoint combines the information shown in all other

viewpoints, by giving detailed information about single architecture decisions. The de-

tail viewpoint’s model kind (a model kind establishes the conventions for all models in

the respective view), at the same time acts as a shared metamodel for all viewpoints in

the framework.

The decision forces viewpoint, introduced in this chapter, extends this existing set

of viewpoints focusing on traceability between architecture decisions, stakeholder con-

128 7. Forces on architecture decisions

cerns, and decision forces. In order to integrate the viewpoint into the decision frame-

work, a few additions had to be made to the shared metamodel of all viewpoints. All

changes are downwards compatible, which means that views created according to the

viewpoints of the framework do not have to be changed after the integration of the

forces viewpoint.

7.3 Decision forces viewpoint

Views using the decision forces viewpoint make explicit the relationships between ar-

chitecture decisions and the forces that influenced the architect when making the deci-

sions out of multiple alternatives. The term force is taken from the pattern community,

which uses forces to elaborate on the description of a problem to be solved by a pattern’s

proposed solution. They define a force as “[...] any aspect of the problem that should

be considered when solving it.” (Buschmann et al. 1996). Similarly, when considering

architecture decisions, a force is any aspect of an architectural problem arising in the

system or its environment (operational, development, business, organizational, politi-

cal, economic, legal, regulatory, ecological, social, etc.), to be considered when choosing

among the available decision alternatives.

Forces arise from many sources; most often from requirements, but also from con-

straints, architecture principles and other “intentions” imposed upon the system; in-

cluding personal preferences or experience of the architect(s) and the development

team; and business goals such as quick-time-to-market, low price, or strategic orien-

tations towards specific technologies (see (Mustapic et al. 2004) for an empirical study

on influence factors on software architecture). Before making decisions, the architect

assembles all forces relevant in the context of the system to be developed. It can be a

good practice to maintain a list of typical domain-specific forces from different projects

to make sure that not important forces are forgotten.

7.3.D
ecision

forces
view

poin
t

129
!∀#∃

∗∋+∋)!,−.(&/& ∗!0 1#.∃2∋3)4! 5∗6 78!9:

1;<#

=% %% % &∋ & & % %

=> % % %

=? %% % % %%

=≅ %% % % % & % %

=Α %% % & & % & (

=%Β % (% ((

=%? % %% %%

=ΧΒ %% % %

=Χ∆ 1;ΕΕΦ.−Γ∋∃−;.)+−∋)Η.∃#2.#∃ %% %% % % % %

=Χ? /61Η)ΙΦϑϑ;2∃ % (% %

=ΧΚ % % % %% %%

0%

0%Λ% %%

0%ΛΧ %

0%ΛΒ

0%Λ∆ % %%

0%Λ> %

0Χ

0ΧΛ% % %%

0ΧΛΧ && % %

0ΧΛΒ && % %

0∆ % % % % %

0> %

0Κ %% & && && && % (

)∗+,∋−+./012134 !5−5∋6−1753+ #∗882+,57+

Μ<#Γ−<#<Ν Μ<−ΙΓ∋2<#<Ν Μ<−ΙΓ∋2<#<Ν Μ<#Γ−<#<Ν Μ<−ΙΓ∋2<#<Ν Μ<−ΙΓ∋2<#<Ν Μ<#Γ−<#<Ν

&;Ι∃(2#!9:

∋∋
∋∋
∋!
+
.
∗6
∗1
0
∋9
1
7.
+
6

:7./∗−+.−;7+∋6∗30∗<∗.50−∋7+=;∗7+>+0−6

4#ΙΓ2−ϑ∃−;. 1;.Γ#2.ΟΙΠ

Θ+(Λ)2#Ιϑ;.Ι#)∃−Ε#)ΜΡ)ΣΛ%Ι Τ−Ε#)Υ#∀∋+−;2

Η.∃#(2∋∃#)ΕΦ3∃Λ)ϑ∋8Ε#.∃)ϑ2;+−<#2Ι 5ς∃#.<∋Υ−3−∃8

=#3−∋Υ−3−∃8);Ω)<∋∃∋)Ι∃;2∋(# =#3−∋Υ−3−∃8

Θ+∋−3∋Υ−3−∃8);Ω)ΩΦ33)Ι#2+−Γ#)ΟΑΑΛΑΞΠ =#3−∋Υ−3−∃8

!Φϑϑ;2∃)(2;,−.().;);Ω)ΦΙ#2Ι !Γ∋3∋Υ−3−∃8

!#ΓΦ2−∃8)Οϑ#2Ι;.∋3)<∋∃∋)ϑ2;∃#Γ∃−;.Π !#ΓΦ2−∃8

13−#.∃)ϑ3∋∃Ω;2Ε)−.<#ϑ#.<#.Γ# &;2∃∋Υ−3−∃8

Ψϑ#2∋Υ−3−∃8);Ω)ΦΙ#2)−.∃#2Ω∋Γ# ΖΙ∋Υ−3−∃8

[#∃,;2∴)Γ;ΕΕΛ

6∋.∴−.()ϑ2;∃;Γ;3Ι

[;)3−Γ#.Γ#)Γ;Ι∃Ι 4#+#3;ϑΕ#.∃)Γ;Ι∃Ι

?−/+7∋<17.+6

Η.∀;ΦΙ#)#ςϑ#2−#.Γ# 4#+#3;ϑΕ#.∃)∃−Ε#

!,−.()Ο+#28)(;;<Π 4#+#3;ϑΕ#.∃)∃−Ε#

&/&)Ο<#Γ#.∃Π 4#+#3;ϑΕ#.∃)∃−Ε#

∗&Θ)Ο(;;<Π 4#+#3;ϑΕ#.∃)∃−Ε#

78!9:)Ο+#28)(;;<Π 4#+#3;ϑΕ#.∃)∃−Ε#

∗!0)Ο+#28)(;;<Π 4#+#3;ϑΕ#.∃)∃−Ε#

!∃2∋∃#(−Γ)∴.;,3#<(#)<#+#3;ϑΕ#.∃ 1;Εϑ#∃−∃−+#.#ΙΙ

:#∋2.)&;Ι∃(2#Ι 1;Εϑ#∃−∃−+#.#ΙΙ

ΗΕϑ2;+#)∗∋+∋ΙΓ2−ϑ∃)Ι∴−33Ι 1;Εϑ#∃−∃−+#.#ΙΙ

:#∋2.)∗]Φ#28 1;Εϑ#∃−∃−+#.#ΙΙ

:−.Φς)Ι#2+#2)∋+∋−3∋Υ3# 4#+#3;ϑΕ#.∃)Γ;Ι∃Ι

[;.)ΥΦΙ−.#ΙΙ)Γ2−∃−Γ∋3−∃8 6ΦΙ−.#ΙΙ)Γ2−∃−Γ∋3−∃8

=#Ι;Φ2Γ#)ΦΙ∋(#);.)Ι#2+#2 =#Ι;Φ2Γ#)Φ∃−3−⊥∋∃−;.

[;)2#Ι;Φ2Γ#Ι).##<#<Λ)
Θ33)Γ∋3ΓΦ3∋∃−;.Ι)∋2#)
ϑ#2Ω;2Ε#<);.)Γ3−#.∃)

Ι−<#Λ

Figure 7.1: Excerpt from a decision forces view (see 7.3.1 for conventions used here)

130 7. Forces on architecture decisions

Different forces may be orthogonal to one another, they may support, antagonize

or contradict each other. Therefore, an architect must balance forces to make the best

possible decisions. Figure 7.1 shows an extract from a decision forces view, which was

created as part of a pilot study conducted to validate the design of the case studies re-

ported below. In the pilot study, the decision viewpoints from the previously mentioned

framework (Chapter 6) and the decision forces viewpoint were used to document archi-

tecture decisions made in a non-academic distributed open source online banking and

accounting system for small and medium-sized companies.

The left part of the table shows the forces that were considered when choosing

among the decision alternatives listed across the top of the table. Each force is clas-

sified by one or more concerns (please refer to Section 7.3.2 for an explanation of the

relationship between forces and concerns). The decision alternatives can be grouped

into decision topics (e.g. view technology, or data storage in Figure 7.1), if they were taken

into consideration as alternatives to solve a particular problem. Within a decision topic,

there can only be one decision with a state equal to or higher than decided (please refer

to Chapter 6 for a description of all decision states). The comment box in Figure 7.1 con-

tains an example of a textual description of a force-decision combination. The pluses

and minuses indicate a positive or negative impact of a force on a decision alternative;

an empty field means that a force is not applicable or neutral; a question mark expresses

uncertainty. A more detailed description of the ratings can be found in Section 7.3.1. The

Figure 7.2: Application of forces on an architect

architect evaluates each architecture decision alternative in the context of the forces. As

a result of the evaluation, a force can have a positive, negative, currently unknown, or

neutral impact on the architect with respect to a decision; it either attracts the decision

maker towards a specific decision alternative, or it repels the decision maker from an

alternative, or it has no effect. Figure 7.2 illustrates the application of forces on an archi-

tect when choosing between two database management systems. On the one hand, the

development team has a lot of experience using MySQL; this force attracts the architect

towards choosing MySQL. On the other hand, the company wants to develop strategic

knowledge with PostgreSQL, which is also more reliable than MySQL and turns out

to scale better. In this particular case, after balancing these forces, the architect would

probably choose PostgreSQL, provided that no other decision alternatives were taken

into consideration. In a more general case, an architect would need to decide between

7.3. Decision forces viewpoint 131

more than two options.

7.3.1 Forces viewpoint specification

Table 7.1 lists the decision-related concerns1 framed by the decision forces viewpoint.

These decision-related concerns are a subset of a larger set of concerns identified in

Chapter 6. The original concerns C5, C6, and C7 referred to requirements rather than

forces. They were renamed to acknowledge that decisions should be linked to all types

of forces, instead of linking them to requirements only. The codes in Table 7.1 were

copied from Chapter 6 for consistency.

Views of the decision forces viewpoint are dedicated to supporting decision–force

traceability. They can be used by stakeholders interested in decision rationale, deci-

sions relevant for specific stakeholder concerns, addressed requirements, conflicting

forces and how these all relate to each other. The main stakeholders for this viewpoint

are architects, but also reviewers and other stakeholders who need to comprehend the

choices made in the architecture. Table 7.2 shows the stakeholders along with their

main decision-related concerns with respect to the forces viewpoint. Similarly to the

decision-related concerns, the stakeholders were identified in our previous work.

Table 7.1: Concerns of the decision forces viewpoint

Code Concern

C3 What is the rationale for decision D?

C4 What concerns Ci does decision D pertain to?

C5 What forces Fj impact/influence decision D?

C6 What decisions Dk are influenced by force F ?

C7 What forces Fl have conflicting influences on decision D?

C23 What decisions Dp or decision sub-graphs SGq can be

reused in other projects?

The decision forces viewpoint consists of a single model kind. Figure 7.3 depicts its

metamodel, which presents the conceptual elements for architecture models that adhere

to it. This model is part of a shared metamodel, which is used by all viewpoints of the

decision documentation framework. Together with well-defined correspondence rules,

the shared metamodel ensures consistency among the views of different viewpoints.

The elements in Figure 7.3 with a gray background map to the corresponding elements

in Figures 2 and 4 of ISO/IEC/IEEE 42010. In the following, each of the elements used

in Figure 7.3 is briefly described.

An architecture decision pertains to one or more concerns. Forces views show only

the current state of each decision (e.g. decided, or discarded Chapter 6). While decisions

1The term decision-related concern is used to refer to concerns pertaining to decision documentation (as

opposed to any other types of stakeholder concerns which are simply termed concerns).

132 7. Forces on architecture decisions

Table 7.2: Typical stakeholders of the decision forces viewpoint and their concerns

Stakeholder Concerns

Architect C3, C4, C5, C6,

C7

Reviewer C3, C4, C5, C6,

C7

Requirements Engi-

neer

C4, C6, C7

New project member C3

Domain expert C23

Figure 7.3: Metamodel of decision forces viewpoint

can generally have different types of relationships with each other, the forces viewpoint

only regards the is alternative for-relationship to group multiple decision alternatives

into a decision topic.

According to ISO/IEC/IEEE 42010, “Architecture rationale captures explana-

tion, justification or reasoning about architecture decisions that have been made.”

(ISO/IEC/IEEE 2011). In terms of the forces viewpoint, the architecture rationale

should balance all relevant forces that influence a decision. Note that architecture ra-

tionale is not described in forces views; it is documented explicitly in decision detail

views, which are part of the decision framework. In the forces viewpoint’s model kind,

the association between Architecture Rationale and Influence implies that the rationale

description should consider the relevant forces.

All forces are classified by one or more concerns. A stakeholder could for instance

be concerned about development cost, while concrete forces classified by this concern

could be “not to use paid 3rd-party licenses”, or to “use available hardware where pos-

sible”. The force not to use 3rd-party licenses could, besides the development cost con-

7.3. Decision forces viewpoint 133

cern, be classified by a legal concern (e.g how the software can be distributed).

Apart from a textual qualification, the influences relationship between decision force

and architecture decision can take one of the following values, estimated by the archi-

tect(s) of the system:

++: A force strongly supports a specific decision alternative to be chosen. An example

from Figure 7.1 is the operability force, which strongly advocates the choice of

Swing/Java, because Swing can be used to develop rich graphical user interfaces.

+: A force moderately supports an alternative.

blank: A force has a neutral influence on a decision alternative, or it is not applicable.

-: A force moderately opposes an alternative.

- -: A force strongly opposes an alternative to be chosen. For instance, if the program-

ming team has no experience in functional programming, then this would be a

strong argument against choosing Lisp or Haskell as a programming language.

X: A decision alternative is prevented by a force. For instance, a force could be not

to use libraries distributed under an open source license. Such a force would for

instance prevent the use of Apache Lucene as a search library. Nevertheless, it

can make sense to document such a decision alternative, because the forces view

could be used to negotiate constraints or requirements with the customer, if its

advantages clearly outweigh the opposing forces.

?: It is currently unclear how the decision alternative is impacted by a force. This rating

should be temporary, indicating that prototyping, or more research has to be done

to understand the impact better.

Constraints and cross-viewpoint correspondence rules relevant to this viewpoint are

specified in Appendix C.

7.3.2 Stakeholder concerns versus decision forces

In the context of ISO/IEC/IEEE 42010, the term concern was chosen to include any inter-

est that stakeholders consider fundamental to the architecture of the system (including

the process of creating the architecture): “Concerns arise throughout the life cycle from

system needs and requirements, from design choices and from implementation and op-

erating considerations.” (ISO/IEC/IEEE 2011). The standard introduces stakeholders’

concerns as a means to drive the selection of architecture viewpoints, i.e. different stake-

holders for the architecture description have different needs in terms of different kinds

of information. Therefore, concerns result in selecting appropriate representations of

the architecture. Forces, in contrast, do not drive representational choices but architec-

ture decisions. The concept of a force is related to the concept of a concern, in that all

forces are classified by concerns (see Figure 7.3). If a force could not be classified by

134 7. Forces on architecture decisions

at least one concern, this means that it would not represent any interest of the relevant

stakeholders.

7.4 Three case studies

To validate the usage of the decision forces viewpoint in software projects, we con-

ducted a multiple-case study with senior students working on non-academic software

projects. A case study was preferable over surveys or experiments, because the phe-

nomenon (i.e. the influence of the forces view documentation) had to be studied over a

long period of time, thus limiting the possibility for strict control of independent vari-

ables (Runeson and Höst 2009). Additionally, a multiple-case design is regarded as more

robust than single-case studies, because conclusions from one case can be compared to

other cases (Yin 2003), which increases external validity.

7.4.1 Study goal and research questions

Following Robson’s classification scheme (Robson 2011), this multiple-case study is ex-

ploratory in nature. The goal is to explore the support provided by the decision forces

viewpoint to software architecture activities and the coverage of decision-related con-

cerns in software projects. In particular, the study aims at answering the following two

research questions:

RQ1: How does the forces viewpoint support the decision making process?

RQ2: Which of the decision-related concerns mentioned in Table 7.1 does the forces

viewpoint support?

7.4.2 Study design and execution

Case descriptions

The study was conducted in the context of two lecturing modules in the software en-

gineering study program at the Fontys University of Applied Sciences in Venlo, the

Netherlands. In total, we observed three student groups working on different projects.

Two of the projects were conducted as part of a lecturing module, in which student

groups work on tasks for external, industrial customers2. The third project was done as

part of a lecturing module on the Java enterprise edition (JEE). In this module, the stu-

dents were free to make up their own software project, as long as it involved at least one

technology from the JEE specification set. In all cases, the students worked on their own

responsibility without lecturers intervening in their decision making process. The de-

cision documentation was no integral part of the modules and was not graded. One of

the authors was involved in the third case as a lecturer, while none of the authors was

2The customers have asked us to stay anonymous.

7.4. Three case studies 135

involved in the former two cases. All projects were observed over a period of seven

weeks. In the following, the three projects are briefly described:

PrjA: This project is a further development of a legacy documentation system used to

generate different types of documents based on templates and dynamically allo-

cated data. The software project was commissioned by a medium-sized German

software company. A prominent user of the system is the Bavarian Department

of Justice. The primary task of the project group was an architectural re-design to

a service oriented architecture, including the migration of the existing functional-

ity to services and the choice and usage of an appropriate enterprise service bus

technology.

PrjB: This software was ordered by a Dutch company that acts as a broker between

restaurant owners and cooking personnel, specialized on catering, cooking work-

shops, and interim executive chefs. The student group had to develop a web ap-

plication for personnel services in the gastronomy business, allowing freelancing

cooks to register and apply for jobs. Job offers can be posted by restaurant owners,

for instance. The software had to be developed from scratch.

PrjC: The third project was conducted as part of a lecturing module on JEE. The stu-

dents in this group started an open source project called /notes (pronounced Slash-

notes) for managing, sharing and distributing notes. The software offers three dif-

ferent clients that can be used to access notes: a web application based on JQuery, a

Java desktop application (using Swing), and a mobile client for Google’s Android

operating system. All architecture decisions had to be made by the students. A

short video showing the main features of the application can be found on YouTube

(http://youtu.be/wW1Lgq2gZvg).

Subjects

The subjects of the study were students from the last year of a four-year software en-

gineering program of study. All of the students had already gained some industrial

experience from a five-month internship; some of them had additionally pursued part-

time jobs in the software engineering industry. During the course of their study, the

students had followed different courses on programming, object-oriented analysis and

design, and software engineering process models (e.g. RUP, Scrum, Iterative waterfall).

To gather their experience regarding programming, design, and software architecture;

as well as the time they had already spent in the industry, we asked all participants to fill

in a web-based questionnaire prior to the study. Table 7.3 shows the number of students

in each group (No. stud.), as well as the average number of months of experience that

the students had as programmers (Prog. exp.), as software designers (Des. exp.), with

software architecture (Arch. exp); and as software engineers in the industry, or as payed

freelancers. The numbers in parentheses show the standard deviations. With the excep-

tion of one outlier in PrjA regarding programming, design, and industrial experience,

136 7. Forces on architecture decisions

Table 7.3: Previous experience of the subjects

Project A Project jB Project C

No. students 6 5 4

Programming experience 75.33 (48.89) 49.2 (13.26) 59.5 (21.56)

Design experience 50.33 (28.63) 32.2 (3.03) 33.5 (8.54)

Architecture experience 38.67 (4.84) 28.6 (9.48) 11.25 (7.97)

Industry experience 25.17 (36.21) 7 (2.83) 7.25 (6.18)

the students’ previous experiences was comparable between the groups, which renders

them equivalent data sources. The fact that the students were in the last semester before

the graduation project, and had some first experiences in the IT industry, makes them

suitable subjects for the population of inexperienced software engineers at the begin-

ning of their professional careers.

Carver et al. provide a checklist for conducting empirical studies with students

(Carver et al. 2010). This checklist was used to ensure that the study had a pedagog-

ical value for the participating students and that the results are generalizable to a larger

population (in this case the population of inexperienced software engineers). In the fol-

lowing, we list all items of this checklist together with a brief explanation on how the

checklist item was considered:

1. Ensure adequate integration of the study into the course topics – In both lectur-

ing modules, the students had to make architecture decisions autonomously. The

decision forces view supports the decision making process and provides decision-

force traceability. Thus, it integrated well into the course topics.

2. Integrate the study timeline with the course schedule – The timeline for the study

was explicitly planned according to the start of the lecturing modules.

3. Reuse artifacts and tools where appropriate – The students used a spreadsheet

application for creating the decision forces view. No special tool was introduced

for the purpose of decision documentation.

4. Write up a protocol and have it reviewed – A study protocol was written before

the study and reviewed by the authors in multiple iterations.

5. Obtain subjects’ permission for their participation in the study – Prior to the

two courses, the students were asked if they wanted to participate in the study.

They were ensured that no personal data would be made available in the study

report. All students expressed their interest in the study. They were also given

the opportunity to withdraw from the study by sending an email to the course

lecturers.

7.4. Three case studies 137

6. Set subject expectations – The students were informed about the effort, we es-

timated for the decision documentation. Apart from that, we told them that we

would give them feedback about how to improve their individual architecting

processes after the study.

7. Document information about the experimental context in detail – The context of

the study is documented in this article.

8. Implement policies for controlling/monitoring the experimental variables – The

relevant previous experience of the subjects, as well as the descriptions of the

projects they were involved in, are reported in this chapter. The data collection

methods and data sources used to monitor these variables are described in Sec-

tion 7.4.2.

9. Plan follow-up activities – At the end of the semester, the students were informed

about the study results. Each project group also received individual feedback on

their architecting process.

10. Build or update a lab package All collected data was stored in a digital study

database (as proposed in (Yin 2003)). The database was used as a basis for the

analysis.

Data collection

The data collected in this case study is qualitative in nature. We applied triangulation

of data-sources, which is a well-accepted method to increase the precision of studies

that mainly collect qualitative data (Runeson and Höst 2009, Yin 2003, Stake 1995). The

different data sources that were triangulated, correspond to different data collection

methods, which are as follows:

Work artifacts: In the two lecturing modules, from which we recruited our

project groups, the students were obliged to store all project related files in Sub-

version repositories. The researchers were given read access to these repositories,

enabling them to track the progress and the iterative refinement of the architec-

tural design.

Focus groups: At the end of the seven weeks, we conducted focus groups with

each of the projects. Focus groups are group interviews with a small number of

participants, in which a moderator asks questions to concentrate the discussion on

a predefined topic. In contrast to individual interviews, focus groups allow group

members to build up on each others’ answers leading to more profound informa-

tion (Kontio et al. 2008). All focus groups were audio recorded and transcribed.

Participant observation: During the seven weeks, the three groups

were regularly, at least weekly, visited during their working sessions. The

researchers took field notes about their observations, which were afterwards

scanned and stored in the study database.

138 7. Forces on architecture decisions

Pilot study

To fine-tune the design of the study, in particular the data collection procedures and the

research questions, we performed a pilot study. In this pilot study, we used the decision

framework, and the forces viewpoint in particular, to document the architecture deci-

sions of a system for online banking and accounting. One of the authors was involved

in the project as a developer. Figure 7.1 shows an excerpt from the forces view created

in this pilot.

The pilot study was particularly helpful for understanding how the forces viewpoint

can support the decision making process. In addition, the results were used to develop

the question guide, which was employed during the focus groups to ensure that no

important topics of interest were forgotten.

7.4.3 Analysis procedure and results

As the data in our study database was qualitative to a large extend, we chose to apply

a grounded theory approach (Glaser and Strauss 1967) to analyze the data. While being

used mainly in social sciences, grounded theory has recently also gained more attention

in software engineering related research (see for instance (Adolph et al. 2011, Urquhart

et al. 2010)).

Analysis procedure

Grounded theory is inherently explorative in nature, as it promotes the analysis of data

without predetermined ideas about potential findings. Concepts emerge slowly by con-

stantly comparing indicators found in the data to previously identified indicators. That

way, an idea about a finding (usually referred to as a theory) is either supported by

additional evidence, or it has to be rejected if no additional indicators can be found to

carry it. In the following, the steps we followed during the data analysis are briefly

described. Note that steps two to four are performed iteratively.

1. Convert data to PDF: The gathered data was exclusively stored digitally. As a

preparation for the data analysis, we converted all files in the study database to

the PDF format to allow for a uniform coding procedure.

2. Coding: All PDFs were intensively studied. Indicators for concepts related to

decision views (in particular the forces view) were coded (i.e. labelled) as brief

statements using PDF annotations. Please refer to Adolph et al. (Adolph et al.

2011) for an extensive explanation of the terms indicator, code, concept, and category,

which are central concepts in grounded theory.

3. Identify concepts: During the coding procedure, concepts emerge, which repre-

sent candidate patterns of behavior, suggested by a set of indicators. The concepts

7.4. Three case studies 139

were registered and related to the codes supporting it. The result after some iter-

ations of analysis, was a set of concepts describing how the three student groups

used and perceived the forces viewpoint in their projects.

4. Classify concepts into categories: Finally, in the last step of the analysis, the con-

cepts from the three groups were compared to identify common categories of con-

cepts. A category is a concept on a higher level of abstraction. As stated above,

findings that were concordantly made in more than one project group are more

reliable.

Analysis and interpretation

Table 7.4: Result of the qualitative analysis

Code Category PrjA PrjB PrjC Conc. RQ

Cat1 Required students to think more care-

fully about decisions.

X X X RQ1

Cat2 Triggered students to consider quality

attribute requirements.

X X X RQ1

Cat3 Prevents ad-hoc decisions. X X X RQ1

Cat4 Forces viewpoint will be used in other

projects.

X X X RQ1

Cat5 Triggered students to identify more

alternatives.

X X RQ1

Cat6 Good way to document decisions. X X RQ1

Cat7 Creating the forces view took a lot of

time.

X RQ1

Cat8 Prevents inefficient discussions about

decisions.

X RQ1

Cat9 Created with reasonable effort. X RQ1

Cat10 Saved time in the end. X RQ1

Cat11 Support for rational decisions. X RQ1

Cat12 Forces view complements relation-

ship view.

X RQ1

Cat13 Useful for architects, designers, pro-

grammers, and new project members.

X RQ1

Cat14 Support for weighing forces is miss-

ing.

X RQ1

Cat15 Identifying all forces is a matter of ex-

perience.

X RQ1

Cat16 Forces view and relationship view are

simultaneously refined.

X RQ1

140 7. Forces on architecture decisions

Table 7.4 – continued from previous page

Code Category PrjA PrjB PrjC Conc. RQ

Cat17 Proper tool support needed. X RQ1

Cat18 Maintain overview over architecture

decisions, concerns, and forces.

X X X C4,

C5,

C6

RQ1,

RQ2

Cat19 Helpful to systematically compare

decision alternatives in the context of

forces.

X X X C5,

C6

RQ1,

RQ2

Cat20 Help for estimating requirements

coverage.

X X C6 RQ1,

RQ2

Cat21 Support for systematic trade-offs be-

tween forces.

X C7 RQ1,

RQ2

Cat22 Supports sharing architecture ratio-

nale.

X X X C3,

C23

RQ2

Table 7.4 summarizes the results of the qualitative analysis. The table maps the cate-

gories, identified in step 4 of the analysis procedure, to the project groups, in which

they were observed. Additionally, the table shows decision-related concerns (column

Conc.) that are related to some of the categories, as well as research questions (column

RQ), to which the categories contribute. In the following, the results are interpreted in

the context of the two research questions. The interpretation focuses on categories that

were recognized in at least two of the projects; only regarding suggestions for improve-

ment, we discuss categories assigned to single groups only.

RQ1: How does the forces viewpoint support the decision making process? As

Table 7.4 shows, the data collected from all three groups indicated that the forces views

caused the students to take the decision making process more seriously than they would

have done otherwise (Cat1). The fact that decisions and forces had to be documented

explicitly caused the students to think more concretely about available decision alter-

natives (Cat5), and the forces that influence the choice between these alternatives. The

students noticed that the view prevented them from making decisions ad-hoc (Cat3,

Cat19). A comment in a focus group was “If you don’t have the view, then you might

also see alternatives, but if I have experience in a solution then I will choose this one.

But with the (forces) view, you are forced to think about which one is really better.” It

is notable that all groups mentioned that the forces views triggered them to consider

quality attribute requirements in the first place (Cat2). They had not thought of this in

projects before (during their studies or in side jobs). Among all collected work artifacts,

the forces views were the only documents in which quality attributes were mentioned.

Considering quality attributes in architectural design, however, is an important best-

practice that should be adopted by inexperienced software engineers (see Chapter 4).

In general, the forces viewpoint was very well received by the students. They found

it especially helpful to maintain an overview over decisions made and the factors that

influence the decisions (Cat18). The majority of members in all groups explicitly stated

7.4. Three case studies 141

that they will reuse the forces viewpoint in future projects (Cat4)3. They acknowledged

that it is a good way of documenting architecture decisions (Cat6). This finding is par-

ticularly important, because our experience from multiple studies with students shows

that they cannot be convinced to document their decisions using decision templates

(e.g. from (Tyree and Akerman 2005)). They usually perceive decision documentation

as a tedious task that does not have an immediate benefit. The forces viewpoint, in con-

trast, is a documentation approach that they quickly accepted; presumably because of

its relative light-weightiness and its immediate support for the decision making process.

Although the students were predominantly positive about the forces viewpoint, they

also made suggestions for improvement. ProjectC was concerned about the fact that the

forces viewpoint does not provide means to specify different weights for forces (Cat14).

In their project, some forces were clearly more important than other forces causing them

to select an architecture decision alternative that had a lower rating (i.e. sums of pluses

and minuses) than the other alternatives. Although we had considered this aspect dur-

ing the design of the forces viewpoint, we chose not to include it in the viewpoint spec-

ification to keep it simple. Systematically weighing forces would have introduced ad-

ditional complexity, which could have deterred students from using the view properly.

However, the forces viewpoint can easily be customized by stakeholders in order to

introduce such weights in their projects. Apart from this, it became evident that iden-

tifying all relevant forces is a matter of experience (Cat15). Therefore, especially for

domain-specific forces, it can be helpful to collect typical forces from different projects

that can be used as a checklist to ensure that no important forces are forgotten. Tool

support would also be appreciated, especially to ensure consistency and to save work

when creating the forces view in addition to other views from the framework (Cat17).

