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Chapter 1

Introduction

1.1 Introduction to Hysteresis

H
ysteresis is a nonlinear phenomenon that is present in many physical systems,

such as piezo-actuator, magneto-rheological damper, ferromagnetic material

and friction-induced mechanical systems. Due to the properties of the hysteresis

and the complexity of its mathematical modeling, the existence of hysteresis in

physical systems will affect the performance and even the stability of the system.

Therefore, a proper handling by a controller is needed for a system that contains

hysteresis.

The term ”hysteresis” comes originally from v̆στǫρǫ́ω, an ancient Greek word

meaning ”to lag behind”. It was first coined by the physicist Ewing in 1885, to

Figure 1.1: Magnetization of a cast-iron ring [11].
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describe the changes of magnetism caused by gradual reversal and other cyclic

changes of magnetising force [11], Figure 1.1 shows the magnetization curves of

a cast-iron ring discovered by Ewing.

In [11], three important properties of hysteresis have been stated: lagging, mem-

ory and rate-independence, which are still regarded as the main characteristics of

hysteresis.

Alfred Ewing (1885) [11]: When there are two quantities M and N , such

that cyclic variations of N cause cyclic variation of M , then if the changes of

M lag behind those of N , we may say that there is hysteresis in the relation

of M and N . The value of M at any point of the operation depends not only

on the actual value of N, but on all the preceding changes (and particularly

on the immediately preceding changes) of N , and by properly manipulating

those changes, any value of M within more or less wide limits may be found

associated with a given value of N .

The lagging property, the same as the meaning of the word ”lagging”, says that the

output lags behind the input. The memory property of hysteresis means that the

current output depends not only on the current input, but also on the history of the

input. The rate-independence property means that the input-output map does not

depend on the frequency of the input, but only on the amplitude of the input, i.e.,

the changes of the frequency in the input does not affect the phase plot from input

to output.

In literature, there are a multitude of mathematical definitions of hysteresis. In

[4], a hysteresis operator is defined as an operator which has the memory property

and is rate-independent. In [35], hysteresis is defined as a nontrivial quasi-dc input-

output closed curve, i.e. this nontrivial closed curve persists for an periodic input

when the input frequency approaches zero. In [33], hysteresis is defined as a multi-

branch nonlinearity generate by its input-output mapping and the branch-to-branch

transitions occur after input extrema. The hysteresis operator used in this thesis will

follow the definition given in [4], which has been used in many analysis for systems

with hysteresis, see [31, 61].

Although the hysteresis phenomenon has been discovered in magnetism about

200 years ago, and later on in many physical systems, the first systematic math-

ematical modeling of hysteresis has been provided by the Russian scientist Kras-

noselskii in 1970. After that, several hysteresis models have been proposed to de-

scribe hysteresis phenomenon in different systems, see, for example, [4], [32], [29],

[3]. These includes: i). Prandtl operator and Preisach operator, which are normally

called Preisach-type operator. This type of operator is constructed based on the su-

perposition of individual relay operators; ii). the Duhem operator, the Dahl model,
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the Coleman-Hodgdon model and the Bouc-Wen model, which are belong to the

Duhem-type operator. This class operator is defined based on a discontinuous dif-

ferential equation.

For the Preisach-type hysteresis operator, there are many results in literature that

deal with the stability analysis and controller design. To name a few, I refer to the

works by [13], [29], [33], [57] on the stability analysis involving these hysteresis

operators. For the various control design, I refer to the works by [20], [19], [52].

In this thesis, I focus on the Duhem-type hysteresis operator which has not been

studied extensively in the literature, despite the fact that they describe well the be-

havior of magnetic materials [25], friction [7] and piezo-electric materials [28]. Re-

cent results on the Duhem operator in the control and systems literature are [35],

[39] and [38], which focus on the semi-linear Duhem model and their properties,

and [17] focus on the linear control for systems with Bouc-Wen model, which is a

class of Duhem model.

1.2 Review of Related Work

There are a number of methodologies which have been proposed in literature to

overcome or to compensate the effect of hysteresis in physical systems.

A well-known strategy is to use a feed-forward compensator, where an inverse

hysteresis model is used to compensate for the hysteresis effect in the system such

that the cascaded system (of the compensator and the hysteretic plant) becomes a

linear system, where a linear controller can be designed to achieve the desired con-

trol objectives. For example, in [44], an inverse Preisach operator is used to com-

pensate a hysteretic system; in [19], an inverse Prandtl model is used for hystere-

sis compensation in micro-positioning control; similarly, in [47], an inverse Preisach

model is used to compensate hysteresis in piezoceramic actuator to achieve tracking

control. However, these approaches have a major drawback since most of hysteresis

models are not analytically invertible. As a result, approximate inverse hystere-

sis models are used [44, 12, 47] which introduce numerical errors and degrade the

closed-loop feedback performance.

Another approach is to consider the hysteresis as an unknown nonlinearity with

a certain structure so that an adaptive control law can be developed to guarantee

the stability of the controlled system. These include, adaptive control design for

compensating an unknown backlash-type hysteresis for systems with known plant

[52]; an output feedback adaptive control scheme for a class of uncertain nonlinear

system with unknown backlash-type hysteresis [63].

In the last approach, control design methods are proposed based on exploiting
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specific ”nice” properties of hysteresis, such as, monotonicity, sector-bound or dis-

sipativity so that the use of inverse model can be avoided and a certain robustness

against parameter uncertainties can be guaranteed. In [53, 54], the stability problem

for a linear system with an backlash operator is solved by using generalized sec-

tor conditions of the backlash-type hysteresis and the stability conditions are given

based on linear matrix inequalities (LMIs). In [14], the dissipativity of the Preisach

operator is derived and a controller which is strictly passive is designed for the

smart actuators.

In [29, 20], an integral/PID controller is proposed to control a linear system feed-

back interconnected to a hysteresis operator. In their approach, the Lipschitz condi-

tion of the hysteresis operator is used to derive a frequency-domain stability criteria

for the closed-loop system.

In this thesis, I explore a natural input-output property of hysteresis as initially

established by Ewing in 1885 [11]. When the output lags the input, the phase plot

of the input and output signal undergoes a counter-clockwise behavior and this

type of phenomena is called counterclockwise (CCW) input-output (I/O) behavior.

For example, backlash model and Preisach model with positive weights generate

CCW I/O behavior. On the other hand, when the output leads the input, the phase

plot of the input and output signal undergoes a clockwise behavior and this type

of phenomena is called clockwise (CW) input-output (I/O) behavior. For example,

elastic-plastic model and Dahl model generate CW I/O behavior.

The CCW property of a dynamical system can also be interpreted by the classical

passivity theory: the system is passive from the input to the time derivative of the

output (instead of the output in the passivity theory), see in [1, 39]. Differs from the

work by [14], i), this thesis is focused on the Duhem-type operator, where in [14]

the Preisach-type operator is considered; ii), I provide the explicit representation of

the storage function of the Duhem hysteresis operator, which can be considered as

the Lyapunov function for stability analysis. iii). Using the CCW/CW properties,

a new controller design methodology is proposed for stabilizing a linear system

interconnected with a Duhem operator.

1.3 Contributions of this Thesis

The contributions appears in two main parts: 1. Dissipativity of the Duhem hys-

teresis operator and 2. Stability and control results for systems interconnected with

Duhem hysteresis operator.

• I discussed the dissipativity property of counterclockwise Duhem operator.

Sufficient conditions on the functions which define the Duhem operator are
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given such that the Duhem operator has counterclockwise input-output dy-

namics. In particular, an explicit construction of the storage functions satisfy-

ing the counterclockwise dissipation inequality is given.

- See Chapter 4 and [22, 21].

• I investigated the dissipativity property of a certain class of Duhem hysteresis

operators, which has clockwise (CW) input-output (I/O) behavior. In partic-

ular, I provide sufficient conditions on the Duhem operator such that it is CW

and propose an explicit construction of the corresponding function satisfying

dissipation inequality of CW systems.

- See Chapter 4 and [36].

• I investigated the stability of positive and negative feedback interconnections

between a linear system and a Duhem hysteresis operator. For solving this ab-

solute stability problem, sufficient conditions are given based on the counter-

clockwise (CCW) or clockwise (CW) input-output property of each subsystem.

Based on these results I introduce a control design methodology for stabilizing

a linear plant with a hysteretic actuator or sensor.

- See Chapter 5, Chapter 6 and [42, 37].

• I studied the robustness property of a second-order linear plant controlled by

a proportional, integral and derivative (PID) controller with a hysteretic actu-

ator. The hysteretic actuator is modeled by a Duhem model which exhibits: (i)

clockwise (CW) input-output (I/O) dynamics (such as the Dahl model, LuGre

model and Maxwell-Slip model, which describe hysteresis phenomena in me-

chanical friction); (ii) counter-clockwise(CCW) input-output (I/O) dynamics

(such as the Jiles-Atherton model, the Coleman model, which describes the

hysteresis phenomena in piezo-actuator). Based on our main result in Chap-

ter 5, I provide sufficient conditions on the controller gains that depend on the

plant parameters such that the origin of the plant and the state of the hysteresis

is globally attractive. The robustness of the closed-loop system with respect to

the measurement noise is also given, using the integral input-to-state stability

(iISS) concept.

- See Chapter 6 and [43].

1.4 Organization of this Thesis

This thesis is organized in following manner. Chapter 2 provides some necessary

theoretical backgrounds which are used throughout this thesis. Chapter 3 gives a
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comprehensive introduction of the Duhem hysteresis operator: the general repre-

sentation, the properties and the possible applications.

The dissipativity of the Duhem hysteresis operator is presented in Chapter 4,

where I discussed the dissipativity property of the Duhem hysteresis operator in

two categories: the Duhem hysteresis operator with CCW I/O behavior and the

Duhem hysteresis operator with CW I/O behavior. Based on the dissipativity re-

sults, I investigated the absolute stability of a feedback interconnection between a

linear system and a Duhem hysteresis operator in Chapter 5.

In Chapter 6, I proposed a controller design methodology for a linear system

interconnected with a hysteretic actuator (sensor). As a special case, I studied the

robustness property of a second-order linear plant controlled by a proportional, in-

tegral and derivative (PID) controller with a hysteretic actuator. To validate our

approach, an experiment on the piezo-actuated stage is conducted and the detailed

experimental results are also present. Finally the conclusion and future work are

given in Chapter 7.



Chapter 2

Preliminaries

This chapter presents theoretical background which is used throughout this the-

sis. Firstly, the Lyapunov stability theory and integral input-to-state stability

(iISS) theory are provided, which will be used for the stability analysis results in

Chapter 5 and for the controller design results in Chapter 6. Secondly, basic dis-

sipativity theory is introduced in Section 2.2, which will be employed in Chapter

4. Furthermore, we give the definitions of the counter-clockwise and clockwise dy-

namics in Section 2.3, which are the basis of the main results in Chapter 4, 5 and 6.

Finally, the definition of a hysteresis operator is given in Section 2.4.

A function α : R+ → R+ belongs to class K if it is continuous, strictly increasing

and α(0) = 0. A function α belongs to class K∞ if α ∈ K and lims→∞ α(s) = ∞. A

function β : R+ × R+ → R+ belongs to class KL if for each fixed ς ∈ R+, β(·, ς) ∈ K
and for each fixed s ∈ R+, β(s, ·) is decreasing and limς→∞ β(s, ς) = 0.

2.1 Basic Stability Theory

Consider an autonomous system

ẋ = f(x), x(0) = x0, (2.1)

where f : Rn → Rn is continuous. Suppose xe ∈ Rn is an equilibrium point of (2.1),

i.e. f(xe) = 0.

Definition 2.1.1 [46] The system (2.1) is

1. stable at xe, if for each ǫ > 0, there is δ = δ(ǫ) > 0 such that ‖x(0)‖ < δ ⇒
‖x(t)‖ < ǫ, for all t ≥ 0.

2. locally asymptotically stable at xe (or xe-LAS), if it is stable and there exists a

δ > 0 such that, if ‖x0 − xe‖ < δ, then ‖x(t)− xe‖ = 0, as t → ∞.

3. globally asymptotically stable at xe (or xe-GAS), if it is stable and for every x(t),

we have ‖x(t)− xe‖ = 0, as t → ∞.
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where ‖ · ‖ denotes the standard Euclidean norm.

Theorem 2.1.2 (LaSalle)[46] Let V : Rn → R be a differentiable positive definite function

V (x) > 0 for all x 6= xe such that on the compact set Ωc = {x ∈ Rn : V (x) ≤ c} we have

V̇ (x) ≤ 0. Define M = {x ∈ Ωc : V̇ (x) ≤ 0}. Then the trajectory converges to the largest

invariant set contained in M as t → ∞.

The concept of integral input-to-state stability is introduced for the stability anal-

ysis of nonautonomous nonlinear systems given a bounded-energy input signal in

[49, 2]. It is an integral variant of the input-to-state stability (ISS) property and is

closely related to the L2 stability of the nonlinear dynamical systems.

Consider a nonlinear system given by

Σ :

{
ẋ = f(x, u)

y = h(x, u),
(2.2)

where h : Rn × R → R
n, f : Rn × R → R

n is continuous and locally Lipschitz on x

for bounded u.

Definition 2.1.3 [49] System (2.2) is integral input-to-state stable (iISS) if there exist func-

tions α ∈ K∞, β ∈ KL and γ ∈ K such that, for every x0 ∈ Rn and u ∈ L∞(Rm), the

unique maximal solution x is global and

α(‖x(t)‖) ≤ β(‖x0‖, t) +
∫ t

0

γ(‖u(s)‖)ds ∀t ∈ R+, (2.3)

where γ is referred to as iISS gain.

It is shown in [2] that system (2.2) is integral input-to-state stable (iISS) if it is (a) 0-

GAS and (b) dissipative with respect to supply rate σ(u), where σ is class K function.

The relation between the iISS gain γ and the supply rate σ(u) is then discussed in

[23] and it is shown that for a class of dissipative systems, the supply rate σ(u) is

essentially the iISS gain function.

In this thesis, a modified definition of the iISS is used, which is called A-iISS.

Compare to the standard iISS, the solution x of the system converges to an invariant

set A instead of the origin in the notion of A-iISS when a bounded-energy input

signal is used. The definition of A-iISS is given as below.

Definition 2.1.4 Consider the nonlinear system given in (2.2). Let A ⊂ Rn be a nonempty

and closed set. It is said to be integral input-to-state stable with respect to A (A-iISS) if
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there exist functions α ∈ K∞, β ∈ KL and γ ∈ K such that, for every x0 ∈ Rn and

u ∈ L∞(Rm), the unique maximal solution x is global and

α(‖x(t)‖A) ≤ β(‖x0‖A, t) +
∫ t

0

γ(‖u(s)‖)ds ∀t ∈ R+, (2.4)

where ‖ · ‖A denotes the distance to the invariant set A, γ is referred to as A-iISS gain.

2.2 Dissipative System

The dissipativity theory introduced by Willems in [62] is a generalization of the

concept of the passivity. The physical interpretation of dissipative system is that the

stored energy in the system is less or equal to the total external supplied energy.

Consider the nonlinear system in (2.2) and let s : (u, y) → s(u, y) define the

supply function.

Definition 2.2.1 [59] The system Σ in (2.2) is said to be dissipative with respect to the

supply rate s if there exists a function S : Rn → R+, called the storage function, such that

for all x0 ∈ R, all t1 ≥ t0 and all input signals u, the following dissipation inequality

S(x(t1)) ≤ S(x(t0)) +

∫ t1

t0

s(u(t), y(t))dt (2.5)

holds where x(t0) = x0, and x(t1) is the state of Σ at time t1 resulting from initial condition

x0 and input function u(·). If (2.5) holds with equality for all x0, t1 ≥ t0 and all u(·), then

Σ is lossless with respect to s.

The inequality (2.5) is called the dissipation inequality. The storage function asso-

ciated with a dissipative dynamical system, is bounded from below by the available

storage and from above by the required supply, as shown in the following theorems

Theorem 2.2.2 [59] Consider the system (2.2) with supply rate function s. Then the system

is dissipative with respect to s if and only if

Sa(x) = sup
T≥0

u(·)

−
∫ T

0

s(u(t), y(t))dt, x(0) = x, (2.6)

is finite for all x ∈ Rn. Furthermore, if Sa is finite for all x ∈ Rn then Sa is a storage

function, and all other possible storage function S satisfy

Sa(x) ≤ S(x), ∀x ∈ R
n. (2.7)
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The quantity Sa(x0) can be interpreted as the maximal energy which can be ex-

tracted from the system (2.2) starting at initial condition x0. The function Sa is called

the available storage.

Theorem 2.2.3 [59] Assume that the system (2.2) is reachable from x∗ ∈ R. Define the

”required supply” from x∗ by

Sr(x) = inf
T≥0

u(·)

∫ 0

−T

s(u(t), y(t))dt, x(−T ) = x∗, x(0) = x. (2.8)

Then Sr(x) satisfies the dissipation inequality (2.5). Furthermore, the system (2.2) is dissi-

pative if and only if there exists K > −∞ such that Sr(x) ≥ K for all x ∈ Rn. Moreover,

if S is a storage function for (2.2), then

S(x) ≤ Sr(x) + S(x∗) ∀x ∈ R
n,

and Sr(x) + S(x∗) is itself a storage function.

The dissipativity theory is applied in Chapter 4, where we show the dissipativity

of the Duhem-type operator by constructing an explicit storage function. The rela-

tions between the constructed storage function and the available/required storage

function for hysteresis operator is also discussed.

2.3 Counter-clockwise and Clockwise Dynamics

In this section we give the definitions of the counter-clockwise (CCW) and clockwise

(CW) dynamics, which are introduced by Angeli [1] and Padthe [39].

2.3.1 Counter-clockwise Dynamics

Consider an input-output pair (u, y) of a second-order linear system with a periodic

input u(t) ∈ R and the corresponding output y(t) ∈ R, as shown in Figure 2.1.

The arrows in the figure indicates that the output y lags the input u, i.e. the

curves generated by the chosen input-output pair has a CCW orientation. The area

A enclosed by the curve is given in yellow. To interpret this input-output behavior,

let us recall the classical Green’s theorem [50].

Theorem 2.3.1 Let C be a positive oriented, piecewise-smooth, simple curve in the plane

and let R be the region enclosed by C. If M(u, y) and N(u, y) have continuous partial

derivatives on an open region that contains R with u, y ∈ R, then
∫

C
Mdy +Ndu =

∫ ∫

R

dN

dy
− dM

du
dA, (2.9)



2.3. Counter-clockwise and Clockwise Dynamics 11

u(t)

y(t) A

Figure 2.1: A graphical illustration of counter-clockwise (CCW) input-output be-

havior from a pair of (u, y).

where the left hand side is a line integral along the closed curve C and the right hand side is

a surface integral over the enclosed region R.

In the Green’s theorem, the positive orientation of C indicates the counterclockwise

traversal. The signed area A is positive when the closed curve C has counterclock-

wise orientation. The definition of the signed area A is given as follows

Definition 2.3.2 [39] Consider a closed curve C, then the signed area A enclosed by C is

given by A = 1
2

∫

C udy − ydu

Now let us consider the second-order linear system given in Figure 2.1 and de-

note C the closed-curve given by (u, y). Let the input signal u be a continuous dif-

ferentiable periodic signal such that for the time period [0, T ], T > 0, u(0) = u(T ),

the input signal u has exactly one local minimum and one local maximum. Now

calculating the signal area A, we arrive at

A =
1

2

∫ T

0

ẏ(t)u(t)− u̇(t)y(t)dt =

∫ T

0

ẏ(t)u(t)dt− 1

2
u(T )y(T )+

1

2
u(0)y(0). (2.10)

Since the input is periodic signal with period T , u(0) = u(T ) and y(0) = y(T ), thus

equation (2.10) leads to the following counterclockwise dissipation inequality

∫ T

0

ẏ(t)u(t)dt ≥ 0. (2.11)
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Note that in the Green’s theorem, it is assumed to have a simple closed curve. For

the cases when the closed curves are not simple, the enclosed area is the summation

of integrals evaluated over each simple closed curve.

Based on the Green’s theorem and Definition 2.3.2, the definition of the CCW

dynamics for any bounded input and output can be given as follows

Definition 2.3.3 [1], [39] A (nonlinear) operator G : AC(R+) → AC(R+) is counter-

clockwise (CCW) if for every u ∈ AC(R+) with the corresponding output map y := Gu,

the following inequality holds

lim inf
T→∞

∫ T

0

ẏ(t)u(t)dt > −∞. (2.12)

For an operator G, inequality (2.12) holds if there exists a function VG : R2 → R+

such that for every input signal u, the inequality dVG(y(t),u(t))
dt ≤ ẏ(t)u(t), holds for

almost every t where the output signal y := Gu. Note that, this definition can be

interpreted by the classical passivity theory in the way that if the system is passive

from the input to the derivative of the output (instead of the output as in the classical

passivity theory), then the system is CCW.

Definition 2.3.4 A (nonlinear) operator G : AC(R+) → AC(R+) is strictly counter-

clockwise (S-CCW) (see also [1]), if for every input u ∈ AC(R+), there exists a constant

ε > 0 such that the inequality

lim inf
T→∞

∫ T

0

ẏ(t)u(t)− ε|ẏ(t)|2dt > −∞, (2.13)

holds where y := Gu.

Note that for systems described by the state space representation as follows:

Σ :

{
ẋ = f(x, u), x(0) = x0

y = h(x),
(2.14)

where x(t) ∈ Rn is the state, u(t) ∈ R is the input, y(t) ∈ R is the output and f , h are

sufficiently smooth functions, the following lemma provides sufficient conditions

for Σ to be CCW (and S-CCW).

Lemma 2.3.5 Consider the state space system in (2.14). If there exists a differentiable func-

tion VG : Rn → R+ and ε ≥ 0, such that

∂VG(x)

∂x
f(x, u) ≤ ∂h(x)

∂x
f(x, u)u− ε

∣
∣
∣
∣

∂h(x)

∂x
f(x, u)

∣
∣
∣
∣

2

, (2.15)

holds for all x ∈ Rn and u ∈ R, then (2.14) is CCW. Moreover if ε > 0, it is S-CCW.
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Proof: Taking integrals of both sides of (2.15) from 0 to T > 0, then

∫ T

0

∂VG(x)

∂x
f(x, u)dt ≤

∫ T

0

∂h(x)

∂x
f(x, u)u− ε

∣
∣
∣
∣

∂h(x)

∂x
f(x, u)

∣
∣
∣
∣

2

dt,

Since VG(x(T )) ≥ 0, we obtain

∫ T

0

∂h(x)

∂x
f(x, u)u− ε

∣
∣
∣
∣

∂h(x)

∂x
f(x, u)

∣
∣
∣
∣

2

dt ≥ VG(x(0)) ≥ −∞,

which leads to (2.12). �

We would like to remark that the definitions of the CCW dynamics and CW dy-

namics are for both the nonlinear system and the linear system. In case of linear

systems the concept CCW dynamics is equivalent to the concept of negative imagi-

nary systems as given in [40, 48]. This equivalency has been shown in [39] and [60].

The definition of the CCW dynamics can be related to the classical dissipativity the-

ory as in [62]. In this case the system is dissipative with respect to the supply-rate

function ẏ(t)u(t), which is a particular class of general supply-rate functions as dis-

cussed in [56].

2.3.2 Clockwise Dynamics

Dual to the concept of counterclockwise I/O dynamics, the clockwise I/O dynamics

can be defined by a clockwise dissipation inequality which is dual to that for coun-

terclockwise systems. Consider an input-output pair (u, y) of a second-order linear

system with a periodic input u(t) ∈ R and the corresponding output y(t) ∈ R, as

shown in Figure 2.2.

The arrows in the figure indicates that the output y leads the input u, i.e. the

curves generated by the chosen input-output pair has CW orientation. The area

A enclosed by the curve is given in yellow. Applying the Green’s theorem 2.3.1,

the clockwise traversal corresponds to the negative orientation of C and the signed

area A is negative when the closed curve C has clockwise orientation. The CW I/O

dynamics can then be defined as follows.

Definition 2.3.6 [39] A (nonlinear) operator G : AC(R+) → AC(R+) is clockwise (CW)

if for every input u ∈ AC(R+) with the corresponding output map y := Gu, the following

inequality holds:

lim inf
T→∞

∫ T

0

y(t)u̇(t)dt > −∞. (2.16)
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u(t)

y(t)
A

Figure 2.2: A graphical illustration of clockwise (CW) input-output behavior from a

pair of (u, y).

For a nonlinear operator G, inequality (2.16) holds if there exists a C1 function VG :

R2 → R+ such that for every input signal u ∈ AC(R+), the inequality dVG(y(t),u(t))
dt ≤

y(t)u̇(t), holds for a.e. t where the output signal y := Gu.

Lemma 2.3.7 Consider the state space system as

{
ẋ = f(x, u), x(0) = x0

y = h(x, u),
(2.17)

If there exist θ : Rn+1 → R+, a differentiable function VG : Rn+1 → R+ such that VG is

positive definite and proper (radially unbounded), and

[
∂VG(u,x)

∂u
∂VG(u,x)

∂x

] [ vi
f(x, u)

]

≤ h(x, u)vi − θ(u, x), (2.18)

holds for all x ∈ Rn, u ∈ R and vi ∈ R, then (2.17) is CW.

Proof: Define the extended state space system (2.17) as follows

u̇ = vi,

ẋ = f(x, u),

y = h(x, u).

(2.19)

It follows from (2.18) and (2.19) that V̇G ≤ h(x, u)vi − θ(x, u) = yu̇ − θ(x, u). Inte-

grating V̇G from 0 to T > 0 and by using vi = u̇, we obtain (2.16). �
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2.4 Hysteresis Operator

In this section, the definition of the hysteresis operator is based on the work in [4].

This definition has been used in many analysis for hysteresis systems ( see for exam-

ple, [31], [61]) and provide a general mathematical definition for hysteresis operator.

Definition 2.4.1 [4] A function ϕ : R+ → R+ is called a time transformation if ϕ(t) is

continuous, increasing and satisfies ϕ(0) = 0 and limt→∞ ϕ(t) = ∞.

Definition 2.4.2 [4] An operator Φ : C(R+) → C(R+) is called rate independent if

(Φ(ν ◦ ϕ))(t) = Φ(ν) ◦ ϕ(t),

holds for all ν ∈ C(R+), t ∈ R+ and all admissible time transformations.

Generally speaking, rate independent means that the hysteresis loops are deter-

mined only by the past extremum values of input, while the speed of the variations

of input between the extremum points does not affect the hysteresis loops. As illus-

trated in Figure 2.3, two different inputs u1(t) and u2(t) which have the same ex-

tremum points but at different time scale, and the variation between the extremum

points are also different. However, for a rate independent operator, these two inputs

will result in the same input-output map.

Definition 2.4.3 [4] An operator Φ : C(R+) → C(R+) is said to be causal if for all τ > 0

and all ν1, ν2 ∈ C(R+), ν1 = ν2 on [0, τ ] implies Φ(ν1) = Φ(ν2) on [0, τ ].

Based on the definition of rate-independent and causality, we give the definition

of the hysteresis operator which is used in the rest of this thesis.

Definition 2.4.4 [4] An operator Φ : C(R+) → C(R+) is called an hysteresis operator if

it is causal and rate-independent.
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u1(t)

t

(a)

u2(t)

t

(b)

y

u

(c)

Figure 2.3: Graphical illustration of rate independency.



Chapter 3

Duhem Hysteresis Operator and Its
Applications

I
n this chapter, a comprehensive introduction of the Duhem hysteresis operator is

given, in which we introduce the general representation of Duhem operator, the

properties and the possible applications of the Duhem hysteresis operator. To show

the possible applications of the Duhem hysteresis operator, we investigate several

standard hysteresis models which are used in several applications, such as: gear

train, electro-magnetic applications, elastic-plastic element and mechanical friction.

These hysteresis models are studied in two categories:with saturated output (the

input-output pair of the hysteresis operator exists only in a subset of R2) and with

unsaturated output (the input-output pair of the hysteresis operator exists in the

whole R2). We show that the hysteresis models present in both categories are all

Duhem-type hysteresis, i.e. they can be recasted into the Duhem framework.

3.1 Definition of The Duhem Hysteresis Operator

The Duhem operator Φ : AC(R+)× IR → AC(R+), (uΦ, yΦ0) 7→ Φ(uΦ, yΦ0) =: yΦ is

described by

ẏΦ(t) = f1(yΦ(t), uΦ(t))u̇Φ+(t) + f2(yΦ(t), uΦ(t))u̇Φ−(t), yΦ(0) = yΦ0 , (3.1)

where u̇Φ+(t) := max{0, u̇Φ(t)}, u̇Φ−(t) := min{0, u̇Φ(t)} and f1, f2 : R2 → R. Note

that the Duhem operator defines a dynamical system and the differential equation

(3.1) can also be put into a state-space form where the state consists of both variables

uΦ, yΦ and the control input is u̇Φ.

In this thesis, the signal (yΦ, uΦ) is often involved in scalar calculations at arbi-

trary time. Hence, for notational clarity, γ ∈ R is used to denote yΦ(tc) for arbitrary

time tc ∈ R+ and υ ∈ R is used to denote uΦ(tc) for some time instance tc ∈ R+ in

the rest of this thesis.

The Duhem hysteresis operator as defined in (3.1) has the following properties:
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• Existence of solution[32]

The existence of solutions to (3.1) has been reviewed in [32]. In particular, if

for every υ ∈ R, the functions f1, f2 are C1 and satisfy

(γ1 − γ2)[f1(γ1, υ)− f1(γ2, υ)] ≤ λ1(υ)(γ1 − γ2)
2, (3.2)

(γ1 − γ2)[f2(γ1, υ)− f2(γ2, υ)] ≥ −λ2(υ)(γ1 − γ2)
2,

for all γ1, γ2 ∈ R, where λ1 and λ2 are nonnegative, then (3.1) has a unique

global solution.