RQ2: Which decision-related concerns does the forces viewpoint support? To find

out for which decision-related concerns the students used the forces views, we analyzed

the concepts and categories and compared them to the list of concerns in Table 7.1. The

results are shown in Table 7.4 (categories 18 to 22). Because the categories are concep-

tually more abstract than single concerns, sometimes multiple concerns are mapped to

a single category. Note that the students were not knowledgable about the concerns we

had assigned to the forces viewpoint in the specification. This would have introduced a

threat to the validity of our findings.

The concepts classified under category Cat18 have shown that all three groups used

the forces views to maintain an overview over architecture decisions, concerns, and

forces. The students described that one column in the forces view (see Figure 7.1) shows

which concerns (Cat18, concern C4), and which forces (Cat18, concern C5) are related to

a decision. They also understood that a row in the view shows decisions influenced by

a specific force (Cat18, concern C6). This information was actively used by the students

to make the choice between multiple alternatives more systematic (Cat19, concerns C5,

C6).

3At the time this paper was written, the students were working on their final bachelor projects in

external companies. We repeatedly received questions and suggestions about the forces viewpoint, which

indicates that at least some students indeed keep using decision views.

142 7. Forces on architecture decisions

All three groups saw value in the forces viewpoint with respect to sharing architec-

ture rationale (Cat22, concern C3). In particular, they mentioned that usually individual

members of the groups were more knowledgeable about specific architecture decision

alternatives and their relation to forces than others. The forces views helped them to

spread this knowledge better among the group members. Using their own words, the

student groups stated that studying the forces view helped everybody to understand

the why behind architecture decisions, including the decisions primarily made by oth-

ers. Category Cat22 was also assigned to concern C23, because the students saw the

potential of the forces views to facilitate the reusability of decisions in other projects:

by providing the rationale in terms of decisions addressing specific forces, the decisions

can be reused in cases where similar rationale would make sense.

Two groups used the forces views to estimate the coverage of some important re-

quirements (Cat20). During the analysis of the work artifacts, we could see that all

groups had used requirements as forces; only two of the groups, however, had also

actively used the forces view to check in how far the decisions made were suitable to

actually satisfy the requirements. They understood that a row in the view shows all

decisions that need to be regarded when estimating the coverage of a particular re-

quirement (i.e. a force in the forces view). For the same reasons, Cat20 confirms concern

C6, which is about identifying all decisions that were influenced by a particular force.

Concern C7 (Which forces have conflicting influences on a decision?) was only ex-

plicitly approved by one project. Conflicting influences have to be regarded when mak-

ing trade-offs (Cat21). In forces views, conflicting impacts are indicated by a decision

that has positive rating for one force and negative ratings for another force. Although

this situation was observed in the forces views of all three groups, only one of the groups

explicitly acknowledged the usefulness of forces views for making trade-offs. We con-

jecture that the other groups did not mention trade-offs, because they had not explicitly

discussed such situations. Only in PrjC, we observed that the group actively and fully-

aware discussed conflicting impacts and ways to compensate resulting issues. This cor-

responds to the team’s earlier discussed statement that they were missing weights for

forces (Cat14). Particularly when making trade-offs, different weights of forces should

be considered.

7.4.4 Threats to validity

In the following, we present potential threats to the validity of our findings. In partic-

ular, we cover typical validity threats in software engineering studies, as identified in

(Yin 2003) and (Wohlin et al. 2012).

Construct validity

Construct validity is concerned with the operational measures taken to analyze the phe-

nomenon under study. In this case, we used multiple sources of evidence (i.e. work

artifacts, field observation, and focus groups) to study the use of the forces viewpoint

7.4. Three case studies 143

in software projects. Additionally, the use of a grounded theory approach ensures that

conclusions are rooted in the collected data and that no important concepts are forgot-

ten.

Internal validity

Internal validity mainly has to be considered in explanatory case studies (Yin 2003), in

which a cause-effect relationship is going to be established. In exploratory case studies,

internal validity basically concerns making inferences. In this case, we tried to address

this potential threat by involving different sources of data, including direct participant

observation and analysis of work artifacts. Logical deductions are generally based on

multiple sources of evidence and aligned among at least two of the projects under study

(we did not make deductions from data coming from only one project).

External validity

External validity concerns the generalizability of the study’s findings to a larger pop-

ulation. Because statistically representative samples can typically not be achieved in

cases studies, the emphasis is usually put on analytical generalization, thus an expla-

nation why the findings are representative for other cases with common characteristics

(Runeson and Höst 2009). Yin points out that external validity can be improved by us-

ing replicated study-designs (Yin 2003). In this study report, we present results that

are based on findings made in three different cases using identical study designs. This

reduces the influence of the concrete cases and of the individual students in the differ-

ent project groups. Therefore, we assume that our findings are relevant at least for the

population of inexperienced software engineers at the beginning of their professional

careers. Although we did not find any indicators raising legitimate doubts about the

usefulness of the decision forces viewpoint for experienced software architects as well,

additional industrial studies must be conducted to generalize the study results to this

larger population.

Reliability

The reliability of a study is concerned with the minimization of errors and biases that

stem from the researchers who conducted the study. In this case, the moderator of

the focus groups could have influenced the students towards giving specific answers.

This threat was mitigated by asking open questions like “How did the decision forces

view influence your decision making process?”. As follow-up questions, the moderator

asked the students to explain their answers, or to go more into detail. To mitigate the

risk of suggestive questions and to make sure that all important topics would be cov-

ered, we prepared a question guide (as described by Mack et al. (Mack et al. 2005)) in

advance, which was used by the moderator during the focus groups.

An additional potential threat to reliability could result from students not staying

true to the facts during the focus groups. To mitigate this risk, we used data-source tri-

144 7. Forces on architecture decisions

angulation (Lethbridge et al. 2005), which allowed us to verify concepts using different

types of data. Additionally, as stated above, we prioritize results that were concordantly

found in at least two of the three case studies.

7.5 Related work

The work presented in this chapter is related to architecture decision documentation

in general, and architecture decision views in particular. In Chapter 6, we extensively

discussed related work in these two fields. Therefore, in the remainder of this section,

we focus on related work with respect to traceability between requirements (problems)

and design (solutions).

The decision forces viewpoint acknowledges the importance of relating architecture

decisions to the forces driving those decisions. As such, the forces viewpoint is con-

nected to the research area of relating architecture and rationale. In their recent book,

Avgeriou et al. compiled 15 articles that relate architecture and requirements (Avgeriou

et al. 2011), taking among others traceability between architecture design, decision ra-

tional and requirements into account. Tang et al. in the same publication, provide a

traceability metamodel for bridging the gap between elements from the problem space

(stakeholders, requirements, and issues) and elements from the solution space (archi-

tectural design, structure, components) using architecture decisions and rationale as

intermediaries. Other authors had proposed to use reference models to support differ-

ent types of requirements traceability before (e.g. (Gotel and Finkelstein 1994, Ramesh

and Jarke 2001)).

A slightly different approach to software architecture–requirements traceability has

recently been introduced by Malavolta et al. (Malavolta et al. 2011). Originating from

the model-driven architecture field, they suggest to use weaving models to relate re-

quirements models, architecture decision models, and different types of architecture

descriptions. In contrast to using one shared metamodel, weaving models are non-

invasive and provide greater flexibility.

The conceptual elements used in the forces viewpoint have some similarities with

the elements of design space analysis (MacLean et al. 1991). MacLean et al. propose to

represent design rationale as questions, options, and criteria. A decision topic, as used

in the forces viewpoint, could be formulated as a question, e.g. which database manage-

ment system to use?, the options are similar to the decision alternatives and criteria could

be expressed as forces. However, there are also substantial differences between design

space analysis and the forces viewpoint. First of all, the concept of a force is broader than

the criterion concept in design space analysis. MacLean et al. describe that criteria “rep-

resent the desirable properties of the artifact (i.e. an element in the design space) and

requirements that it must satisfy”. Apart from properties and satisfied requirements,

forces include any type of contextual factors, e.g. other decisions made, experience

of the development team, or politics. Another difference lies in the assessment of the

forces, or criteria respectively. The design space analysis approach only distinguishes

7.6. Conclusions and future work 145

between a positive assessment and a negative assessment, whereas the forces viewpoint

allows for more fine grained evaluation and a qualitative description of this evaluation.

As a consequence of the mentioned differences, each design space analysis diagram can

be represented as a forces view, but not the other way round. The forces viewpoint also

differs from design space analysis in the form of the representation. Forces views are

tables that allow to efficiently trace forces, decisions, and impact ratings; design space

analysis relies on the usage of tree structures. One of the downsides of a tree represen-

tation is that it can hardly be used to identify which design questions were impacted

by a specific criterion, because the same criterion can appear multiple times as a leaf in

the tree. As opposed to the forces viewpoint, design space analysis does not consider

the case that a design option is taken into consideration for multiple decision topics, or

questions respectively.

Tang et al. provide an architecture model for design traceability and reasoning (Tang

et al. 2007). The model connects architecture description elements (as defined in IEEE

Std 1471-2000 (IEEE 2000)) to architecture decisions and architecture rationale, as first

class entities. These authors also implicitly acknowledge the existence of decision forces,

by introducing a concept they call motivational reason. A motivational reason can be

among others a requirement, a goal, an assumption, or a constraint.

Despite this existing work on architecture rationale-design traceability, to the best

of our knowledge, no approach exists that systematically integrates this traceability in

a software architecture description following the conventions of ISO/IEC/IEEE 42010.

Additionally, and more importantly, very few authors have recognized the importance

of treating the full scope of decision forces extending across the context of the system

and the environment in which it is developed, as first-class entities in an architecture de-

scription. We argue that the concept of decision forces, as introduced here, is a valuable

contribution to the field.

7.6 Conclusions and future work

In this chapter, we introduced the decision forces viewpoint as an extension to our

framework for documenting architecture decisions. The viewpoint was validated in

a multiple-case study, which has shown that the forces viewpoint is very well received,

while satisfying its related concerns. Additionally, the forces viewpoint has demon-

strated its ability to support inexperienced software engineers during the decision mak-

ing process, by providing a structure that triggers them to consider multiple architecture

decision alternatives and systematically compare them in the context of all important

forces.

We are currently observing the use of the forces viewpoint and other decision view-

points from our framework in an industrial study, in which we analyze the suitability

of decision views for problem and design space documentation. Apart from that, we

have used it as part of the decision-centric architecture evaluation method, presented in

Chapter 9.

146 7. Forces on architecture decisions

Finally, as suggested by many users of our decision viewpoints, we continue the

development of a tool suite, which efficiently supports architects in documenting views

corresponding to our viewpoints.

Acknowledgements

We would like to thank all participating students from the software factories and the

Java enterprise edition course 2011/2012. Two of the cases reported on in this chapter

are part of a larger study designed and conducted together with Antony Tang.

We would also like to thank Veli-Pekka Eloranta and Kai Koskimies, with whom

we initially discussed the concept of decision forces in the context of decision-centric

architecture evaluation.

Part IV

Supporting architecture decisions

Submitted to the Journal of Systems and Software as: U. van Heesch, P. Avgeriou, A. Tang – “Does
decision documentation lead to more rational decisions? - A comparative multiple-case study’

Chapter 8

How decision documentation affects the
reasoning process

Abstract

Software architecture design is challenging, especially for junior software designers. Lack-

ing practice and experience, junior designers need process support in order to make rational

architecture decisions. In this chapter, we present the results of a comparative multiple-case

study conducted to find out if the decision viewpoints presented in Chapters 6 and 7 can pro-

vide such a support. The case study was conducted with four teams of software engineering

students working in industrial software projects. Two of the four teams were instructed to

document their decisions using decision viewpoints; the other two teams were not instructed

to do so. We observed the students for a period of seven weeks by conducting weekly focus

groups and by analyzing their work artifacts and minutes. Our findings suggest that junior

designers who use decision viewpoints are more systematic in exploring and evaluating solu-

tion options. However, the decision viewpoints did not help them in managing requirements

and complexity.

8.1 Motivation and background

Software architecture design is a demanding task which requires designers to find op-

timal solutions within a specified timeframe for often vaguely defined requirements,

while managing risks, regarding constraints, and taking business drivers into account.

There is a steep learning curve to becoming a good architect: junior software designers

usually have to endure extensive periods of learning, going through numerous painful

trial and error attempts when making architecture decisions.

Before becoming software architects, junior software designers need to develop a) a

certain body of knowledge, and b) the cognitive skills for systematically reasoning about

architecture decisions. These two factors are important for making rational decisions.

A rational decision is a decision based on the application of reason. A rational decision

deliberates the benefits and drawbacks of the available design options, while taking

requirements and other project constraints into account.

Junior software designers need guidance to handle the inherent complexity of ratio-

nal decision making, especially with software architecture issues. Explicitly modeling

architecture decisions during the design process may provide such a guidance. Al-

though being widely overlooked in software engineering education, the treatment of ar-

chitecture decisions as first class entities has gained increasing attention in the software

150 8. How decision documentation affects the reasoning process

architecture research field and also in industrial practice. In recent years, many authors

have stressed the importance of thoroughly documenting architecture decisions in soft-

ware projects (e.g. (Tyree and Akerman 2005, Kruchten 2004a, Tang, Avgeriou, Jansen,

Capilla and Ali Babar 2010, Jansen and Bosch 2005)).

Initially, the main perceived benefit of documenting architecture decisions was to

share a common understanding of the developed architecture between stakeholders like

architects, developers, and customers (Tyree and Akerman 2005, van der Ven, Jansen,

Nijhuis and Bosch 2006), primarily to ease change, maintenance, and evolution of the

architectural design. Kruchten later stressed that the modeling of (potential) decisions,

particularly their dependencies and interrelations, can also support the architect when

reasoning about the decisions (Kruchten 2004a). In Chapters 6 and 7, we introduced a

documentation framework for architecture decisions that addresses many stakeholder

concerns in architecture decisions. Using the conventions of the international architec-

ture description standard ISO/IEC/IEEE 42010 (ISO/IEC/IEEE 2011), the framework

provides five viewpoints for architecture decisions, each of which being designed to

address different decision-related concerns:

Decision Forces Viewpoint: It makes explicit the relationships between architecture

decisions and the forces that influenced the architect when making the decisions

out of multiple alternatives. In this context, a force is “any aspect of an architectural

problem arising in the system or its environment (operational, development, busi-

ness, organizational, political, economic, legal, regulatory, ecological, social, etc.),

to be considered when choosing among the available decision alternatives.” (see

Chapter 7).

Decision Relationship Viewpoint: It makes explicit the relationships between archi-

tecture decisions (e.g. depends on, caused by, or is alternative to).

Decision Chronology Viewpoint: It shows the evolution of architecture decisions over

time.

Decision Stakeholder Involvement Viewpoint: It describes the roles of specific stake-

holders in the decision-making process, capturing which stakeholders proposed,

confirmed, or validated specific decisions.

Decision Detail Viewpoint: It gives detailed information about single architecture de-

cisions, including a comprehensive description of the chosen architectural solution

and the rationale for choosing this solution.

Building up on the idea that modeling decisions supports the design process of the

architecture, we conjecture that, besides being a useful tool for professional architects,

decision viewpoints can guide junior software designers, helping them to make rational

decisions. The question is in which areas of software architecting can decision view-

points help to guide designers.

8.2. Study design 151

In this chapter, we report on a comparative multiple-case study conducted with four

groups of senior software engineering students (near graduation), to find out if model-

ing design decisions supports them in following a rational design process. We selected

three decision viewpoints from our framework that particularly frame concerns related

to decision making support: the decision detail viewpoint, the decision relationship viewpoint

(both from (van Heesch, Avgeriou and Hilliard 2012a)), and the decision forces viewpoint

(defined in Chapter 7). The results show that particularly the decision forces viewpoint

and the decision relationship viewpoint supported the students to systematically iden-

tify and evaluate multiple decision alternatives for the design problems.

The rest of this chapter is organized as follows. Section 2 presents the design of

the study including the study goal, research conjecture and response variables. Section

3 reports on the data analysis and interpretation. In Section 4, we discuss potential

threats to the validity of our findings. We discuss related work in Section 5 and present

our conclusions in Section 6.

8.2 Study design

The goal of the study is to explore if designers, who document decision views according

to the decision viewpoint framework presented in (van Heesch, Avgeriou and Hilliard

2012a), use more of a rational design approach than designers with an ad-hoc approach.

The study is comparative in nature. We try to evaluate the influence of decision view

creation on the use of a rational design process.

In cases, where the cause-effect relationship between a specific treatment (in this

case the decision view creation) and an outcome (a rational design process) is to be ob-

served, formal experiments can be taken into consideration as empirical method. How-

ever, experiments require careful control of the so-called independent variables, which

represent potential factors that influence the outcome of the study, to ensure that out-

comes are results of the applied treatments. To achieve this control, experiments are

usually conducted in a laboratory environment (Wohlin et al. 2012), in which confound-

ing factors can be eliminated, and independent variables can be carefully controlled at

pre-determined levels.

Studying the impact of decision view creation (the treatment) on the design process

(the outcome) does not allow for this level of control. Apart from the fact that the design

process takes multiple weeks, the impact could be wide-ranging, covering multiple as-

pects of the students’ behavior and the project itself. Reducing the measurement to a set

of predefined variables would be inappropriate in this case. Additionally, providing a

fictional case with artificial requirements and virtual customers would have introduced

a threat to validity, as the design of the fictional case could influence the outcome of the

study. If conducted as an experiment, the study and its results could be considered as

unrealistic and not transferable to industrial practice.

Case studies, on the other hand, are well suited for studying objects of study that

are hard to study in isolation (Runeson and Höst 2009). They provide a deeper under-

152 8. How decision documentation affects the reasoning process

standing of the situation under study than experiments do. Case studies are suitable for

understanding real-life events (Yin 2003). Yin points out that case studies are preferable

over experiments in cases, in which control of behavioral events is not possible or not

required (Yin 2003). Yet, single case studies are not suitable for doing comparisons, be-

cause they are lacking a reference that can be used as a basis for the comparison. This

problem has been addressed by Kitchenham et al., who provide guidelines for plan-

ning and conducting case studies for the evaluation of software engineering methods

(Kitchenham et al. 1995). The guidelines combine the advantages of case study research

and formal experiments, and they are well established in the empirical research com-

munity (Sjoberg et al. 2007, Easterbrook et al. 2008, Höst and Runeson 2007). In order

to allow for the comparison of two software engineering methods, three types of case

study arrangements are distinguished:

• Conducting a single case study and comparing the results against a company base-

line, for which empirical data is readily available.

• Conducting a single case study using the method for a subset of components,

while using a different method for the other components.

• Conducting two case studies, in one of which a new method is applied and com-

pared to the results of the other case study (the so called sister project).

The first type of arrangement is not feasible, because there is no company baseline,

against which the students’ design activities could be compared. The second arrange-

ment was ruled out, because it would not make sense to ask the students to use the

decision framework for some decisions, while forbidding its use for other decisions.

In such a scenario, it would have been impossible to avoid maturation effects (Wohlin

et al. 2012), e.g. the students would have become more familiar with the problem space

or already have a more concrete idea of the overall architecture, when using the other

method. Therefore, we decided to apply the third type in our study, thus conducting

multiple case studies, in which half of the project teams apply our decision documenta-

tion approach, while the other half follows an ad-hoc way of designing and document-

ing. Recently, several other comparative studies have successfully used case studies to

evaluate software engineering methods (Nagappan et al. 2008, Jiang et al. 2008, Serral

et al. 2010).

We use general guidelines for conducting and reporting on case studies defined by

Runeson and Höst (Runeson and Höst 2009) and synthesize them with the comparison

method suggested by Kitchenham et al.; this implies the following additions to the case

study method:

• The case study context needs to describe the baseline (gathered from the sister

project), against which the impact of the decision viewpoints is compared.

• An evaluation conjecture needs to be defined. Kitchenham et al. use the term

hypothesis, but we decided to use conjecture instead to clearly differentiate from

formal experiments.

8.2. Study design 153

• Response variables and data collection methods must be defined. The variables

correspond to the criteria used to measure the impact of decision viewpoints on

the design activities.

• Case variables describing the characteristics of the projects and the development

team need to be defined. These variables correspond to independent variables

in experimentation, with the difference that they cannot be controlled, but only

described in case studies.

Additionally, we used guidelines and suggestions for planning and reporting on

case studies (Verner et al. 2009, Brereton et al. 2008).

8.2.1 Context, research goal and conjecture

The study was conducted in the context of the so-called Software Factories (SOFA), a lec-

turing module at the Fontys University of Applied Sciences in Venlo, in the Netherlands.

In this module, groups of students work in software projects for external, industrial cus-

tomers. The students work on their own responsibility; a lecturer, who observes their

process, accompanies each of the project teams. After a project runtime of 20 weeks,

each of the students is individually assessed by two lecturers. They are graded for their

individual performance, the quality of the end product, and the satisfaction of the ex-

ternal customer. None of the researchers was involved in the lecturing module, nor did

they have any influence on the grading of the students. The data collected on behalf

of the study was not provided to the lecturers, and any publication of the study results

takes place after the students received their grades.

The university defines the following project constraints and facilities for the stu-

dents:

• The students are strongly advised to follow the agile software development pro-

cess Scrum (Schwaber and Beedle 2002). One of the students takes the role of the

product owner. Additionally, they have to write minutes for every team meeting.

• Mandatory use of the project management system Trac (Software 2012), which

provides a Wiki, reporting facilities, and a web interface for the version control

system Subversion (Tigris.org 2012). Subversion usage is mandatory to store all

work artifacts created during the project including source code and configuration

files, all project documentation, design artifacts, minutes, and SCRUM specific

artifacts like user stories, for instance.

• The students have to work on site at the university for at least three complete

working days (8h) per week. Therefore, each of the project teams is provided with

its own office, whiteboards, and a beamer.

Using the goal definition technique suggested in the goal, question, metric approach

(Basili et al. 1994), the overall goal of the study is to:

154 8. How decision documentation affects the reasoning process

Analyze the software development processes of senior software engineering

students working in groups of 4-6 people for the purpose of evaluating the

influence of architecture decision view creation with respect to reasoning best

practices identified in our previous studies (see Chapters 3 and 4) from the

point of view of external empirical researchers in the context of the software

factories course at the Fontys University of Applied Sciences in Venlo, the

Netherlands.

Based on our previous experience with students who created decision views in their

software projects, we derive the following research conjecture from the study goal:

RC: We conjecture that student groups (decision view group) who work in a software

project follow a more rational design process if they iteratively create and refine

architecture decision views, compared to student groups (comparison group) who

follow an ad-hoc approach.

8.2.2 Response variables

In this section, we present the response variables used to determine, which reasoning

practices the students follow during the design. We use reasoning best practices, iden-

tified in our previous work with students (see Chapter 3) and professional software

architects from the industry (see Chapter 4). Each variable poses a question that the

study is trying to answer.

Code Resp1

Design activity Identification of architecture significant requirements

(ASRs)

Description How do the students elicit requirements in general and how

do they identify requirements that need to be considered

when making architecture decisions?

Code Resp2

Design activity Requirements negotiation

Description How do the students negotiate requirements with the

project stakeholders? Requirements could be negotiated,

for instance, if they unnecessarily impede the project

progress, if they are unrealistically challenging, or if they

are not state-of-the-art.

Code Resp3

Design activity Prioritization of requirements

Description How do the students prioritize requirements when identi-

fying architectural approaches? Attention is drawn in par-

ticular to the order and effort put in finding candidate solu-

tions to address specific requirements.

8.2. Study design 155

Code Resp4

Design activity Documentation of requirements

Description How do the students document requirements? Partic-

ular attention is payed to the S.M.A.R.T. characteristics

(Mannion and Keepence 1995) specific, measurable, attainable,

realizable, and traceable

Code Resp5

Design activity Discovery of design options

Description How do the students identify design options to address ar-

chitectural problems?

Code Resp6

Design activity Balancing advantages and disadvantages of design options

Description How do the students consider the advantages and the dis-

advantages when selecting a solution out of multiple de-

sign options during architectural evaluation (with archi-

tectural evaluation, we refer to the process of choosing

out of multiple design options, as defined in (Hofmeister

et al. 2007))?

Code Resp7

Design activity Discussion of multiple design options in combination

Description Do the students discuss multiple architectural approaches

in combination?

Code Resp8

Design activity Avoidance of unnecessary complexity

Description Do the students proactively take measures to avoid unnec-

essary complexity in the architectural design?

Code Resp9

Design activity Validation of design options against the ASRs

Description How do the students validate design options against the

architecture significant requirements during architectural

evaluation? This variable includes the making of compro-

mises in cases where a design option has conflicting influ-

ences on multiple ASRs.

Code Resp10

Design activity Prototyping of design options

Description Do the students build prototypes, and if so, what are they

used for?

156 8. How decision documentation affects the reasoning process

Code Resp11

Design activity Evaluation of the architecture as a whole

Description How do the students evaluate their designed architectures?

8.2.3 Case variables

In the following, we define case variables concerning the software projects and the par-

ticipants of the study:

Code CaseVar1

Name Study group

Description This variable describes, if the students in a project doc-

ument decision views during the design (decision view

group), or not (comparison group).

Scale Type Nominal

Unit n.a.

Range ’decision view group’,’comparison group’

Code CaseVar2

Name Programming experience

Description The programming experience is one of the measures used

to describe the software engineering experience of the sub-

jects. The effect of this variable on the outcome of the study

is reduced by the fact that the students in the two study

groups are balanced regarding their programming experi-

ence. We take both, industrial programming experience

and academic experience into account.

Scale Type Ordinal

Unit Years

Range 4 classes: 0 years, 1-3 years, 3-7 years, >8 years

Code CaseVar3

Name Design experience

Description Similarly to the programming experience, the design expe-

rience of the students could have an effect on the outcome

of the study. The effect of this variable on the outcome of

the study is reduced by the fact that the students in the two

study groups are balanced regarding their design experi-

ence.

Scale Type Ordinal

Unit Years

Range 4 classes: 0 years, 1-3 years, 3-7 years, >8 years

8.2. Study design 157

Code CaseVar4

Name Industrial experience

Description The industrial experience is expressed as the number of

years, the students have worked as a software engineer in

the industry (i.e. not in an academic context); for instance in

a side job, or prior to the study. The effect of this variable on

the outcome of the study is reduced by the fact that the stu-

dents in the two study groups are balanced regarding their

industrial experience.

Scale Type Ordinal

Unit Years

Range 4 classes: 0 years, 1-3 years, 3-7 years, >8 years

Code CaseVar5

Name Project domain

Description The domain of the projects could have an influence on the

design activities, as some domains like healthcare or em-

bedded systems require designers to think more carefully

about safety critical decisions.

Scale Type Nominal

Unit n.a.

Range Possible values: Avionics, Command and Control, Em-

bedded Systems, E-Commerce, Enterprise Computing,

Finance, Healthcare, Realtime, Manufacturing, Software

Engineering, Scientific, Simulation, Telecommunication,

Transportation, Utilities, Marketing, Logistics, Web Appli-

cations, Others

158 8. How decision documentation affects the reasoning process

Code CaseVar6

Name Difficulty of the project

Description The difficulty of the SOFA projects could theoretically in-

fluence the design activities followed by the students. Diffi-

culty, in this context, refers to the difficulty of the problem.

Judging the difficulty of a project based on objective metrics

is challenging and vulnerable. Therefore, we decided to es-

timate the difficulty of the projects by asking the four lectur-

ers, who supervise and grade the SOFA projects, to rate the

difficulty of each SOFA project. The lecturers were asked to

take into consideration the project goals, technologies that

would have to be used, as well as the students’ previous

knowledge in the project domains. Each of the lecturers

was knowledgable about two projects, because they acted

as a supervisor for one project, and as assessor for another

project. In addition, the researchers judged the difficulty of

the projects, using the same criteria as the lecturers. The dif-

ficulty of the projects was then calculated by taking the me-

dian value of the three given ratings (supervising lecturer,

assessing lecturer, and researchers)

Scale Type Ordinal

Unit n.a.

Range 5-point Likert scale: 1 for very simple to 5 for very difficult

Code CaseVar7

Name Experience in the project domain

Description This variable refers to the experience of the students in the

domain of the respective SOFA project (variable CaseVar5).

The domain experience could for instance have an influence

on the effort in or intensity of exploring the problem and

solution spaces.

Scale Type Ordinal

Unit Years

Range 4 classes: 0 years, 1-3 years, 3-7 years, >8 years

8.2.4 Cases, objects and subjects description

In this section, we explain the four cases. Additionally, important characteristics of the

subjects, the sampling procedure, and the object under study will be further elaborated.

Cases and objects

In total, we observed four different software projects run as part of the Software Factory

module. In the following, each project will be briefly described. The customer of one of

8.2. Study design 159

the projects asked for anonymity. As a consequence, we decided to use pseudonyms for

all projects.

Project alpha: This project is a brown-field, dealing with a legacy text system, which

is used to dynamically generate multiple types of documents based on templates

and information stored in a database. Using the templates, data can be composed

in multiple ways before being assembled into document formats like PDF, for in-

stance. The Bavarian Department of Justice is one of the prominent users of the

system. The primary task of this project team is an architectural re-design to a

service oriented architecture (SOA). The customer of the project, a medium-sized

german software company, wants to migrate all business-critical services to SOA

in the long term.

Project beta: The customer of this project is a dutch personnel service for chefs

(cooks)1, specialized on temporary arrangements like catering, cook workshops,

or interim executive chefs. The primary task of the SOFA project team is the de-

velopment of a software platform for online personnel services in the gastron-

omy business, where freelancing cooks can register and apply for jobs, which are

posted to the site by restaurant owners, for instance. The project is a green-field; all

technology choices must be made by the SOFA participants. The customer himself

does not have a software engineering background.

Project gamma: In project gamma, the students were given the task to extend an exist-

ing standalone client application for geo-marketing in the areas of sales, market-

ing and controlling. The extension must be capable of displaying different location

based information in a geographical map. Data must be retrieved from a central

XML repository, which can be queried using a proprietary object-oriented query

language. The customer of the project is a geo-marketing consultancy in Germany,

which, among others, maintains its own geo-marketing software tools.

Project delta: Project delta is a green-field project. The customer is a traditional family-

operated rose-growing company in the Netherlands, who operates mainly on the

international container market. The goal of the SOFA project team is the develop-

ment of an addition to the customer’s enterprise resource planning (ERP) system,

which is capable of processing information gathered from RFID tags, which will

be attached to the different types of rose transportation devices, repositories and

gates. Apart from scanning RFID tags, data needs to be gathered using a web

application and synchronized with an existing data repository.