• Monotonicity[61]

If f1, f2 ≥ 0, then the Duhem operator Φ given in (3.1) is piecewise monotone,

i.e. for every uΦ ∈ AC(R+), the inequality ẏΦu̇Φ ≥ 0 holds a.e. t ∈ R+.

• Rate-independent[35, 61]

The rate-independency property of the Duhem operator given in (3.1) can be

interpreted as follows, let τ : [0,∞) → [0,∞) be a continuous nondecreasing

function satisfying τ(0) = 0 and limt→∞ τ(t) = ∞, i.e. τ is the time transfor-

mation, then Φ(uΦ ◦ τ, yΦ0) = Φ(uΦ, yΦ0) ◦ τ . In other words, for any periodic

input uΦ, the I/O relation does not depends on the input frequency.

• Causality[61]

Let T > 0, the causality of the Duhem operator in (3.1) can be interpreted as

uΦ1 |[0,t] = uΦ2 |[0,t] ⇒ Φ(uΦ1 , yΦ0)(t) = Φ(uΦ2 , yΦ0)(t), ∀t ∈ [0, T ]. (3.3)

From the rate-independency and causality property given above, it can be seen

that the Duhem operator is a hysteresis operator as defined in Chapter 2. Although

this thesis focuses on the rate-independent Duhem hysteresis operator, we would

like remark that the Duhem hysteresis operator in (3.1) can also represent rate-

dependent hysteresis: i) by using the generalized form as given in [35], i.e.

ẏΦ(t) = f1(yΦ(t), uΦ(t))g(u̇Φ+(t))+ f2(yΦ(t), uΦ(t))g(u̇Φ−(t)), yΦ(0) = yΦ0 , (3.4)

where g is a non-positive homogeneous function; ii) let the functions f1, f2 : R2 ×
R+ → R be time varying as follows

ẏΦ(t) = f1(yΦ(t), uΦ(t), t)u̇Φ+(t) + f2(yΦ(t), uΦ(t), t)u̇Φ−(t), yΦ(0) = yΦ0 . (3.5)
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3.2 Duhem Hysteresis Operator with Unsaturated Out-

put

In this section we introduce several standard hysteresis models with unsaturated

output. Here by unsaturated output we mean that the range of the hysteresis oper-

ator is equal to R.

3.2.1 The Backlash Operator

The backlash (or play) operator is widely used for mechanical models, for example,

for models of gear trains or of hydraulic servo-valves. The mathematical analysis of

the backlash operator can be found in [4, 33].
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Figure 3.1: Backlash operator Bl,ξ (l = 2, ξ = 3)

For each l ∈ R+, the function bl : R
2 → R is defined by

bl(γ, υ) := max{υ − l,min{υ + l, γ}}.

For all ξ ∈ R, we introduce a backlash operator Bl,ξ defined on the space Cpm(R+)

of piecewise monotone functions, by defining, for every uB ∈ Cpm(R+),

(Bl,ξ(uB))(0) := bl(uB(0), ξ)

(Bl,ξ(uB))(t) := bl(uB(t), (Bl,ξ(uB))(ti)) t ∈ (ti−1, ti], i ∈ N

}

(3.6)
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where ξ is the initial condition, l is the width of the backlash operator and 0 = t0 <

t1 < t2 < . . . is a partition of R+, such that u is monotone on each of the intervals

[ti−1, ti], i ∈ N. It is well known, see, for example, [4, page 42], that the operator

Bl,ξ : Cpm(R+) → C(R+) can be extended uniquely to an operator Bl,ξ : C(R+) →
C(R+). The action of a backlash operator is illustrated in Figure 3.1.

The backlash operator Bl,ξ : C1(R+) → C1(R+) can be defined by the Duhem

hysteresis operator (3.1). Let Φl,ξ denote Bl,ξ and uΦ denote uB, then the f1, f2 func-

tions as defined in (3.1) can be given as follows

f1(γ, υ) =

{
1 if γ = υ − l

0 elsewhere,
(3.7)

f2(γ, υ) =

{
1 if γ = υ + l

0 elsewhere,
(3.8)

and with yΦ0 = max{uΦ(0)− l,min{uΦ(0) + l, ξ}}.

The Duhem description of a backlash operator can be easily extended to a gener-

alized backlash operator. For instance, the generalized backlash operator Φµ1,µ2,l,ξ :

C1(R+) → C1(R+) with µ1 > µ2 ≥ 0, l > 0, then the backlash operator can be

defined by (3.1) where

f1(γ, υ) =

{
µ1 if γ = µ1(υ − l)

µ2 elsewhere,
(3.9)

f2(γ, υ) =

{
µ1 if γ = µ1(υ + l)

µ2 elsewhere,
(3.10)

and yΦ0 is defined properly inside the hysteresis domain, i.e. µ1(uΦ0 − l) ≤ yΦ0 ≤
µ1(uΦ0 + l).

3.2.2 The Coleman-Hodgdon Model

The hysteresis model proposed by Coleman and Hodgdon [6, 58] is commonly used

to represent hysteresis in ferromagnetic materials inside a magnetic field. It exhibits

saturated hysteresis loops and nested loops. In its original form as in [6], the model

is given by

ẏΦ(t) = Cα|u̇Φ(t)|[f(uΦ(t)) − yΦ(t)] + u̇Φ(t)g(uΦ(t)), yΦ(0) = yΦ0 , (3.11)

where uΦ denotes the magnetic field, yΦ denotes the magnetic flux, Cα is a positive

constant, f : R → R is a monotone increasing and locally Lipschitz function, such

that f(0) = 0 and g is a locally Lipschitz function. The Coleman-Hodgdon model in
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Figure 3.2: Behaviour of the Coleman-Hodgdon model using f and g as in (3.11)

with Cα = 0.1, Cb = 5× 10−3, Ca = 9× 10−4, us = 760 and yΦ0 = 0.

(3.11) can be rewritten into the form of (3.1) where

{
f1(γ, υ) = Cα[f(υ)− γ] + g(υ)

f2(γ, υ) = −Cα[f(υ)− γ] + g(υ).
(3.12)

Figure 3.2 shows the behaviour of the Coleman-Hodgdon model using the func-

tions f and g proposed in [6], i.e.

f(υ) =







Ca[υ + us]− Cbus, if υ < −us,

Cbυ, if us ≤ υ ≤ us,

Ca[υ − us] + Cbus, if υ > us,

and

g(υ) = Ca,

where us, Ca and Cb are positive constants.

3.2.3 The Jiles-Atherton Model

The Jiles-Atherton model also represents hysteresis behavior in ferromagnets. In

contrast to the phenomenological modeling of Coleman-Hodgdon model, the Jiles-

Atherton model is based on the physical modeling of the magnetization process

(domain wall motion) [25]. Let uΦ be the magnetic field and yΦ be the magnetiza-
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tion. The Jiles-Atherton model as proposed in [25] is then given by:

dyΦ
duΦ

= (1 − c)
(yan − yΦ)

sign(u̇Φ)K − Jα(yan − yΦ)
− c

dyan
duΦ

, (3.13)

where sign(.) is the sign operator, c, K and Jα are positive constants, and yan is the

unique solution of an implicit equation:

yan = Msf(uΦ + Jαyan). (3.14)

The parameter Ms defines the saturation magnetization and f is a function which
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Figure 3.3: Behaviour of the Jiles-Atherton model with Jα = 1.6 × 10−3, Ja = 11,

c = 0.2 and K = 9.

satisfies f(0) = 0, lims→∞ f(s) = 1 and lims→−∞ f(s) = −1. Jiles and Atherton

in [25, 51] proposed to use the modified Langevin expression for f in (3.14). More

precisely, yan is given by:

yan = Ms

(

coth

(
uΦ + Jαyan

Ja

)

− Ja
(uΦ + Jαyan)

)

, (3.15)

where Ja is a positive constant. We rewrite it in an explicit form as follows.

Lemma 3.2.1 If Ja > MsJα/3, then (3.15) has a unique solution yan for every uΦ ∈ R

and it can be represented into the following explicit form:

yan = fan(uΦ). (3.16)



3.2. Duhem Hysteresis Operator with Unsaturated Output 23

Proof: Firstly, denote b = (uΦ + Jαyan)/Ja and rewrite (3.15) into:

uΦ = −MsJα coth(b) +
MsJα

b
+ Jab. (3.17)

Let g(b) = −MsJα coth(b) + MsJα

b + Jab. The first two components of g define

the Langevin function, which is continuous for all b in R. It is clear that Jab is a

continuous function of b. This implies that g is a continuous function.

The uniqueness of the solution of (3.15) is proved by showing that g(b) is invert-

ible, so that according to the definition of b, yan can be given by

yan =
ag−1(uΦ)− uΦ

Jα
(3.18)

The function g is invertible if it is strictly increasing. The gradient of g is given

by:

∂g(b)

∂b
= MsJα

4e2b

(e2b − 1)2
−MsJα

1

b2
+ Ja. (3.19)

Now, let N(b) = MsJα(
4e2b

(e2b−1)2 − 1
b2 ). It can be checked that limb→0 N(b) = − 1

3MsJα,

Ṅ(b) < 0 if b < 0 and Ṅ(b) > 0 if b > 0. Hence, if Ja > MsJα/3, then ∂g(b)
∂b > 0 for

all b ∈ R. This implies that g is strictly increasing and invertible.

Therefore, if Ja > MsJα/3, yan is given by (3.18). �

Using Lemma 3.2.1, we can replace yan in (3.13) with fan(uΦ) as follows:

dyΦ
duΦ

= (1 − c)
(fan(uΦ)− yΦ)

sign(u̇Φ)K − Jα(fan(uΦ)− yΦ)
− c

dfan(uΦ)

duΦ
(3.20)

and formulate the Jiles-Atherton model into Duhem model (3.1) with

{

f1(γ, υ) = (1 − c) (fan(υ)−γ)
K−Jα(fan(υ)−γ) − cdfan(υ)

dυ

f2(γ, υ) = (1 − c) (fan(υ)−γ)
−K−Jα(fan(υ)−γ) − cdfan(υ)

dυ

(3.21)

An illustration of the Jiles-Atherton model is shown in Figure 3.3.

3.2.4 The Bouc-Wen Model

The Bouc-Wen model is commonly used to model the hysteresis phenomena in the

magnetorheological damper [10], [18]. Moreover, it is also used to represent the
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Figure 3.4: The input-output dynamics of the Bouc-Wen model with kx = 1.2117×
10−7, kw = −5.08× 10−6, n = 1.27, ρ = 8.93× 10−3 and σ = 0.74.

hysteresis phenomena in the piezo-actuators [17]. The general representation of the

Bouc-Wen model is given by

yΦ(t) = kxuΦ(t) + kwh(t)

ḣ(t) = ρu̇Φ(t)− ρσ|u̇Φ(t)||h(t)|n−1h(t)− ρ(1− σ)u̇Φ(t)|h(t)|n,

where n ≥ 1 and kx, kw, ρ, σ are the parameters determine the shape of the hystere-

sis curve. For the case of piezo-actuators, uΦ denotes the voltage, yΦ denotes the

displacement.

The Bouc-Wen model can be described by the Duhem hysteresis operator (3.1)

with
{

f1(γ, υ) = kx + kwρ− kwρσ|γ−kxυ
kw

|n−1 γ−kxυ
kw

− kwρ(1 − σ)|γ−kxυ
kw

|n
f2(γ, υ) = kx + kwρ+ kwρσ|γ−kxυ

kw
|n−1 γ−kxυ

kw
− kwρ(1 − σ)|γ−kxυ

kw
|n. (3.22)

In Figure 3.4, we illustrate the behavior of the Bouc-Wen model with kx = 1.2117×
10−7, kw = −5.08× 10−6, n = 1.27, ρ = 8.93× 10−3 and σ = 0.74.

3.2.5 The Chua-Stromsmoe Model

The Chua-Stromsmoe model is used to represent the hysteresis phenomena ob-

served in ferromagnetic inductors. As introduced in [5], the Chua-Stromsmoe model

can represent not only the rate-independent hysteresis behavior but also the rate-

dependent hysteresis behavior, such as loop widening or narrowing for different
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input frequencies. A general representation of the Chua-Stromsmoe model is given

by

ẏΦ(t) = q(u̇Φ(t))h(yΦ(t))g(uΦ(t)− f(yΦ(t))), (3.23)

where the functions f , g and h satisfy the following conditions: (i) f , g and h are
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Figure 3.5: Behaviour of the Chua-Stromsmoe model using f(γ) = γ, h(γ) = 1 and

g(υ − f(γ)) = (υ − f(γ))5.

C1; (ii) f , g: E1 → E1 bijectively; (iii) For all yΦ ∈ E1, there exists Hmin and Hmax,

such that 0 < Hmin ≤ h(yΦ) ≤ Hmax < ∞.(iv) q ∈ C0 and q(u̇Φ) ≥ 0.

Let q(u̇Φ) = |u̇Φ|, which implies that q is a positively homogeneous function,

then the Chua-Stromsmoe model in (3.23) is rate-independent and can be rewritten

into the form of (3.1) where

{
f1(γ, υ) = h(γ)g(υ − f(γ))

f2(γ, υ) = −h(γ)g(υ − f(γ)).
(3.24)

An illustration of the behavior of the Chua-Stromsmoe model is shown in Figure

3.5 with f(γ) = γ, h(γ) = 1 and g(υ − f(γ)) = (υ − f(γ))5.

3.3 Duhem hysteresis Operator with Saturated Output

In contrast to the previous section, we illustrate some hysteresis model with satu-

rated output, i.e., for every uΦ ∈ R, the corresponding yΦ ∈ D, where D ⊂ R.
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3.3.1 The Elastic-Plastic operator

The elastic-plastic operator (which is also called the stop operator) models the stress-

strain relationship in the elastic-plastic element. We use the same description of

elastic-plastic operator as in [4, 33]. For all l ∈ R+ and all ξ ∈ R, we introduce an

elastic-plastic operator El,ξ defined on the space Cpm(R+) of piecewise monotone

functions, by defining, for every uE ∈ Cpm(R+),

(El,ξ(uE))(t) =

{
el(uE(0)− ξ) for t = 0,

el(uE(t)− uE(ti) + (al,ξ(uE)(ti))) for t ∈ (ti−1, ti],
(3.25)

where the function el : R
2 → R is defined by el(uE) = min{l,max{−l, u}}, for all
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Figure 3.6: The input-output dynamics of the elastic-plastic operator with l = 1.

l ∈ R+, and 0 = t0 < t1 < t2 < . . . is a partition of R+, such that uE is monotone on

each of the intervals [ti−1, ti], i ∈ N. Following the results in [29], the operator El,ξ
can be extended to the space of piecewise continuous functions. An illustration of

the elastic-plastic operator is shown in Figure 3.6.

Extending El,ξ to the space of absolutely continuous functions, the elastic-plastic

operator El,ξ : AC(R+) → AC(R+) can also be described by the Duhem hysteresis

operator (3.1). Let Φl,ξ denote the elastic-plastic operator and uΦ denote the uE , then

the f1, f2 functions can be given as follows

f1(γ, υ) =

{
0 if γ ≥ l,

1 if − l < γ < l
(3.26)

f2(γ, υ) =

{
0 if γ ≤ −l,

1 if − l < γ < l
(3.27)



3.3. Duhem hysteresis Operator with Saturated Output 27

and with yΦ0 = min{l,max{−l, uΦ(0)}}.

3.3.2 The Dahl Model

The Dahl model [7, 9, 38] is commonly used in mechanical systems, which repre-

sents the friction force with respect to the relative displacement between two sur-

faces in contact. The general representation of the Dahl model is given by

ẏΦ(t) = ρ

∣
∣
∣
∣
1− yΦ(t)

Fc
sgn(u̇Φ(t))

∣
∣
∣
∣

n

sgn

(

1− yΦ(t)

Fc
sgn(u̇Φ(t))

)

u̇Φ(t), (3.28)

where yΦ denotes the friction force, uΦ denotes the displacement, Fc > 0 denotes
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Figure 3.7: The input-output dynamics of the Dahl model with Fc = 0.75, ρ = 1.5

and r = 3.

the Coulomb friction force, ρ > 0 denotes the rest stiffness and n ≥ 1 is a parameter

that determines the shape of the hysteresis loops.

The Dahl model can be described by the Duhem hysteresis operator (3.1) with







f1(γ, υ) = ρ
∣
∣
∣1− γ

Fc

∣
∣
∣

n

sgn
(

1− γ
Fc

)

f2(γ, υ) = ρ
∣
∣
∣1 +

γ
Fc

∣
∣
∣

n

sgn
(

1 + γ
Fc

)

.
(3.29)

In Figure 3.7, we illustrate the behavior of the Dahl model where Fc = 0.75, ρ = 1.5

and n = 3.
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3.3.3 The LuGre Model

The LuGre model [38, 9] is another hysteresis model which is commonly used to

describe the friction in mechanical systems. In this model, the asperities of two

contact surfaces are modeled as the elastic bristles. The general representations of

the LuGre model is given by
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Figure 3.8: The input-output dynamics of the LuGre model with Fc = 1, FS = 1.5,

vS = 0.001 and ρL = 105.

ẏΦ(t) = ρL(u̇Φ(t)−
|u̇Φ(t)|
r(u̇Φ(t))

yΦ(t)), (3.30)

where yΦ denotes the friction force, uΦ denotes the relative displacement, ρL > 0 is

the stiffness coefficient and r(u̇Φ(t)) (as in [9]) is defined by

r(u̇Φ(t)) =
FC

ρL
+

FS − FC

ρL
e−(u̇Φ(t)/vS)2 , (3.31)

where FS is the stiction force and vS is the Stribeck velocity.

The LuGre model can be described by the Duhem hysteresis operator (3.1) with







f1(γ, υ) = ρL

(

1− γ
r(υ̇(t))

)

f2(γ, υ) = ρL

(

1 + γ
r(υ̇(t))

)

.
(3.32)

In Figure 3.8, we illustrate the behavior of the LuGre model where Fc = 0.75,

FS = 1.5, ρL = 105 and vS = 0.001.
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3.4 Concluding Remarks

In this chapter the Duhem hysteresis operator and its properties are introduced.

Furthermore, it has been shown that the Duhem-type hysteresis operator is useful

to describe the hysteresis phenomena in many applications.





Chapter 4

Dissipativity of The Duhem Hysteresis
Operator

I
n this chapter, we discuss two dissipativity properties of the Duhem hysteresis

operator: the Duhem hysteresis operator with CCW I/O behavior and Duhem

hysteresis operator with CW I/O behavior. Based on the definitions of the CCW

and CW I/O dynamics, sufficient conditions on the Duhem operator such that it is

CCW (or CW) are given in Theorem 4.2.1 and 4.2.6 (or, Theorem 4.3.1 and 4.3.6). In

particular, we show the dissipativity property of the CCW (or CW) Duhem hystere-

sis operator by constructing explicit storage functions satisfying the CCW (or CW)

dissipation inequality. The relations between these storage functions and the avail-

able storage functions used in the classical dissipation theory are also discussed.

4.1 Function Definition

In this section, we introduce four functions which play important roles in the con-

struction of the storage function and in the characterization of dissipativity. They

are : an anhysteresis function, a traversing function, a CCW intersecting function for

the Duhem operator with CCW I/O behavior and a CW intersecting function for the

Duhem operator with CW I/O behavior. These functions are defined based on f1
and f2 (c.f., the Duhem equation in (3.1)). In our main results, we use the same defi-

nition of anhysteresis and traversing functions for studying the dissipativity of both

CCW and CW Duhem operators. However we use different definition of intersect-

ing function for each case.

Generally speaking, the anhysteresis function defines the curve where f1 = f2,

i.e. an idea curve which does not contain hysteresis. The anhysteresis curve is com-

monly used in construction the mathematical models for hysteresis, see, for example

[25], [6]. The traversing function describes the trajectory of the Duhem operator Φ

when a monotone increasing uΦ or a monotone decreasing uΦ is applied from a

given initial condition. For the CCW Duhem hysteresis operator the CCW inter-

secting function defines the intersection of the anhysteresis function (curve) and the
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fan

Figure 4.1: Graphical interpretation of the anhysteresis curve: fan for the Duhem

hysteresis operator Φ with f1(γ, υ) = −0.15γ+0.48υ+1.5,f2(γ, υ) = 0.15γ−0.48υ+

1.5.

traversing function from a given initial condition. A similar interpretation is appli-

cable to the CW intersecting function for the CW Duhem hysteresis operator.

4.1.1 The Anhysteresis Function

In order to define the anhysteresis function, we rewrite f1 and f2 as follows

f1(γ, υ) = F (γ, υ) +G(γ, υ)

f2(γ, υ) = −F (γ, υ) +G(γ, υ)

}

∀(γ, υ) ∈ R
2 . (4.1)

where F := f1−f2
2 , G := f1+f2

2 . We assume that the implicit function υ 7→ {γ ∈
R, F (γ, υ) = 0} admits a unique explicit solution γ = fan(υ) (or υ = gan(γ)) where

fan (or gan) is C1. Such function fan (or gan) is called an anhysteresis function and the

corresponding graph {(υ, fan(υ))|υ ∈ R} (or {(gan(γ), γ|γ ∈ R}) is called an anhys-

teresis curve. Using fan, it can be checked that f1(fan(υ), υ) = f2(fan(υ), υ) holds for

all υ ∈ R.

As an example, let us consider a Duhem hysteresis operator Φ with f1(γ, υ) =

−0.15γ + 0.48υ + 1.5 and f2(γ, υ) = 0.15γ − 0.48υ + 1.5. It can be checked that

fan(υ) = 3.2υ and it is illustrated in Figure 4.1.

4.1.2 The Traversing Function

The traversing function ωΦ
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For every pair (yΦ0 , uΦ0) ∈ R2, let ωΦ,1(·, yΦ0 , uΦ0) : [uΦ0 ,∞) → R be the solution

z of

z(υ)− yΦ0 =

∫ υ

uΦ0

f1(z(σ), σ) dσ, z(uΦ0) = yΦ0 , ∀υ ∈ [uΦ0 ,∞),

and let ωΦ,2(·, yΦ0 , uΦ0) : (−∞, uΦ0 ] → R be the solution z of

z(υ)− yΦ0 =

∫ υ

uΦ0

f2(z(σ), σ) dσ, z(uΦ0) = yΦ0 , ∀υ ∈ (−∞, uΦ0 ].

Using the above definitions, for every pair (yΦ0 , uΦ0) ∈ R2, the function ωΦ(·, yΦ0 , uΦ0) :

R → R is defined by the concatenation of ωΦ,2(·, yΦ0 , uΦ0) and ωΦ,1(·, yΦ0 , uΦ0):

ωΦ(υ, yΦ0 , uΦ0) =

{
ωΦ,2(υ, yΦ0 , uΦ0) ∀υ ∈ (−∞, uΦ0)

ωΦ,1(υ, yΦ0 , uΦ0) ∀υ ∈ [uΦ0 ,∞).
(4.2)

The traversing function νΦ
Similarly, we can introduce the function νΦ which is dual to the construction

of ωΦ. For every pair (yΦ0 , uΦ0) ∈ R2, let νΦ,1(·, yΦ0 , uΦ0) : [uΦ0 ,∞) → R be the

solution z of

z(υ)− yΦ0 =

∫ υ

uΦ0

f2(z(σ), σ) dσ, z(uΦ0) = yΦ0 , ∀υ ∈ [uΦ0 ,∞),

and let νΦ,2(·, yΦ0 , uΦ0) : (−∞, uΦ0 ] → R be the solution z of

z(υ)− yΦ0 =

∫ υ

uΦ0

f1(z(σ), σ) dσ, z(uΦ0) = yΦ0 , ∀υ ∈ (−∞, uΦ0 ].

Using the above definitions, for every pair (yΦ0 , uΦ0) ∈ R2, the function νΦ(·, yΦ0 , uΦ0) :

R → R is defined by the concatenation of νΦ,2(·, yΦ0 , uΦ0) and νΦ,1(·, yΦ0 , uΦ0):

νΦ(υ, yΦ0 , uΦ0) =

{
νΦ,2(υ, yΦ0 , uΦ0) ∀υ ∈ (−∞, uΦ0)

νΦ,1(υ, yΦ0 , uΦ0) ∀υ ∈ [uΦ0 ,∞).
(4.3)

A graphical interpretation of the traversing functions ωΦ and νΦ of the Duhem

hysteresis operator Φ with f1(γ, υ) = −0.15γ+0.48υ+1.5, f2(γ, υ) = 0.15γ−0.48υ+

1.5 is shown in Figure 4.2.

4.1.3 The CCW Intersecting Function

As indicated before, the function Ω defines the intersection between ωΦ(·, γ, υ) and

fan(·). More precisely, the function Ω : R2 → R is an CCW intersecting function

(corresponding to ωΦ and fan) if
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νΦ
ωΦ

yΦ0

uΦ0

Figure 4.2: Graphical interpretation of the defined traversing curve: ωΦ in (4.2) and

νΦ in (4.3), where the Duhem hysteresis operator Φ is defined in (3.1) with f1(γ, υ) =

−0.15γ + 0.48υ + 1.5,f2(γ, υ) = 0.15γ − 0.48υ + 1.5.

• ωΦ(Ω(γ, υ), γ, υ) = fan(Ω(γ, υ)) for all (γ, υ) ∈ R2;

• Ω(γ, υ) ≥ υ whenever γ ≥ fan(υ) and Ω(γ, υ) < υ otherwise.

This implies that the two functions ωΦ(·, γ, υ) and fan(·) intersect at a unique point

larger or smaller than υ depending on the sign of γ − fan(υ).

The following lemma gives sufficient conditions on f1 and f2 for the existence of

such an intersecting function.

Lemma 4.1.1 Assume that f1 and f2 in (4.1) be such that f1, f2 and fan are C1. Moreover,

assume that fan is strictly increasing and there exists a positive real number ǫ such that for

all (γ, υ) ∈ R2

f2(γ, υ) <
dfan(υ)

dυ
− ǫ whenever γ > fan(υ), and (4.4)

f1(γ, υ) <
dfan(υ)

dυ
− ǫ whenever γ < fan(υ) (4.5)

hold. Then there exists an intersecting function Ω ∈ C1(R2) (corresponding to ωΦ and fan)

such that

(1) Ω(γ, υ) ≥ υ whenever γ ≥ fan(υ) and Ω(γ, υ) < υ otherwise.

(2) ωΦ(Ω(γ, υ), γ, υ) = fan(Ω(γ, υ)).

(3) Moreover, for all uΦ ∈ C1, yΦ := Φ(uΦ),
d
dtΩ(yΦ(t), uΦ(t)) exists.
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Proof: Consider the continuous function ϕ : R3 → R defined as ϕ(υ, yΦ0 , uΦ0) =

ωΦ(υ, yΦ0 , uΦ0)− fan(υ). Consider also A0 and A1 the two subsets of R3 defined as,

A0 = {(υ, yΦ0 , uΦ0) ∈ R
3 | yΦ0 > fan(uΦ0) , υ > uΦ0} ,

A1 = {(υ, yΦ0 , uΦ0) ∈ R
3 | yΦ0 < fan(uΦ0) , υ < uΦ0} .

Note that the function fan being strictly increasing by assumption, it implies that

these sets are open sets. Also, the function ωΦ satisfies

∂ωΦ

∂υ
(υ, yΦ0 , uΦ0) = f1(ωΦ(υ, yΦ0 , uΦ0), υ), ∀(υ, yΦ0 , uΦ0) ∈ A0,

∂ωΦ

∂υ
(υ, yΦ0 , uΦ0) = f2(ωΦ(υ, yΦ0 , uΦ0), υ), ∀(υ, yΦ0 , uΦ0) ∈ A1.

Consequently, ωΦ(υ, yΦ0 , uΦ0) is the solution of the ordinary differential equations

computed from the C1 vector field. With [15, Theorem V.3.1], it implies that ωΦ is a

C1 function in A0∪A1. Moreover, the function fan being C1 implies that the function

ϕ is C1 in A0 ∪ A1. With (4.4) and (4.5), the function ϕ satisfies, ∂ϕ
∂υ (υ, yΦ0 , uΦ0) <

−ǫ 6= 0 for all (υ, yΦ0 , uΦ0) ∈ A0 ∪ A1. Consequently, ϕ is a strictly decreasing

function in its first argument in the set A0 ∪ A1. This also implies that

ϕ(υ, yΦ0 , uΦ0) < ϕ(uΦ0 , yΦ0 , uΦ0)− ǫ(υ − uΦ0), ∀(υ, yΦ0 , uΦ0) ∈ A0,

ϕ(υ, yΦ0 , uΦ0) > ϕ(uΦ0 , yΦ0 , uΦ0)− ǫ(υ − uΦ0), ∀(υ, yΦ0 , uΦ0) ∈ A1.

Note that if yΦ0 > fan(uΦ0), then ϕ(uΦ0 , yΦ0 , uΦ0) > 0 (yΦ0 > fan(uΦ0) indicates

that the trajectory ωΦ is located above the anhysteresis curve, i.e., ϕ(υ, yΦ0 , uΦ0) =

ωΦ(υ, yΦ0 , uΦ0) − fan(υ) > 0 ). Consequently, due to the strictly decreasing prop-

erty of ϕ, there exists a unique real number u∗
Φ such that ϕ(u∗

Φ, yΦ0 , uΦ0) = 0 and

(u∗
Φ, yΦ0 , uΦ0) ∈ A0. On the other hand, if yΦ0 < fan(uΦ0), then ϕ(uΦ0 , yΦ0 , uΦ0) < 0

and consequently there exists a unique real number u∗
Φ such that ϕ(u∗

Φ, yΦ0 , uΦ0) = 0

and (u∗
Φ, yΦ0 , uΦ0) ∈ A1.

Therefore, denoting Ω(yΦ0 , uΦ0) = u∗
Φ, by employing the implicit function theo-

rem and using the fact that ϕ is C1, it can be shown that Ω is C1. �

Roughly speaking the existence of function Ω satisfying (1)–(3) in Lemma 4.1.1

implies that for all (γ, υ), the two functions ωΦ(·, γ, υ) and fan(·) intersect at a unique

point larger or smaller than uΦ0 depending on the sign of γ − fan(υ). Moreover,

along the solutions of (3.1), the time derivative of the intersecting point exists.