Note that two of the projects require software systems to be developed from scratch

(projects beta and delta), while the remaining two projects are evolutionary in nature.

These characteristics were considered when assigning the projects to either the decision

view group, or the comparison group, i.e. each of the study groups has one green-field

1A company that acts as a broker between restaurant owners and the searched cooking personal.

160 8. How decision documentation affects the reasoning process

and one brown-field project. Please refer to Section 8.2.4 for the details of the study

group assignment.

Subjects and sampling

Using students in empirical studies is a sensitive issue that obliges researchers to take

a number of ethical and epistemological factors into account. On the one hand, studies

with students are often criticized for not being generalizable (Svahnberg et al. 2008); on

the other hand, researchers should make sure that the study has as much pedagogical

value for the participating students as possible. To make sure that these factors were

sufficiently taken into account, Carver et al.’s checklist for conducting empirical studies

with students (Carver et al. 2010) was used as a guideline for the design of this study.

In the following, we list all items of this checklist together with a brief explanation on

how the checklist item was considered:

1. Ensure adequate integration of the study into the course topics – The research

goal was to study the effect of decision documentation on the design process of

junior software designers. The educational goal of the study was two-fold: The

students should become aware of problems in their decision making processes,

and be provided with concrete ways to tackle these problems. The main educa-

tional goal of the SOFA project is to familiarize students with realistic software

projects, in which they have to make all design decisions themselves (i.e. without

assistance by lecturers), communicate with the customer, and take over responsi-

bility for their end-products. Therefore, by conducting the study in a course, in

which the students have to work in project teams to solve a real-world case, the

study was properly integrated into the course topic.

2. Integrate the study timeline with the course schedule – The timeline for the study

was explicitly planned according to the start of the SOFA project. The first seven

weeks of the project were observed, because naturally, the most design decisions

had to be made in the first half of the SOFA semester, while the second part would

be primarily spent on programming and report writing.

3. Reuse artifacts and tools where appropriate – The tools and artifacts gathered

in the study were all part of the SOFA course. Apart from decision views, the

students did not have to use additional tools or create additional artifacts for the

purpose of the study.

4. Write up a protocol and have it reviewed – A study protocol was written before

the study and reviewed among the authors in multiple iterations. In addition, the

study was discussed with the five lecturers of the course to make sure that it aligns

with the course and makes no unrealistic assumptions.

5. Obtain subjects’ permission for their participation in the study – At the begin-

ning of the SOFA course, the students were informed about the plan to conduct

8.2. Study design 161

an empirical study in the context of the module. In particular we explained which

data we would collect and assured them that no information would be shared

with their course lecturers. The students were not informed about the concrete

goal of the study, because this could have biased the results. They were given the

opportunity to withdraw from the study without giving further reasons, e.g. by

sending an e-mail to one of the researchers.

6. Set subject expectations – Prior to the study, the students were informed about

the purpose of the study, the time they would need to invest and the benefits they

can expect from the study, i.e. information about and suggestions for improving

their design processes.

7. Document information about the experimental context in detail – This research

report contains detailed information about the experience of the subjects, the na-

ture of the SOFA course, and the concrete projects run as part of the SOFA.

8. Implement policies for controlling/monitoring the experimental variables – The

study variables, as well as the data collection methods and data sources used to

monitor the variables are described in detail in this study report.

9. Plan follow-up activities – At the end of the semester, one of the researchers pre-

sented the preliminary results of the study to the students. On this occasion, the

students were informed about the concrete goals of the study and the research con-

jectures, namely that the project teams who documented decision views would be

expected to follow a more rational decision making process. The study design was

also discussed with the students as well as potential threats to validity. That way,

the students also learned something about conducting case studies, which was es-

pecially interesting, because the students had been following a course on applied

research methods as part of their curriculum.

10. Build or update a lab package The collected data was assembled in a study

database (as proposed in (Yin 2003)), which was used as a basis for the analysis

and prepared for reuse in future studies.

The participants of the study were selected using convenience sampling (Given

2008); all students who took the SOFA course in the winter semester 2011/2012 were

invited to participate. None of them refused. In total, 21 students took part in the study.

The researchers were not given the opportunity to intervene in the assignment of stu-

dents to one of the four SOFA projects introduced before. Each student chose a project

based on personal interests.

Assignment of projects to study groups

As mentioned before, we were not given the opportunity to assign students to the four

available projects, hence we could only assign the four project teams to the study groups

162 8. How decision documentation affects the reasoning process

Table 8.1: Descriptive statistics used for assigning projects to study groups

789: ;<9= <=97 =:

>:9: ;?9>> 7> ≅7

≅ :;96= >69=> 689:=

Α/−)Β++.∃1&#∃∋(∀ Α/−)Β++.∃1&#∃∋(∀ Χ&,∆/#∃(5

6>97 >69: 6>9>> >:9;

> 7 > >

ΕΦ ΓΦ ΕΦ ΓΦ

Η/1∃∀∃∋()Ι∃/ϑ)Γ,∋2+ Κ∋%+&,∃∀∋()Γ,∋2+

4,∋Λ/1#)Β.+Μ& 4,∋Λ/1#)Ε/#& 4,∋Λ/1#)Γ&%%& 4,∋Λ/1#)Η/.#&

ΒΝ5Ο)4,∋5,&%%∃(5)/Π+/,∃/(1/)Θ%∋(#Μ∀Ρ

ΒΝ5Ο)Η/∀∃5()/Π+)Θ%∋(#Μ∀Ρ

ΒΝ5Ο)Σ(02∀#,∃&.)/Π+Ο)Θ%∋(#Μ∀Ρ

4,∃%&,3)0∋%&∃(Θ∀Ρ Α/−)
Β++.∃1&#∃∋(∀9)
Τ∋5∃∀#∃1∀

ΒΝ5Ο)/Π+Ο)+,∃%&,3)0∋%&∃(Θ∀Ρ)Θ%∋(#Μ∀Ρ

Χ/0∃&()0∃∗∗∃12.#3)∋∗)+,∋Λ/1#

Γ,//(∗∃/.0)ΘΓΦΡ)∋,)−,∋ϑ(∗∃/.0)ΘΕΦΡ

(i.e. decision view group or comparison group) in a way that both study groups were

balanced with respect to the relevant case variables, as far as possible. The following

case variables were taken into consideration. First of all, the two study groups should be

balanced with respect to green-field and brown-field projects (see Section 8.2.4). Second,

the difficulty of the project tasks should be comparable in both study groups (CaseVar6,

Section 8.2.3). Finally, the students’ industrial experience, as well as previous experience

regarding programming, architecture, and the domain of the project should be balanced

in both study groups as far as possible (CaseVar2,3,4, and 7, Section 8.2.3).

Table 8.1 shows descriptive statistics for the variables used as a basis for the assign-

ment of SOFA project teams to study groups2. The data was gathered using a web

questionnaire. For the estimation of the difficulty of the four projects, we used the pro-

cedure described for CaseVar6 in Section 8.2.3. See Table D.1 for the detailed ratings

given by the four lecturers and the researchers. Table 8.1 shows only domains that were

selected by the majority of students in each project (referred to as primary domain). In

the case of project delta, two domains were equally often selected. The average domain

experience refers only to the primary domain; in case of project delta, the average was

calculated from both primary domains.

The most important project characteristic for the study group division was the cur-

rent state of the software project; i.e. a new project starting from scratch (green-field

project), or an existing project that is further developed (brown-field project). Thus, we

had to assign one brown-field project to each of the study groups. Both brown-field

projects were similar with respect to domain experience and difficulty, but the mem-

bers of project gamma were more experienced regarding programming, design, and

industrial experience; therefore, we decided to assign project gamma to the compari-

son group. This was mainly to exclude the previous experience as a confounding factor

with respect to the rationality of the decision making processes; if we had assigned the

more experienced project to the decision view group, the more rational decision making

process could have resulted from the previous experience, rather than from the docu-

mentation of decision views.

Between the two green-field projects, we decided to assign project beta to the deci-

2More detailed statistics about the variables can be found in Appendix D.2

8.2. Study design 163

sion view group and project delta to the comparison group. In this case, the advance

of programming and design experience on the side of project delta compensates the

difference of approximately six months with respect to industrial experience.

The response variables were measured mainly in the first seven working weeks. A

final round of focus groups with all four project teams was conducted at the end of the

SOFA semester in January 2012. Please refer to Section 8.2.5 for the details of the data

collection.

The decision view group received a two-hour training on creating the decision views

additionally to written guidelines and examples. They were also provided with an MS

Word template for the detail view, an MS Excel template for the decision forces view,

and a Visual Paradigm template containing an example of a relationship view. All mem-

bers of the decision view project teams were obliged not to talk to the members of the

other two project teams about decision views. The comparison group was not informed

about decision views at all.

8.2.5 Instrumentation and data collection procedures

In this section, we describe the data collection methods used, the data sources, and

their mapping to the study variables. In qualitative research, it is important to develop

ideas not only based on one data source using one specific data collection method. Tri-

angulation of data sources and data collection methods has been a good practice for

qualitative researchers to make sure that there are multiple forms of evidence to back

up a conclusion rather than single data points or very few incidents (Creswell and

Miller 2000, Lethbridge et al. 2005, Yin 2003). Patton differentiates four types of tri-

angulations (Patton 2002): a) data source triangulation, b) investigator triangulation, c)

theory triangulation, and d) methodological triangulation. In this study, we apply data

source triangulation (collecting data from more than one source) and methodological

triangulation (collecting data using different methods). Our motivation is to have at

least two data sources, and their corresponding data collection methods, for all conclu-

sions drawn from the collected evidence.

We use the data collection classification scheme from (Lethbridge et al. 2005) to de-

scribe the methods used in this case study:

• Questionnaire: At the beginning of the study, the students filled in a question-

naire to gather information about the nature of the SOFA project they chose, their

previous experience in software engineering activities, and their experience in the

domain of the chosen SOFA project.

• Work diaries: As part of the SOFA course, the students had to create daily work

diaries, in which they document their process, the decisions they made, and the

tasks they identified. These diaries (also referred to as team minutes in the remain-

der of this chapter) were made available to the researchers.

• Documentation analysis (study of work artifacts): The Subversion and Trac

servers, which all project teams had to use, were accessible for the researchers.

164 8. How decision documentation affects the reasoning process

Table 8.2: Mapping of variables to data collection methods

4 4 4

4 4 4

4 4

4 4

4 4 4

4 4

4 4 4

4 4 4

4 4 4

4 4 4

4 4 4

4

4 4

4 4

4

5−6/37&8∃−0∀∗9∗:(∀∗;0&;9&<!56

5−6/=7&5−>#∗)−.−0∀6&0−1;∀∗(∀∗;0

5−6/?7&2)∗;)∗∀∗≅(∀∗;0&;9&)−>#∗)−.−0∀6

5−6/Α7&Β;:#.−0∀(∀∗;0&;9&)−>#∗)−.−0∀6

5−6/Χ7&Β∗6:;∋−)%&;9&∃−6∗10&;/∀∗;06

5−6/∆7&Ε(,(0:∗01&(∃∋(0∀Φ&(0∃&∃∗6(∃∋(0∀Φ

5−6/Γ7&Β∗6:#66&.#,∀Φ&;/∀∗;06&∗0&:;.+Φ

5−6/Η7&<∋;∗∃&:;./,−Ι∗∀%

5−6/ϑ7&Κ(,∗∃(∀−&;/∀∗;06&(1(∗06∀&<!56

5−6/3Λ7&2);∀;∀%/∗01&;/∀∗;06

5−6/337&Μ∋(,#(∀∗;0&;9&():ΝΦ&(6&(&ΟΝ;,−

Π(6−Κ()6=ΘΑ7&2)−∋∗;#6&−Ι/−)∗−0:−

Π(6−Κ()&Χ7&2);Ρ−:∀&∃;.(∗06

Π(6−Κ()∆7&Β∗99∗:#,∀%&;9&∀Ν−&/);Ρ−:∀

Π(6−Κ()Γ7&ΜΙ/−)∗−0:−&∗0&∃;.(∗0

Σ
#−
6∀
∗;
00
(∗
)−

Τ
;)
Υ&
∃∗
()
∗−
6

Β
;:
#.
−0
∀(
∀∗;
0&
(0
(,
%6
∗6

ς;
:#
6&
Ω
);
#/
6

All working artifacts that were checked in by the different project teams (e.g. re-

quirements and design documents, minutes, source code, and the decision views)

were collected and analyzed. In addition, one person of every project team was re-

sponsible for taking pictures of all whiteboard sketches the project teams created.

• Focus Groups: Weekly focus groups (30-60 mins) with each of the project teams

about the design process and the decisions made (audio recorded and tran-

scribed). In the focus groups, the participants were encouraged to talk freely about

their design, the progress they made, and the process they have been following.

Additionally, in the decision view project teams, the documented decision views

were also reviewed. In the comparison group projects, the participants were in-

terviewed without explicitly mentioning the notion of architecture decisions. In

addition to the weekly focus groups, a final round of focus groups was conducted

with each of the project teams at the end of the SOFA semester. Furthermore,

the focus group moderator took field notes, in which he noted down impressions

gained during the focus groups. Field notes are important to complement the au-

dio recordings, as some important information is non-auditory, e.g. supporting

a teammate’s comment by nodding, or strong opposition expressed only in body

language. Field notes can also be used to write down initial ideas about the project

process that can serve as focus points during the data analysis, e.g. “It seems that

that project alpha did not align the user stories with the functional requirements

gathered before”.

The field notes and all collected data were stored in a digital study database.

Table 8.2 shows a mapping of study variables to data collection methods. Note that

8.2. Study design 165

there are at least two data sources for each response variable. The data for the case

variables was mainly collected using the questionnaire at the beginning of the study.

8.2.6 Analysis procedure

The gathered data was analyzed qualitatively using grounded theory (Glaser and

Strauss 1967). In grounded theory, theories are developed by systematically analyzing

the collected data, and constantly comparing findings to the previous conjectures. It is

thus a very labor-intensive, iterative process, in which theories evolve slowly and are al-

ways grounded in the collected data. In recent years, the use of grounded theory in soft-

ware engineering has become acceptable (Urquhart et al. 2010, Adolph et al. 2011); con-

ceivably, because contemporary research in the field seeks to involve more exploratory

research, rather than relying on purely confirmatory studies.

One might suggest that grounded theory is not appropriate in cases where re-

searchers seek to verify a research hypothesis (Urquhart et al. 2010), i.e. the research

is confirmative rather than exploratory. In this particular case, however, despite of the

formulated research conjecture, the research is fundamentally exploratory: we attempt

to gain a broad understanding of how the students design software and how the doc-

umentation of different decision views during the design process influences the design

activities. This explorative part of the study is a prerequisite for the comparison of the

two study groups.

Qualitative analysis approach used

Figure 8.1: Conceptual model of grounded theory entities

In the following, we describe the qualitative analysis procedure as applied in this

study. The detailed description allows other researchers to assess the quality of the

analysis process or to adopt it in own studies. Figure 8.1 shows a UML class diagram

summarizing the conceptual entities of the qualitative analysis and their relationships

respectively; they will be discussed in the following steps.

166 8. How decision documentation affects the reasoning process

Step1 - Filter study documents: In the first step, we browsed all documents that had

been collected in the study database during the course of the study. Besides tran-

scripts, field notes, and minutes, this process included all documents that were

created by the SOFA project teams and uploaded to their respective subversion

repository or Trac wiki.

If the content did not have any relation to the decision-making process, the doc-

ument was excluded; all other documents were taken to the next steps, described

below. In total, 401 documents were browsed in step one, 254 of which were found

to be relevant. The excluded documents contained documentation of used third

party software, or bash scripts and latex templates, for instance.

Step 2 - Normalization: In the next step, the chosen documents from step one were

normalized: each file was converted to PDF, and renamed to express the name of

the SOFA project, the type of file, the original file extension, and the date at which

it was downloaded. The result of this step was a number of PDFs assigned clearly

to one of the four SOFA projects.

Step3 - Coding: In step three, the documents from each SOFA project were coded. Dur-

ing this procedure, the documents were carefully studied and each phrase, sen-

tence, or paragraph that indicated a certain behavior (called indicator in grounded

theory literature (Strauss 1987)) was labelled with a code. This approach to coding

is originally referred to as open coding (Corbin and Strauss 2008), used to generate

the concepts that become the basis for further analysis (see step 4).

As opposed to other researchers, who suggest to assign one-word codes to ex-

press indicators (e.g. (Adolph et al. 2011)), we chose to use brief statements as

codes. We made this decision, because we experienced that finding single words

to clearly express an indicator is extremely challenging and forces the analyst to

read large passages over and over again, when comparing codes to previously as-

signed codes. Brief statements allow to be much more expressive. We used PDF

annotations to assign the codes. That way the codes are shown next to the text

without disturbing the flow of reading. PDF annotations have the additional ad-

vantage that codes can easily be revised and different analysts can assign different

codes.

To collect the codes from the documents and to support the constant compari-

son process, we developed a software that registers documents, collects all codes

and stores them in a study database using the model shown in Figure 8.1 as do-

main model. The constant comparative method in grounded theory obliges the

researcher to frequently step back to analyze all collected codes and to compare

new codes to existing ones to develop a theory. The tool we developed supports

this process, as previously assigned codes from other documents are permanently

shown to the analyst while coding additional documents. This enables the analyst

to identify commonalities in codes, which is useful for discovering concepts.

8.3. Analysis and interpretation 167

Step4 - Identify concepts: Steps three and four were repeated in multiple iterations

when analyzing the documents of one SOFA project. In step four, the previously

gathered codes were compared to identify common concepts. Here, a concept is

a representation of a pattern of behavior, suggested by a set of indicators, which

on their part are captured using codes (Adolph et al. 2011). The concepts were

assigned using the previously mentioned software, we developed. During the

analysis procedure, the concepts slowly evolved; they had to be revised regularly

after additional documents had been analyzed.

Step5 - Assign concepts to variables: After finishing the coding and the declaration of

concepts, each concept was assigned to one or more response variables.

Step6 - Classify concepts into general categories: After finishing steps one to five, we

had defined a set of concepts describing the behavior of each project team with

respect to the response variables. The concepts are specific to projects, i.e. they

summarize multiple codes from the documents of one project team. In order to

compare the results from the different project teams, we analyzed the concepts and

classified them into categories. A category, in our understanding, is a project in-

dependent abstraction of one or more concepts from potentially different projects.

This is in line with Glaser, who describes a category as a concept used on a higher

level of abstraction (Glaser 1998). Figure 8.2 illustrates the relationship between

categories and project-specific concepts. The categories, defined in this study, can

be found in Table 8.3.

Figure 8.2: Comparing projects using categories of concepts

8.3 Analysis and interpretation

In this section, we present the results of the qualitative analysis with respect to com-

monalities and differences between the projects in the two study groups. The section

168 8. How decision documentation affects the reasoning process

is organized according to the response variables. Please refer to Appendix D.3 for a

detailed list of concepts and categories derived from the collected data. The codes and

concepts, which are the result of steps three and four in the analysis, are not listed here

for reasons of space; in total, more than 620 codes were assigned to the various docu-

ments resulting in 165 concepts.

Table 8.3: Categories

Code Category

Cat1 Systematically searched for multiple design options.

Cat2 Conducted research to identify design options.

Cat3 Most design options are technology related.

Cat4 Followed a reuse over reimplementation strategy.

Cat5 Research tasks regarding design options for a decision point were di-

vided among the group.

Cat6 Developed overall vision of the architecture to identify decision points.

Cat7 Always chose first viable solution.

Cat8 Most gathered requirements are functional.

Cat9 Non-functional requirements were not actively elicited.

Cat10 Actively explored the functional problem space.

Cat11 No explicit distinction between architecturally relevant requirements and

other requirements.

Cat12 Actively involved to understand the business domain.

Cat13 The group tried to install and run the existing software as a first step in

the analysis.

Cat14 Multiple types of documentation used for requirements.

Cat15 Systematically clarified vague requirements with customer.

Cat16 Responsibility for describing requirements is silently transferred to the

customer.

Cat17 Requirements slowly emerged during the design phase.

Cat18 No clear separation between requirements and resulting design or imple-

mentation tasks.

Cat19 Quality attribute requirements were not documented.

Cat20 Group does not gain a collective understanding of the requirements.

Cat21 Scrutinized requirements with respect to feasibiliby and usefulness.

Cat22 Requirements were not called into question.

Cat23 Proposed additional requirements.

Cat24 Negotiated blocking requirements.

Cat25 Challenging requirements were prioritized.

Cat26 Requirements are addressed in no recognizable order.

Cat27 Requirements were not described well. Single words or brief statements

used without explanation.

8.3. Analysis and interpretation 169

Table 8.3 – continued from previous page

Code Category

Cat28 Explicitly discussed pros and cons of all major design decisions.

Cat29 Conducted research to find arguments in favor of and against design op-

tions.

Cat30 Group members challenge each others arguments a lot.

Cat31 Decisions are mostly made without explicit reasoning.

Cat32 Most decisions are not discussed in the group.

Cat33 Technological dependencies were systematically explored before making

decisions.

Cat34 Many technological decisions were made in combination.

Cat35 Avoiding complexity was an explicit goal of the group.

Cat36 Validated technology options against ASRS.

Cat37 No indicators for an explicit consideration of ASRs when making deci-

sions.

Cat38 We aware that trade-offs could be necessary.

Cat39 Made trade-offs between multiple requirements (very rarely).

Cat40 Used prototypes to understand technological options.

Cat41 Prototypes mainly used to learn how the technology can be used.

Cat42 Prototypes were used to estimate the influence of a design option on

quality attribute requirements.

Cat43 Permanently maintained an overview over the complete system.

Cat44 Architecture was not evaluated as a whole.

Table 8.4 shows the categories as assigned to the four projects and response variables

respectively. It was taken as a basis for the subsequent analysis. Cases, in which a

category was assigned to each of the four projects, are regarded as a commonality; cases,

in which a category was assigned to the two projects within one study group, but not

in the two projects from the other study group, are regarded as a difference. In the

latter case, we discuss in how far the difference results from the decision view creation.

Cases, in which a category was assigned to a single project only, or cases in which a

category was assigned to one project in the decision view group and one project in the

comparison group are not discussed, because they do not allow drawing conclusions

with respect to the impact of using the decision viewpoints on the design activities.

170 8. How decision documentation affects the reasoning process

Table 8.4: Categories assigned to projects and response

variables

Decision View Grp. Comparison Grp.

Resp. var. Categ. Alpha Beta Gamma Delta

Resp1: Identification of ASRs

Cat8 X X X

Cat9 X X X X

Cat10 X

Cat11 X X X X

Cat12 X X

Cat13 X

Cat15 X

Cat16 X X

Cat17 X X

Cat18 X X

Cat19 X X X

Cat20 X

Resp2: Requirements negotiation

Cat21 X

Cat22 X X

Cat23 X

Cat24 X X

Resp3: Prioritization of require-

ments

Cat25 X X

Cat26 X X

Resp4: Documentation of re-

quirements

Cat14 X X X X

Cat27 X X X X

Resp5: Discovery of design options

Cat1 X X

Cat2 X X

Cat3 X X

Cat4 X

Cat5 X X

Cat6 X

Cat7 X X

Resp6: Balancing pros and cons

of design options

Cat28 X X

Cat29 X X

Cat30 X X

Cat31 X X

Cat32 X X

Resp7: Discussion of multiple

design options in combination

Cat33 X X

Cat34 X X

Resp8: Avoidance of complexity Cat35 X X

Resp9: Validation of design op-

tions against the ASRs

Cat36 X X

Cat37 X X

8.3. Analysis and interpretation 171

Table 8.4 – continued from previous page

Decision View Grp. Comparison Grp.

Resp. var. Categ. Alpha Beta Gamma Delta

Cat38 X X

Cat39 X

Resp10: Prototyping design op-

tions

Cat40 X X X X

Cat41 X X X

Cat42 X

Resp11: Evaluation of architec-

ture as a whole

Cat43 X X

Cat44 X X X X

8.3.1 Resp1 - Identification of ASRs

None of the four project teams actively elicited non-functional requirements (Cat9). In

some cases, the students even ignored hints given by the customer with respect to qual-

ity attribute requirements. All project teams focused on functional requirements, which

were mainly understood as use cases, or user stories.

Generally, the four project teams also did not make an explicit distinction between

requirements in general, and architecturally relevant requirements (Cat11). The only

exception were the forces views, which triggered the two project teams in the decision

view group to select only those requirements that were architecturally relevant. In all

other documents containing requirements, this distinction was not evident.

While the two project teams in the decision view group actively approached the

customer multiple times to elicit and clarify requirements, the two project teams in the

comparison group transferred the responsibility for defining requirements completely

to the customer (Cat16). They took no effort to elicit requirements additionally to an

initial list of requirements they received from the customer. In case of project delta,

the students neglected requirements elicitation, although the customer explicitly told

them in the beginning that he expected them to do a thorough analysis of the project

domain and the resulting requirements. Both project teams in the comparison group

also took no effort to clarify requirements they had not understood well; they rather

speculated about their meaning internally during the project meetings. The difference

regarding the active elicitation of requirements was potentially caused by the decision

forces view, which requires students to actively reflect on requirements and other forces

that influence their design decisions.

8.3.2 Resp2 - Requirements negotiation

There is a notable difference on how the two study groups negotiate requirements. The

two project teams in the comparison group did not question any requirements (Cat22),

the project teams in the decision view group actively went into requirement discussions

172 8. How decision documentation affects the reasoning process

with the customers. Both project teams in the decision view negotiated requirements

they experienced as unnecessarily constraining or even blocking (Cat24). To give an

JDK5

Netbeans

6.9

JBoss 5.1 with

ESB < 4.9

EJB 3.0

JPA 1.0Toplink

JDK6

Netbeans 7
JBoss 6 with

ESB 4.10

EJB 3.1

JPA 2.0 Eclipslink

<<excluded by>>

<<excluded by>>

<<excluded by>>

<<caused by>>

<<depends on>>

<<depends on>>

<<caused by>>

<<depends on>>

<<caused by>>

<<depends on>>

<<caused by>>

<<caused by>>

<<caused by>>

Figure 8.3: Relationship view created by project team alpha to understand the impact of a tech-

nological constraint

example, the customer obliged project team alpha to use JDK 1.5, a rather old Java

Development Kit, because one of the third party libraries used by the customer was

not compatible with newer Java versions. This technological constraint turned out to

have a huge impact on the design options that could be taken into consideration; par-

ticularly on the choice of the enterprise service bus (ESB) technology. Most recent ESB

implementations require a JDK greater than 1.5, which would have forced the students

to rely on older implementations and at the same time older versions of the Java en-

terprise edition (JEE). This, however, would have prevented the usage of frameworks,

which require newer versions of JEE. To understand the true dimensions of the JDK 1.5

constraint, the students created a decision relationship view showing the technological

choices they would have made without the constraint, and the technological choices

they could make regarding the constraint (see Figure 8.3). Using this relationship view,

the customer could be convinced to drop the constraint.

Apart from this example, the decision forces view seemed to create a much more

critical attitude in the decision view group towards the requirements compared to the

comparison group, because it forced the two project teams in the decision view group to

actively reflect on requirements and the design options that can possibly satisfy them.

The two project teams in the comparison group took the requirements for granted (i.e.

they did not question them). To make matters worse, they also did not make sure that

the decisions they made were consistent with the requirements, as we will explain later.

8.3. Analysis and interpretation 173

8.3.3 Resp3 - Prioritization of requirements

Another difference between the decision view group and the comparison group was

observed with respect to the prioritization of requirements. The project teams in the de-

cision view group prioritized requirements (Cat25). Requirements, recognized as being

challenging or very important, were given a higher priority than other requirements. As

an example, project team alpha immediately started searching for technological design

options to realize a service oriented architecture, while other requirements regarding

the realization of a full-text search and a tag cloud were given such a low priority that

they could not be implemented until the end of the project. Project team beta put pri-

ority on finding a web framework that would allow to add and change content easily.

Requirements regarding social media and third party payment provider integration, in

accordance with the customer, were given a lower priority.

As opposed to the decision view group, the project teams in the comparison group

did not address requirements in a recognizable order (Cat26). Although in both projects,

some of the requirements were clearly more challenging than others, these requirements

were not given a higher priority. As an example, in project delta, the students had

to make sure that RFID scanners would work partially in an unfriendly environment

(outside, exposed to dirt, whether, heat, and cold temperatures), using different types

of available networks (e.g. LAN, WIFI, and GPRS) without losing data. Until the end of

the project, the students ignored these requirements. In project gamma, requirements

were chosen based on the personal interests of project members, instead of estimating

their importance systematically.

8.3.4 Resp4 - Documentation of requirements

In all four projects, we observed that different types of documentation were used to

capture requirements (Cat14). In addition, none of the project teams assembled require-

ments in a central place. The project teams alpha and delta captured initial requirement

statements, made by the customer, in a word document; all four teams documented

some functional requirements using use cases stored at different places in the projects’

repositories; project teams beta and gamma additionally documented user stories (a

SCRUM-specific way of documenting customer requirements) in the Trac systems. In

the decision view projects, additional requirements and forces were captured in the

forces views. When comparing the requirement statements made in the different docu-

ments, inconsistencies were found in all four projects. For instance, some use cases doc-

umented by projects beta and gamma were not documented as user stories, whereas

other functional requirements only existed in the form of user stories, but not in the

form of use cases.

Another phenomenon observed in all four projects is the fact that the different types

of requirements documents were not revised or updated any more. This is a strong indi-

cator for the lack of a thorough requirements management process. In the focus groups,

all four project teams acknowledged that requirements kept changing, but they also

174 8. How decision documentation affects the reasoning process

admitted that existing requirements documentation was not systematically adapted to

those changes. Therefore, the existing requirements documentation was quickly out-

dated. As a consequence, the students in all four projects were not able to gain a holistic

understanding of all relevant requirements; nor could they systematically regard all re-

quirements in the design process.

Another major issue commonly identified in all projects was the fact that the doc-

umented requirements did not have the SMART (Mannion and Keepence 1995) char-

acteristics. The students mainly used brief statements, sometimes only single words,

to express requirements (Cat27). An example from project alpha, which was not fur-

ther elaborated, is “Fulltext search should be possible”. An example from project delta

is “assigning products to Ferro / Pallet Tags”, or simply “Store data”. Our initial in-

tention, to analyze the documented requirements with respect to how SMART they are

was dropped, because the quality of the requirements documentation was so low that a

further analysis for the purpose of comparison would not have made sense.