Similarly, we can define an intersecting function Υ describing the intersection

between νΦ(·, γ, υ) and fan(·). The function Υ : R2 → R is an CCW intersecting

function (which is corresponding to νΦ and fan) if νΦ(Υ(γ, υ), γ, υ) = fan(Υ(γ, υ))
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for all (γ, υ) ∈ R2; and Υ(γ, υ) ≥ υ whenever γ ≥ fan(υ) and Υ(γ, υ) < υ otherwise.

The following lemma gives sufficient conditions on f1 and f2 for the existence of

such an intersecting function Υ.

Lemma 4.1.2 Assume that f1 and f2 in (4.1) be such that f1, f2 and fan are C1. Moreover,

assume that fan is strictly increasing and there exists a positive real number ǫ such that for

all (γ, υ) ∈ R2 the conditions (4.4) and (4.5) given in Lemma 4.1.1 hold. Then there exists

an intersecting function Υ ∈ C1(R2) (corresponding to νΦ and fan) such that

(1) Υ(γ, υ) ≥ υ whenever γ ≥ fan(υ) and Υ(γ, υ) < υ otherwise.

(2) νΦ(Υ(γ, υ), γ, υ) = fan(Υ(γ, υ)).

(3) Moreover, for all uΦ ∈ C1, yΦ := Φ(uΦ),
d
dtΥ(yΦ(t), uΦ(t)) exists.

The proof of the Lemma 4.1.2 is similar to the proof of Lemma 4.1.1.

4.1.4 The CW Intersecting Function

For the Duhem hysteresis operator with CW I/O behavior, we define the intersect-

ing function Λ which has different properties than the intersecting function Ω for

the CCW Duhem operator. The intersecting function Λ describes the intersection

between the anhysteresis curve fan and the curve ωΦ. The function Λ : R2 → R is a

CW intersecting function (corresponding to ωΦ and fan) if:

• ωΦ(Λ(γ, υ), γ, υ) = fan(Λ(γ, υ)) for all (γ, υ) ∈ R2;

• Λ(γ, υ) ≤ υ whenever γ ≥ fan(υ) and Λ(γ, υ) > υ otherwise.

This implies that the two functions ωΦ(·, γ, υ) and fan(·) intersect at a unique point

larger or smaller than υ depending on the sign of γ − fan(υ).

In the following lemma we give sufficient conditions for the existence of such

intersecting function Λ.

Lemma 4.1.3 Assume that f1 and f2 in (4.1) be such that f1, f2 are C1. Moreover, assume

that fan is strictly increasing and there exists a positive real constant ǫ > 0 such that for all

(γ, υ) ∈ R2 the following inequality holds

f1(γ, υ) >
dfan(υ)

dυ
+ ǫ whenever γ > fan(υ) , (4.6)

f2(γ, υ) >
dfan(υ)

dυ
+ ǫ whenever γ < fan(υ) . (4.7)

Then there exists an intersecting function Λ ∈ C1(R2,R) such that
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(1) Λ(γ, υ) ≤ υ whenever γ ≥ fan(υ) and Λ(γ, υ) > υ otherwise.

(2) ωΦ(Λ(γ, υ), γ, υ) = fan(Λ(γ, υ)). (4.8)

(3) Moreover, for all uΦ ∈ C1, yΦ := Φ(uΦ, yΦ0), we have that d
dtΛ(yΦ(t), uΦ(t)) exists.

Proof: Following the same procedure of the proof of 4.1.1, we first define the con-

tinuous function ϕ : R3 → R defined as ϕ(υ, yΦ0 , uΦ0) = ωΦ(υ, yΦ0 , uΦ0) − fan(υ).

Consider also A0 and A1 the two subsets of R3 defined as,

A0 = {(υ, yΦ0 , uΦ0) ∈ R3, yΦ0 > fan(uΦ0) , υ < uΦ0} ,
A1 = {(υ, yΦ0 , uΦ0) ∈ R

3, yΦ0 < fan(uΦ0) , υ > uΦ0} .

Note that the function fan being strictly increasing by assumption, implies that these

sets are open sets. Also, the function ωΦ satisfies

∂ωΦ

∂υ
(υ, yΦ0 , uΦ0) = f2(ωΦ(υ, yΦ0 , uΦ0), υ) ∀(υ, yΦ0 , uΦ0) ∈ A0 ,

∂ωΦ

∂υ
(υ, yΦ0 , uΦ0) = f1(ωΦ(υ, yΦ0 , uΦ0), υ) ∀(υ, yΦ0 , uΦ0) ∈ A1 .

Consequently, ωΦ(υ, yΦ0 , uΦ0) is the solution of the ordinary differential equations

computed from C1 vector field. With [15, Theorem V.3.1], it implies that ωΦ is a C1

function in A0 ∪ A1. Moreover, the function fan being C1 implies that the function

ϕ is C1 in A0 ∪A1. With (4.6) and (4.7), the function ϕ satisfies,

∂ϕ

∂υ
(υ, yΦ0 , uΦ0) > ǫ 6= 0 , ∀(υ, yΦ0 , uΦ0) ∈ A0 ∪ A1 .

Consequently, ϕ is a strictly increasing function in its first argument in the set A0 ∪
A1. This also implies that,

ϕ(υ, yΦ0 , uΦ0) < ϕ(uΦ0 , yΦ0 , uΦ0) + ǫ(υ − uΦ0)

∀(υ, yΦ0 , uΦ0) ∈ A0 ,

ϕ(υ, yΦ0 , uΦ0) > ϕ(uΦ0 , yΦ0 , uΦ0) + ǫ(υ − uΦ0)

∀(υ, yΦ0 , uΦ0) ∈ A1 .

Note that if yΦ0 > fan(uΦ0), then ϕ(uΦ0 , yΦ0 , uΦ0) > 0 and consequently there exists

a unique real number u∗
Φ such that ϕ(u∗

Φ, yΦ0 , uΦ0) = 0 and (u∗
Φ, yΦ0 , uΦ0) ∈ A0. On

the other hand, if yΦ0 < fan(uΦ0), then ϕ(uΦ0 , yΦ0 , uΦ0) < 0 and consequently there

exists a unique real number u∗
Φ such that ϕ(u∗

Φ, yΦ0 , uΦ0) = 0 and (u∗
Φ, yΦ0 , uΦ0) ∈

A1.

Therefore, denoting Λ(yΦ0 , uΦ0) = u∗
Φ, by employing the implicit function theo-

rem and using the fact that ϕ is C1, it can be shown that Λ is C1. �
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Similarly, using the traversing function νΦ, we can define an intersecting func-

tion Γ, which describes the intersection between νΦ(·, γ, υ) and fan(·). The func-

tion Γ : R2 → R is an CW intersecting function (corresponding to νΦ and fan)

if νΦ(Γ(γ, υ), γ, υ) = fan(Γ(γ, υ)) for all (γ, υ) ∈ R2; and Γ(γ, υ) ≥ υ whenever

γ ≥ fan(υ) and Γ(γ, υ) < υ otherwise. The following lemma gives sufficient condi-

tions on f1 and f2 for the existence of such an intersecting function Γ.

Lemma 4.1.4 Assume that f1 and f2 in (4.1) be such that f1, f2 and fan are C1. Moreover,

assume that fan is strictly increasing and there exists a positive real number ǫ such that for

all (γ, υ) ∈ R2 the inequalities (4.6) and (4.7) given in Lemma 4.1.3 hold. Then there exists

an intersecting function Γ ∈ C1(R2) (corresponding to νΦ and fan) such that

(1) Γ(γ, υ) ≤ υ whenever γ ≥ fan(υ) and Γ(γ, υ) > υ otherwise.

(2) νΦ(Γ(γ, υ), γ, υ) = fan(Γ(γ, υ)).

(3) Moreover, for all uΦ ∈ C1, yΦ := Φ(uΦ),
d
dtΓ(yΦ(t), uΦ(t)) exists.

The proof of Lemma 4.1.4 is similar to the proof of Lemma 4.1.3.

4.2 Dissipativity of The Duhem Hysteresis Operator with

CCW I/O Behavior

Based on the functions we defined in the previous section, the dissipativity property

of the Duhem hysteresis operator is analyzed in this section and Section 4.3. Here,

we focus on the Duhem hysteresis operator with CCW I/O behavior. First, two can-

didates of storage functions are proposed by using the traversing function ωΦ and

its dual νΦ. Then, we show that these storage functions satisfy the CCW dissipation

inequality.

4.2.1 Storage Function Using ωΦ

Using fan, ωΦ and Ω, we can define a candidate storage function H	1 : R2 → R by

H	1(γ, υ) = γυ +

∫ Ω(γ,υ)

υ

ωΦ(σ, γ, υ)dσ −
∫ Ω(γ,υ)

0

fan(σ)dσ. (4.9)

where Ω is the CCW intersecting function (corresponding to ωΦ and fan) as in

Lemma 4.1.1. The graphical interpretation of H	1 is shown in Figure 4.3 using

an I/O phase plot which is obtained from a Duhem hysteresis operator Φ with



4.2. Dissipativity of The Duhem Hysteresis Operator with CCW I/O Behavior 39

H	1(yΦ0 , uΦ0)

Ω(yΦ0 , uΦ0)

ωΦ

yΦ0

uΦ0

Figure 4.3: Graphical interpretation of the storage function H	1(yΦ0 , uΦ0) in (4.9),

where the Duhem hysteresis operator Φ is defined in (3.1) with f1(γ, υ) = −0.15γ +

0.48υ+1.5,f2(γ, υ) = 0.15γ− 0.48υ+1.5. For a given (yΦ0 , uΦ0), H	1 is equal to the

area in dark grey

f1(γ, υ) = −0.15γ + 0.48υ + 1.5, f2(γ, υ) = 0.15γ − 0.48υ + 1.5. In this figure, given

a point (yΦ0 , uΦ0) the value of H	1(yΦ0 , uΦ0) is equal to the dark grey area enclosed

by the vertical axis, the curve ωΦ and the anhysteresis curve fan.

Theorem 4.2.1 Consider the Duhem hysteresis operator Φ defined in (3.1) with C1 func-

tions f1, f2 : R2 → R and the corresponding anhysteresis function fan be C1. Suppose

that there exists an CCW intersecting function Ω and the following condition holds for all

(γ, υ) ∈ R
2

(A) f1(γ, υ) ≥ f2(γ, υ) whenever γ ≤ fan(υ), and f1(γ, υ) < f2(γ, υ) otherwise.

Then for every uΦ ∈ AC(R+) and for every yΦ0 ∈ R, the function t 7→ H	1

(
(yΦ(t), uΦ(t)

)

with yΦ := Φ(uΦ, yΦ0)) and H	1 as in (4.9) is right-differentiable and satisfies

dH	1(yΦ(t), uΦ(t))

dt
≤ ẏΦ(t)uΦ(t). (4.10)

Moreover, if f1 ≥ 0 and f2 ≥ 0 then Φ is CCW and dissipative with respect to the supply

rate ẏΦuΦ with the storage function H	1 , i.e., H	1 is non-negative.

Proof:

For any real valued function z, we denote d
dtz(t) := limhց0+

z(t+h)−z(t)
h . The

proof of Theorem 4.2.1 consists of two parts. In the first part we show that for al-
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most all t ∈ R+, Ḣ	1

(
(Φ(uΦ, yΦ0))(t), uΦ(t)

)
exists. In the second part we show the

nonnegativity of H	1 .

1. Let uΦ ∈ AC(R+), yΦ0 ∈ R and denote u∗
Φ := Ω(yΦ, uΦ).

First, we prove that for almost all t ∈ R+, Ḣ	1

(
(Φ(uΦ, yΦ0))(t), uΦ(t)

)
exists.

Using (4.9) and denoting yΦ := (Φ(uΦ, yΦ0)), we have

dH	1

(
yΦ(t), uΦ(t)

)

dt
= ẏΦ(t)uΦ(t) +

∫ u∗
Φ(t)

uΦ(t)

d

dt
ωΦ(υ, yΦ(t), uΦ(t))dυ

+

[

ωΦ(u
∗
Φ(t), yΦ(t), uΦ(t)) − fan(u

∗
Φ(t))

]

u̇∗
Φ(t), (4.11)

where we have invoked ωΦ(uΦ(t), yΦ(t), uΦ(t)) = yΦ(t). Let t ≥ 0. The first term in

the RHS of (4.11) exists for almost all t ≥ 0 since yΦ(t) satisfies (3.1). Note that since

ωΦ(u
∗
Φ(t), yΦ(t), uΦ(t)) = fan(u

∗
Φ(t)), the third term in the RHS of (4.11) is zero since

u̇∗
Φ(t) exists by the definition of Ω.

In order to get the dissipativity with the supply rate (4.10), it remains to check

whether the second term in the RHS of (4.11) exists, is finite and satisfies

∫ u∗
Φ(t)

uΦ(t)

d

dt
ωΦ(υ, yΦ(t), uΦ(t))dυ ≤ 0. (4.12)

It suffices to show that, for every υ ∈ [uΦ(t), u
∗
Φ(t)], the following right derivative

lim
ǫց0+

1

ǫ
[ωΦ(υ, yΦ(t+ ǫ), uΦ(t+ ǫ))− ωΦ(υ, yΦ(t), uΦ(t))] (4.13)

exists and the limit is less or equal to zero when u∗
Φ(t) > uΦ(t) and the limit is greater

or equal to zero elsewhere. For any ǫ ≥ 0, let us introduce the continuous function

ωǫ : R → R by

ωǫ(υ) = ωΦ(υ, yΦ(t+ ǫ), uΦ(t+ ǫ)). (4.14)

More precisely, for every ǫ ≥ 0, ωǫ is the unique solution of

ωǫ(υ) =







yΦ(t+ ǫ) +

∫ υ

uΦ(t+ǫ)

f1(ωǫ(σ), σ)dσ, ∀υ ≥ uΦ(t+ ǫ),

yΦ(t+ ǫ) +

∫ υ

uΦ(t+ǫ)

f2(ωǫ(σ), σ)dσ, ∀υ ≤ uΦ(t+ ǫ).
(4.15)

Note that ω0(υ) = ωΦ(υ, yΦ(t), uΦ(t)) for all υ ∈ R and

ωǫ(uΦ(t+ ǫ)) = yΦ(t+ ǫ), ∀ ǫ ∈ R+. (4.16)
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In order to show the existence of (4.13), we consider several cases depending on

the sign of u̇Φ(t) and yΦ(t)− fan(uΦ(t)).

First, we assume that u̇Φ(t) > 0. This implies that there exists a sufficiently small

δ > 0 such that for every ǫ ∈ (0, δ], we have uΦ(t + ǫ) > uΦ(t) and ω0(uΦ(t + ǫ)) =

yΦ(t) +
∫ uΦ(t+ǫ)

uΦ(t) f1(ω0(σ), σ) dσ. Moreover, with the change of integration variable

σ = uΦ(τ) we obtain

ω0(uΦ(t+ ǫ)) = yΦ(t) +

∫ t+ǫ

t

f1(ω0(uΦ(τ)), uΦ(τ)) u̇Φ(τ) dτ, ∀ǫ ∈ [0, δ].

The functions ǫ 7→ ω0(uΦ(t + ǫ)) and ǫ 7→ yΦ(t + ǫ) with ǫ ∈ (0, δ] are two AC

functions which are solutions of the same locally Lipschitz ODE and with the same

initial value. By uniqueness of solution, we get ω0(uΦ(t + ǫ)) = yΦ(t + ǫ). This fact

together with (4.16) shows that

ωǫ(uΦ(t+ ǫ)) = ω0(uΦ(t+ ǫ)), ∀ǫ ∈ [0, δ].

Let us evaluate (4.13) when yΦ(t) ≥ fan(uΦ(t)). In this case, we have uΦ(t) < u∗
Φ(t)

from the property of Ω. Also, since for every ǫ ∈ (0, δ] the two functions ωǫ(υ) and

ω0(υ) satisfy the same ODE for υ ∈ [uΦ(t + ǫ), u∗
Φ(t)] (we have for all τ ∈ [uΦ(t +

ǫ), u∗
Φ(t)] :dωǫ(τ)

dτ = f1(ωǫ(τ), τ),
dω0(τ)

dτ = f1(ω0(τ), τ) ), we have ωǫ(υ) = ω0(υ) for

all υ ∈ [uΦ(t+ ǫ), u∗
Φ(t)] and for all ǫ ∈ [0, δ]. This implies that

lim
ǫց0+

1

ǫ
[ωǫ(υ)− ω0(υ)] = 0, ∀υ ∈ [uΦ(t), u

∗
Φ(t)]. (4.17)

Therefore, the inequality (4.12) holds for almost all u̇Φ(t) > 0 and yΦ(t) ≥ fan(uΦ(t)).

Now, we check (4.12) when yΦ(t) < fan(uΦ(t)) and u̇Φ(t) > 0 that is not of mea-

sure zero. Note that by the definition of Ω, u∗
Φ(t) < uΦ(t) which implies that the

integrand in (4.12) is evaluated for all υ ∈ [u∗
Φ(t), uΦ(t)]. Also, since u̇Φ(t) > 0,

there exists δ > 0 such that we have υ ≤ uΦ(t) < uΦ(τ) and u̇Φ(τ) > 0 for all

τ ∈ (t, t+ γ). It follows from (4.15) and assumption (A) that for every ǫ ∈ (0, δ) and

for all τ ∈ [t, t+ ǫ],

dωǫ(uΦ(τ))

dτ
= f2(ωǫ(uΦ(τ)), uΦ(τ)) u̇Φ(τ)

≤ f1(ωǫ(uΦ(τ)), uΦ(τ)) u̇Φ(τ).

The function yΦ satisfies

dyΦ(τ)

dτ
= f1(yΦ(τ), uΦ(τ)) u̇Φ(τ), ∀τ ∈ [t, t+ ǫ].

Since ωǫ(uΦ(t + ǫ)) = yΦ(t + ǫ) and using the comparison principle (in reverse di-

rection), we get that for every ǫ ∈ [0, δ), ωǫ(uΦ(τ)) ≥ yΦ(τ) for all τ ∈ [t, t + ǫ].
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Since the two functions ωǫ(υ) and ω0(υ) for υ ∈ [u∗
Φ(t), uΦ(t)] are two solutions of

the same ODE, it follows that ωǫ(υ) ≥ ω0(υ), for all τ ≤ uΦ(t) (Otherwise there

exist τ1 < τ2 such that ωǫ(τ1) = ω0(uΦ(τ1)) and ωǫ(τ2) > ω0(uΦ(τ2)) which con-

tradict the uniqueness of the solution of the locally Lipschitz ODE). The next step is

to show that whether the following limit exists:

lim
ǫց0+

1

ǫ
[ωǫ(υ)− ω0(υ)] ≥ 0, ∀υ ∈ [u∗

Φ(t), uΦ(t)]. (4.18)

To show the existence of (4.18), we compute a bound on the function ǫ 7→ 1
ǫ [ωǫ(υ)−

ω0(υ)]. Note that for every ǫ ∈ [0, δ],

|ωǫ(υ)− ω0(υ)| ≤ |yΦ(t+ ǫ)− yΦ(t)|+
∫ uΦ(t+ǫ)

uΦ(t)

|f2(ωǫ(σ), σ)|dσ

+

∫ uΦ(t)

υ

|f2(ωǫ(σ), σ) − f2(ω0(σ), σ)|dσ,

∀υ ∈ [u∗
Φ(t), uΦ(t)].

By the locally Lipschitz property of f2, by the boundedness of f2 and by the bound-

edness of ωǫ on [υ, uΦ(t)] for all ǫ ∈ [0, δ], we obtain

|ωǫ(υ)− ω0(υ)| ≤ |yΦ(t+ ǫ)− yΦ(t)|

+

∫ uΦ(t)

υ

L |ωǫ(σ) − ω0(σ)| dσ + ς |uΦ(t + ǫ)− uΦ(t)|,

where ς is a bound of f2 on a compact set and L is the Lipschitz constant of f2 on

[ωmin , ωmax ]× [υ, uΦ(t)] with

ωmin := min
(ǫ,σ)∈[0,δ]×[υ,uΦ(t)]

ωǫ(σ), ωmax := max
(ǫ,σ)∈[0,δ]×[υ,uΦ(t)]

ωǫ(σ).

With the Gronwall’s lemma [27], this implies that for every ǫ ∈ [0, δ] ,

|ωǫ(υ)− ω0(υ)| ≤ exp((uΦ(t)− υ)L)
[

|yΦ(t+ ǫ)− yΦ(t)|+ ς |uΦ(t+ ǫ)− uΦ(t)|
]

,

∀υ ∈ [u∗
Φ(t), uΦ(t)].

Hence

lim
ǫց0+

1

ǫ
|ωǫ(υ)− ω0(υ)| ≤ exp((uΦ(t)− υ)L)

[

|f1(yΦ(t), uΦ(t))| + ς
]

u̇(t),

∀υ ∈ [u∗
Φ(t), uΦ(t)].
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Consequently the limit given in (4.33) exists. It implies that the inequality (4.12)

holds for almost all u̇Φ(t) > 0 and yΦ(t) < fan(uΦ(t)). We can use similar arguments

to prove that (4.12) is satisfied for almost all u̇Φ(t) < 0. Finally, when u̇Φ(t) = 0, we

simply get limǫց0+
1
ǫ |ωǫ(υ)− ω0(υ)| = 0, by the continuity of the above bound.

2. To prove the last claim, we need to show that H	1 is non-negative.

H	1(yΦ(t), uΦ(t)) =

∫ uΦ(t)

0

yΦ(t)− fan(υ) dυ

+

∫ Ω(yΦ(t),uΦ(t))

uΦ(t)

ωΦ(υ, yΦ(t), uΦ(t)) − fan(υ) dυ ≥ 0.

It is assumed in the hypotheses that f1 is positive. If uΦ(t) ≥ 0 and yΦ(t) ≥
fan(uΦ(t)), we have that fan(υ) ≤ yΦ(t) for all υ ∈ [0, uΦ(t)] and fan(υ) ≤ ωΦ(υ, yΦ(t), uΦ(t))

for all υ ∈ [uΦ(t),Ω(yΦ(t), uΦ(t))] by the definition of Ω.

On the other hand, if uΦ(t) < 0 and yΦ(t) ≥ fan(uΦ(t)), we have that yΦ(t) ≤
ωΦ(υ, yΦ(t), uΦ(t)) for all υ ∈ [uΦ(t), 0] (due to the positivity of f1). Also, by the

definition of Ω, Ω(yΦ(t), uΦ(t)) ≥ 0 implies that fan(υ) ≤ ωΦ(υ, yΦ(t), uΦ(t)) for

all υ ∈ [0,Ω(yΦ(t), uΦ(t))]. Similarly, Ω(yΦ(t), uΦ(t)) < 0 implies that fan(υ) >

ωΦ(υ, yΦ(t), uΦ(t)) for all υ ∈ [Ω(yΦ(t), uΦ(t)), 0]. Hence

H	1(yΦ(t), uΦ(t)) = −
∫ 0

uΦ(t)

yΦ(t)− ωΦ(υ, yΦ(t), uΦ(t)) dυ

+

∫ Ω(yΦ(t),uΦ(t))

0

ωΦ(υ, yΦ(t), uΦ(t))− fan(υ) dυ ≥ 0.

For the case yΦ(t) < fan(uΦ(t)), the non-negativity of H	1 can be checked using the

same routine and using the positivity of f2.

The CCW property can be easily checked by integrating (4.9) from 0 to T we

have

H	1

(
yΦ(T ), uΦ(T )

)
−H	1

(
yΦ(0), uΦ(0)

)
=

∫ T

0

ẏΦ(τ)uΦ(τ)dτ .

Since H	1 is nonnegative then

∫ T

0

ẏΦ(τ)uΦ(τ)dτ ≥ −H	1(yΦ(0), uΦ(0)) > −∞.

�
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Remark 4.2.2 In addition to the result in Theorem 4.2.1, if f1 and f2 satisfy the hypotheses

given in Theorem 4.2.1, then for every uΦ ∈ AC(R+) and yΦ0 ∈ R, the function t →
H	1(yΦ(t), uΦ(t)) with H	1 as in (4.9) is left-differentiable and satisfies

lim
hր0−

H	1(yΦ(t+ h), uΦ(t+ h))−H	1(yΦ(t), uΦ(t))

h
≤ yΦ(t)u̇Φ(t).

The proof of this claim follows a similar line as that of Theorem 4.2.1.

The results given in Theorem 4.2.1 can be slightly generalized in order to incor-

porate the case when the Duhem hysteresis operator Φ has saturated output. Con-

sider the set D ⊂ R2 which contains all relations of Φ, i.e., RyΦ0 ,uΦ := {(yΦ(t), uΦ(t)) ∈
R2|yΦ = Φ(uΦ, yΦ0), t ∈ R+} ⊂ D holds for all uΦ ∈ AC(R+) and (yΦ0 , uΦ(0)) ∈ D.

Proposition 4.2.3 Consider the Duhem hysteresis operator Φ defined in (3.1) with C1

functions f1, f2 : D → R and with the traversing function ωΦ and the anhysteresis function

fan. Assume that the anhysteresis curve is in D and there exists an CCW intersecting func-

tion Ω (e.g., the hypotheses in Lemma 4.1.1 hold). Assume further that the Assumption (A)

holds for all (γ, υ) in D. Then for every uΦ ∈ AC(R+) and (yΦ0 , uΦ(0)) ∈ D, the function

t → H	1(yΦ(t), uΦ(t)) with H	1 as in (4.9) and yΦ := Φ(uΦ, yΦ0) is right differentiable

and satisfies (4.10), i.e. the Duhem operator is CCW.

The proof of Proposition 4.2.3 follows the same arguments as that of Theorem

4.2.1. In the following proposition, we show the radially unboundedness of H	1

with respect to its first argument.

Proposition 4.2.4 Consider the Duhem operator Φ with f1, f2 ≥ 0 satisfying the hypothe-

ses in Theorem 4.2.1. Suppose that fan(0) = 0. Then the function H	1(·, υ) (where H	1 is

as in (4.9)) is radially unbounded for every υ.

Proof: Let us consider υ > 0. To show the properness of H	1(·, υ), let us first consider

the case where γ ≥ fan(υ). In this case, we rewrite the function H	1 , as follows

H	1(γ, υ) =

∫ υ

0

γ − fan(σ)dσ +

∫ Ω(γ,υ)

υ

ωΦ(σ, γ, v)− fan(σ)dσ

Due to the property of the CCW intersecting function Ω, γ ≥ fan(υ) implies that

Ω(γ, υ) ≥ υ. Hence the last term on the RHS of the above equation is non-negative,
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i.e.,
∫ Ω(γ,υ)

υ
ωΦ(σ, γ, υ)− fan(σ)dσ ≥ 0. Then,

H	1(γ, υ) ≥
∫ υ

0

γ − fan(σ)dσ

≥
∫ υ

0

γ − fan(υ)dσ (4.19)

= (γ − c)υ, (4.20)

where c := fan(υ). Equation (4.19) indicates that for every υ > 0, H	1(γ, υ) → ∞ as

γ → ∞.

To evaluate the other limit when γ → −∞, let us consider the case when γ < 0.

Note that in this case γ < fan(υ) due to the monotonicity assumption on fan and

fan(0) = 0. Rewriting H	1 , we have

H	1(γ, υ) =

∫ Ω(γ,υ)

0

γ − fan(σ)dσ +

∫ υ

Ω(γ,υ)

γ − ωΦ(σ, γ, υ)dσ

≥
∫ Ω(γ,υ)

0

γ − fan(σ)dσ

=

∫ 0

Ω(γ,υ)

fan(σ)− γdσ.

The last inequality is obtained due to the property of the CCW intersecting func-

tion Ω, where Ω(γ, υ) < υ whenever γ < fan(υ). Since ωΦ is monotone and non-

decreasing (due to the positivity of f1 and f2) and using the fact that fan is monotone

increasing and fan(0) = 0, it can be checked that γ < 0 implies that Ω(γ, υ) < 0.

Now let us fix γ̄ such that 0 > γ̄ > γ. Using the fact that ωΦ(σ, γ̄, υ) ≥ ωΦ(σ, γ, υ)

for all σ < υ and using monotonicity of fan, it follows that 0 > Ω̄ > Ω(γ, υ) where

the constant Ω̄ := Ω(γ̄, υ). Thus

H	1(γ, υ) ≥
∫ 0

Ω(γ,υ)

fan(σ)− γdσ

=

∫ Ω̄

Ω(γ,υ)

fan(σ)− γdσ +

∫ 0

Ω̄

fan(σ)− γdσ

≥
∫ 0

Ω̄

fan(σ) − γdσ

≥
∫ 0

Ω̄

fan(Ω̄)− γdσ

= (γ − fan(Ω̄))Ω̄.
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The last equality shows that as γ → −∞, H	1 → ∞ since Ω̄ < 0. Therefore, we can

conclude that for the case υ > 0, the function H	1(·, υ) is radially unbounded.

Using similar arguments we can get the same conclusion for the case when υ ≤ 0.

�

Example 4.2.5 Consider a semi-linear Duhem model [35] withA+ = −α1, B+ = α2, E+ =

α3, A− = α1, B− = −α2, E− = α3, C = 1 and D = 0. In this case,

f1(γ, υ) = −α1γ + α2υ + α3, f2(γ, υ) = α1γ − α2υ + α3,

and it can be computed that fan(υ) = α2

α1
υ for all υ ∈ R. Moreover, the hypotheses of

Lemma 4.1.1 holds if α3 < α2

α1
.

A routine calculation of the curve ωΦ (4.2) gives us

ωΦ(υ, yΦ(t), uΦ(t)) = υ
α2

α1
− α2

α2
1

+
α3

α1

+

[

yΦ(t)− uΦ(t)
α2

α1
+

α2

α2
1

− α3

α1

]

e(−α1(υ−uΦ(t))), ∀υ ∈ [uΦ(t),∞)

and

ωΦ(υ, yΦ(t), uΦ(t)) = υ
α2

α1
+

α2

α2
1

− α3

α1

+

[

yΦ(t)− uΦ(t)
α2

α1
− α2

α2
1

+
α3

α1

]

e(α1(υ−uΦ(t))), ∀υ ∈ (−∞, uΦ(t)].