The findings regarding Resp4 suggest that the decision viewpoints did not help the

students to systematically document and manage requirements.

8.3.5 Resp5 - Discovery of design options

As opposed to the comparison group, the decision view project teams systematically

searched for multiple design options (Cat1). To identify design options, the two project

teams conducted research (Cat2) using the Internet. Already at an early stage, the de-

cision view project teams developed a vision of the overall architecture to identify de-

cision points (see Figures D.5 and D.6 for two examples) and then assigned different

team members to conduct research regarding design options for a specific decision point

(Cat5). Both project teams considered at least two design options for each major decision

point. It was evident that most design options were technology-related (Cat3). Only in

rare cases, the project teams considered the use of a design or architectural pattern, for

instance.

In contrast to the decision view group, the two project teams in the comparison

group did not systematically search for design options before making decisions. Even

when being asked directly about considered alternatives, they acknowledged that they

only searched until they found a viable solution (Cat7) and then moved on to another

decision. In case of project delta, the students used mainly trial and error. Only when

a chosen design option turned out to be the wrong choice during the implementation,

they hastily searched for an alternative.

8.3.6 Resp6 - Balancing advantages and disadvantages of design op-

tions

A significant difference between the two study groups is how design options were an-

alyzed and compared. The project teams in the decision view group heavily used the

forces view to explicitly discuss pros and cons of major design decisions (Cat28). The

8.3. Analysis and interpretation 175

project teams created partial forces views to support single decisions, and kept revising

one central forces view with all major design decisions. Figure 8.4 shows a forces view

created by project team beta to support the choices of a programming language and a

database management system.

Figure 8.4: Partial forces view created by project team beta

Apart from requirements statements, the decision view group also explicitly dis-

cussed other decision forces like learnability of technologies or previous experience of

the project members. In all cases, the forces view was used as a means to discuss and

capture design choices and their arguments.

The decision view project teams systematically filled knowledge gaps that became

apparent during the discussions, by conducting research on particular design options

(Cat29). Each team member presented the results of the design options research to the

other members before a decision was made. This often led to intense discussions, in

which the team members heavily challenged each others arguments (Cat30). The stu-

dents appreciated that decision forces helped to spread knowledge about individual

design options better among the different project members and that it provides a frame-

work for discussing options systematically. In the focus groups, both project teams in

the decision view group acknowledged that the decision views had a huge impact on

the discussions of design options. A member of project team alpha said: “If you don’t

have the view, then you might also see alternatives, but if you have experience in a so-

lution then you will choose this one. But with the (forces) view, you are forced to think

about which one is really better.”. In accordance, a member of project team beta stated:

“I think the fact that we had to document decisions and our decision making had an

influence on the seriousness that we handled decisions. So if there wouldn’t have been

these views, then maybe we would have been faster in decision making; just say ok that

176 8. How decision documentation affects the reasoning process

works, so let’s take it”.

As opposed to the decision view project teams, the two comparison project teams

made decisions mostly without explicit reasoning (Cat31). The project teams searched

for viable solutions and applied them without systematically discussing their advan-

tages and disadvantages. When being asked about the rationale behind specific deci-

sions, the students gave the impression that they started thinking about pros and cons

just in the moment when the question was asked. In case of project delta, in many cases,

the members were not able to provide any rational for major design decisions. Finally,

judging from the focus groups and the team minute meetings, the comparison project

teams did not discuss design decisions in the group (Cat32). Instead, decisions were

made by single members and silently accepted by the other team members.

8.3.7 Resp7 - Discussion of multiple design options in combination

Both project teams in the decision view group used the relationship view to system-

atically explore technological dependencies before making decisions (Cat33). As men-

tioned above, the project teams created partial relationship views on the whiteboard to

support design discussions. The relationship view showed the students that some de-

cision have a great impact on other decisions. Both project teams spent a lot of effort on

understanding these impacts. Many technological decisions were made in combination

(Cat34); both project teams not only discussed alternatives for single decisions, but also

compared multiple graphs of decisions (multiple combinations of decisions, which as a

whole, are alternatives to each other).

The project teams in the comparison group did not discuss multiple design options

in combination, but rather made decisions without evaluating impacts on other deci-

sions.

8.3.8 Resp8 - Avoidance of unnecessary complexity.

Only very few indicators were found that any of the student projects explicitly tried to

avoid unnecessary complexity in their design. Both of the project teams in the decision

view group, however, stated that avoiding unnecessary complexity was an explicit goal

within the project (Cat35). When being asked how unnecessary complexity could be

avoided, project team alpha stated that they tried to minimize the usage of third party

libraries, particularly libraries that come with a lot of unneeded functionality. Project

team beta explained that they reduced unnecessary complexity by trying to find a mid-

dleware framework that provides a great part of the needed functionality out of the

box. The statements of both project teams could be verified by analyzing the forces

view and the architectural design; however, no other examples for explicit avoidance of

unnecessary complexity could be found.

The project teams in the comparison group did not explicitly avoid unnecessary

complexity. However, there is not enough evidence to show that the the use of the

decision viewpoints help them to avoid unnecessary complexity.

8.3. Analysis and interpretation 177

8.3.9 Resp9 - Validation of design options against the ASRs

As mentioned for Resp4 already, the documentation of requirements was weak in all

four projects. However, the decision view project teams at least considered architec-

ture significant requirements when making technological choices using the forces view

(Cat36). In the comparison group, no evidence was found that architecture significant

requirements were considered when making decisions (Cat37): design decisions were

made without systematically identifying alternatives, while there were no indicators

that design options were validated against ASRs. The project teams in the decision

view group were aware of the fact that in some cases trade-offs between multiple re-

quirements could be necessary (Cat38). Project team alpha used the decision forces view

to resolve such situations, but they declared that this happened very rarely (Cat39). In-

deed, their forces view showed that the students did not come across many conflicts

that had to be resolved.

8.3.10 Resp10 - Prototyping design options

All four project teams heavily used small prototypes to understand technological op-

tions (Cat40). In particular, they created prototypes to understand how technologies

(e.g. frameworks or libraries) must be used (Cat41). However, only project team beta

systematically created prototypes for the purpose of understanding advantages and dis-

advantages of multiple alternative design options (Cat42). The other projects, in con-

trast, created prototypes only after a decision was made. Thus, there is no observable

influence of the usage of decision views on prototyping.

8.3.11 Resp11 - Evaluation of the architecture as a whole

Apart from the discussion of multiple design options addressing identical problems

(e.g. database management systems to be used as a central datastore), none of the four

project teams explicitly evaluated the architecture as a whole (Cat44). Nevertheless,

when being confronted with this issue, the two project teams in the decision view group

mentioned that the decision views allowed them to permanently maintain an overview

over the current state of the architecture (Cat43). In particular, they mentioned that the

forces view always gave them a good estimate over the coverage of the requirements,

that’s why they (falsely) assumed that a dedicated architecture evaluation session was

not necessary.

8.3.12 Variations of decision view usage

Apart from the findings reported above, we learned that the students in the decision

view projects had divergent preferences regarding specific viewpoints. As described

in Section 8.2.4, project alpha was a brown-field project, whereas project beta was a

green-field. Although the students in project alpha also appreciated the decision forces

viewpoint, they saw the most value in the decision relationship viewpoint, because it

178 8. How decision documentation affects the reasoning process

helped them to analyze and understand technological dependencies. Taking over an

existing software project requires software designers to understand the architecture as-

is, before they can make any significant changes. Apparently, the relationship viewpoint

helped the students in the brown-field project to analyze and document the system as-

is; moreover it helped them to resolve a blocking technical constraint, which had a huge

impact on multiple technological design options.

Project team beta, the green-field project, experienced the forces viewpoint as the

greatest help in the project, although they also made vast usage of the relationship view-

point. In green-field projects, the solution space is widely open in the beginning. The

decisions made in this project stage are highly important and fundamental to the en-

tire system. The decision forces viewpoint turned out to be a useful support for the

students to make decisions based on solid argumentation using an agreed-upon evalu-

ation scheme. It gave them more confidence that the decisions they made were the right

ones.

Even though the relationship and forces viewpoints were very well received by the

students, both project teams expressed their discontent about documenting the decision

detail view. They experienced documenting single decisions using our template as a

tedious job that did not have an immediate benefit for the design process. The same

finding had been made by other researchers in the past (e.g. (Harrison et al. 2007)). Yet,

the students acknowledged that the detail views will have a clear benefit for subsequent

developers taking over their project.

8.3.13 Summary of findings

We have found that the decision views provide strong support in the area of solution

evaluation and selection, partial support for ASR management, and no support for han-

dling complexity or evaluating the viability of a design option. Table 8.5 summarizes

the findings regarding the decision view support (column Dec. view supp.) for partic-

ular design activities, based on the analysis of the response variables. Decision views

provide strong support for design activities related to architectural synthesis and archi-

tectural evaluation3. By far the strongest support was recognized for Resp5, related to

the discovery of design options (architectural synthesis). The decision views triggered

the two project teams in the decision view group to identify multiple options for deci-

sion topics and to thoroughly conduct research to understand these options. The project

teams in the comparison group, in contrast, clearly did not attempt to identify multiple

options before making decisions; they rather chose the first presumably viable solution

they could find.

Concerning architectural evaluation, the impact of decision view was significant for

Resp6 (balancing advantages and disadvantages of design options). The decision view

groups invested much more efforts in researching, understanding, and discussing ad-

3Architectural synthesis refers to activities followed to identify candidate architecture solutions for

a set of architecture significant requirements; architectural evaluation concerns the validation of those

candidate solutions agains all architecture significant requirements (Hofmeister et al. 2007).

8.3. Analysis and interpretation 179

Table 8.5: Summary of findings

.∗/0∗12%

3%(&− !

3%(&4 !

3%(&5 !

3%(&6 ∀

3%(&7 !!

3%(&8 !!

3%(&9 !!

3%(&: ∀

3%(&; !

3%(&−< ∀

3%(&−− !

=>,,,&∗/∋0∗2,(?&&∀/∋

.∗/0∗12%,≅%(∃/0&∋0∀# Α%∃Β,Χ0%∆,(?&&Β

Ε≅%#∋0Φ0∃∗∋0∀#,∀Φ,ΓΗ3(

3%Ι?0/%ϑ%#∋(,#%+∀∋0∗∋0∀#

)/0∀/0∋0Κ∗∋0∀#,∀Φ,/%Ι?0/%ϑ%#∋(

Α∀∃?ϑ%#∋∗∋0∀#,∀Φ,/%Ι?0/%ϑ%#∋(

Α0(∃∀Χ%/Λ,∀Φ,≅%(0+#,∀&∋0∀#(

Μ∗2∗#∃0#+,∗≅Χ∗#∋Β,∗#≅,≅0(∗≅Χ∗#∋Β

Α0(∃?((,ϑ?2∋Β,∀&∋0∀#(,0#,∃∀ϑ1Β

ΓΧ∀0≅,∃∀ϑ&2%Ν0∋Λ

.∗20≅∗∋%,∀&∋0∀#(,∗+∗0#(∋,ΓΗ3(

)/∀∋∀∋Λ&0#+,∀&∋0∀#(

ΟΧ∗2?∗∋0∀#,∀Φ,∗/∃ΠΒ,∗(,∗,∆Π∀2%

==>,(∋/∀#+,(?&&∀/∋

Θ>,,,#∀,(?&&∀/∋

vantages and disadvantages of the (candidate) architectural solutions than the compar-

ison group, who made decisions mainly implicitly, without discussing them. In addi-

tion, the fact that the decision view project teams consciously made multiple decisions

in combination (Resp7, architectural evaluation), shows that the decision views stim-

ulated the students to regard dependencies between decisions and contributed to the

understanding of the architecture as a whole.

As Table 8.5 shows, the use of decision views did not appear to support the students

in (1) requirements documentation, (2) avoidance of unnecessary complexity, and (3)

prototyping design options. Point (1) was first a surprising result. The decision forces

viewpoint and the decision detail viewpoint explicitly require the statement of require-

ments, which should have caused the students to define requirements more carefully.

A discussion of this finding with the students’ lecturers at the university showed that

the students were not educated in distinguishing between architecturally relevant re-

quirements and other requirements. They were also particularly inexperienced in doc-

umenting quality requirements, and business and environmental demands, which have

a higher relevance for architecture decisions. Thus, the fact that none of the project

teams documented requirements thoroughly suggests that software designers need to

be trained in identifying and documenting architecture significant requirements. Ad-

ditionally, presenting a checklist of the typical forces in specific domains can remind

inexperienced designer in carrying out relevant design activities such as documenting

ASRs.

Points (2) and (3) are expected. The viewpoints did not help the decision view group

to avoid unnecessary complexity (point (2)). Avoiding complexity obliges designers to

simplify and optimize a design solution as far as possible. This requires the knowledge

of how a solution can be formulated without compromising the requirements. While the

decision views help junior designers to evaluate and select good solutions, they cannot

create solution options that are beyond the knowledge of the designers. Prototypes

180 8. How decision documentation affects the reasoning process

are a means to evaluate the influence of a design solution on certain qualities of the

target system. The decision forces viewpoint can be used to document the results of

these evaluations (i.e. the impact of a force on a certain design option) to support a

systematic choice out of multiple decision alternatives, but it does not prescribe how

the evaluations must be done.

Other activities belonging to architectural analysis (Hofmeister et al. 2007) (Resp1-

Resp3) were partially supported by the decision views, mainly because the explicit doc-

umentation of decisions and forces on decisions raises a general awareness for aspects

that need to be taken into consideration when making decisions.

8.4 Validity

We use the classification scheme proposed by Yin (Yin 2003) and Wohlin et al. (Wohlin

et al. 2012) to report on potential threats to validity and measures we took against them.

8.4.1 Construct validity

Construct validity is concerned with the measures used to represent the effect of the

method on the study result according to the research conjecture. To ensure validity of

the constructs, we identified response variables prior to the study, explained the ratio-

nale behind those variables, and assigned them to data collection methods we would

use to measure them. Additionally, we used the constant-comparison method to un-

cover concepts in the qualitative data. The concepts were uncovered from scratch ac-

cording to their relevance to the study goal, i.e. we had not thought of concepts in

advance.

8.4.2 Internal validity

Internal validity is mainly concerned with the examination of cause relationships be-

tween the method uses (decision view creation, or ad-hoc) and the response variables.

Researchers have to make sure that there are no hidden variables that silently affect

the investigated objects. The measures we took to mitigate this risk are two-fold. First

we carefully defined case variables that could have an influence on the outcome of the

study. Second we used two pairs of projects: one pair that used decision views, and one

that did not. The latter reduces the risk of hidden variables. In particular, the follow-

ing case variables were identified to uncover and deal with potential hidden causalities

related to the study results:

• Case variables 2, 3, 4 and 7 concern the previous relevant working experience of

the students who took part in the study. To make sure that the experience does not

adulterate our results, we made sure that the average experience of the students

in the decision view group is at most comparable to the average experience of the

8.4. Validity 181

comparison group. In most cases the experience of the students in the decision

view group was less than that of the comparison group.

• Case variables 5 and 6 concern characteristics of the software projects. For the

validity of the results, it is vital that the projects in the decision view groups are

comparable to the projects in the comparison group with respect to the factors

under study (i.e. the design process). None of the projects is in a domain that

would require an adaptation of the design process (e.g. because of special security

or safety needs). Instead, all four projects belong to the software engineering and

enterprise computing domains. Project delta was additionally assigned to logistics

and web application; project gamma to marketing; projects alpha and beta were

both additionally assigned to web application. The difficulty of the projects was

balanced among the two groups, as described in Section 8.2.4.

For the evaluation of some response variables (Resp5, Resp6, Resp8-10), we analyzed

the decision views created by the decision view groups. This bares a potential risk, as

sometimes evidence might only be present in decision views, without being visible in

other data collected. In these cases, the cause construct could be under-represented in

the comparison group, leading the researchers to wrong conclusions. We mitigated this

risk by consulting the decision views only in cases, in which the subjects explicitly men-

tion them in other data collected (e.g. minutes or focus group transcripts). This ensures

that no conclusions are drawn based on evidence solely visible in decision views.

8.4.3 External validity

External validity concerns the extent, to which the findings of the study are of relevance

for other cases. In this particular case, the study was conducted with students, which is

always a threat to external validity, because students are lacking professional experience

and real life project constrains like short time-to-market and limited budgets. We par-

tially mitigated the latter issue by using external customers and real software projects.

The customers of the projects were independent, i.e. they have no relationship to the

school or the researchers. Furthermore, the students were in the last year of a four-year

Bachelor of Software Engineering degree, i.e. very close to their professional careers,

which is why we assume that the results are at least generalizable to the population of

inexperienced software designers with a few years of industrial experience.

Another potential threat to the validity of the results derives from the fact that the

students in all projects came from the same university of applied sciences. Theoret-

ically, students from other universities, with a different background, could have per-

formed differently. An identical educational background of the subjects in the two

study groups, however, is a prerequisite for the comparison of their design activities.

Thus, to completely rule out this potential threat to external validity, the study has to be

replicated at other universities. We consider this as future work.

182 8. How decision documentation affects the reasoning process

8.4.4 Reliability

Reliability is primarily concerned with the question to what extent the study results

are dependent on the specific researchers. We addressed the following issues related to

reliability in our study design.

By asking specific questions, the moderator of the focus groups could influence the

students towards giving the desired answers (researchers’ bias). To mitigate this threat,

the moderator asked open questions like “What did you do since our last meeting?”

during the focus groups. This starts a discussion between the project members without

influencing them. Then the moderator asked the participants to go more into detail or to

move on to a different topic. A question guide (Mack et al. 2005) had been prepared in

advance to make sure that the students gave enough information to answer the research

questions. Question guides help the focus group moderator to focus the discussion on

relevant topics. If the discussion deviates from the subjects of interest, he can mildly

intervene to put it back on track. The question guide used during the focus groups can

be found in D.1.

An additional potential threat to the reliability of the study results could be that stu-

dents make imprecise, incomplete, or even non-veridical comments during the focus

groups. The following measures were taken to mitigate this risk. First, the focus groups

were conducted on a weekly basis to make sure that the students’ memories were still

present. Second, to verify that the students comments correspond to reality, we used

methodological and data-source triangulation (Lethbridge et al. 2005). Apart from es-

tablishing a broader view of the research object under study, triangulation allows to

verify gained impressions using different data-sources and methods. In particular, we

were able to check the students’ comments by looking into the minutes of their team

meetings and the work artifacts they checked in to the Subversion repositories.

8.4.5 Ethical issues

The ethical issues resulting from using students in empirical studies were discussed in

Section 8.2.4.

8.5 Related work

Since the late 1980s, researchers have conducted studies to comprehend the design pro-

cess of software intensive systems (e.g. (Curtis et al. 1988, Sonnentag 1998, Zannier

et al. 2007, Brooks 2010, Tang, Aleti, Burge and van Vliet 2010)). The study, presented in

this chapter, is related to this research field. In the following, we outline typical design

studies in the field and relate them to our own findings. The presented work covers

general design studies, studies of decision making in software projects, and studies on

the influence of documentation on the design process. To the best of our knowledge,

the influence of architecture decision documentation on the design process has not been

empirically investigated so far.

8.5. Related work 183

In 1988, Curtis et al. interviewed personnel from 17 large software engineering

projects to identify the design activities the teams followed (Curtis et al. 1988). The focus

of the study was on how requirements were gathered and how design decisions were

made and documented, and how these decisions impacted the design process. They

identified three common problems among all analyzed projects: 1) Domain knowledge

was thinly spread among project members, 2) Requirements were often changing or

even conflicting, and 3) Communication and coordination of tasks did not go optimal.

Among others, they conclude that staff-wide sharing of (architecture) knowledge has

to be facilitated and software development tools should support the representation and

management of uncertain design decisions.

Our own findings (almost 25 years later) show that all three identified problems are

still perceptible in projects of student software engineers. Using decision viewpoints,

however, turned out to at least partially mitigate these problems.

Sonnentag, a German psychologist, analyzed the design process of 40 professional

software designers from 16 different software development teams in 1998 (Sonnentag

1998). After the teams solved a predefined design task, she asked each participant to

peer evaluate their team mates. This process was used to distinguish high performers

from moderate performers (from the perspective of the team mates). In the subsequent

analysis phase, she compared the behavior of the high performers and the moderate

performers with respect to problem comprehension, planning, feedback processing4

, task focus, using visualizations, knowledge of software engineering strategies, and

length of experience. Her results include that high performers spent twice as much time

on feedback processing than moderate performers. She suggests that high performers,

who actively evaluate their design solutions, not only perform better at the present task

but also gain more experience for future use in other projects. Surprisingly, she also

found that the experience of the participants did not have a significant impact on their

behavior regarding the previously mentioned aspects.

Sonnentag emphasizes that the repetitive critical evaluation of design options in the

context of requirements (and other forces) helps designers to estimate in how far a pur-

sued goal has been achieved. Similarly, our study shows that decision viewpoints, in

particular the decision forces viewpoint and the decision relationship viewpoint, pro-

vide junior software designers with an organizational structure to support these activ-

ities. In another experiment, Tang et al. find that forcing designers to verbalize their

design options and reasoning help to bring about better design, especially for junior

designers (Tang et al. 2008).

Zannier et al. report on 25 interviews conducted with software designers to develop

a model of design decision making in software projects (Zannier et al. 2007). The study

focuses on understanding in which situations designers use a rational decision mak-

ing process versus situations in which the designers follow a naturalistic approach to

decision making. Rational decision making, as defined by the authors, is “character-

4Sonnentag defines feedback processing as the comparison of a present situation (here the current

version of a software design) with the cognitive representation of the design goal at hand. In other words,

feedback processing helps the designer to evaluate how far the design goal has been achieved already.

184 8. How decision documentation affects the reasoning process

ized by the consequential choice of an option among a set of options, with the goal of

selecting the optimal solution”, whereas naturalistic decision making is “characterized

by situation assessment and the evaluation of a single option with a goal of selecting a

satisfactory option”. The authors found out that designers generally mix both decision

making strategies; however, in cases where the design problem was well-defined, the

designers under study primarily used rational decision making, wheres the naturalistic

approach was preferred to tackle ill-defined problems.

In our own study, we found out that the subjects in the decision view group followed

a more rational decision making process than the subjects in the comparison group,

although all four projects had a comparably ill-defined design problem in the beginning.

This suggests that the documentation of decision views pushed the students towards

structuring the design problem better, in order to identify potential solutions and to

define criteria (in the decision viewpoint terminology referred to as forces) to choose

among the solutions. These findings, however, are not contradictory to those of Zannier

et al. As conjectured prior to the study, documenting decision views requires designers

to think about design options and evaluation criteria upfront, thus they also implicitly

require the user of decision views to structure the design problems at hand.

The same conclusions as Zannier et al. were made by Cross. In a review of multiple

empirical studies of design activity in different domains (Cross 2001), Cross acknowl-

edges that designers respond to ill-defined problems by adopting a solution-focused

design process. He explains that designers tend to find a satisfactory solution rather then

systematically generating an optimal solution if the problem that needs to be solved is

ill-defined. Along with this finding, he states that designers appear to stick to a solu-

tion concept as long as possible, even if they encounter shortcomings or difficulties with

that solution (this phenomenon is also known as anchoring (Epley and Gilovich 2006)).

In this study, we also found out that the projects in the comparison group searched for

design options until they found a satisfactory solution and sticked to these solutions as

long as possible. Assuming that designers, as Cross suggests, are by nature solution-

focused and subject to anchoring, the creation of decision views helped the students in

the decision view group to alleviate the effects of this phenomenon, by forcing them

to consider alternatives and explicitly comparing them in the context of the relevant

decision forces.

The assumption that the documentation of design, and the process of designing it-

self, mutually interfere with each other has also been examined by Purcell and Gero.

Purcell and Gero suggest that the majority of cognitive design activities are too com-

plex for all aspects to be held in short-term memory during the design process (Purcell

and Gero 1998). They advocate that design sketches can serve designers as external

memory device, which can be used to reduce the load on working memory. These find-

ings are in line with the statement of the decision view students that the decision views

helped them to maintain an overview over decisions made and over all decision forces

that had to be taken into consideration.

Similar studies were conducted by Parnas, who, throughout large parts of his aca-

demic career, conducted research on documentation and its importance for the software

8.6. Conclusions 185

engineering process (Hester et al. 1981, Parnas and Clements 1986, Parnas 2009, Parnas

2011). Parnas affirms that software design is a decision making process and that doc-

umenting software design “forces designers to make decisions and can help them to

make better ones”. In (Parnas and Clements 1986), Parnas and Clements emphasize

the importance of designers striving to follow a rational design process. In this work,

they stressed the need for documentation to record design decisions, ideally guiding

the design process of the development team and serving as a reference during software

evolution.

8.6 Conclusions

Prior to the study, we conjectured that students would use a more rational design pro-

cess if they use architecture decision views, compared to students who use an ad-hoc

design approach. We characterize a rational design process using eleven response vari-

ables. These eleven response variables were used to analyze the design activities that

were carried out by the student project teams.

We have found that in three response variables, the decision relationship viewpoint

and the decision forces viewpoint have helped students to follow a more rational design

process regarding architectural synthesis and evaluation. Students in this group were

better at exploring design options, evaluating the advantages and disadvantages of de-

sign options and considering the consequences of combining multiple design options.

On the other hand, the viewpoints were ineffective in helping students in three re-

sponse areas: to manage requirements, to optimize design regarding complexity, and to

explore solution viability by means of prototypes. It appears that something more than

the use of viewpoints is needed in order to excel in these three response areas.

We suggest that the identification and documentation of architecture significant re-

quirements and other forces should receive more attention in computer science edu-

cation. Additionally, we plan to investigate if checklists of typical domain-specific re-

quirements and other forces can at least partially fill the gap regarding requirements

documentation. Using prototypes for evaluating design options is an important best-

practice we identified in our previous work with professional software architects (see

Chapter 4). In our opinion, the use of prototypes should be promoted more in higher

computer science education; forces can serve as criteria to evaluate design solutions by

means of prototypes. Finally, the current set of decision viewpoints cannot support de-

signers in optimizing a software design with respect to complexity. Additional research

is needed to identify metrics for complexity that can be used on a decision level, and to

subsequently leverage these metrics by means of decision viewpoints.

Acknowledgements

We would like to thank all participating students from the Software Factory course

2011/2012 at the Fontys University of Applied Science in Venlo, the Netherlands.

Part V

Evaluating architecture decisions

In revision for the IEEE Software Magazine as: U. van Heesch, V. Eloranta, K. Koskimies, P. Avgeriou
and N. Harrison – “DCAR - Decision-Centric Architecture Reviews’

Chapter 9

Decision-centric architecture evaluation

Abstract

Architecture evaluation is an important activity in the software engineering lifecycle that

ensures that the architecture satisfies the stakeholders’ expectations. Additionally, risks and

issues can be uncovered before they cause tremendous costs later in the lifecycle. Unfortu-

nately, architecture evaluation is not regularly practiced in industry.

In this chapter, we present DCAR, an architecture evaluation method that uses architecture

decisions as first class entities. DCAR uncovers and evaluates the rationale behind the most

important architecture decisions, considering the entire context, in which the decisions were

made. Furthermore, it is lightweight and can be performed during or after the design was

finalized.

Experiences in large industrial projects have shown that full-scale DCAR evaluations, in-

cluding reporting, can be conducted in less than five person-days, while producing satisfying

results for the stakeholders.

9.1 Introduction

Software architecture that is poorly designed or carelessly cobbled together may cause

an entire software project to fail. Therefore, it is important to evaluate software archi-

tecture early on in the development. Various software architecture evaluation methods

have been proposed to uncover architectural problems in a systematic way (Dobrica

and Niemela 2002, Bass and Nord 2012). The most popular evaluation methods are

scenario-based, e.g. ATAM (Kazman et al. 2000). In general, architecture evaluation has

several benefits. Most importantly, a problem or a risk identified early in the develop-

ment process can be easily fixed or mitigated, compared to a problem that is found late,

e.g. in the testing or integration phase, or even during maintenance. Furthermore, ar-

chitecture evaluations encourage communication among the involved stakeholders that

would not take place otherwise.

Despite these benefits, architecture evaluation is not regularly practiced in the in-

dustry today (Dobrica and Niemela 2002, Bass and Nord 2012). A study with software

architects uncovered typical factors that influence the architecture evaluation practices

of organizations (Babar et al. 2007). According to the study, management commitment,

company-wide evaluation standards, a funding model, and appropriate training for the

involved staff members are prerequisites for establishing architecture evaluations in a

190 9. Decision-centric architecture evaluation

company. Such prerequisites are often not met. Furthermore, the increasingly popu-

lar agile development approaches do not encourage the use of architecture evaluation

methods, which often consume a considerable amount of time and resources.

In order to lower the threshold of industrial adoption of architecture evaluations,

we developed a new evaluation method called DCAR (Decision-Centric Architecture

Review). DCAR was developed bottom-up, based on our experience on performing

architecture evaluations in the industry and observing what works well in practice. This

lead to two high-level requirements. First, the method needs to be light-weight in terms

of required time and resources. Second, the method must support the evaluation of

software architecture decision-by-decision, allowing systematic analysis and recording

of the rationale behind architecture decisions. The latter requirement makes the method

different from scenario-based methods, which aim at testing a software architecture

against scenarios that refine the major quality requirements of the system.

DCAR is decision-centric in the sense that the evaluation is carried out by selecting a

set of decisions which are analyzed in the context of all relevant project- and company-

specific decision forces. A decision force, or force in short, is any non-trivial influence

on an architect who is looking for a solution to an architectural problem. The concept of

forces is elaborated below. DCAR can be used for any set of architectural decisions, of

any type. Its is applicable for all types of software-intensive systems and domains.

We have carried out multiple DCAR evaluations in the industry. Our experience

indicates that an average DCAR session takes half a day, requiring the presence of 3-

5 members of the project team, including the chief architect. Thus, the total amount of

company working hours is less than four person-days plus another two person-days for

the review team. This makes DCAR suitable for projects that do not have the budget,

schedule, or stakeholders available for full-fledged architectural evaluations. DCAR

is also pertinent for projects that wish to perform architecture evaluation to justify a

set of architecture decisions rather than for ensuring that a whole system satisfies its

quality requirements. Table 9.1 presents a short profile of DCAR, using the classification

proposed by Bass and Nord (Bass and Nord 2012).