The intersecting function Ω(yΦ(t), uΦ(t)) which is determined by fan(u
∗
Φ(t))

= ωΦ(u
∗
Φ(t), yΦ(t), uΦ(t)). The intersecting function Ω(yΦ(t), uΦ(t)) for the case when

yΦ(t) > fan(uΦ(t)) is given by

Ω(yΦ(t), uΦ(t)) = uΦ(t)−
1

α1
ln

[ α2

α2
1
− α3

α1

yΦ(t)− uΦ(t)
α2

α1
+ α2

α2
1
− α3

α1

]

Note that by the assumption on α3 and since we consider yΦ(t) > α2

α1
uΦ(t), we have that

Ω(yΦ(t), uΦ(t)) > uΦ(t), i.e., the intersection point is located to the right of uΦ(t). On the

other hand, when yΦ(t) ≤ α2

α1
uΦ(t), the function Ω(yΦ(t), uΦ(t)) is given by

Ω(yΦ(t), uΦ(t)) = uΦ(t) +
1

α1
ln

[ α3

α1
− α2

α2
1

yΦ(t)− uΦ(t)
α2

α1
− α2

α2
1
+ α3

α1

]

.

By the assumption on α3 and since we consider yΦ(t) ≤ α2

α1
uΦ(t), we have thatΩ(yΦ(t), uΦ(t)) ≤

uΦ(t).
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It follows from the above computation that d
dtΩ(yΦ(t), uΦ(t)) exists and it is continu-

ously differentiable.

As an example on the construction of storage function, let us denote k1 = α2

α1
, k2 = α2

α2
1
−

α3

α1
and u∗

Φ(t) = Ω(yΦ(t), uΦ(t)). Using the construction of storage function as in Theorem

4.2.1 and using ωΦ and Ω as above, the storage function H	1 (when yΦ(t) > fan(uΦ(t))

and uΦ(t) ≤ 0) can be explicitly given by

H	1(yΦ(t), uΦ(t)) = yΦ(t)uΦ(t)−
1

2
k1(uΦ(t))

2 − k2
(
u∗
Φ(t)− uΦ(t)

)

+
1

α1
[yΦ(t)− uΦ(t)k1 + k2]

[

1− e(−α1(u
∗
Φ(t)−uΦ(t)))

]

.

In this subsection, we have shown the dissipativity property of the CCW Duhem

hysteresis operator by constructing the storage function H	1 (4.9) based on the

traversing function ωΦ. Furthermore, the radially unboundedness of H	1 has also

been studied.

4.2.2 Storage Function Using νΦ

Dual to the results from the previous subsection, using fan, νΦ andΥ as given before,

we can also define another candidate storage function H	2 : R2 → R by

H	2(γ, υ) = γυ +

∫ Υ(γ,υ)

υ

νΦ(σ, γ, υ)dσ −
∫ Υ(γ,υ)

0

fan(σ)dσ. (4.21)

where Υ is the intersecting function (corresponding to νΦ and fan) as in Lemma

4.1.2. The graphic interpretation of H	2 is illustrated by the I/O phase plot of a

Duhem hysteresis operator Φ with f1(γ, υ) = −0.15γ+0.48υ+1.5, f2(γ, υ) = 0.15γ−
0.48υ + 1.5 as in Figure 4.4. In the figure, given a point (yΦ0 , uΦ0), the value of

H	2(yΦ0 , uΦ0) is equal to the difference between light grey area and the dark grey

area.

Theorem 4.2.6 Consider the Duhem hysteresis operator Φ defined in (3.1)-(4.1) with C1

functions f1, f2 : R2 → R and the corresponding anhysteresis function fan be C1. Sup-

pose that there exists an CCW intersecting function Υ and Assumption (A) in Theorem

4.2.1 hold. Then for every uΦ ∈ AC(R+) and for every yΦ0 ∈ R, the function t 7→
H	2

(
(yΦ(t), uΦ(t)

)
with yΦ := Φ(uΦ, yΦ0)) and H	2 as in (4.21) is right-differentiable

and satisfies (4.10). Moreover, if f1 ≥ 0 and f2 ≥ 0 then Φ is CCW and dissipative with

respect to the supply rate ẏΦuΦ with the storage function H	2 , i.e., H	2 is non-negative.

The proof is similar to the proof of Theorem 4.2.1.
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H	2(yΦ0 , uΦ0)

Υ(yΦ0 , uΦ0)

νΦ

yΦ0

uΦ0

Figure 4.4: Graphical interpretation of the storage function H	2(yΦ0 , uΦ0) in (4.21),

where the Duhem hysteresis operator Φ is defined as in (3.1) with f1(γ, υ) =

−0.15γ + 0.48υ + 1.5,f2(γ, υ) = 0.15γ − 0.48υ + 1.5. For a given (yΦ0 , uΦ0), H	2

is equal to the difference between the area in light grey and the area in dark grey

Remark 4.2.7 In addition to the result in Theorem 4.2.6, if f1 and f2 satisfy the hypotheses

given in Theorem 4.2.6, then for every uΦ ∈ AC(R+) and yΦ0 ∈ R, the function t →
H	2(yΦ(t), uΦ(t)) with H	2 as in (4.9) is left-differentiable and satisfies

lim
hր0−

H	2(yΦ(t+ h), uΦ(t+ h))−H	1(yΦ(t), uΦ(t))

h
≤ yΦ(t)u̇Φ(t).

Remark 4.2.8 If f1 and f2 satisfy the assumptions in both Theorem 4.2.1 and Theorem

4.2.6, the convex combination of H	1 and H	2 is also a storage function which satisfies

(4.10). Moreover, if additionally, it is assumed that f1 and f2 are positive then the convex

combination of H	1 and H	2 is also a non-negative storage function. △

Similar to Proposition 4.2.3, generalization for the Duhem operator with satu-

rated output can also be done for this case, which is given in the following proposi-

tion.

Proposition 4.2.9 Consider the Duhem hysteresis operator Φ defined in (3.1) with C1

functions F,G : D → R and with the traversing function νΦ and the anhysteresis function

fan. Assume that the anhysteresis curve is in D and there exists an CCW intersecting func-

tion Υ (e.g., the hypotheses in Lemma 4.1.2 hold). Assume further that the Assumption (A)

holds for all (γ, υ) in D. Then for every uΦ ∈ AC(R+) and (yΦ0 , uΦ(0)) ∈ D, the function
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t → H	2(yΦ(t), uΦ(t)) with H	2 as in (4.21) and yΦ := Φ(uΦ, yΦ0) is right differentiable

and satisfies (4.10), i.e. the Duhem operator is CCW.

In this subsection, we have shown the dissipativity property of the CCW Duhem

hysteresis operator by constructing the storage function H	2 (4.21) based on the

traversing function νΦ. Furthermore, the radially unboundedness of H	2 has also

been studied.

4.2.3 Relations to the Available Storage Functions

In the previous sections we have discussed a storage function for the Duhem hys-

teresis operator using ωΦ. It is natural to investigate the relation between this stor-

age function and the available storage function as given in Willems [62]. This is

summarized in the following proposition.

Proposition 4.2.10 Consider the Duhem operator Φ satisfying the hypotheses in Theorem

4.2.1. Furthermore, we assume that the anhysteresis function fan(υ) is the vertical line

where υ = 0, i.e. for every uΦ ∈ AC(R+), Ω(yΦ(t), uΦ(t)) = 0. Then for every yΦ0 , uΦ0 ∈
R, the function H	1 as in (4.9) satisfies

H	1(yΦ0 , uΦ0) = sup
uΦ∈AC(R+)
uΦ(0)=uΦ0

−
∫ T

0

ẏΦ(τ)uΦ(τ)dτ ,

where yΦ := Φ(uΦ, yΦ0). In other words, H	1 defines the available storage function (as

discussed in [62]) where the supply rate is given by ẏΦuΦ (instead of yΦuΦ as in [62]).

Proof: From the proof of the Theorem 4.2.1, we have

dH	1

(
yΦ(t), uΦ(t)

)

dt
= ẏΦ(t)uΦ(t) +

∫ u∗
Φ(t)

uΦ(t)

d

dt
ωΦ(υ, yΦ(t), uΦ(t))dυ. (4.22)

Let H	1(t) = H	1(yΦ(t), uΦ(t)) and integrating (4.22) from t = 0 to T > 0, we

have

H	1(T )−H	1(0) =

∫ T

0

ẏΦ(τ)uΦ(τ)dτ +

∫ T

0

∫ u∗
Φ

uΦ(τ)

d

dτ
ωΦ(υ, yΦ(τ), uΦ(τ))dυdτ ,

where u∗
Φ = Ω(yΦ(t), uΦ(t)) = 0.

By rearranging the terms in this equation, we obtain

−
∫ T

0

ẏΦ(τ)uΦ(τ)dτ = H	1(0)−H	1(T )+

∫ T

0

∫ 0

uΦ(τ)

d

dτ
ωΦ(υ, yΦ(τ), uΦ(τ))dυdτ ,
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(4.23)

The supremum of the LHS of (4.23) over all possible uΦ and T defines the available

storage function where the supply rate is ẏΦuΦ. Note that this supply rate is a par-

ticular class of the general supply rate given by [62]. Since the H	1(T ) ≥ 0 based

on Theorem 4.2.1 and the last term is non-positive, we show that we can define uΦ

and T such that these two terms are equal to zero, thus the supremum of the LHS of

(4.23) is equal to H	1(0), i.e. H	1 is the available storage function.

From a given initial condition (yΦ0 , uΦ0), let us give an input signal uΦ(t) =

uΦ0(T − t) for all t ∈ [0, T ]. Since uΦ(T ) = 0, the last term of (4.23) is equal to zero.

Based on the assumption on the anhysteresis function fan, we also have H	1(T ) = 0.

This completes our proof. �

4.3 Dissipativity of The Duhem Hysteresis Operator with

CW I/O Behavior

In this section, we study the dissipativity property of the Duhem operator with CW

I/O behavior. The analysis follows the same procedure as we did for the CCW

Duhem operator, where we first propose a candidate of the storage function based

on the traversing function ωΦ (νΦ), and then show that these storage functions sat-

isfy the CW inequality.

4.3.1 Storage Function Using ωΦ

Based on the three functions ωΦ, fan and Λ, we define H�1 : R2 → R+ as follows

H�1(γ, υ) =

∫ Λ(γ,υ)

0

fan(τ)dτ −
∫ Λ(γ,υ)

υ

ωΦ(σ, γ, υ)dσ, (4.24)

where Λ is the CW intersecting function (corresponding to ωφ and fan) as in Lemma

4.1.3. The graphical interpretation of H�1 is shown in Figure 4.5, where we use a

Duhem hysteresis operator Φ with f1(γ, υ) = 1− 2γ, f2(γ, υ) = 1+ 2γ and the value

of H�1(yΦ0 , uΦ0) is equal to the area in light grey. In the following theorem, we give

the sufficient conditions on the Duhem hysteresis operator such that it has CW I/O

dynamics.

Theorem 4.3.1 Consider the Duhem hysteresis operator Φ defined in (3.1) and (4.1) with

C1 functions f1, f2 : R2 → R and with the traversing function ωΦ and the anhysteresis
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H�1(yΦ0 , uΦ0)
yΦ0

uΦ0

Λ(yΦ0 , uΦ0)

fan ωΦ

Figure 4.5: Graphical interpretation of the function H�1 in (4.24) where the Duhem

hysteresis operator Φ is defined in (3.1) with f1(γ, υ) = 1− 2γ, f2(γ, υ) = 1+ 2γ. for

any given (yΦ0 , uΦ0), H�1(yΦ0 , uΦ0) is equal to the area in light grey.

function fan. Suppose that there exists an CW intersecting function Λ (e.g. the hypotheses

in Lemma 4.1.3 hold). Let the following condition holds for all (γ, υ) in R2

(B) f1(γ, υ) ≥ f2(γ, υ) whenever γ ≤ fan(υ), and f1(γ, υ) < f2(γ, υ) otherwise.

Then for every uΦ ∈ AC(R+) and for every yΦ0 ∈ R, the function t → H�1(yΦ(t), uΦ(t))

with H�1 as in (4.24) and yΦ := Φ(uΦ, yΦ0), is right differentiable and satisfies

dH�1(yΦ(t), uΦ(t))

dt
≤ u̇Φ(t)yΦ(t) (4.25)

Moreover, if the anhysteresis function fan satisfies fan(0) = 0, then H�1 ≥ 0 and the

Duhem operator is clockwise (CW).

Proof: The proof of Theorem 4.3.1 follows the same line as the proof of Theorem 4.2.1.

For any real valued function z, we denote d
dtz(t) := limhց0+

z(t+h)−z(t)
h . In the first

part we prove that for all t ∈ R+, Ḣ�1

(
yΦ(t), uΦ(t)

)
exists and satisfies (4.25). In the

second part we show the non-negativeness of H�1

(
yΦ(t), uΦ(t)

)
.

1. To show that Ḣ�1

(
(Φ(uΦ, yΦ0))(t), uΦ(t)

)
exists, let us denote u∗

Φ := Λ(yΦ, uΦ).

Then we have

d

dt
H�1(yΦ(t), uΦ(t)) = u̇Φ(t)yΦ(t)−

∫ u∗
Φ(t)

uΦ(t)

d

dt
ωΦ(υ, yΦ(t), uΦ(t))dυ, (4.26)
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where u∗
Φ(t) = Λ(yΦ(t), uΦ(t)) The first term in the RHS of (4.26) exists for all

t ≥ 0 since uΦ(t) satisfies (3.1). In order to get (4.25), it remains to check whether the

last term of (4.26) exists, is finite and satisfies

∫ u∗
Φ(t)

uΦ(t)

d

dt
ωΦ(υ, yΦ(t), uΦ(t))dυ ≥ 0. (4.27)

It suffices to show that, for every υ ∈ [uΦ(t), u
∗
Φ(t)], the following limit

lim
ǫց0+

1

ǫ
[ωΦ(υ, yΦ(t+ ǫ), uΦ(t+ ǫ))− ωΦ(υ, yΦ(t), uΦ(t))] (4.28)

exist and the limit of (4.28) is greater or equal to zero when u∗
Φ(t) > uΦ(t) and the

limit is less or equal to zero elsewhere.

For any ǫ ≥ 0, let us introduce the continuous function ωǫ : R → R by

ωǫ(υ) = ωΦ(υ, yΦ(t+ ǫ), uΦ(t+ ǫ)). (4.29)

More precisely, using (4.2), ωǫ is the unique solution of

ωǫ(υ) =







yΦ(t+ ǫ) +

∫ τ

uΦ(t+ǫ)

f1(ωǫ(σ), σ)dσ ∀σ ≥ uΦ(t+ ǫ)

yΦ(t+ ǫ) +

∫ τ

uΦ(t+ǫ)

f2(ωǫ(σ), σ)dσ ∀σ ≤ uΦ(t+ ǫ).