9.2 Architecture Decisions

DCAR focuses on evaluating specific architecture decisions, selected by stakeholders

under the assistance of the review team. Understanding architecture decisions and the

rationale behind them is crucial for continuously ensuring the integrity of a system.

Architecture decisions are the fundamental choices, an architect has to make, con-

cerning the overall structure or externally visible properties of a software system (Tyree

and Akerman 2005). Typical examples of such decisions are the choice of an architec-

tural pattern or style, the selection of a middleware framework, or the decision not to

use open source components for licensing considerations.

Architecture decisions are not isolated; they can be seen as a web of interrelated de-

cisions that can depend on, support, or contradict each other. Some decisions must be

9.2. Architecture Decisions 191

Table 9.1: DCAR short profile

Context factor DCAR

Inputs Informal description of requirements, business

drivers and architectural design; generated prior to

the review.

Output Risks, issues, and a thorough documentation of the

evaluated decisions and their decision forces.

Reviewers Company-internal or external reviewers (preferred).

Priority setting of deci-

sions

During the review.

Social interaction Face to face meeting.

Resources required 2-4 reviewers, architect, developers, business repre-

sentative.

Skill level of participants Moderate.

Knowledge of evaluators General architecture.

Tools or automation Templates, Wiki, UML tool.

Evaluation objectives Rationale behind decisions.

Scope A set of specific architecture decisions.

Schedule Half a day preparation and post processing, half a day

review session.

Project phase Within or after the architectural design is finalized.

combined to achieve a desired property; other decisions are solely made to compen-

sate the negative impact on a desired property, caused by a decision made to achieve

a different property. As an example, an architect could decide to use an in-memory

database to achieve short response times. This decision has a negative impact on re-

liability, which, in addition to short response times, is another desired property of the

system. To compensate this negative impact, the architect could decide to use redun-

dant power supplies, or to replicate the database and the hardware and use the replica

as a hot spare. Therefore, the decisions to use redundant power supply and a hot spare

would be caused by the decision to use an in-memory database.

In DCAR, the participants identify the architecture decisions made and clarify their

interrelationships. This is primarily done for two reasons: First, understanding the re-

lationships helps to identify influential decisions that have wide-ranging consequences

for large parts of the architecture. Second, when a specific decision is evaluated, it is im-

portant to consider its related decisions as well (as illustrated by the previous in-memory

database example).

9.2.1 Decision forces

Several factors need to be taken into consideration to evaluate an architecture decision.

Apart from architecturally-significant functional and non-functional requirements, such

192 9. Decision-centric architecture evaluation

factors include constraints, risks, political or organizational considerations, personal

preference or experience of the architect and the development team, or business goals

like quick time-to-market and low price. We call these factors decision forces (see Chap-

ter 7), because of the similarities with forces in physics. Each force has a direction and

a magnitude. It either pushes an architect towards a specific solution, or it pushes the

architect away from that solution.

In order to evaluate an architectural solution, the related decisions also need to be

contemplated and considered as decision forces. In their totality, forces reveal the entire

context in which a decision is made. As some of them can be conflicting, or orthogonal

to each other, an architect has to balance all forces to make the best possible decision.

Figure 9.1 illustrates the concept of forces using the in-memory database decision, in-

troduced above. In this particular case, the forces in favor of the in-memory database

outweigh the forces against it. DCAR explores the entire rationale behind decisions by

lo
w

 r
el

ia
b
ili

ty

Pro Contra

im
p
ro

ve
d
 r

es
p
o
n
se

 t
im

e

co
st

 f
o
r

re
d
u
n
d
an

t
p
o
w

er

ex
p
er

ie
n
ce

 w
it
h
 i
n
-m

em
o
ry

 D
B

s

Figure 9.1: Some of the forces for the in-memory database decision

means of forces. After identifying forces, the review participants examine if the ratio-

nale behind the evaluated decision is still valid in the current context. This is important,

because forces are not immutable; not only requirements keep changing, but the tactical

orientation of the company may evolve: laws and regulations may have changed, or

new technologies could exist that would offer a better solution to a design problem at

hand. So these changes in the design context may change the magnitude of the forces,

or even introduce new forces and make some of the old forces obsolete. In the new

design context, if the negative forces outweigh the positive forces, then the reviewers

recommend to reconsider the decision.

9.3. Introducing DCAR 193

9.3 Introducing DCAR

9.3.1 Company participants and review team

To achieve best results, DCAR requires the participation of the lead architect and one

or two members from the development team with different roles and responsibilities

in the software project. Additionally, somebody has to represent the management and

customer perspective. This is important, because some decisions have to be assessed

from an enterprise-wide perspective rather than taking only project-specific forces into

account.

The review can be done by external reviewers, or by an organization’s own people

who are not involved in the project under review. The members of the review team

need to have experience in designing software architecture; ideally, but not necessarily,

in the same domain as the system under review.

9.3.2 Essential steps

In this subsection, we briefly1 present how DCAR is carried out in practice.

Figure 9.2 shows the main steps of DCAR, as well as the produced artifacts (boxes

on the right). In the following, each of the steps is briefly described. Step 1 is carried

out offline, all other steps are carried out during one evaluation session, in which all

participants gather in one room.

Step 1) A date for the DCAR session is settled, and the stakeholders are invited to

participate. The lead architect of the system2 is asked to prepare a presentation of the

architecture. This presentation should contain the most important architectural require-

ments, high-level views on the architecture, used architectural approaches like patterns

or styles, and the used technologies like database management systems or middleware

servers. The representative of the management and customer perspective is asked to

prepare a presentation describing the software product and its domain, the business en-

vironment, market differentiators, and driving business requirements and constraints.

Templates for both presentations can be found on the previously mentioned DCAR web-

site.

The slides for the presentations are sent to the review team prior to the evaluation

session, so that they can prepare for the evaluation. In particular, the reviewers study

the material to elicit potential architecture decisions and decision forces. Additional

system documentation is not mandatory, but any additional material that can be used

by the reviewers to understand the system upfront is helpful.

Step 2) The evaluation session starts with an introductory presentation of the DCAR

method to all participants. This includes the schedule of the day, introduction of the

1A more elaborate description of the method can be found online at http://www.

dcar-evaluation.com
2DCAR cannot only be used to evaluate whole systems, but also for major and minor sub-systems.

For the sake of simplicity, we refer to all of them as systems.

194 9. Decision-centric architecture evaluation

Figure 9.2: DCAR steps and produced artifacts during each step

DCAR steps, the scope of the evaluation, possible outcomes, and the roles and respon-

sibilities of all participants. The DCAR website provides an example of such a presen-

tation.

Step 3) The representative of the management and customer perspective gives a

short presentation using the slides prepared in Step 1. In our experience, 15-20 minutes

suffice, but more time can be used if the schedule allows it. The main purpose of this

step is to allow the reviewers to elicit business-related decision forces that must be taken

into consideration during the evaluation. The review team notes down potential forces

during the presentations and asks questions to elicit additional forces. The management

representative does not need to be present during the rest of the session; however, it is

beneficial as he or she can provide additional insights during the decision analysis.

Step 4) The lead architect uses the slides prepared in Step 1 to introduce the archi-

tecture to all DCAR participants. In our own industrial DCAR sessions, we reserved

between 45 and 60 minutes for this presentation. The goal is to give all participants a

good mental picture of the architecture. It is supposed to be highly interactive. The

9.3. Introducing DCAR 195

review team and the other participants ask questions to complete and verify their un-

derstanding of the system. During this step, the reviewers revise and complete the list

of architecture decisions they had identified as a preparation in Step 1. Identifying ar-

chitecture decisions requires some experience. As a starting point, reviewers can focus

on used technologies like servers, frameworks, or third-party libraries. Additionally, it

has been a good practice to search for applied patterns in the architecture (Harrison and

Avgeriou 2011).

Apart from capturing architecture decisions, the reviewers revise and complete the

list of forces they had identified in Steps 1 and 2. Forces can be documented as informal

statements. Both, decisions and forces, are revisited in the next step.

Step 5) At this stage, the reviewers have assembled a preliminary list of architecture

decisions and decision forces. The goal of Step 5 is two-fold: Clarify the architecture

decisions and their relationships, and complete and verify the forces relevant to these

decisions. To support the clarification of the decision relationships, a decision relation-

Figure 9.3: Excerpt from a relationship view created in a DCAR session.

ship view (see Chapter 6) is created by one of the reviewers during the review session.

The diagram is constantly revised during the previous steps. Figure 9.3 shows an ex-

cerpt of such a diagram. Each decision is represented by an ellipse that contains a short

descriptive name for the decision. It is important to use the company’s own vocabulary

in the names, to make sure that reviewers and company stakeholders have the same

understanding of the applied architectural solution. In the beginning, each of the deci-

sions collected by the reviewers in the previous step is represented in the diagram. After

all participants gained a collective understanding of the decisions, the relationships are

established. In a relationship view, they are represented by a directed line. Although

more relationship types exist (all available types are defined in Appendix B.3.2), in an

196 9. Decision-centric architecture evaluation

architecture review, the only important relationships are caused by and depends on. The

relationships help the reviewers and stakeholders to estimate the importance of each

decision. Decisions being the origin of many dependencies have a central role and must

be seen critically. Relationships are also helpful to understand which decisions must be

taken into consideration as decision forces for other decisions. Relationship views can

be created using any UML tool. A template for such a diagram can be downloaded from

the DCAR website.

The forces are presented as a bullet list. They should be formulated unambiguously

using domain specific vocabulary. Example forces from the machine control domain

are Firmware level design and implementation should be sourced out, as it is not our core busi-

ness., or We have a lot of in-house experience with the CANOpen protocol. The review team

discusses and completes the list of forces with the company participants.

Step 6) Usually, the number of decisions elicited in the previous steps is too large to

discuss each of them during the review. Therefore, the stakeholders have to negotiate

which decisions will be reviewed in the following steps. The criteria for selecting which

decisions will be reviewed is context dependent and has to be negotiated between the

stakeholders. The criteria could be mission-critical decisions, decisions known to bear

risks, or decisions causing high costs, for instance.

We use the following procedure to prioritize decisions: Each participant gets 100

points. The points can be distributed freely over the decisions, based on the previously

agreed criteria for the importance of decisions. Then the points of all participants are

summed up and the the rationale behind each person’s ratings is discussed. The deci-

sions with the highest ratings are taken to the next steps. In our experience, the number

of decisions that can be discussed effectively in half a day is seven to ten.

Step 7) The architect and the other company participants document the set of de-

cisions that received the highest ratings in the previous step. Therefore, each of them

selects two or three decisions he or she is knowledgeable about. The decisions are doc-

umented by describing the applied architectural solution, the problem or issue it solves,

known alternative solutions, and the forces that need to be considered to evaluate the

decision. The stakeholders use the list of forces assembled in the previous steps to make

sure that they don’t forget important ones, but they can also think of new forces. A

member of the review team supports the stakeholders during this process. This is par-

ticularly important, because some of the participants may be unexperienced in decision

documentation.

Figure 9.4 shows an example of the decision documentation template used in DCAR;

other established templates could be used alternatively, e.g. the template defined by

(Tyree and Akerman 2005) or (Harrison and Avgeriou 2011).

Step 8) The documented decisions (seven to ten on average) are subsequently eval-

uated, starting with the decision with the highest priority. The participant, who docu-

mented the current decision presents it briefly. After that, the company participants to-

gether with the reviewers challenge the decision by identifying additional forces against

the chosen solution. They use the elicited decision forces and the decision relationship

view to understand the context of the decision, i.e. related decisions and relevant forces

9.3. Introducing DCAR 197

!∀#∃ !∀#∃%#&%∋()∗+)∋∗%,−∗..∀−/

%&∋()∃# 01∀)&22.3∋&,3∗%)/1∗∃.#)−∃%)∀4∀%)3+),1∀)/∀−4∀−)+&3./

∗∋)+,−∋./∋&/
0∃12&−3,−∋./
∋4/0∃2−1−∋.

01∀)/(/,∀5)3/)#∀2.∗(∀#),∗),6∗)/∀−4∀−/7)∗%∀)3/)&∋,34∀8),1∀)∗,1∀−)∗%∀)3/)3%&∋,34∀9)01∀)

&∋,34∀)/∀−4∀−)2−∗43#∀/)&..)/(/,∀5)/∀−43∋∀/8)613.∀),1∀)2&//34∀)∗%∀)3/)−∃%%3%:)3%),1∀)

;&∋<:−∗∃%#9)=1∀%),1∀)&∋,34∀)/∀−4∀−)+&3./8),1∀)3%&∋,34∀)/∀−4∀−);∀∋∗5∀/)&∋,34∀9)>∃−3%:)

,1∀)/63,∋1)∗4∀−8),1∀)&∋,34∀)/∀−4∀−),−3∀/),∗)∃2#&,∀),1∀)2&//34∀)∗%∀),∗)5&<∀)/∃−∀),1&,)3,)

1&/),1∀)/&5∀)#&,&)&%#)/,&,∃/9)?∗,1)/∀−4∀−/)1&4∀)&%)3#∀%,3∋&.)/∗+,6&−∀)∋∗%+3:∃−&,3∗%9)

013/)/∗.∃,3∗%)+∗..∗6/),1∀)!∀#∃%#&%∋()∃%∗∋+,%&−+∋.(/&∋∋∀0%9

5∋.1−0∃&∃0/
∀),∃&.∀,−6∃/
1∋)+,−∋.1

≅22.(),1∀)!∀#∃%#&%∗.(12+∋∗3(/&∋∋∀0%7)?∗,1)/∀−4∀−/)&−∀)&∋,34∀Α))∀Β,∀−%&.).∗:3∋)3/)∃/∀#)

,∗)#∀∋3#∀)613∋1)∗∃,2∃,)3/)&∋,∃&..()∃/∀#)3%),1∀)∋∗%,−∗.9)Χ%),13/)∋&/∀8)∋(∋.3∋)#&,&)∋∗2(3%:)

∋∗∃.#);∀)&4∗3#∀#9)∆∗6∀4∀−8)&22.(3%:),13/)/∗.∃,3∗%)6∗∃.#)−∀Ε∃3−∀)5&Φ∗−)5∗#3+3∋&,3∗%/)

,∗),1∀)/(/,∀59)Γ4∀%),1∗∃:1)&4&3.&;3.3,()6∗∃.#);∀)3%∋−∀&/∀#8)3,)6∗∃.#)&./∗)∋&∃/∀)

&##3,3∗%&.)∋∗/,/9)01∀)∋∃/,∗5∀−/)&−∀)%∗,)2−∀2&−∀#)+∗−)2&(3%:)5∗−∀)+∗−)13:1∀−)

&4&3.&;3.3,(9))≅##3,3∗%&..(8),1∀)∀Β,∀−%&.).∗:3∋)∋∗52∗%∀%,)∋∗∃.#);∀∋∗5∀)&)2∗,∀%,3&.)

/3%:.∀)2∗3%,)∗+)+&3.∃−∀9)01∀−∀+∗−∀8),13/)&.,∀−%&,34∀)6&/)#3/∋&−#∀#9

7∋&2∃1/−./
4∀6∋&/∋4/
0∃2−1−∋.

! Γ&/3∀−),∗)352.∀5∀%,),1&%),1∀)&.,∀−%&,34∀)/∗.∃,3∗%9

! Η∋&.∀/)∀&/3.(),∗)4∀−/3∗%/)61∀−∀)−∀#∃%#&%∋()3/)%∗,)∃/∀#9

! Ι∗)&##3,3∗%&.)∋∗/,/

7∋&2∃1/
∀8∀−.1,/,9∃/
0∃2−1−∋.

! Η.∗6∀−)/63,∋1)∗4∀−),35∀),1&%),1∀)&.,∀−%&,34∀)6∗∃.#)1&4∀9

! ∆&−#),∗)∗++∀−)13:1∀−)&4&3.&;3.3,(),1&%),1∀)∋∃−−∀%,)ϑϑ9ϑϑΚ

:+,2∋#∃ Λ−∀∀%) Μ∀..∗6) Μ∀..∗6) !∀#)

;∀,−∋.∀)∃/
4∋&/∋+,2∋#∃

Ν∃−−∀%,)/∗.∃,3∗%)

/∀∀5/),∗);∀)∗<9

Χ)&5)∋∗%∋∀−%∀#)&;∗∃,)

,1∀)/.∗6)/63,∋1)∗4∀−)

,35∀9

=3#∀.()&∋∋∀2,∀#)/∗.∃,3∗%9)

≅4&3.&;3.3,()53:1,);∀Ο

∋∗5∀)&)2−∗;.∀5)3%),1∀)

+∃,∃−∀

=∀)/1∗∃.#)−∀&..()−∀∋∗%/3#∀−),13/)

#∀∋3/3∗%8)&/),1∀)%∀Β,)−∀.∀&/∀)3/)

.3<∀.(),∗)1&4∀)13:1∀−)&4&3.&;3.3,()

−∀Ε∃3−∀5∀%,/9

Figure 9.4: Example of documented and analyzed decision

in favor or against the applied solution. The documentation of the decisions and the de-

cision relationship view are continuously updated by one of the reviewers during this

step. All participants discuss whether the forces in favor of the decision outweigh the

forces against it.

Finally, all participants decide in a voting procedure, whether the decision is good,

acceptable, or if it has to be reconsidered. Figure 9.4 shows the result of an evaluated

decision, created during a DCAR session. The traffic light colors indicate the ratings of

all participants; green for good, yellow for acceptable, and red for has to be reconsidered.

Additionally, it shows justifications for the votes, given by each voter (“Rationale for

outcome”).

During the whole discussion, the reviewers note down potential issues or risks that

were mentioned. Each decision is discussed for approximately 15-20 minutes. In our

experience, the quality of discussion diminishes at some point. If a decision requires

more than 20 minutes, it can be flagged as a point for future analysis.

Step 9) After all of the selected decisions were evaluated, he review team collects all

notes and artifacts created during the evaluation session. They serve as input for the

198 9. Decision-centric architecture evaluation

evaluation report. The review team writes a report within two weeks from the review

session. The report is discussed with the architect for verification and eventually refined

by the review team. In our own DCAR sessions, the report was prepared by the review

team on the next day. The advantage of an early report is that the review team and the

architect can still vividly remember the discussions held during the evaluation session.

9.4 Experiences

DCAR has been developed in cooperation with industrial partners from the distributed

control system domain. As described in Section 9.1, however, it is by no means restricted

to this domain. Since the initial version, DCAR has been applied and refined in five large

software projects. In this section, we report on our findings from three industrial DCAR

sessions, which were conducted in different projects at Metso Automation in Tampere,

Finland.

Table 9.2: Descriptive statistics

Variable Value

Avg. system size 600 000 SLOC

Avg. no of elicited decisions after step 5 21 decisions

Avg. no of decisions documented in step 7 9 decisions

Avg. no of decisions evaluated in step 8 7 decisions

Avg. no of reviewers 4 persons

Avg. no of company stakeholders 4 persons

Avg. effort for reviewer team 50 person-hours

Avg. effort for company stakeholders 23 person-hours

Table 9.2 shows descriptive statistics about the DCAR executions. The systems under

study in these evaluations came from the process automation domain; each system had

been in use for multiple years. Each of the three DCAR sessions, summarized here, was

conducted within five hours. The effort that the company stakeholders had to spent on

the reviews reveals the time spent by the participants for preparation, taking part in the

evaluation sessions, and reviewing the evaluation report.

To gather feedback on the participants’ perception of DCAR, we carried out inter-

views with a subset of the participants, including the chief architect. Apart from the

chief architect, who naturally knows the architecture best, all interviewees mentioned

that they got a good overview of the system’s architecture; something they were missing

in their daily work, because they were only responsible for smaller sub-systems. They

also stated that they liked that all important decisions, even if they were considered

stable, were brought into question for the purpose of the evaluation. The prioritization

procedure in DCAR step 6 made sure that bias on behalf of the decision maker or the

responsible architect was reduced. Systematically discussing decisions in a group also

helped them to understand different points of view that need to be considered in the

9.5. Conclusions and Future Work 199

context of a decision.

Generally, the stakeholders reported that the interaction between the stakeholders,

and the discussion with the review team as external contributors, was one of the most

valuable advantages of the evaluation session. The chief architect noted that the eval-

uation report, produced by the review team, is a valuable supplement to the existing

system documentation. The interviewees estimated that the decisions elicited during

the evaluation roughly covered the most important 75% of all significant architecture

decisions; this was regarded as an excellent result given the short amount of time in-

vested in the evaluation.

The success of a DCAR depends on the stakeholders’ understanding of the concepts

of architecture decisions and decision forces. Therefore, we explicitly addressed these

issues in the interviews. Although all interviewees were either already familiar with

both terms, or grasped the concepts quickly during the DCAR introduction in Step 2,

some of them mentioned that the time given for the documentation of decisions in Step

7 was too short. This was particularly the case for stakeholders, who had never system-

atically documented architecture decisions before. They proposed to tackle this problem

by providing examples of documented decisions prior to the evaluation.

During the evaluations, we observed that the documentation of reasoning, i.e. forces

in favor or against a specific solution, was especially challenging for some of the par-

ticipants. Therefore, in the later evaluations, we provided decision examples with a

list of typical decision forces in the domain at hand and found out that it alleviates the

problem.

These positive experiences in the past evaluations, and the continuous interest of

other industrial partners to hold more evaluations in the future, show that DCAR helps

organizations to adopt architectural evaluations as part of their practices. Additional

empirical studies will be conducted to provide evidence concerning how far DCAR

indeed lowers the threshold for industrial adoption of architecture evaluations.

9.5 Conclusions and Future Work

In this chapter, we introduced DCAR, a decision-centric method for performing archi-

tecture evaluations. The method has proven to work in industrial projects and the stake-

holders’ feedback is promising and encouraging.

DCAR can be carried out in less than a working day and takes the entire decision-

making context into account to understand the complete rationale behind decisions.

DCAR can be conducted before or after the architectural design was finalized. In addi-

tion, DCAR can be repeated, whenever there is substantial amount of new architectural

decisions made. We are currently evaluating, how DCAR can be used incrementally in

the context of agile software projects. Furthermore, tool support for documenting deci-

sions and for creating decision relationship and decision forces views will be offered.

Part VI

Conclusions and future work

Chapter 10

Conclusions and future work

This chapter concludes the dissertation. At first, I revisit the research questions defined

in Chapter 2.3, summarize the answers to the research questions, and list the contribu-

tions of this research project. Subsequently, I discuss directions for ongoing and future

work.

10.1 Answers to research questions and contributions

Chapter 2 introduced the main problem statement, which formed the basis for the work

presented in this dissertation: “Existing architecture decision modeling approaches do

not satisfy all stakeholders’ concerns, they do not integrate with viewpoint-based archi-

tecture descriptions, and they do not optimally support architectural analysis, architec-

tural synthesis, and architectural evaluation.”

Multiple research questions were derived from this central problem, and addressed

in Chapters 3 to 9. Table 10.1 summarizes the research questions, the chapters in which

they were addressed, and the contributions made with respect to the research questions.

In the following, each research question is revisited and briefly discussed.

RQ 1: How are ADs made?

Before looking into ways on how to improve decision modeling approaches in

order to address the central research problem, we first had to understand how

decisions are really made in practice (RQ 1). To answer RQ 1, we carried out two

surveys. The first survey was conducted with final- year software engineering

students prior to graduation. We learned how inexperienced software designers

make decisions and, by comparing these results to architecting approaches in the

literature, identified areas in the students’ reasoning processes that need to be

improved (see Chapter 3).

The second survey was conducted with software architects from the industry. The

goal of this study was to explore the decision-making process of professionals. As

a result, we identified several reasoning best practices that can be studied by inex-

perienced architects to optimize their decision-making process (see Chapter 4).

RQ 2: How to improve the way ADs can be modeled?

To make architecture decision modeling more efficient, we first thought about an

approach to decision documentation that requires less effort during the architect-

ing process than template-based decision documentation, e.g. using the template

204 10. Conclusions and future work

Table 10.1: Contributions
!∀#∀∃%&∋()∗∀#+,−.# /∋∃0+∀% /−.+%,1∗+,−. 2304∃.∃+,−.

5
.
6
∀
%#
+∃
.
6
,.
7
(8
9
#

2301405∀60−%/078)09−:/; !<−=∃/%0> ?&#:&#.407%/−)0≅∀%0
&9=%∀Α/9/#∃0�∃</0
%/−)∀#&#.0=%∀Β/))Χ

7%/−)0≅∀%0&9=%∀Α/9/#∃0�∃</0
%/−)∀#&#.0=%∀Β/))∆0:/%&Α/:0
≅%∀90−0)(%Α/Ε06&∃<0)/#&∀%0
)∀≅∃6−%/0/#.&#//%&#.0)∃(:/#∃)Χ

!<−=∃/%0Φ ?&#:&#.402/−)∀#&#.0∋/)∃0
=%−Β∃&Β/)Χ

70)/∃0∀≅0−%Β<&∃/Β∃(%−Γ0:/)&.#0
%/−)∀#&#.0∋/)∃0=%−Β∃&Β/)0
Β∀ΓΓ/Β∃/:0≅%∀90=%∀≅/))&∀#−Γ0
)∀≅∃6−%/0−%Β<&∃/Β∃)Χ

:
−
6
∀
4,
.
7
(8
9
#

230+405∀60∃∀0&9=%∀Α/0∃</06−Ε078)0
Β−#0∋/09∀:/Γ/:;

!<−=∃/%0Η ?&#:&#.4070≅∀Β()0∀#0
=−∃∃/%#)0:(%&#.0780
%/Β∀Α/%Ε0Γ/−:)0∃∀0<&.</%0
Ι(−Γ&∃Ε0∀≅0%/Β∀Α/%/:0
78)∆0∋(∃0#∀∃0∃∀0<&.</%0
Ι(−#∃&∃ΕΧ

70≅∀Β()0∀#0&:/#∃&≅Ε&#.0−==Γ&/:0
=−∃∃/%#)0�−#0−%Β<&∃/Β∃(%/0
Γ/−:)0∃∀0<&.</%0Ι(−Γ&∃Ε0∀≅0
%/Β∀Α/%/:0:/Β&)&∀#)∆0∋/Β−()/0
∃</0%−∃&∀#−Γ/0≅∀%0−==ΓΕ&#.0
=−∃∃/%#)0&)0ϑ#∀6#0−#:0Β−#0∋/0
%/()/:0∃∀0:∀Β(9/#∃0∃</0
:/Β&)&∀#0∃∀0−==ΓΕ0∃</0=−∃∃/%#Χ0

!<−=∃/%0Κ 70:∀Β(9/#∃−∃&∀#0
≅%−9/6∀%ϑ0≅∀%078)Χ

?∀(%0Α&/6=∀&#∃)0≅∀%0
:∀Β(9/#∃&#.078)0()&#.0∃</0
Β∀#Α/#∃&∀#)0∀≅0ΛΜΝΟΛΠ!ΟΛΠΠΠ0
Φ+Θ1ΘΧ

230>405∀60∃∀0/Ρ∃/#:0∃</0780
9∀:/Γ&#.0−==%∀−Β<0∃∀0)−∃&)≅Ε0
Β∀#Β/%#)0%/Γ−∃/:0∃∀0:/Β&)&∀#Σ≅∀%Β/0
∃%−Β/−∋&Γ&∃Ε;

!<−=∃/%0Τ 8/Β&)&∀#0?∀%Β/)0
Υ&/6=∀&#∃Χ

7#0−::&∃&∀#−Γ0Α&/6=∀&#∃0≅∀%0∃</0
≅%−9/6∀%ϑ0:/:&Β−∃/:0∃∀0
:/Β&)&∀#Σ≅∀%Β/0∃%−Β/−∋&Γ&∃ΕΧ

;
∗
0
0
−
%+
,.
7
(8
9
230Φ408∀/)09∀:/Γ&#.078)0()&#.0

Α&/6=∀&#∃)0Γ/−:0∃∀09∀%/0%−∃&∀#−Γ0
78);

!<−=∃/%0ς ?&#:&#.40780
:∀Β(9/#∃−∃&∀#0)(==∀%∃)0
&#/Ρ=/%&/#Β/:0)∀≅∃6−%/0
/#.&#//%)0�≅∀ΓΓ∀6&#.0−0
%−∃&∀#−Γ0:/)&.#0=%∀Β/))Χ

Μ∃(:/#∃)0()&#.0∃</0:/Β&)&∀#0
≅%−9/6∀%ϑ0≅∀ΓΓ∀60−09∀%/0
%−∃&∀#−Γ0:/)&.#0=%∀Β/))0
%/.−%:&#.0−%Β<&∃/Β∃(%−Γ0
−#−ΓΕ)&)0−#:0)Ε#∃</)&)Χ

!
∀
<
,∀
=
,.
7
(8
9
230Η405∀60∃∀0)(==∀%∃0−%Β<&∃/Β∃(%/0

/Α−Γ(−∃&∀#0()&#.07809∀:/Γ);
!<−=∃/%0Ω 709/∃<∀:0≅∀%0:/Β&)&∀#Σ

Β/#∃%&Β0−%Β<&∃/Β∃(%/0
/Α−Γ(−∃&∀#Χ

8!720&)0−#0−%Β<&∃/Β∃(%/0
/Α−Γ(−∃&∀#0−==%∀−Β<0∃<−∃0()/)0
−%Β<&∃/Β∃(%/0:/Β&)&∀#)0−)0
=%&9−%Ε0/Α−Γ(−∃&∀#0∃−%./∃)Χ0Λ∃0
9−ϑ/)0()/0∀≅0≅∀%Β/)0∃∀0
Β−=∃(%/0−#:0/Α−Γ(−∃/0∃</0
%−∃&∀#−Γ/0∋/<&#:0:/Β&)&∀#)Χ

proposed by Tyree and Akerman (Tyree and Akerman 2005). The idea was to

recover decisions after the fact, by identifying applied architectural patterns in

the architecture. Finding ways to recover decisions is also particularly important,

because architecture decisions were often not documented in the past and the peo-

ple who made the decisions are frequently not available for inquiry anymore. We

hypothesized that, compared to decision recovery with no particular focus, ar-

chitecture decision recovery is more efficient, if it focuses on identifying applied

architecture patterns. We conducted a controlled experiment with academics and

practitioners to test this hypothesis (see Chapter 5). The results of the experiment

show that a focus on patterns leads to higher quality of recovered decisions, but

not necessarily to higher quantity.

10.1. Answers to research questions and contributions 205

After finding out that patterns can be used to recover and describe architecture

decisions effectively, we started dealing with the problem how decision model-

ing approaches can be integrated with viewpoint-based architecture description,

while satisfying all stakeholder concerns in decision documentation. Therefore,

we developed a framework for architecture decisions, following the conventions

of ISO/IEC/IEEE 42010, the international standard for architecture description

(Chapter 6). The framework includes four viewpoints, a decision relationship

viewpoint, a decision chronology viewpoint, a decision stakeholder involvement

viewpoint, and a decision detail viewpoint. Each of the viewpoints was designed

to satisfy specific stakeholder concerns in architecture decisions, which were iden-

tified by means of a literature survey prior to the development of the viewpoints

(see Appendix B.1). With the exception of the stakeholder involvement view-

point, the framework was evaluated in an industrial case study (see Section 6.4).

The results show that decision views can be created with reasonable effort while

addressing many decision-related concerns. The conformance to ISO/IEC/IEEE

42010 allows to combine decision views with other viewpoint-based architecture

descriptions.

RQ 3: How to extend the AD modeling approach to satisfy concerns related to decision require-

ments traceability?

The decision framework, which was developed as a result of RQ2, did not suffi-

ciently address concerns related to the traceability between architecture decisions

and architecturally significant requirements. Architecturally significant require-

ments are a subset of all forces that influence architects when making decisions.

Therefore, instead of limiting the AD modeling approach to architecture signifi-

cant requirements, we decided to develop a solution that would allow for trace-

ability between architecture decisions and all types of decision forces.

As a result, we designed the decision forces viewpoint, which integrates with

the previously developed framework for architecture decisions and satisfies con-

cerns related to traceability between architecture decisions and all kinds of de-

cision forces (Chapter 7). The viewpoint was validated in a multiple-case study

with final-year software engineering students working in non- academic software

projects (Section 7.4). The study provided evidence that the viewpoint satisfies

decision-forces traceability concerns, while being well received by the study par-

ticipants.

RQ 4: Does modeling ADs using viewpoints lead to more rational ADs?

The decision framework, and the forces viewpoint as an extension to the frame-

work, satisfy typical stakeholder concerns in decision documentation and inte-

grate with viewpoint-based architecture description. In RQ 4 and RQ 5, we inves-

tigated if decision viewpoints provide support for architectural analysis, synthe-

sis, and evaluation. RQ 4 is primarily concerned with architectural analysis and

synthesis, while RQ 5 concerns architectural evaluation.

206 10. Conclusions and future work

To answer RQ 4, we conducted a comparative multiple-case study with four

groups of software engineering students in the final year of their studies (Chap-

ter 8). Half of the student groups used the decision detail viewpoint, the decision

relationship viewpoint, and the decision forces viewpoint from our framework to

model their decisions. We selected these three viewpoints, because we consid-

ered them particularly helpful for supporting architectural analysis and synthesis,

while the other viewpoints mainly serve documentation purposes.

We found out that particularly the relationship viewpoint and the decision forces

viewpoint provide strong support in the area of candidate solution evaluation

and selection, partial support for the management of architecturally significant

requirements, but no support for handling complexity or evaluating the viability

of a design option.

RQ 5: How to support architecture evaluation using AD models?

RQ 5 concerns the support of decision viewpoints for architecture evaluation. To

address RQ 5, we developed an architecture evaluation method that uses decision

viewpoints, particularly the decision relationship viewpoint and the forces view-

point, to support the evaluation process. In Chapter 9, we report on the method

called decision-centric architecture review (DCAR). DCAR is lightweight and it can

be performed during or after the design was finalized. In DCAR, architecture de-

cisions are evaluated taking all important forces of the stakeholders into account.

The goal is to understand the complete rationale behind decisions, before judging

their suitability and appropriateness in an architecture.

DCAR was developed in cooperation with Finish companies from the machine-

control system domain. First empirical evidence for the effectiveness and appli-

cability of DCAR was collected in interviews conducted with DCAR participants

after the evaluations of large industrial software systems.

10.2 Ongoing and future work

As suggested by the title of this dissertation, the work presented here can be seen as a

next step towards exploiting the full potential of explicit architecture decisions. In this

section, I outline areas for ongoing and future work remaining after this research project.

The section is divided according to the four parts in the main body of this dissertation:

understanding ADs, modeling ADs, supporting ADs, and evaluating ADs.

10.2.1 Understanding architecture decisions

We conducted studies with inexperienced software engineers on the one hand and pro-

fessional architects on the other hand, to understand their decision-making processes.

Additionally to the work reported in this dissertation, we carried out another large scale

10.2. Ongoing and future work 207

questionnaire-based survey with software engineers from the industry and from uni-

versities across Europe, who have different years of industrial experience and different

levels of education (university, or university of applied science). The goal of this study

was to understand the influence of working experience and educational background on

the way decisions are made. A preliminary evaluation of the study results showed that

the educational background has no significant impact, but experience seems to have a

major influence on the decision-making process. The more experience, the more atten-

tion is payed to prioritizing requirements, comprehensive exploration of the solution

space, reflection on pros and cons of candidate solutions, and understanding and re-

garding dependencies between architecture decisions. The analysis and interpretation

of the study results are still in progress.

10.2.2 Modeling architecture decisions

The framework for architecture decisions, consisting of the five viewpoints described

in Chapters 6 and 7, is a self-contained framework, which can be used out-of-the-box

to model architecture decisions in different ways to satisfy different decision-related

concerns. One concern, however, is not entirely addressed by the viewpoints in the

framework: What decisions influence decision D, or architecture element E? (Concern C12

in Table 6.1). The first part of the concern, about the mutual influence of decisions, is

covered by the decision relationship viewpoint; the second part about the influence of

an architecture decision on other architectural elements (e.g. components and connec-

tors) is not addressed by our viewpoints. In order to achieve this type of traceability

between architecture decisions and other architectural elements, decision views have to

be combined with other architectural views, e.g. the ones described by Clements et al.

(Clements et al. 2010). The conformance to ISO/IEC/IEEE 42010, in principle allows

to integrate decision viewpoints with such viewpoints. We plan to investigate how the

set of viewpoints, we proposed, can be specifically integrated with other viewpoints,

in order to achieve traceability and maintain consistency between decisions and other

architectural description elements. Additionally, we are currently investigating possi-

bilities to store information about related design decisions directly in source code.

Another important future work area, related to decision modeling, is the establish-

ment of a tool, or a tool chain that supports the creation of decision views according to

our viewpoint definitions. Throughout the entire research project, we have been devel-

oping a prototype implementation of such a tool, called Open Decision Repository (please

refer to Section 6.6 for more details). Currently, the Open Decision Repository does not

support the decision stakeholder involvement viewpoint and it only partially supports

the decision forces viewpoint. We plan to integrate these viewpoints into the tool and

validate it in industrial studies.

208 10. Conclusions and future work

10.2.3 Supporting architecture decisions

As described in Section 10.1, creating decision views according to our framework only

partially supports a rational decision-making process. We see additional potential for

improving the reasoning process of particularly inexperienced software engineers, by

creating practice-oriented guidelines for decision-making from the best practices, we

identified in Section 4.6. These guidelines could for instance be formulated using the

pattern format (see (Buschmann et al. 2007) for a description of patterns and pattern

languages), which is a well-known and accessible format for software engineering prac-

titioners.

Additionally, as suggested in Section 8, we plan to collect decision forces typical for

particular domains. Collecting typical domain-specific forces can be beneficial in mul-

tiple ways: first, they can support architects in identifying the forces that are relevant

to specific architectural problems; second, they can reduce the effort and maximize the

quality of the documentation of forces, because a part of the forces does not have to be

reformulated for each individual software project. Architects can reference the typical

domain-specific forces in the system-specific forces documentation.

10.2.4 Evaluating architecture decisions

DCAR is a promising approach to lightweight and efficient architecture evaluation.

Compared to other architecture evaluation methods, we consider DCAR as particularly

suitable for agile software development, because it allows for incremental architecture

evaluation. We plan to conduct empirical studies to further explore and validate the

suitability of DCAR in agile projects. Furthermore, we are optimizing DCAR for the use

in distributed software projects with multiple industrial partners involved in a project.

Appendix A

Appendix to Chapter 5

210 A. Appendix to Chapter 5

A.1 Raw data - quality ratings and decision types

Table A.1 lists all decision documented by the participants of the experiment. The first

column denotes the execution group, i.e., the execution at the EuroPLoP conference, or

the execution at the software architecture workshop. Column two refers to the exper-

imental group. The column called Part. contains the number of the participant, who

documented the decision. The next column contains a unique identifier of the deci-

sion. The last three column contain the results of the quality ratings given by the two

analysts (column Al.1, and Al.2), as well the calculated average of these two ratings

(column Avg.).

Table A.1: Quality ratings and decision types

Execution Grp. Group Part. Dec.No Type Al. 1 Al. 2 Avg.

EuroPLoP Control 51 15639 Pattern 3 1 2

EuroPLoP Control 51 31219 Other 1 2 1.5

EuroPLoP Control 51 35295 Other 2 1 1.5

EuroPLoP Control 51 57732 Other 1 1 1

EuroPLoP Control 51 58823 Pattern 3 1 2

EuroPLoP Control 52 19704 Other 1 1 1

EuroPLoP Control 52 21539 Other 1 1 1

EuroPLoP Control 52 23027 Other 1 1 1

EuroPLoP Control 52 24025 Other 3 1 2

EuroPLoP Control 52 28014 Other 3 2 2.5

EuroPLoP Control 52 29573 Other 1 1 1

EuroPLoP Control 52 30292 Other 2 1 1.5

EuroPLoP Control 52 33148 Other 3 1 2

EuroPLoP Control 52 41748 Other 1 1 1

EuroPLoP Control 52 42404 Other 2 1 1.5

EuroPLoP Control 52 45167 Other 3 1 2

EuroPLoP Control 52 51001 Other 2 1 1.5

EuroPLoP Control 52 51331 Pattern 2 1 1.5

EuroPLoP Control 52 55931 Other 3 1 2

EuroPLoP Control 52 56835 Other 3 1 2

EuroPLoP Control 52 63345 Other 1 1 1

EuroPLoP Control 52 63653 Other 1 2 1.5

EuroPLoP Control 52 69428 Pattern 2 1 1.5

EuroPLoP Control 52 76435 Other 2 1 1.5

EuroPLoP Control 53 15154 Pattern 5 3 4

EuroPLoP Control 53 23289 Pattern 4 2 3

EuroPLoP Control 53 25919 Pattern 5 2 3.5

EuroPLoP Control 53 35942 Other 5 2 3.5

EuroPLoP Control 53 41417 Pattern 5 2 3.5

EuroPLoP Control 53 46622 Pattern 4 3 3.5

A.1. Raw data - quality ratings and decision types 211

Table A.1 – continued from previous page

Execution Grp. Group Part. Dec.No Type Al. 1 Al. 2 Avg.

EuroPLoP Control 53 51204 Pattern 5 2 3.5

EuroPLoP Control 53 68678 Other 4 2 3

EuroPLoP Control 54 30924 Other 4 3 3.5

EuroPLoP Control 54 41044 Other 4 3 3.5

EuroPLoP Control 54 52975 Pattern 4 3 3.5

EuroPLoP Control 54 53685 Pattern 5 2 3.5

EuroPLoP Control 54 64601 Pattern 5 4 4.5

EuroPLoP Control 58 13969 Other 2 1 1.5

EuroPLoP Control 58 14458 Other 2 2 2

EuroPLoP Control 58 18775 Other 3 1 2

EuroPLoP Control 58 21221 Other 2 1 1.5

EuroPLoP Control 58 26497 Other 1 2 1.5

EuroPLoP Control 58 26994 Pattern 3 1 2

EuroPLoP Control 58 34902 Pattern 2 1 1.5

EuroPLoP Control 58 35617 Other 1 1 1

EuroPLoP Control 58 44214 Other 1 1 1

EuroPLoP Control 58 44467 Other 1 2 1.5

EuroPLoP Control 58 47099 Other 2 2 2

EuroPLoP Control 58 54821 Pattern 2 2 2

EuroPLoP Control 58 73170 Other 2 1 1.5

EuroPLoP Control 60 15787 Other 4 3 3.5

EuroPLoP Control 60 25333 Other 2 2 2

EuroPLoP Control 60 33726 Other 3 1 2

EuroPLoP Control 60 33899 Other 4 1 2.5

EuroPLoP Control 60 53821 Other 4 1 2.5

EuroPLoP Pattern 55 21906 Pattern 3 2 2.5

EuroPLoP Pattern 55 26522 Other 4 3 3.5

EuroPLoP Pattern 55 26637 Other 4 2 3

EuroPLoP Pattern 55 29399 Other 4 2 3

EuroPLoP Pattern 55 35177 Other 4 2 3

EuroPLoP Pattern 55 42037 Other 4 2 3

EuroPLoP Pattern 55 58456 Other 3 2 2.5

EuroPLoP Pattern 55 66133 Pattern 4 3 3.5

EuroPLoP Pattern 55 77736 Other 5 2 3.5

EuroPLoP Pattern 56 19520 Other 5 2 3.5

EuroPLoP Pattern 56 29339 Other 4 1 2.5

EuroPLoP Pattern 56 31499 Other 4 3 3.5

EuroPLoP Pattern 56 44253 Pattern 4 3 3.5

EuroPLoP Pattern 56 46178 Pattern 3 3 3

EuroPLoP Pattern 56 68057 Pattern 3 2 2.5

EuroPLoP Pattern 56 74785 Other 2 2 2

EuroPLoP Pattern 57 14562 Pattern 1 2 1.5

212 A. Appendix to Chapter 5

Table A.1 – continued from previous page

Execution Grp. Group Part. Dec.No Type Al. 1 Al. 2 Avg.

EuroPLoP Pattern 57 21778 Pattern 4 1 2.5

EuroPLoP Pattern 57 25077 Pattern 3 2 2.5

EuroPLoP Pattern 57 31053 Pattern 3 2 2.5

EuroPLoP Pattern 57 36371 Pattern 4 2 3

EuroPLoP Pattern 57 47861 Pattern 4 2 3

EuroPLoP Pattern 57 49896 Other 4 2 3

EuroPLoP Pattern 57 58724 Pattern 4 2 3

EuroPLoP Pattern 57 59375 Pattern 3 1 2

EuroPLoP Pattern 57 64255 Pattern 2 2 2

EuroPLoP Pattern 57 70273 Pattern 3 2 2.5

EuroPLoP Pattern 57 71108 Pattern 4 1 2.5

EuroPLoP Pattern 57 71172 Pattern 4 2 3

EuroPLoP Pattern 57 72293 Other 3 2 2.5

EuroPLoP Pattern 59 14001 Pattern 3 2 2.5

EuroPLoP Pattern 59 16418 Pattern 3 2 2.5

EuroPLoP Pattern 59 16548 Pattern 4 1 2.5

EuroPLoP Pattern 59 18326 Pattern 4 3 3.5

EuroPLoP Pattern 59 19641 Pattern 2 2 2

EuroPLoP Pattern 59 27679 Pattern 3 2 2.5

EuroPLoP Pattern 59 34381 Pattern 4 2 3

EuroPLoP Pattern 59 36854 Pattern 3 2 2.5

EuroPLoP Pattern 59 51205 Pattern 5 2 3.5

EuroPLoP Pattern 59 70245 Pattern 3 1 2

EuroPLoP Pattern 59 76602 Pattern 1 2 1.5

EuroPLoP Pattern 61 22955 Pattern 3 1 2

EuroPLoP Pattern 61 50589 Pattern 3 2 2.5

EuroPLoP Pattern 61 50699 Pattern 3 2 2.5

EuroPLoP Pattern 61 60055 Pattern 2 2 2

EuroPLoP Pattern 61 62783 Pattern 3 2 2.5

EuroPLoP Pattern 61 69068 Pattern 2 1 1.5

SWA Workshop Control P101 11958 Other 5 3 4

SWA Workshop Control P101 20924 Other 4 1 2.5

SWA Workshop Control P101 37389 Other 5 5 5

SWA Workshop Control P101 46596 Other 4 2 3

SWA Workshop Control P101 70401 Pattern 4 3 3.5

SWA Workshop Control P104 17130 Other 4 4 4

SWA Workshop Control P104 53026 Other 4 2 3

SWA Workshop Control P104 61606 Other 4 1 2.5

SWA Workshop Control P104 73623 Pattern 5 2 3.5

SWA Workshop Control P104 95115 Pattern 3 3 3

SWA Workshop Control P108 26170 Other 5 2 3.5

SWA Workshop Control P108 34797 Other 3 1 2

A.1. Raw data - quality ratings and decision types 213

Table A.1 – continued from previous page

Execution Grp. Group Part. Dec.No Type Al. 1 Al. 2 Avg.

SWA Workshop Control P108 48667 Other 4 2 3

SWA Workshop Control P108 53246 Other 4 2 3

SWA Workshop Control P108 80735 Other 5 5 5

SWA Workshop Control P108 88971 Pattern 3 3 3

SWA Workshop Control P109 23445 Other 2 2 2

SWA Workshop Control P109 33167 Other 3 1 2

SWA Workshop Control P109 38131 Other 2 1 1.5

SWA Workshop Control P109 48170 Pattern 2 2 2

SWA Workshop Control P109 79232 Pattern 1 1 1

SWA Workshop Control P109 81928 Other 2 1 1.5

SWA Workshop Control P109 87890 Other 3 3 3

SWA Workshop Control P109 93340 Other 1 1 1

SWA Workshop Control P112 34730 Pattern 2 2 2

SWA Workshop Control P112 57609 Pattern 3 1 2

SWA Workshop Control P112 59805 Other 2 2 2

SWA Workshop Control P112 68209 Other 4 2 3

SWA Workshop Control P112 76889 Pattern 3 1 2

SWA Workshop Control P112 97764 Pattern 2 1 1.5

SWA Workshop Control P113 38562 Other 1 1 1

SWA Workshop Control P113 51690 Pattern 1 1 1

SWA Workshop Control P113 53126 Other 1 1 1

SWA Workshop Control P113 70648 Other 1 1 1

SWA Workshop Control P113 81229 Pattern 1 1 1

SWA Workshop Control P116 33889 Other 1 1 1

SWA Workshop Control P116 53663 Other 1 1 1

SWA Workshop Control P116 64769 Other 1 1 1

SWA Workshop Control P116 71283 Pattern 1 1 1

SWA Workshop Control P116 80071 Other 1 1 1

SWA Workshop Control P117 66942 Pattern 1 1 1

SWA Workshop Control P117 81042 Other 3 2 2.5

SWA Workshop Control P120 32371 Other 4 2 3

SWA Workshop Control P120 49144 Other 2 1 1.5

SWA Workshop Control P125 25968 Other 5 3 4

SWA Workshop Pattern P102 14837 Pattern 4 2 3

SWA Workshop Pattern P102 47817 Pattern 2 1 1.5

SWA Workshop Pattern P102 75306 Other 2 2 2

SWA Workshop Pattern P102 92796 Other 3 1 2

SWA Workshop Pattern P103 21416 Pattern 4 3 3.5

SWA Workshop Pattern P103 26721 Pattern 4 3 3.5

SWA Workshop Pattern P103 53077 Pattern 3 2 2.5

SWA Workshop Pattern P103 79679 Other 3 2 2.5

SWA Workshop Pattern P105 34596 Pattern 3 1 2

214 A. Appendix to Chapter 5

Table A.1 – continued from previous page

Execution Grp. Group Part. Dec.No Type Al. 1 Al. 2 Avg.

SWA Workshop Pattern P105 73625 Pattern 3 2 2.5

SWA Workshop Pattern P105 79704 Pattern 4 1 2.5

SWA Workshop Pattern P106 31527 Pattern 1 1 1

SWA Workshop Pattern P106 46146 Pattern 2 2 2

SWA Workshop Pattern P106 65149 Pattern 2 1 1.5

SWA Workshop Pattern P106 75358 Pattern 2 1 1.5

SWA Workshop Pattern P110 37008 Other 3 3 3

SWA Workshop Pattern P110 61530 Other 5 3 4

SWA Workshop Pattern P111 14680 Pattern 3 2 2.5

SWA Workshop Pattern P111 19077 Pattern 4 3 3.5

SWA Workshop Pattern P111 27818 Pattern 3 3 3

SWA Workshop Pattern P111 33776 Other 2 2 2

SWA Workshop Pattern P111 44350 Pattern 2 1 1.5

SWA Workshop Pattern P111 67646 Other 5 5 5

SWA Workshop Pattern P111 86855 Pattern 2 1 1.5

SWA Workshop Pattern P111 90696 Pattern 2 1 1.5

SWA Workshop Pattern P114 23961 Pattern 3 2 2.5

SWA Workshop Pattern P114 41389 Pattern 3 2 2.5

SWA Workshop Pattern P114 59052 Pattern 4 2 3

SWA Workshop Pattern P114 76798 Other 1 1 1

SWA Workshop Pattern P115 41047 Pattern 4 1 2.5

SWA Workshop Pattern P115 57170 Pattern 3 2 2.5

SWA Workshop Pattern P115 70149 Pattern 3 2 2.5

SWA Workshop Pattern P122 14967 Pattern 2 1 1.5

SWA Workshop Pattern P122 56783 Pattern 5 4 4.5

SWA Workshop Pattern P122 80909 Pattern 4 2 3

SWA Workshop Pattern P122 90464 Pattern 5 2 3.5

SWA Workshop Pattern P123 10498 Pattern 3 2 2.5

SWA Workshop Pattern P123 16680 Pattern 5 3 4

SWA Workshop Pattern P123 22025 Pattern 4 3 3.5

SWA Workshop Pattern P123 23757 Pattern 4 3 3.5

SWA Workshop Pattern P123 57463 Pattern 3 2 2.5

SWA Workshop Pattern P123 66453 Pattern 4 2 3

SWA Workshop Pattern P123 83213 Pattern 2 1 1.5

A.2 Typical decisions recovered by the participants

In the following, we present typical examples of decisions recovered by the participants.

The first five decisions are pattern decisions, the latter five are of other types.

A.2. Typical decisions recovered by the participants 215

Figure A.1: Example 1 for pattern type decisions

216 A. Appendix to Chapter 5

Figure A.2: Example 2 for pattern type decisions

A.2. Typical decisions recovered by the participants 217

p n u b
41417

d d on

o n

Figure A.3: Example 3 for pattern type decisions

218 A. Appendix to Chapter 5

p n u b
66133

u

n

d

d d on

o n

 v,

 , » * * » d3 , v 1

 * — y . o«—* « *, * , , * 3

 , * * g 3 — v o . *

 8

» . .

. . o k .

.
 —

7

Figure A.4: Example 4 for pattern type decisions

A.2. Typical decisions recovered by the participants 219

p n u b

u

51204

n

d d on

o n

Figure A.5: Example 5 for pattern type decisions

220 A. Appendix to Chapter 5

p n u b

d

d d on

o n

Figure A.6: Example 1 for other type decisions

A.2. Typical decisions recovered by the participants 221

p n u b

n

d

c

d

d d on

o n

Figure A.7: Example 2 for other type decisions

222 A. Appendix to Chapter 5

p n u b

o

n

 , 6
p 2

d

»

d d on n »

o n

Figure A.8: Example 3 for other type decisions

A.2. Typical decisions recovered by the participants 223

Figure A.9: Example 4 for other type decisions

224 A. Appendix to Chapter 5

Figure A.10: Example 5 for other type decisions

Appendix B

Appendix to Chapter 6

226 B. Appendix to Chapter 6

B.1 Concern analysis

Table B.1 shows the outcome of the concern analysis described in Section 6.2. Each

row contains an architectural knowledge management (AKM) use case elicited from

the literature (Liang et al. 2009, Kruchten et al. 2006, Jansen et al. 2007), the concerns

derived from these use cases (please refer to Table 6.1 for a description of the concerns),

and typical stakeholders having those concerns. Additionally, the table indicates how

the concerns were derived (column DER). The table is ordered by the publications, from

which the use cases were elicited.

The following activities were used to derive concerns:

• Derive (DER): A concern, or a set of concerns was derived from a decision-related

use case.

• Project (PRJ): A use case that does not directly involve architecture decisions was

projected to architecture decision concerns.

• Complement (COM): A new concern was introduced to complement concerns

derived from a use case.

The analysis was done by the three authors. In cases, where the three authors iden-

tified different concerns, a discussion took place to reach consensus.

Table B.1: Decision concerns derived from use cases

Use Case Derived

concerns

DER Typical stake-

holders

If we want to do a change in an element, what

are the elements impacted (decisions, and ele-

ments of design). (Kruchten et al. 2006)

C13 PRJ Architects

Find out if multiple systems can be combined

(migrated) (Kruchten et al. 2006)

C15, C14,

C9, C8

PRJ, COM Architects, Re-

viewers

From a given perspective (such as security,

safety, reuse, etc.) what are the knowledge el-

ements involved? (Kruchten et al. 2006)

C6 PRJ Architects, Re-

viewers, Cus-

tomers, Require-

ments Engineers

You want to integrate multiple systems and

decide whether they fit. The tool would help

answering questions about integration strate-

gies. (Kruchten et al. 2006)

C15, C14,

C9, C8

PRJ, COM Architects, Re-

viewers

What pieces of Architectural Knowledge have

been added or modified since the last review?

(Kruchten et al. 2006)

C21, C22 PRJ, COM Architects, Re-

viewers

B.1. Concern analysis 227

Table B.1 – continued from previous page

Use Case Derived

concerns

Derivation

Activity

Typical stake-

holders

The architect makes sure that all the depen-

dencies of removed AK (i.e., the consequences

of an architecture decision) have been re-

moved as well. (Kruchten et al. 2006)

C11, C22,

C8

PRJ, COM Architects, Re-

viewers

What pieces of Architectural Knowledge have

been added or modified since the last review?

(Kruchten et al. 2006)

C21 PRJ Architects, Re-

viewers

Over a time line, find what the sequence of de-

sign decisions has been. (Kruchten et al. 2006)

C20 DER Architects, Re-

viewers, New

Project Members

Identify decisions being hubs (god decisions).

(Kruchten et al. 2006)

C10, C12 DER,

COM

Architects, Re-

viewers

Identify circular dependencies. (Kruchten

et al. 2006)

C10 DER Architects, Re-

viewers

Identify decisions that gain weight over time

and are more difficult to change or remove.

(Kruchten et al. 2006)

C10, C21 DER,

COM

Architects, Re-

viewers

Identify the stakeholder who seems to have

the most “weight” on the decisions, and who

therefore maybe the one that could be most af-

fected by the future evolution of the system.

(Kruchten et al. 2006)

C16, C18,

C19, C17

DER,

COM

Architects, Re-

viewers, Manager

Identify who are the stakeholders whose

changes of mind are doing the most damage

to the system. (Kruchten et al. 2006)

C18, C21,

C22

PRJ, COM Architects, Re-

viewers, Man-

agers

Identify patterns in the decision graphs that

can be a useful fashion and lead to guidelines

for the architects. (Kruchten et al. 2006)

C23, C5 DER,

COM

Architects, Re-

viewers, Domain

Experts

Trace between various AK elements, e.g. de-

sign decisions, rationale, and design. (Liang

and Avgeriou 2009)

C11, C6,

C4, C3,

C19, C5,

C17

PRJ, COM Architects, Re-

viewers, Cus-

tomers, Require-

ments Engineers,

New Project

Members

The reviewer performs a critical evaluation of

the AK, e.g. to make sure that requirements

have been satisfied in the architecture design.

(Liang and Avgeriou 2009)

C6, C7, C4,

C3, C2

PRJ, COM Architects Re-

viewers, Cus-

tomer, New

Project Members

Perform an evaluation of architectural knowl-

edge. (Liang and Avgeriou 2009)

C4, C3, C5 PRJ, COM Architects, Re-

viewers, Cus-

tomers, New

Project Members

228 B. Appendix to Chapter 6

Table B.1 – continued from previous page

Use Case Derived

concerns

Derivation

Activity

Typical stake-

holders

The architect evaluates when the architecture

can be considered as finished, complete, and

consistent, e.g. verify whether a system con-

forming to the architecture can be made or

bought. (Liang and Avgeriou 2009)

C6, C7, C9,

C8, C2

PRJ, COM Architects, Re-

viewers

Browse architectural knowledge dependen-

cies. (Liang and Avgeriou 2009)

C10 PRJ Architects, Re-

viewers

Browse architectural knowledge traces.

(Liang and Avgeriou 2009)

C11, C16,

C12, C6,

C4, C8,

C19, C5,

C17

PRJ, COM Architects, Re-

viewers, Cus-

tomers, Managers

Understand the rationale of a design decision.

(Liang and Avgeriou 2009)

C3, C5 DER,

COM

Architects, Re-

viewers, Cus-

tomers, New

Project Members

Distill specific knowledge from a system into

general knowledge (e.g. architecture pattern)

that can be reused in future systems. (Liang

and Avgeriou 2009)

C23, C5 DER,

COM

Architects, Re-

viewers, Domain

Experts

Produce a consistent subset of Architectural

Knowledge to prime the pump for a new sys-

tem (reuse Architectural Knowledge). (Liang

and Avgeriou 2009)

C23, C5 DER,

COM

Architects, Re-

viewers, Domain

Experts

B.2. Decision views from the case study 229

B.2 Decision views from the case study

Figures B.1, B.2, and B.3 contain details of decision views created during the case study.

<<decided>>

Shared Repository

<<decided>>

Postgres

<<discarded>>

MySQL

<<decided>>

XXXXXXXX <<decided>>

XXXXXXX

<<discarded>>

XXX

<<discarded>>

XXXXXXXX

<<idea>>

XX

<<decided>>

Microsoft OS XXXXX

<<discarded>>

Linux OS on VMs

<<decided>>

Windows XP VM OS

<<tentative>>

Windows Vista

<<tentative>>

WIndows 7

<<decided>>

XXXXXXXXXXXX

<<discarded>>

X

<<decided>>

Centos for Herder

<<decided>>

Linux for Herders

<<decided>>

Linux for DB Server

<<discarded>>

XXXXXXXXX

<<discarded>>

XXXXXXXXXX

<<decided>>

XXXX

<<discarded>>

XXXXX

<<discarded>>

XXXXXX

<<decided>>

CherryPy

<<decided>>

Psycopg2

<<discarded>>

Mod_Python

<<discarded>>

Twisted

system

<<idea>>

XXXXXXX

<<alternative for>>

<<depends on>>

<<alternative for>>

<<depends on>>

<<alternative for>>

epends on>>

<<depends on>>

<<depends on>>

<<caused by>>

<<excluded by>>

<<depends on>>

<<alternative for>>

<<caused by>>

<<depends on>>

<<depends on>>

<<caused by>>
<<alternative for>>

<<caused by>>

<<depends o

<<depends on>>

<<alternative for>>

<<depends on>>

<<depends on>>

<<depends on>>

<<depends on>>

<<alternative for>>

<<alternative for>>

<<alternative for>>

<<depends on>>

<<caused b

<<alternative for>>

<<caused by>>

Figure B.1: Partially censored excerpt from a relationship view

230 B. Appendix to Chapter 6

<<
St

ab
le

>>

Se
rv

ic
e

Si
m

ul
at

io
n

Fe
bu

ra
ry

 2
01

0

St
ar

t

N
ov

em
be

r 2
00

9

<<
de

ci
de

d>
>

Sh
ar

ed
 R

ep
os

ito
ry

<<
de

ci
de

d>
>

Po
st

gr
es

<<
de

ci
de

d>
>

Li
nu

x
fo

r D
B

 S
er

ve
r

<<
de

ci
de

d>
>

C
en

tO
S

 fo
r D

B
 S

er
ve

r

<<
de

ci
de

d>
>

M
ic

ro
so

ft
O

S
 X

XX
XX

<<
de

ci
de

d>
>

W
in

do
w

s
XP

 V
M

 O
S

<<
di

sc
ar

de
d>

>

M
yS

Q
L

<<
di

sc
ar

de
d>

>

Li
nu

x
O

S
 o

n
VM

s

<<
te

nt
at

iv
e>

>

W
in

do
w

s
Vi

st
a

<<
te

nt
at

iv
e>

>

W
In

do
w

s
7

<<
de

ci
de

d>
>

XX
XX

XX
XX

<<
di

sc
ar

de
d>

>

XX
XX

XX
XX

X

<<
di

sc
ar

de
d>

>

XX
XX

XX
XX

XX

<<
de

ci
de

d>
>

XX
XX

XX
XX

XX
XX

<<
di

sc
ar

de
d>

>

X

<<
de

ci
de

d>
>

XX
XX

XX
X

<<
di

sc
ar

de
d>

>

XX
XX

XX
XX

<<
di

sc
ar

de
d>

>

XX
X

<<
id

ea
>>

XX

<<
de

ci
de

d>
>

Li
nu

x
fo

r H
er

de
rs

<<
de

ci
de

d>
>

C
en

to
s

fo
r H

er
de

r

<<
de

ci
de

d>
>

Li
nu

x
fo

r S
an

dn
et

 C
on

tro
lle

r

<<
de

ci
de

d>
>

C
en

to
s

fo
r S

an
dn

et
 C

on
tro

lle
r

<<
de

ci
de

d>
>

Ba
sh

 S
cr

ip
ts

 to
 c

on
tro

l h
er

de
rs

<<
de

ci
de

d>
>

SS
H

<<
de

ci
de

d>
>

YY
YY

YY
Y

<<
de

ci
de

d>
>

R
ou

te
r

fo
r i

nt
er

ne
t a

cc
es

s

<<
de

ci
de

d>
>

Li
nu

x
fo

r r
ou

te
r

<<
de

ci
de

d>
>

Py
th

on
 B

rid
ge

<<
de

ci
de

d>
>

YY
YY

<<
de

ci
de

d>
>

W
eb

-A
pp

lic
at

io
n

fo
r

C
on

fig
ur

at
io

n

<<
de

ci
de

d>
>

Py
th

on
 a

s
PL

 fo
r W

eb
Ap

p

<<
di

sc
ar

de
d>

>

Tw
is

te
d

<<
de

ci
de

d>
>

C
he

rry
Py

<<
di

sc
ar

de
d>

>

M
od

_P
yt

ho
n

<<
de

ci
de

d>
>

Ps
yc

op
g2

Figure B.2: Partially censored excerpt from a chronology view

B.3. Viewpoint definitions and correspondence rules 231

!∀#∃ !∀#∃%&∋#

%&∋∋∃()∗+∃∋,−.(/∗01∃∋2−3∃∗1−#&4∀)−.(∗556∃4∃∀,∃778

%&∋∋∃()∗1)∀)∃ 9∃3−:∃:

9∃3−,−.(∗;∋.&< 9∀)∀=∀,∃∗1∃∋2∃∋

>∋.=4∃#?≅,,&∃ Α∗9ΒΧ1∗∆∀,∗).∗=∃∗3∆.,∃(∗).∗−#<4∃#∃()∗)∆∃∗,∆∀∋∃:∗∋∃<.,−).∋ΕΦ

9∃3−,−.(Γ,∃∗>.,)Η∋∃1Ιϑ

∆))<Κ??ΛΛΛΦ<.,)Η∋∃,Μ4Φ.∋Η

Α4)∃∋(∀)−2∃, 5ΧΕ1Ιϑ7

Α∋Η&#∃(), ≅>Ν6∗:∀)∀)Ε<∃∗Ο.∋∗,).∋−(Η∗≅>∗∀:∋∃,,∃,Π∗Η..:∗∃Θ<∃∋−∃(3∃∗Ο∋.#∗<∋−.∋∗<∋.Ρ∃3),∗

∋∃Η∀∋:−(Η∗<∃∋Ο.∋#∀(3∃Π∗∃Θ<∃∋)−,∃∗−(∗∀:#−(−,)∋∀)−.(∗∀(:∗3.(Ο−Η&∋∀)−.(∗

<∋∃,∃()Π∗∃Θ)∃(:∀=4∃∗0>ϑ∗Ο&(3)−.(,Π∗(∃Λ∗:∀)∀∗)Ε<∃,∗∃)3Φ8

6∃4∀)∃:∗:∃3−,−.(, ! >,Ε3.<ΗΣ∗55:∃<∃(:,∗.(77∗Τ∆−,

! Τ∆−,∗553∀&,∃:∗=Ε77∗1∆∀∋∃:∗6∃<.,−).∋Ε

! %∃()Υ1∗553∀&,∃:∗=Ε77∗Τ∆−,

! Β∀,∆∗,3∋−<),∗).∗3.()∋.4∗∆∃∋:∃∋,∗553∀&,∃:∗=Ε77∗Τ∆−,

6∃4∀)∃:∗∋∃Μ&−∋∃#∃(),

ς−,).∋Ε

(∃)∗∋+∀,−∋& ./∃0∀1 (∃)∃2# 3∃∋&)∃0∀1

ΩΩΩ∗

55Α∋3∆−)∃3)77

55>∋.<.,∃77 55Τ∃()∀)−2∃77 1∃∋2−3∃∗1−#&4∀)−.(

ΩΩΩ∗

55Α∋3∆−)∃3)77

55+∀4−:∀)∃77 559∃3−:∃:77 1∃∋2−3∃∗1−#&4∀)−.(

Figure B.3: A single decision from the case study in the detail view

B.3 Viewpoint definitions and correspondence rules

B.3.1 Decision framework metamodel

Figure B.4 shows a shared metamodel for the decision viewpoint elements. The meta-

model is not specific to one particular viewpoint; instead, it is common to all decision

viewpoints introduced in Chapter 6. Elements with a gray background map to the cor-

responding elements in Figures 2 and 4 of ISO/IEC/IEEE 42010 (ISO/IEC/IEEE 2011).

Therefore, the architecture description elements used in the architecture decision view-

points (white background) integrate seamlessly into the conceptual framework of the

standard.

A shared metamodel, together with well-defined constraints and correspondence

rules, can ensure consistency among the views from different viewpoints. The intra-

model constraints will be defined later, as a part of the viewpoint definitions. Addition-

ally, inter-model and inter-view correspondence rules are defined to ensure consistency

between the views.

232 B. Appendix to Chapter 6

Architecture Decision

Relationship

State

Relationship Type

Iteration

Iteration

Endpoint

Stakeholder

Action

System

Concern

Architecture

Rationale

Group

1

1..*

1..*

0..*

10..*

1

0..*

0..1

0..*

0..*

1..*

0..*

1..*

0..*

1

0..*

1

0..*

1..*

1

1

1..*

1..*

1..*

0..*

has

parent

belongs to
justifies

previous Version

pertains to

concerns

performed by

changed in
has

has

has

source target

Figure B.4: Metamodel of decision viewpoints

B.3.2 Decision relationship viewpoint

As mentioned in Section 6.3, the relationship viewpoint describes relationships between

architectural design decisions. Table 6.3 shows the concerns framed by the viewpoint,

as related to the mentioned stakeholders.

Model kind

Architecture Decision

Relationship

State

Relationship Type

0..*

1

0..* 1

1

0..*

1

0..*

Architecture Decision

Group

1..*

0..*

role B

0..*

1

role A

0..*

1

0..*

has
10..*

has

1

0..*

0..1belongs to

0..*

1..*

parent

0..1

0..*

Figure B.5: Metamodel of decision relationship viewpoint

Figure B.5 shows a metamodel for the relationship viewpoint. It documents the

model kind, which presents the conceptual elements for architecture models that ad-

B.3. Viewpoint definitions and correspondence rules 233

here to it. It uses the notation for class diagrams from the Unified Modeling Language

(UML). One relationship view can contain multiple relationship models of this model

kind; however, every decision is represented only once in a view.

An architecture decision is identified by a short name. Although an architecture

decision has potentially many versions, one for every state change, the relationship view

contains only the current versions of the decisions shown. A decision has a state, which

Figure B.6: UML diagram for state changes of architecture decisions

can be freely chosen depending on the needs of the respective development project.

All possible states must be clearly specified prior to being used. With one exception,

we adopt the decision states from Kruchten’s ontology of architectural design decisions

(Kruchten 2004a):

• Idea: This state is used for decisions which are just loose ideas that architects

want to document so that they don’t get lost. If a decision has the idea-state, then

it cannot have any relationships to other decisions.

• Tentative: This state is used for decisions that are seriously considered by the

architect.

• Decided: The decision reflects the current position of the architect and must be

consistent with other “decided decisions”.

234 B. Appendix to Chapter 6

• Approved: This state is reached, if a previously decided decision has been con-

firmed; for instance during a review or a customer meeting.

• Challenged: This state is applicable, if a stakeholder raises issues about a previ-

ously decided or approved decision.

• Rejected: A rejected decision is a decision that was challenged and has been re-

moved from the current iteration of the architecture. For the sake of simplicity, we

subsume Kruchten’s Obsolesced-state under this state as well.

In addition to Kruchten’s states, we define the state discarded. A discarded decision is

a formerly tentative decision that was not decided, for instance a design option that

was not chosen among the considered alternatives. Figure B.6 shows the decision states

along with the respective state transitions.

Decisions participate in relationships. Every relationship refers to exactly two de-

cisions, one source and one target decision. For instance, decision1 (source) replaces

decision2 (target). For the sake of simplicity, the meta model only takes binary relation-

ships into account, although in some cases n-ary relationships between decisions may

be useful.

A relationship has a specific relationship type, which again can be freely chosen, but

should be clearly specified. We define the following relationship types:

• Depends on: If decision B depends on decision A, then B cannot be decided or

approved without A being in that state. Expressed the other way round, A is a

prerequisite for B. This relationship includes Kruchten’s cases in which decision B

is part of a decomposition of A, or if B is comprised by A.

• Caused by: If decision B is caused by decision A, then B would not have been

decided without A being decided. This relationship expresses causality, without

imposing further constraints on the decisions.

• Is excluded by: Decision A is excluded by decision B, if A cannot be decided as

long as decision B is decided. In other words, decision B prevents decision A.

• Replaces: Decision B replaces decision A, if B was put into practice instead of A.

• Is alternative for: If decision B is an alternative for decision A, then B was con-

sidered as design option instead of A. Two decisions are alternatives when they

address a significant common set of requirements.

Table B.2 shows a mapping of our types to the relationship types defined in

Kruchten’s ontology (Kruchten 2004a). An arrow after the relationship type name indi-

cates that the relationship types in that row are complementary—they may be expressed

in either of two ways: e.g., if decision A was caused by decision B, then decision B enables

decision A.

B.3. Viewpoint definitions and correspondence rules 235

Table B.2: Mapping of relationship types to Kruchten’s ontology

Used type Kruchten’s type

Caused by No match

Depends on

Enables←

Decomposes

Subsumes←

Comprises←

Replaces No match

Is alternative for Is an alternative to

Is excluded by Forbids←

No match
Conflicts with

Constrains←

Overrides

A decision can belong to zero or more decision groups. This allows for logical group-

ing of decisions according to self-defined characteristics. For instance, decisions could

be grouped by subsystem, use-case package, physical location, or component. Decision

groups can have parent groups. This is especially helpful to organize the documenta-

tion of large numbers of decisions. The models in the relationship view can provide

different “scales”, e.g., one model showing only the root decision groups and their rela-

tionships, and additional models for “zooming into” each of the groups showing either

decisions or subgroups, which themselves contain decisions or further subgroups.

The following constraints apply to the elements within this model kind:

1. The architecture decisions shown in one relationship view all refer to the same

point in time.

2. Every decision occurs exactly once.

3. A decision has a unique name and exactly one state.

4. A decision can participate in zero or more relationships.

5. A relationship has exactly one type.

6. A relationship has exactly two non-identical endpoints.

7. A relationship model showing decision groups without associated decisions must

be refined by one or more additional relationship models showing which decisions

belong to which decision group.

8. Caused by-relationships cannot point to idea or discarded decisions.

9. Caused by-relationships cannot originate from idea decisions.

236 B. Appendix to Chapter 6

Architecture Decision

Relationship

StateIteration

Iteration

Endpoint

0..*

1

0..*

1

1

1..*

1

1

10..*has

created in

has

role A role B

previous Version

Figure B.7: Metamodel of chronology viewpoint

10. Depends on-relationships can only point to tentative, decided, approved or challenged

decisions.

11. Depends on-relationships cannot originate from idea decisions.

12. Excluded by-relationships cannot point to idea, tentative, discarded or rejected deci-

sions.

13. Excluded by-relationships can only originate from idea, tentative, discarded or rejected

decisions.

14. Replaces-relationships can only point to rejected decisions.

15. Replaces-relationships cannot originate from idea decisions.

16. Alternative for-relationships cannot point to idea or discarded decisions.

17. Alternative for-relationships can only originate from tentative or discarded decisions.

Note that the presented constraints refer to the used decision states and relation-

ship types. If different states or relationship types are used, then the constraints must

be revised accordingly. In addition to the internal model constraints presented above,

cross-viewpoint correspondence rules exist. These rules will be presented in B.3.6.

B.3.3 Decision chronology viewpoint

This viewpoint shows the evolution of architecture decisions in chronological order.

Table 6.5 shows the concerns framed by this viewpoint related to the respective stake-

holders.

B.3. Viewpoint definitions and correspondence rules 237

Model kind

Figure B.7 shows a metamodel for the chronology viewpoint. It documents the model

kind, which presents the conceptual elements for architecture models that adhere to it.

Again, the notation for UML class diagrams is used. An architecture decision is made

or changed (i.e., a state change) within an architecture iteration. We define iterations

as versions of the architecture as a whole. An iteration endpoint has a date and fur-

thermore a type that can be freely chosen. We propose the following three predefined

types:

Milestone: A version of the architecture that has reached a stable state (or an interme-

diate stable state).

Release: A version of the architecture that is delivered to a customer or made available

to the public for use.

Snapshot: A snapshot can be incomplete and possibly inconsistent. This iteration end-

point can be used to express that a customer or project team meeting took place

where some decisions were made or discussed without ending up with a stable

iteration version.

The following constraints apply to the elements within this model kind:

1. Every decision has a unique name and exactly one state at a time.

2. Every decision can take role A in zero or more relationships (role B is followed by

role A).

3. Every decision can take role B in zero or more relationships (role B is followed by

role A).

4. Every relationship has the type followed by.

5. Every relationship has exactly two non-identical endpoints.

6. Decision states can only change in conformance to the state diagram shown in

Figure B.6.

7. Every iteration has exactly one endpoint with a unique name (e.g. Iteration 4).

8. Concurrent decision paths (e.g. by different architects making decisions au-

tonomously in the same project) cannot cross the boundaries of iterations (marked

by an iteration endpoint).

In addition to the internal model constraints presented above, cross-viewpoint corre-

spondence rules exist. These rules will be presented in B.3.6. An extract of a model that

corresponds to this model kind is shown in Figure 6.4.

238 B. Appendix to Chapter 6

Architecture Decision State

Stakeholder

Action

Iteration Iteration

Endpoint

0..*

1..*

1

1..*

1

1

10..*

0..*

1..*

changed in

has

concerns

performed by

has

Figure B.8: Metamodel of stakeholder involvement viewpoint

B.3.4 Decision stakeholder involvement viewpoint

The stakeholder involvement viewpoint shows the responsibilities of relevant stake-

holders in the decision-making process. Table 6.4 shows the concerns framed by this

viewpoint related to the respective stakeholders.

Model kind

Figure B.8 shows a meta model for the stakeholder involvement viewpoint. It docu-

ments the model kind, which presents the conceptual elements for architecture models

that adhere to it. Corresponding elements of the chronological metamodel have the

same semantics as in this viewpoint. Every architecture decision is caused by at least

one action performed by a stakeholder. In larger projects, the stakeholder can represent

a group, or organization, e.g. a development team or a department in a company. The

actions can be adapted to the needs of a concrete software project. In our examples we

use the following actions:

formulate: A decision is documented as a rough idea that should be revisited in the

future. The corresponding decision state is idea.

propose: A new decision or a set of new decisions is proposed by an architect. The

corresponding decision state is tentative.

discard: A tentative decision is discarded by an architect. The corresponding decision

state is discarded. A discarded decision has never reached a state higher than ten-

tative.

validate: A decision, or a set of decisions, was validated by a stakeholder. The corre-

sponding decision state is decided.

B.3. Viewpoint definitions and correspondence rules 239

confirm: A decision, or a set of decisions was confirmed by a stakeholder on the cus-

tomer site. The corresponding decision state is approved. This action can be per-

formed on a challenged decision to (re-)confirm it, or on a decided decision.

challenge: A decision or a set of decisions is challenged by a stakeholder. The corre-

sponding decision state is challenged.

reject: A decision that was challenged before is rejected. The corresponding decision

state is rejected.

Figure B.6 shows stakeholder actions and corresponding decision state transitions.

A stakeholder can have one or more roles in a project. The roles depend on the

circumstances in a concrete project. They must be clearly defined prior to being used.

We used the following stakeholder roles:

architect: A person or organizational unit responsible for making architecturally rele-

vant decisions in a project.

manager: A person or organizational unit who is responsible for the project in a com-

pany.

customer: A person or organizational unit serving as customer representative who is in

charge of confirming architecture decisions.

The following constraints apply to the elements of this model kind:

1. Every decision has a unique name.

2. Every iteration endpoint has a unique name.

3. All decision versions changed in one iteration are shown.

4. Every stakeholder has a unique name and zero or more stakeholder roles.

5. Every stakeholder shown performed at least one action.

6. Every action has exactly two non-identical endpoints.

7. Every action originates from exactly one stakeholder in a role.

8. Every action points to a decision, or an iteration endpoint. If the target is an iter-

ation endpoint, then the corresponding action is performed for all decisions (re-

spectively decision versions) changed in that iteration.

In addition to the internal model constraints presented above, cross-viewpoint corre-

spondence rules exist. These rules will be presented in B.3.6. An example of a model

that corresponds to this model kind is shown in Figure 6.3.

240 B. Appendix to Chapter 6

B.3.5 Decision detail viewpoint

The decision detail viewpoint provides an in-depth textual description of each architec-

ture decision documented in a software project. Table 6.6 shows the concerns framed

by this viewpoint related to the respective stakeholders.

Model kind

The metamodel for the decision details viewpoint is identical to the shared metamodel

for all viewpoints shown in Figure B.4. In addition to the elements that were already

described in the other viewpoint definitions, the model contains a relationship between

architecture decision and system concerns. Every architecture decision is represented

by exactly one decision detail model. Ideally, the total of decision detail models shows

every architecture decision documented for a system. An example of a model that cor-

responds to this model kind is shown in Figure 6.5.

B.3.6 Correspondences between viewpoints

The documentation framework for architecture decisions is comprised of four view-

points. A view conforming to one of these viewpoints is composed of one or more

models. The fact that the same subject is represented in multiple independent models

creates the risk of inconsistencies. The new ISO/IEC/IEEE 42010 standard for archi-

tecture documentation introduces correspondences to express cross-model relationships

between architecture description elements (ISO/IEC/IEEE 2011). In the following, we

define a number of correspondence rules, which have to be observed by views of the re-

spective viewpoints in order to be consistent. In combination with the correspondence

rules, we use a shared metamodel for all model kinds to ensure cross-model consistency.

The shared metamodel was introduced in B.3.1. The correspondence rules are expressed

in terms of constraints and relationships of the architecture models and description el-

ements defined in the metamodel. Note that some of the rules are only applicable if

the framework is used as a whole. If the framework or individual viewpoints are cus-

tomized, then the rules must be revised accordingly.

With the exception of the chronology view, all views are potentially comprised of

more than one model. A chronology view comprises one model showing the evolution

of all decisions made in the system to document. Please refer to the respective viewpoint

sections for more information about internal viewpoint constraints.

R1: The total number of relationship models contains all latest versions of every ar-

chitecture decisions made in a system. The latest versions must correspond to the

latest occurrence of a decision in the chronological model.

R2: A stakeholder involvement model must exist for every iteration shown in the

chronological model. Every stakeholder involvement model must contain the ver-

sions of architecture decisions belonging to the respective iteration.

B.4. Example of qualitative analysis process 241

R3: A decision detail model contains all incoming and outgoing relationships of a

decision shown in the relationship models.

R4: The current state of a decision in the decision detail model must correspond to the

state of the latest occurrence of the decision in the chronological model.

R5: The alternatives mentioned in one decision detail model must be identical to the

decisions in the relationship view having an is alternative for relationship pointing

to the decision represented in the model.

R6: The history of a decision represented in the decision detail model must contain all

stakeholder actions performed on that decision shown in all stakeholder involve-

ment models.

B.4 Example of qualitative analysis process

In Section 6.4, we described the procedure used to qualitatively analyze parts of the

data gathered in the case study. In the following, an example of the analysis process

is given. It is taken from the transcript of the focus group conducted after the archi-

tecture review. It was chosen, because it reflects the typical procedure we used for the

qualitative analysis:

Original comment given by one of the domain experts:“I liked the relationship view.

I could make use of it quite well. Especially the relationships and what would happen

if I changed something. I think this is more clearly illustrated than in any table. This is

great progress and I was clearly impressed.”

This passage was labelled with Research question two and relationship view. It is notice-

able that the comment is hard to interpret when taken out of the context. The commenter

is referring to the relationship view of the sandnet project, which he was showing to the

other participants while talking. He mentions the different relationships between de-

cisions and emphasizes that the relationships can be used to analyze which decisions

would be impacted if a specific decision changed. Then he compares the relationship

view with a “table”. Here, he refers to a decision table, which strictly speaking is a

model in a decision detail view. From this comment, we derived the following state-

ments:

• Relationship views illustrate the relationships between decisions.

• Relationship views support impact analysis.

• Relationship views illustrate decision relationships better than decision detail

views.

242 B. Appendix to Chapter 6

B.5 Question guide used during the focus group

The following set of questions was used as orientation by the moderator of the focus

group, which took place after the review. The questions were not necessarily asked by

the moderator, nor were they answered in a specific order. During an open discussion

between the participants, the moderator made sure that the participants gave enough

information so that the questions could be answered. The focus group data collection

method was described in Section 6.4.2.

• How did the views support the participants in understanding the architecture?

– Which information were they missing?

– Which information did they get?

• How did the views help them to communicate architecture, what was missing?

• How do they usually document architecture?

– What are the liabilities and benefits of the decision views compared to their

usual way of doing it?

• Which concerns do they have in architecture documentation in general?

– How did the relationship view support them, what was missing?

– How did the chronology view support them, what was missing?

– How did the documented decisions support them, what was missing?

• Which concerns do the participants have in architecture documentation when

starting a new project?

– How did the relationship view support them, what was missing?

– How did the chronology view support them, what was missing?

– How did the documented decisions support them, what was missing?

• Which concerns do they have in architecture documentation when doing architec-

ture reviews? For identifying decisions/ sensitivity points/ trade-off points and

risks?

– How did the relationship view support them, what was missing?

– How did the chronology view support them, what was missing?

– How did the documented decisions support them, what was missing?

• Which concerns do they have in architecture documentation during architecture

evolution?

– How did the relationship view support them, what was missing?

B.5. Question guide used during the focus group 243

– How did the chronology view support them, what was missing?

– How did the documented decisions support them, what was missing?

Appendix C

Appendix to Chapter 7

246 C. Appendix to Chapter 7

C.1 Integration of the forces viewpoint into the decision

framework’s metamodel

In order to integrate the forces viewpoint, presented in Chapter 7, into the previously

developed framework for architecture decisions, defined in Chapter B.3, a few changes

to the shared metamodel had to be made. Figure C.1 shows the adapted metamodel.

Changed classes were marked with a colored background.

Figure C.1: Adapted metamodel of the decision framework after the integration of the forces

viewpoint.

The class System Concern, in the original metamodel, was renamed to Concern, fol-

lowing the final revision of ISO/IEC/IEEE 42010 (ISO/IEC/IEEE 2011), which the

framework is based on. Furthermore, two additional classes were added and linked

with classes from the original metamodel. The class Decision Force represents a single

force. It has an influence on one or more architecture decisions. The influence relation-

ship is qualified by the Influence class. The influence of the forces on an architecture

decision should be considered in the decision’s Architecture Rationale. As further de-

scribed in Chapter 7, each force is classified by at least one concern.

The described changes to the metamodel are backwards compatible. Existing views

of the other viewpoints are not affected by these changes.

C.2 Constraints for the forces viewpoint’s model kind

The following constraints apply to the elements within the force’s viewpoint’s model

kind:

1. Within one decision topic, there can only be one decision with a state decided, or

C.3. Cross-viewpoint correspondence rules 247

above.

2. The architecture decisions shown in one forces view all refer to the same point in

time.

3. A decision has a unique name and exactly one state.

4. A force has a unique code and a description.

5. A concern has a unique name.

In addition to the internal model constraints presented above, additional correspon-

dence rules exist for the integration with the other viewpoints (so called cross-viewpoint

correspondence rules). These rules are presented in the next section.

C.3 Cross-viewpoint correspondence rules

The following correspondence rules are a supplement to the correspondence rules de-

fined in Section B.3.6. The numbering scheme from this section was adopted, therefore

the following rules start with number seven:

R7: All concerns mentioned in decision detail models must exist in the decision forces

models.

R8: The decision states shown in the decision forces models must correspond to the

latest states of the respective decision in the chronological view.

R9: All decisions within a decision topic in a forces model that have a lower state than

decided, must have alternative-for relationships with the one decision in the decision

topic that has a state equal to, or higher than decided.

Appendix D

Appendix to Chapter 8

250 D. Appendix to Chapter 8

D.1 Question guide used during the weekly focus groups

The following questions were used as orientation for the moderator of the focus group

to make sure that the generally open discussions cover all important aspects of inter-

est. The questions were neither asked verbatim or directly, nor were they necessarily

covered in a specific order.

• What has the team done since the last focus group?

• How did they elicit requirements?

• What are the main requirements?

• How do they document requirements?

• Did the team negotiate requirements with the customer?

• How do they prioritize requirements, and which requirements were regarded first

and for which reasons?

• Which decisions have been made, and which alternatives were considered?

• How do they make decisions?

• Do the team members challenge each other a lot?

• How does the team lead design discussions?

• Which media, apart from the whiteboard, are used during design discussions?

• What is the team’s confidence in the soundness of the decisions? Where are un-

certainties?

• Did the team make any assumptions? Which assumptions and why?

• Does the team try to avoid complexity? How?

• Did they make trade-offs between multiple requirements?

• Did they create prototypes, and if so what were they used for?

• How satisfied is the team with the internal process? Do they experience any par-

ticular difficulties?

• Note for moderator: Make sure that the team take pictures of all whiteboard

sketches

D.2 Additional statistics for group assignment

This section presents additional descriptive statistics used for the assignment of project

teams to one of the two study groups, i.e. decision view group or comparison group.

D.3. Initial visions of the architectures 251

Table D.1: Estimation of project difficulties (CaseVar6, Likert-scale 1: very simple; 5: very diffi-

cult)
!∀#∃% &∋(%)%∗∗% +∋∀(%

7 7

8 9

8 9

8 9

9 9 7 9

:/0∃&(9 8 9 9

,%(∋−

;/1#2,/,)6

;/1#2,/,)7

;/1#2,/,)9

;/1#2,/,)8

</∀/&,1=/,∀

Project Alpha Project Beta

0

20

40

60

80

100

120

140

160

180

Programming Experience

Decision view group

Decision view group

Project Gamma Project Delta

0

20

40

60

80

100

120

140

160

180

Programming Experience

Comparison group

Comparison group

Figure D.1: Programming experience of the project members in both study groups (CaseVar2)

Project Alpha Project Beta

0

20

40

60

80

100

120

140

Design Experience

Decision view group

Decision view group

Project Gamma Project Delta

0

20

40

60

80

100

120

140

Design Experience

Comparison group

Comparison group

Figure D.2: Design experience of the project members in both study groups (CaseVar3)

D.3 Initial visions of the architectures

Figures D.5 and D.6 show examples of early architecture sketches created by the two

project teams in the decision view group.

252 D. Appendix to Chapter 8

Project Alpha Project Beta

0

10

20

30

40

50

60

70

80

90

100

Working Experience

Decision view group

Decision view group

Project Gamma Project Delta

0

10

20

30

40

50

60

70

80

90

100

Working Experience

Comparison group

Comparison group

Figure D.3: Working experience of the project members in both study groups (CaseVar4)

−+∀0(,1∋23∗4∃ −+∀0(,1∋5(1∃

6

76

86

96

:6

/66

/76

/86

/96

/:6

;)∗(+%(&,(∋%&∋∗+%#∃+<∋=∀#∃%&

!(,%>%∀&∋?%(≅∋.+∀Α∗

Decision view group

−+∀0(,1∋Β∃##∃ −+∀0(,1∋!(31∃

6

76

86

96

:6

/66

/76

/86

/96

/:6

;)∗(+%(&,(∋%&∋∗+%#∃+<∋=∀#∃%&

Χ∀#∗∃+%>∀&∋.+∀Α∗

Comparison group

Figure D.4: Experience in the primary domain of the project members in both study groups

(CaseVar7)

D.3. Initial visions of the architectures 253

Figure D.5: Overall architecture envisioned by project team alpha

Figure D.6: Early vision of the architecture created by project team beta (partially using the

relationship view

Bibliography

Adolph, S., Hall, W. and Kruchten, P.: 2011, Using grounded theory to study the experience of

software development, Empirical Software Engineering 16(4), 487–513.

Alexander, C.: 1979, The timeless way of building, Oxford University Press.

Amazon.com Inc.: 2012, Amazon.com, http://www.amazon.com.

Avgeriou, P., Grundy, J., Hall, J., Lago, P. and Mistrik, I.: 2011, Relating Software Requirements and

Architectures, Springer Publishing Company.

Avgeriou, P. and Zdun, U.: 2005, Architectural patterns revisited – a pattern language, 10th

European Conference on Pattern Languages of Programs (EuroPlop), Irsee.

Avison, D., Lau, F., Myers, M. and Nielsen, P.: 1999, Action research, Communications of the ACM

42(1), 94–97.

Babar, M., Bass, L. and Gorton, I.: 2007, Factors influencing industrial practices of software

architecture evaluation: an empirical investigation, Proceedings of the Quality of software ar-

chitectures 3rd international conference on Software architectures, components, and applications,

Springer Publishing Company, pp. 90–107.

Babar, M., Dingsyr, T., Lago, P. and van Vliet, H.: 2009, Software Architecture Knowledge Manage-

ment: Theory and Practice, Springer Publishing Company.

Babar, M. and Gorton, I.: 2007, A tool for managing software architecture knowledge, Proceedings

of the Second Workshop on SHAring and Reusing architectural Knowledge Architecture, Rationale,

and Design Intent, IEEE Computer Society, p. 11.

Basili, V. R., Caldiera, G. and Rombach, H. D.: 1994, The goal question metric approach, Ency-

clopedia of Software Engineering, John Wiley & Sons, Inc.

Bass, L., Clements, P. and Kazman, R.: 2003, Software Architecture in Practice, second edn,

Addison-Wesley.

Bass, L. and Nord, R.: 2012, Understanding the Context of Architecture Evaluation Methods,

Proceedings of the Joint 10th Working IEEE/IFIP Conference on Software Architecture & 6th Eu-

ropean Conference on Software Architecture, IEEE, pp. xx–xx.

256 BIBLIOGRAPHY

Boehm, B., Rombach, H. and Zelkowitz, M.: 2005, Foundations of Empirical Software Engineering:

The Legacy of Victor R. Basili, Springer Publishing Company.

Bosch, J.: 2004, Software architecture: The next step, in F. Oquendo, B. Warboys and R. Mor-

rison (eds), Software Architecture, Vol. 3047 of Lecture Notes in Computer Science, Springer

Publishing Company, pp. 194–199.

Bosch, J. and Molin, P.: 1999, Software architecture design: evaluation and transformation,

IEEE Conference and Workshop on Engineering of Computer-Based Systems, 1999. Proceedings.

ECBS’99., IEEE, pp. 4–10.

Brereton, P., Kitchenham, B., Budgen, D. and Li, Z.: 2008, Using a protocol template for case

study planning, Proceedings of the 12th international conference on Evaluation and Assessment

in Software Engineering, British Computer Society, pp. 41–48.

Brooks, F.: 2010, The Design of Design: Essays from a Computer Scientist, Addison-Wesley.

Bu, W., Tang, A. and Han, J.: 2009, An analysis of decision-centric architectural design ap-

proaches, Proceedings of the 2009 ICSE Workshop on Sharing and Reusing Architectural Knowl-

edge, IEEE Computer Society, pp. 33–40.

Buschmann, F., Henney, K. and Schmidt, D.: 2007, Pattern-oriented software architecture: On pat-

terns and pattern languages, Vol. 5, John Wiley & Sons, Inc.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M.: 1996, Pattern-oriented

software architecture: a system of patterns, John Wiley & Sons, Inc.

Capilla, R., Nava, F. and Duenas, J.: 2007, Modeling and Documenting the Evolution of Architec-

tural Design Decisions, Proceedings of the Second Workshop on SHAring and Reusing architec-

tural Knowledge Architecture, Rationale, and Design Intent, IEEE Computer Society, pp. 9–15.

Carver, J., Jaccheri, L., Morasca, S. and Shull, F.: 2010, A checklist for integrating student empir-

ical studies with research and teaching goals, Empirical Software Engineering 15(1), 35–59.

Ciolkowski, M., Laitenberger, O., Vegas, S. and Biffl, S.: 2003, Practical experiences in the design

and conduct of surveys in empirical software engineering, Empirical Methods and Studies in

Software Engineering pp. 104–128.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P. and Nord, R.: 2010,

Documenting Software Architectures: Views and Beyond, 2nd edn, Addison-Wesley.

Clements, P., Kazman, R., Klein, M., Devesh, D., Reddy, S. and Verma, P.: 2007, The duties, skills,

and knowledge of software architects, Proceedings of the Sixth Working IEEE/IFIP Conference

on Software Architecture, IEEE Computer Society, pp. 20–23.

Clerc, V.: 2011, Architectural Knowledge Management in Global Software Development, PhD thesis,

Vrije Universiteit Amsterdam, The Netherlands.

Clerc, V., Lago, P. and van Vliet, H.: 2007, The architect’s mindset, Proceedings of the Quality

of software architectures 3rd international conference on Software architectures, components, and

applications, Springer Publishing Company, pp. 231–249.

Cook, T. and Campbell, D.: 1979, Quasi-experimentation: Design & Analysis issues for field settings,

Houghton Mifflin Harcourt.

BIBLIOGRAPHY 257

Corbin, J. and Strauss, A.: 2008, Basics of qualitative research: Techniques and procedures for develop-

ing grounded theory, Sage Publications, Inc.

Creswell, J. and Miller, D.: 2000, Determining validity in qualitative inquiry, Theory into practice

39(3), 124–130.

Cross, N.: 2001, Design cognition: Results from protocol and other empirical studies of design

activity, Design Knowing and Learning: Cognition in Design Education pp. 79–103.

Cross, N.: 2004, Expertise in design: an overview, Design Studies 25(5), 427–441.

Curtis, B., Krasner, H. and Iscoe, N.: 1988, A field study of the software design process for large

systems, Communications of the ACM 31(11), 1268–1287.

Dobrica, L. and Niemela, E.: 2002, A survey on software architecture analysis methods, IEEE

Transactions on Software Engineering 28(7), 638–653.

Duenas, J. and Capilla, R.: 2005, The decision view of software architecture, in R. Morrison

and F. Oquendo (eds), Software Architecture, Vol. 3527 of Lecture Notes in Computer Science,

Springer Publishing Company, pp. 88–126.

Easterbrook, S., Singer, J., Storey, M. and Damian, D.: 2008, Selecting empirical methods for

software engineering research, Guide to advanced empirical software engineering pp. 285–311.

Epley, N. and Gilovich, T.: 2006, The anchoring-and-adjustment heuristic Why the adjustments

are insufficient, Psychological Science 17(4), 311–318.

Falessi, D., Babar, M., Cantone, G. and Kruchten, P.: 2010, Applying empirical software engineer-

ing to software architecture: challenges and lessons learned, Empirical Software Engineering

15(3), 250–276.

Farenhorst, R. and de Boer, R.: 2009, Architectural Knowledge Management: Supporting Architects

and Auditors, PhD thesis, Vrije Universiteit Amsterdam, The Netherlands.

Farenhorst, R. and van Vliet, H.: 2009, Understanding how to support architects in sharing

knowledge, Proceedings of the 2009 ICSE Workshop on Sharing and Reusing Architectural

Knowledge, IEEE Computer Society, pp. 17–24.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J.: 1995, Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley.

Garlan, D., Monroe, R. and Wile, D.: 1997, Acme: an architecture description interchange lan-

guage, Proceedings of the 1997 conference of the Centre for Advanced Studies on Collaborative

research, IBM Press, pp. 7–22.

Given, L.: 2008, The Sage encyclopedia of qualitative research methods, Vol. 2, Sage Publications, Inc.

Glaser, B.: 1965, The constant comparative method of qualitative analysis, Social problems

12(4), 436–445.

Glaser, B.: 1998, Doing grounded theory: Issues and discussions, Sociology Press, Mill Valley, Cali-

fornia.

Glaser, B. and Strauss, A.: 1967, The Discovery of Grounded Theory: Strategies for Qualitative Re-

search., New York. Aldine Publishing.

258 BIBLIOGRAPHY

Goldstein, G. and Hersen, M.: 2000, Handbook of psychological assessment, 3rd edn, Elsevier Science

Inc.

Gotel, O. and Finkelstein, C.: 1994, An analysis of the requirements traceability problem, Pro-

ceedings of the First International Conference on Requirements Engineering, IEEE, pp. 94–101.

Gray, D.: 2009, Doing research in the real world, Sage Publications, Inc.

Harrison, N. and Avgeriou, P.: 2008, Analysis of architecture pattern usage in legacy system

architecture documentation, Proceedings of the Seventh Working IEEE/IFIP Conference on Soft-

ware Architecture (WICSA 2008), IEEE Computer Society, pp. 147–156.

Harrison, N. and Avgeriou, P.: 2011, Pattern-based architecture reviews, IEEE Software 28(6), 66–

71.

Harrison, N., Avgeriou, P. and Zdun, U.: 2007, Using patterns to capture architectural decisions,

IEEE Software 24(4), 38–45.

Hester, S., Parnas, D. and Utter, D.: 1981, Using documentation as a software design medium,

Bell System Technical Journal 60(8), 1941–1977.

Hevner, A.: 2007, A three cycle view of design science research, Scandinavian Journal of Informa-

tion Systems 19(2), 87–92.

Hevner, A., March, S., Park, J. and Ram, S.: 2004, Design science in information systems research,

MIS Quarterly 28(1), 75–105.

Hillside Europe e.V.: 2009, European Conference on Pattern Languages of Programs, http:

//hillside.net/europlop/europlop2009/.

Hofmeister, C., Kruchten, P., Nord, R., Obbink, H., Ran, A. and America, P.: 2007, A general

model of software architecture design derived from five industrial approaches, Journal of

Systems and Software 80(1), 106–126.

Hofmeister, C., Nord, R. and Soni, D.: 2009, Applied Software Architecture, Addison-Wesley.

Hoorn, J., Farenhorst, R., Lago, P. and van Vliet, H.: 2011, The lonesome architect, Journal of

Systems and Software 84(9), 1424–1435.

Höst, M. and Runeson, P.: 2007, Checklists for software engineering case study research, Proceed-

ings of the First International Symposium on Empirical Software Engineering and Measurement,

IEEE Computer Society, pp. 479–481.

IEEE: 2000, IEEE Std 1471–2000, IEEE Recommended Practice for Architectural Description of

Software-Intensive Systems, IEEE, New York, NY, USA.

IEEE: 2008, IEEE STD 1028-2008, IEEE Standard for Software Reviews and Audits, IEEE, New York,

NY, USA.

ISO/IEC/IEEE: 2011, ISO/IEC/IEEE 42010, Systems and software engineering — Architecture de-

scription, ISO/IEC/IEEE.

Jansen, A.: 2008, Architectural design decisions, PhD thesis, University of Groningen, The Nether-

lands.

BIBLIOGRAPHY 259

Jansen, A., Avgeriou, P. and van der Ven, J.: 2009, Enriching software architecture documenta-

tion, Journal of Systems and Software 82(8), 1232–1248.

Jansen, A. and Bosch, J.: 2005, Software Architecture as a Set of Architectural Design Decisions,

Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture, IEEE Computer

Society, pp. 109–120.

Jansen, A., Bosch, J. and Avgeriou, P.: 2008, Documenting after the fact: Recovering architectural

design decisions, Journal of Systems and Software 81(4), 536–557.

Jansen, A., de Vries, T., Avgeriou, P. and van Veelen, M.: 2008, Sharing the architectural knowl-

edge of quantitative analysis, in S. Becker, F. Plasil and R. Reussner (eds), Quality of Soft-

ware Architectures. Models and Architectures, Vol. 5281 of Lecture Notes in Computer Science,

Springer Publishing Company, pp. 220–234.

Jansen, A., van der Ven, J., Avgeriou, P. and Hammer, D.: 2007, Tool support for architectural

decisions, Proceedings of the Sixth Working IEEE/IFIP Conference on Software Architecture, IEEE

Computer Society, pp. 4–14.

JBoss.org: 2012, Community driven open source middleware, http://www.jboss.org/.

Jedlitschka, A. and Pfahl, D.: 2005, Reporting guidelines for controlled experiments in software

engineering, International Symposium on Empirical Software Engineering, 2005, IEEE, pp. 92–

101.

Jiang, L., Eberlein, A., Far, B. and Mousavi, M.: 2008, A methodology for the selection of require-

ments engineering techniques, Software and Systems Modeling 7(3), 303–328.

Kazman, R., Bass, L., Webb, M. and Abowd, G.: 1994, Saam: A method for analyzing the prop-

erties of software architectures, Proceedings of the 16th international conference on Software

engineering, IEEE Computer Society, pp. 81–90.

Kazman, R. and Carrière, S.: 1999, Playing detective: Reconstructing software architecture from

available evidence, Automated Software Engineering 6(2), 107–138.

Kazman, R., Klein, M. and Clements, P.: 2000, Atam: Method for architecture evaluation,

Technical report, Software Engineering Institute, Carnegie Mellon University.

URL: http://www.sei.cmu.edu/publications/documents/00.reports/

00tr004.html

Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., Emam, K. and Rosenberg, J.: 2002,

Preliminary guidelines for empirical research in software engineering, IEEE Transactions on

Software Engineering 28(8), 721–734.

Kitchenham, B., Pickard, L. and Pfleeger, S.: 1995, Case studies for method and tool evaluation,

IEEE Software 12(4), 52–62.

Kontio, J., Bragge, J. and Lehtola, L.: 2008, The focus group method as an empirical tool in

software engineering, Guide to advanced empirical software engineering pp. 93–116.

Koschke, R.: 2009, Architecture reconstruction, Software Engineering, Springer Publishing Com-

pany, pp. 140–173.

260 BIBLIOGRAPHY

Krikhaar, R., Postma, A., Sellink, A., Stroucken, M. and Verhoef, C.: 1999, A two-phase process

for software architecture improvement, Proceedings of the IEEE International Conference on

Software Maintenance, IEEE Computer Society, p. 371.

Kruchten, P.: 1995, The 4+ 1 View Model of Architecture, IEEE Software 12(6), 42–50.

Kruchten, P.: 1999, The software architect, and the software architecture team, Proceedings of

the first IFIP Conference on Software Architecture (WICSA1), Kluwer Academic Publishers,

pp. 565–583.

Kruchten, P.: 2004a, An ontology of architectural design decisions in software intensive systems,

Proceedings of the 2nd Groningen Workshop on Software Variability, pp. 54–61.

Kruchten, P.: 2004b, The Rational Unified Process: an introduction, Addison-Wesley.

Kruchten, P.: 2008, Controversy corner: What do software architects really do?, Journal of Systems

and Software 81(12), 2413–2416.

Kruchten, P., Capilla, R. and Dueñas, J.: 2009, The Decision View’s Role in Software Architecture

Practice, IEEE Software 26(2), 36–42.

Kruchten, P., Lago, P. and van Vliet, H.: 2006, Building up and reasoning about architectural

knowledge, in C. Hofmeister, I. Crnkovic and R. Reussner (eds), Quality of Software Ar-

chitectures, Vol. 4214 of Lecture Notes in Computer Science, Springer Publishing Company,

pp. 43–58.

Lee, L. and Kruchten, P.: 2008, A Tool to Visualize Architectural Design Decisions, Proceedings of

the 4th International Conference on Quality of Software-Architectures: Models and Architectures,

Springer Publishing Company, pp. 43–54.

Lethbridge, T., Sim, S. and Singer, J.: 2005, Studying software engineers: Data collection tech-

niques for software field studies, Empirical Software Engineering 10(3), 311–341.

Liang, P. and Avgeriou, P.: 2009, Tools and Technologies for Architecture Knowledge Manage-

ment, Software Architecture Knowledge Management: Theory and Practice, Springer Publishing

Company, pp. 91–111.

Liang, P., Jansen, A. and Avgeriou, P.: 2009, Knowledge architect: A tool suite for managing

software architecture knowledge, Technical Report RUG-SEARCH-09-L01, SEARCH Group,

University of Groningen, The Netherlands.

Liu, J.: 2002, Research Project: An Analysis of JBoss Architecture, http://www.huihoo.org/

jboss/jboss.html.

Mack, N., Woodsong, C., MacQueen, K., Guest, G. and Namey, E.: 2005, Qualitative research

methods: A data collector’s field guide, FLI.

MacLean, A., Young, R., Bellotti, V. and Moran, T.: 1991, Questions, options, and criteria: ele-

ments of design space analysis, Human-Computer Interaction 6(3), 201–250.

Malavolta, I., Muccini, H. and Rekha, V.: 2011, Supporting architectural design decisions evo-

lution through model driven engineering, Proceedings of the Third international conference on

Software engineering for resilient systems, Springer Publishing Company, pp. 63–77.

BIBLIOGRAPHY 261

Mannion, M. and Keepence, B.: 1995, SMART requirements, ACM SIGSOFT Software Engineering

Notes 20(2), 42–47.

March, S. and Smith, G.: 1995, Design and natural science research on information technology,

Decision Support Systems 15(4), 251–266.

Muller, G.: 2004, CAFCR: A Multi-view Method for Embedded Systems Architecting. Balancing Gener-

icity and Specificity, PhD thesis, Technische Universiteit Delft.

Mustapic, G., Wall, A., Norstrom, C., Crnkovic, I., Sandstrom, K., Froberg, J. and Andersson,

J.: 2004, Real world influences on software architecture-interviews with industrial system

experts, Fourth Working IEEE/IFIP Conference on Software Architecture, 2004. WICSA 2004,

IEEE, pp. 101–111.

Nagappan, N., Maximilien, E., Bhat, T. and Williams, L.: 2008, Realizing quality improvement

through test driven development: results and experiences of four industrial teams, Empiri-

cal Software Engineering 13(3), 289–302.

Nuseibeh, B.: 2001, Weaving Together Requirements and Architectures, Computer 34(3), 115–117.

O’Gorman, T.: 2004, Applied adaptive statistical methods: tests of significance and confidence intervals,

Society for Industrial Mathematics.

Oracle Corporation: 2002, Core J2EE patterns, http://java.sun.com/blueprints/

corej2eepatterns/.

Parnas, D.: 2009, Document based rational software development, Knowledge-Based Systems

22(3), 132–141.

Parnas, D. and Clements, P.: 1986, A rational design process: How and why to fake it, IEEE

Transactions on Software Engineering 12(2), 251–257.

Parnas, D. L.: 2011, Precise documentation: The key to better software, in S. Nanz (ed.), The

Future of Software Engineering, Springer Publishing Company, pp. 125–148.

Patton, M.: 2002, Qualitative research and evaluation methods, Sage Publications, Inc.

Perry, D., Porter, A. and Votta, L.: 2000, Empirical studies of software engineering: a roadmap,

Proceedings of the Conference on the Future of Software Engineering, ACM, pp. 345–355.

Perry, D. and Wolf, A.: 1992, Foundations for the study of software architecture, ACM SIGSOFT

Software Engineering Notes 17(4), 40–52.

Purcell, A. and Gero, J.: 1998, Drawings and the design process:: A review of protocol studies

in design and other disciplines and related research in cognitive psychology, Design studies

19(4), 389–430.

Ramesh, B. and Jarke, M.: 2001, Toward reference models for requirements traceability, IEEE

Transactions on Software Engineering 27(1), 58–93.

Robson, C.: 2011, Real world research, John Wiley & Sons, Inc.

Rossow, C., Dietrich, C., Bos, H., Cavallaro, L., van Steen, M., Freiling, F. and Pohlmann, N.:

2011, Sandnet: Network traffic analysis of malicious software, Proceedings of the First Work-

shop on Building Analysis Datasets and Gathering Experience Returns for Security, ACM, pp. 78–

88.

262 BIBLIOGRAPHY

Rozanski, N. and Woods, E.: 2005, Software systems architecture: working with stakeholders using

viewpoints and perspectives, Addison-Wesley.

Runeson, P. and Höst, M.: 2009, Guidelines for conducting and reporting case study research in

software engineering, Empirical Software Engineering 14, 131–164.

Schmidt, D. and Buschmann, F.: 2003, Patterns, frameworks, and middleware: their synergistic

relationships, Proceedings of the 25th International Conference on Software Engineering, IEEE

Computer Society, pp. 694–704.

Schwaber, K. and Beedle, M.: 2002, Agile software development with Scrum, Prentice-Hall.

Seaman, C.: 1999, Qualitative Methods in Empirical Studies of Software Engineering, IEEE

Transactions on Software Engineering 25(4), 557–572.

Serral, E., Valderas, P. and Pelechano, V.: 2010, Towards the model driven development of

context-aware pervasive systems, Pervasive and Mobile Computing 6(2), 254–280.

Shahin, M., Liang, P. and Khayyambashi, M.: 2009, Architectural design decision: Existing mod-

els and tools, European Conference on Software Architecture. WICSA/ECSA 2009. Joint Working

IEEE/IFIP Conference on Software Architecture, 2009, IEEE, pp. 293–296.

Shahin, M., Liang, P. and Khayyambashi, M.: 2010, Improving understandability of architecture

design through visualization of architectural design decision, Proceedings of the 2010 ICSE

Workshop on Sharing and Reusing Architectural Knowledge, ACM, pp. 88–95.

SHARK Workshop: 2012, Workshop on SHAring and Reusing architectural Knowledge, http:

//www.shark-workshop.org/.

Sharp, H., DeSouza, C. and Dittrich, Y.: 2010, Using ethnographic methods in software en-

gineering research, Proceedings of the 32nd ACM/IEEE International Conference on Software

Engineering-Volume 2, ACM, pp. 491–492.

Shaw, M.: 2002, What makes good research in software engineering?, International Journal on

Software Tools for Technology Transfer (STTT) 4(1), 1–7.

Shull, F., Singer, J. and Sjøberg, D.: 2008, Guide to Advanced Empirical Software Engineering,

Springer Publishing Company.

Sjoberg, D., Dyba, T. and Jorgensen, M.: 2007, The future of empirical methods in software

engineering research, Future of Software Engineering, 2007. FOSE’07, IEEE, pp. 358–378.

Software, E.: 2012, Trac, http://trac.edgewall.org/.

Sonnentag, S.: 1998, Expertise in professional software design: A process study, Journal of Applied

Psychology 3(5), 703–715.

Stake, R.: 1995, The art of case study research, Sage Publications, Inc.

Stevens, S.: 1946, On the theory of scales of measurement, Science 103(2684), 677–680.

Strauss, A.: 1987, Qualitative analysis for social scientists, Cambridge Univ Pr.

Svahnberg, M., Aurum, A. and Wohlin, C.: 2008, Using students as subjects-an empirical evalu-

ation, Proceedings of the Second ACM-IEEE international symposium on Empirical software engi-

neering and measurement, ACM, pp. 288–290.

BIBLIOGRAPHY 263

Tang, A., Aleti, A., Burge, J. and van Vliet, H.: 2010, What makes software design effective?,

Design Studies 31(6), 614–640.

Tang, A., Avgeriou, P., Jansen, A., Capilla, R. and Ali Babar, M.: 2010, A comparative study of

architecture knowledge management tools, Journal of Systems and Software 83(3), 352–370.

Tang, A., Babar, M., Gorton, I. and Han, J.: 2006, A survey of architecture design rationale,

Journal of Systems and Software 79(12), 1792–1804.

Tang, A., Jin, Y. and Han, J.: 2007, A rationale-based architecture model for design traceability

and reasoning, Journal of Systems and Software 80(6), 918–934.

Tang, A. and Lago, P.: 2010, Notes on design reasoning tactics, Technical Report SUTICT-

TR2010.01, Swinburne University of Technology.

URL: http://www.swinburne.edu.au/ict/research/documents/SUTICT_

TR2010_01.PDF

Tang, A., Tran, M., Han, J. and Van Vliet, H.: 2008, Design reasoning improves software design

quality, Quality of Software Architectures. Models and Architectures pp. 28–42.

Taylor, R. N., Medvidovic, N. and Dashofy, E. M.: 2009, Software Architecture: Foundations, Theory,

and Practice, first edn, John Wiley & Sons, Inc.

Tigris.org: 2012, Subversion, http://subversion.tigris.org.

Trochim, W.: 2001, Research methods knowledge base, Atomic Dog Publishing.

Tyree, J. and Akerman, A.: 2005, Architecture Decisions: Demystifying Architecture, IEEE Soft-

ware 22(2), 19–27.

University of Groningen, Software Engineering and Architecture Group: 2012a, The Open Deci-

sion Repository, http://opendecisionrepository.googlecode.com.

University of Groningen, Software Engineering and Architecture Group: 2012b, The Open Pat-

tern Repository, http://code.google.com/p/openpatternrepository/.

Urquhart, C., Lehmann, H. and Myers, M.: 2010, Putting the theory back into grounded theory:

guidelines for grounded theory studies in information systems, Information systems journal

20(4), 357–381.

van der Ven, J., Jansen, A., Avgeriou, P. and Hammer, D.: 2006, Using architectural decisions,

Second International Conference on the Quality of Software Architecture (Qosa 2006).

van der Ven, J., Jansen, A., Nijhuis, J. and Bosch, J.: 2006, Design decisions: The bridge between

rationale and architecture, Springer Publishing Company, pp. 329–348.

van Heesch, U. and Avgeriou, P.: 2009, A pattern driven approach against architectural knowl-

edge vaporization, Proceedings of the 14th European Conference on Pattern Languages of Pro-

grams (EuroPLoP), Irsee.

van Heesch, U. and Avgeriou, P.: 2010, Naive architecting-understanding the reasoning pro-

cess of students: a descriptive survey, Proceedings of the 4th European conference on Software

architecture, Springer Publishing Company, pp. 24–37.

264 BIBLIOGRAPHY

van Heesch, U. and Avgeriou, P.: 2011, Mature Architecting - A Survey about the Reasoning Pro-

cess of Professional Architects, Proceedings of the 2011 Ninth Working IEEE/IFIP Conference

on Software Architecture, IEEE Computer Society, pp. 260–269.

van Heesch, U., Avgeriou, P. and Hilliard, R.: 2012a, A documentation framework for architec-

ture decisions, Journal of Systems and Software 85(4), 795–820.

van Heesch, U., Avgeriou, P. and Hilliard, R.: 2012b, Forces on Architecture Decisions - A View-

point, Proceedings of the Joint 10th Working IEEE/IFIP Conference on Software Architecture &

6th European Conference on Software Architecture, IEEE, pp. xx–xx.

van Heesch, U., Avgeriou, P., Zdun, U. and Harrison, N.: 2012, The supportive effect of patterns

in architecture decision recovery— a controlled experiment, Science of Computer Program-

ming 77(5), 551 – 576.

Van Lamsweerde, A.: 2001, Goal-Oriented Requirements Engineering: A Guided Tour, Proceed-

ings of the Fifth IEEE International Symposium on Requirements Engineering, IEEE Computer

Society, p. 249.

Verner, J., Sampson, J., Tosic, V., Bakar, N. and Kitchenham, B.: 2009, Guidelines for industrially-

based multiple case studies in software engineering, Third International Conference on Re-

search Challenges in Information Science. RCIS 2009, IEEE, pp. 313–324.

Wieringa, R.: 2009, Design science as nested problem solving, Proceedings of the 4th international

conference on design science research in information systems and technology, ACM, pp. 8–20.

Williams, L. and Smith, C.: 2002, Pasa sm: a method for the performance assessment of software

architectures, Proceedings of the 3rd International Workshop on Software and Performance, ACM,

pp. 179–189.

Williams, R., Pandelios, G. and Behrens, S.: 1999, Software Risk Evaluation (SRE) Method De-

scription (Version 2.0), Technical Report CMU/SEI-99-TR-029, ESC-TR-99-029, Software En-

gineering Institute, Carnegie Mellon University.

Wohlin, C., Höst, M. and Henningsson, K.: 2003, Empirical research methods in software engi-

neering, Empirical Methods and Studies in Software Engineering pp. 7–23.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B. and Wesslén, A.: 2012, Experimenta-

tion in software engineering, Springer Publishing Company.

Yan, H., Garlan, D., Schmerl, B., Aldrich, J. and Kazman, R.: 2004, Discotect: A system for dis-

covering architectures from running systems, Proceedings of the 26th International Conference

on Software Engineering, IEEE Computer Society, pp. 470–479.

Yin, D. R. K.: 2003, Case Study Research: Design and Methods, Applied Social Research Methods Series,

Vol 5, third edition edn, Sage Publications, Inc.

Zannier, C., Chiasson, M. and Maurer, F.: 2007, A model of design decision making based on

empirical results of interviews with software designers, Information and Software Technology

49(6), 637–653.

Zdun, U.: 2007, Systematic pattern selection using pattern language grammars and design space

analysis, Software-Practice & Experience 37(9), 983–1016.

BIBLIOGRAPHY 265

Zimmermann, O., Grundler, J., Tai, S. and Leymann, F.: 2007, Architectural decisions and pat-

terns for transactional workflows in soa, Proceedings of the 5th international conference on

Service-Oriented Computing, Springer Publishing Company, pp. 81–93.

Zimmermann, O., Gschwind, T., Küster, J., Leymann, F. and Schuster, N.: 2007, Reusable archi-

tectural decision models for enterprise application development, Proceedings of the Quality

of software architectures 3rd international conference on Software architectures, components, and

applications, Springer Publishing Company, pp. 15–32.

Zimmermann, O., Zdun, U., Gschwind, T. et al.: 2008, Combining pattern languages and

reusable architectural decision models into a comprehensive and comprehensible design

method, Proceedings of the Seventh Working IEEE/IFIP Conference on Software Architecture

(WICSA 2008), IEEE Computer Society, pp. 157–166.