(4.30)

Note that ω0(υ) = ωΦ(υ, yΦ(t), uΦ(t)) as in (4.2) for all υ ∈ R and

ωǫ(uΦ(t+ ǫ)) = yΦ(t+ ǫ) ∀ ǫ ∈ R+ . (4.31)

In order to show the existence of (4.28) and the validity of (4.27), we consider sev-

eral cases depending on the sign of u̇Φ(t) and F (yΦ(t), uΦ(t)). It can be checked that

the hypothesis (B) on F implies that f1(yΦ(t), uΦ(t)) ≥ f2(yΦ(t), uΦ(t)) whenever

yΦ(t) ≤ fan(uΦ), and f1(yΦ(t), uΦ(t)) < f2(yΦ(t), uΦ(t)) otherwise.

First, we assume that u̇Φ(t) > 0 and yΦ(t) ≥ fan(uΦ(t)). In this case, according

to Lemma 4.1.3, we have u∗
Φ(t) < uΦ(t). Since u̇Φ(t) > 0, there exists δ > 0 such that

υ ≤ uΦ(t) < uΦ(τ) for all τ in (t, t + δ). It follows from (4.30) and assumption (B)

that for every ǫ ∈ (0, δ):

dωǫ(uΦ(τ))

dτ
= f2(ωǫ(uΦ(τ)), uΦ(τ)) u̇Φ(τ)

≥ f1(ωǫ(uΦ(τ)), uΦ(τ)) u̇Φ(τ) ∀τ ∈ [t, t+ ǫ],
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and the function ω0 satisfies

dω0(uΦ(τ))

dτ
= f1(yΦ(τ), uΦ(τ)) u̇Φ(τ) ∀τ ∈ [t, t+ ǫ].

Since the functions ǫ 7→ w0(uΦ(t + ǫ)) and ǫ 7→ yΦ(t + ǫ) with ǫ ∈ (0, δ] are two C1

functions which are solutions of the same locally Lipschitz ODE and with the same

initial value. By uniqueness of solution, we get ω0(uΦ(t+ ǫ)) = yΦ(t+ ǫ).

This together with the fact that ωǫ(uΦ(t+ǫ)) = yΦ(t+ǫ) and using the comparison

principle (in reverse direction), we get that for every ǫ ∈ [0, δ):

ωǫ(uΦ(τ)) ≤ ω0(uΦ(τ)) ∀ τ ∈ [t, t+ ǫ].

Since the two functions ωǫ(υ) and ω0(υ) for υ ∈ [u∗
Φ(t), uΦ(t)] are two solutions of

the same ODE, it follows that ωǫ(υ) ≥ ω0(υ) and we get that if it exists:

lim
ǫց0+

1

ǫ
[ωǫ(υ)− ω0(υ)] ≤ 0 ∀υ ∈ [u∗

Φ(t), uΦ(t)]. (4.32)

Then it is clear that

lim
ǫց0+

1

ǫ
[ωǫ(υ)− ω0(υ)] ≥ 0 ∀υ ∈ [uΦ(t), u

∗
Φ(t)]. (4.33)

In the following, we show the existence of the limit given in (4.32) by computing a

bound on the function ǫ 7→ 1
ǫ [ωǫ(υ)− ω0(υ)]. Note that for every ǫ ∈ [0, δ],

|ωǫ(υ)− ω0(υ)| ≤ |yΦ(t+ ǫ)− yΦ(t)|+
∣
∣
∣
∣
∣

∫ uΦ(t)

uΦ(t+ǫ)

f2(ωǫ(σ), σ) dσ

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫ υ

uΦ(t)

f2(ωǫ(σ), σ) − f2(ω0(σ), σ) dσ

∣
∣
∣
∣
∣

≤ |yΦ(t+ ǫ)− yΦ(t)|+
∫ uΦ(t+ǫ)

uΦ(t)

|f2(ωǫ(σ), σ)| dσ

+

∫ uΦ(t)

υ

|f2(ωǫ(σ), σ) − f2(ω0(σ), σ)| dσ,

for all υ ∈ [u∗
Φ(t), uΦ(t)]. By the locally Lipschitz property of f2 and by the bound-

edness of ωǫ on [υ, uΦ(t)] for all ǫ ∈ [0, δ], it can be shown that there exists α, such

that α is a bound of f2 on a compact set. Then

|ωǫ(υ)− ω0(υ)| ≤ |yΦ(t+ ǫ)− yΦ(t)|

+

∫ uΦ(t)

υ

L |ωǫ(σ) − ω0(σ)| dσ + α|uΦ(t + ǫ)− uΦ(t)| ,
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where L is the Lipschitz constant of f2 on [ωmin , ωmax ]× [υ, uΦ(t)] with

ωmin = min
(ǫ,σ)∈[0,δ]×[υ,uΦ(t)]

ωǫ(σ),

ωmax = max
(ǫ,σ)∈[0,δ]×[υ,uΦ(t)]

ωǫ(σ) .

With Gronwall’s lemma, this implies that for every ǫ ∈ [0, δ]

|ωǫ(υ)−ω0(υ)| ≤ exp((uΦ(t)−υ)L)
[

|yΦ(t+ǫ)−yΦ(t)|+α|uΦ(t+ǫ)−uΦ(t)|
]

,

for all υ ∈ [u∗
Φ(t), uΦ(t)]. Hence

lim
ǫց0+

1

ǫ
|ωǫ(υ)− ω0(υ)| ≤ exp((uΦ(t)− υ)L)

[

|f1(yΦ(t), uΦ(t))|+ α
]

u̇Φ(t),

for all υ ∈ [u∗
Φ(t), uΦ(t)]. Consequently the limit given in (4.32) exists. It implies that

the inequality (4.27) holds when u̇Φ(t) > 0 and yΦ(t) ≥ fan(uΦ(t)).

For the next case, we assume that u̇Φ(t) > 0 and yΦ(t) < fan(u(t)). Again,

according to Lemma 4.1.3, we have u∗
Φ(t) > uΦ(t). Since for every ǫ ∈ (0, δ] the two

functions ωǫ(υ) and ω0(υ) satisfy the same ODE for υ ∈ [uΦ(t+ ǫ), u∗
Φ(t)], we have

ωǫ(υ) = ω0(υ) ∀υ ∈ [uΦ(t+ ǫ), u∗
Φ(t)],

for all ǫ ∈ [0, δ]. This implies that

lim
ǫց0+

1

ǫ
[ωǫ(υ)− ω0(υ)] = 0. (4.34)

We can use similar arguments to prove that (4.27) is satisfied when u̇Φ(t) < 0.

Finally, when u̇Φ(t) = 0, we simply get

lim
ǫց0+

1

ǫ
|ωǫ(υ)− ω0(υ)| = 0,

by continuity of the above bound.
2. For the second step, we need to show that H�1 is non-negative. Consider the

case when yΦ(t) ≥ fan(uΦ(t)), we have u∗
Φ(t) < uΦ(t) and ωΦ(υ) ≥ fan(υ) for all

υ ∈ [u∗
Φ(t), uΦ(t)] by Lemma 4.1.3. Since fan(υ) belongs to the sector [0, ∞) for all

υ ∈ R, we have

H�1(yΦ(t), uΦ(t)) =

∫ uΦ(t)

0

fan(υ)dυ +

∫ u∗
Φ(t)

uΦ(t)

fan(υ)− ωΦ(υ, yΦ(t), uΦ(t))dυ ≥ 0.

In case when yΦ(t) < fan(uΦ(t)), we can show the non-negativeness of H�1 by using similar

arguments. �
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Remark 4.3.2 In addition to the result in Theorem 4.3.1, if f1 and f2 satisfy the hypotheses

given in Theorem 4.3.1, then for every uΦ ∈ AC(R+) and yΦ0 ∈ R, the function t →
H�1(yΦ(t), uΦ(t)) with H�1 as in (4.24) is left-differentiable and satisfies

lim
hր0−

H�1(yΦ(t+ h), uΦ(t+ h))−H�1(yΦ(t), uΦ(t))

h
≤ yΦ(t)u̇Φ(t).

The proof of this claim follows a similar line as that of Theorem 4.3.1.

Example 4.3.3 Consider the Dahl model [7, 38] given in 3.3.2 with r = 1, then the model

can be given by (3.1) with

f1(yΦ, uΦ) = ρ

(

1− yΦ
Fc

)

, f2(yΦ, uΦ) = ρ

(

1 +
yΦ
Fc

)

. (4.35)

It is immediate to check that the anhysteresis function is fan(uΦ(t)) = 0.
Calculating the curve ωΦ, we have

ωΦ(υ, yΦ(t), uΦ(t)) =

{

Fc + (yΦ(t)− Fc) e
ρ
Fc

(uΦ(t)−υ)
υ ∈ [uΦ(t), ∞),

−Fc + (yΦ(t) + Fc) e
ρ
Fc

(υ−uΦ(t))
υ ∈ (−∞, uΦ(t)].

(4.36)

The CW intersecting function Λ(yΦ(t), uΦ(t)) is given by

Λ(yΦ(t), uΦ(t)) =

{

uΦ(t) +
Fc

ρ
ln Fc

yΦ(t)+Fc
yΦ(t) ≥ 0,

uΦ(t)−
Fc

ρ
ln −Fc

yΦ(t)−Fc
yΦ(t) < 0,

(4.37)

Denoting u∗

Φ(t) = Λ(yΦ(t), uΦ(t)), we can compute explicitly the function H�1 in (4.24) as

follows

H�1(yΦ(t), uΦ(t)) =



















−Fc(uΦ(t)− u∗

Φ(t)) +
Fc

ρ
(yΦ(t) + Fc)(1− e

ρ
Fc

(u∗
Φ(t)−uΦ(t))

)

yΦ(t) ≥ 0,

Fc(uΦ(t)− u∗

Φ(t)) +
Fc

ρ
(yΦ(t)− Fc)(e

ρ
Fc

(uΦ(t)−u∗
Φ(t))

−1)

yΦ(t) < 0.

The results given in Theorem 4.3.1 can also be generalized in order to incorporate

the case when the Duhem hysteresis operator Φ has saturated output, i.e. the input-

output pair exists in a subset D ⊂ R2. For example, the set D for the Dahl model in

Example 4.3.3 is given by D = (−FC , FC)×R. Using D, we can generalize Theorem

4.3.1 as follows.

Proposition 4.3.4 Consider the Duhem hysteresis operator Φ defined in (3.1) and (4.1)

with C1 functions F,G : D → R and with the traversing function ωΦ and the anhysteresis
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function fan. Assume that the anhysteresis curve is in D and there exists an CW intersect-

ing function Λ (e.g., the hypotheses in Lemma 4.1.3 hold). Assume further that the Assump-

tion (B) holds for all (γ, υ) in D. Then for every uΦ ∈ AC(R+) and (yΦ0 , uΦ(0)) ∈ D,

the function t → H�1(yΦ(t), uΦ(t)) with H�1 as in (4.24) and yΦ := Φ(uΦ, yΦ0) is

right differentiable and satisfies (4.25). Moreover, if the anhysteresis function fan satisfies

fan(0) = 0, then H�1 ≥ 0 and the Duhem operator is CW.

The proof of Proposition 4.3.4 is similar to the proof of Theorem 4.3.1. In the follow-

ing proposition, we show the radially unboundedness of H�1 which will be used

for stability analysis in the next chapter.

Proposition 4.3.5 Consider a Duhem operator Φ satisfying the hypotheses in Theorem

4.3.1. Suppose that fan is monotone increasing and fan(0) = 0. Then the function

H�1(·, υ) (where H�1 is as in (4.24)) is radially unbounded for every υ.

Proof: To show the properness of H�1(·, υ) for any given υ, we first consider the case

γ ≥ fan(υ). Since the Duhem operator Φ satisfies the hypotheses in Theorem 4.3.1,

the function H�1 is nonnegative. Thus, using (4.24) and since Λ(fan(υ), υ) = υ we

have

H�1(γ, υ) ≥ H�1(γ, υ)−H�1(fan(υ), υ)

=

∫ Λ(γ,υ)

Λ(fan(υ),υ)

fan(σ)dσ −
∫ Λ(γ,υ)

v

ωΦ(σ, γ, υ)dσ +

∫ Λ(fan(υ),υ)

υ

ωΦ(σ, γ, υ)dσ

=

∫ Λ(γ,υ)

υ

fan(σ) − ωΦ(σ, γ, υ)dσ.

By the definition of the CW intersecting function Λ, γ ≥ fan(υ) implies thatΛ(γ, υ) <

υ. Using the monotonicity of ωΦ, ωΦ(σ, γ, υ) ≤ γ for all σ < υ, and thus, it follows

from the above inequality that

H�1(γ, υ) ≥
∫ Λ(γ,υ)

υ

fan(σ)− ωΦ(σ, γ, υ)dσ

≥
∫ Λ(γ,v)

υ

fan(σ) − γdσ,

Now let us fix γ̄ s.t. fan(υ) < γ̄ < γ. Since ωΦ(σ, γ̄, υ) < ωΦ(σ, γ, υ) for all σ < υ

and using the monotonicity of fan, we have that Λ(γ, υ) < Λ̄, where Λ̄ = Λ(γ̄, υ).
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Therefore,

H�1(γ, υ) ≥
∫ Λ(γ,υ)

υ

fan(σ)− γdσ ≥
∫ Λ̄

υ

fan(σ) − γdσ

≥
∫ Λ̄

υ

fan(υ)− γdσ = (γ − c)(υ − Λ̄) > 0

where c := fan(υ) and Λ̄ = Λ(γ̄, υ) for any given υ. Hence, it implies that for every

υ, H�1(γ, υ) → ∞ as γ → ∞.

We can apply similar arguments to show that for every υ, H�1(γ, υ) → ∞ as

γ → −∞ by evaluating the case when γ < fan(υ). �

In this subsection, we have shown the dissipativity property of the Duhem hys-

teresis operator by constructing the storage function H�1 (4.24) based on the travers-

ing function ωΦ. Furthermore, the radially unboundedness of H�1 has also been

studied.

4.3.2 Storage Function Using νΦ

Similarly, based on the three functions νΦ, fan and Γ, we define H�2 : R2 → R+ as

follows

H�2(γ, υ) =

∫ Γ(γ,υ)

0

fan(τ)dτ −
∫ Γ(γ,υ)

υ

νΦ(σ, γ, υ)dσ. (4.38)

where Γ is the intersecting function (corresponding to νφ and fan) as in Lemma 4.1.4.

The graphical interpretation of H�2 is shown in Figure 4.6 using a Duhem hysteresis

operator Φ with f1(γ, υ) = 1− 2γ, f2(γ, υ) = 1+2γ. For a given point (yΦ0 , uΦ0), the

value of H�2(yΦ0 , uΦ0) is equal to the area in light grey.

Theorem 4.3.6 Consider the Duhem hysteresis operator Φ defined in (3.1) and (4.1) with

C1 functions f1, f2 : R2 → R and with the traversing function νΦ and the anhysteresis

function fan. Suppose that there exists an intersecting function Γ and Assumption B in

Theorem 4.3.1 hold. Then for every uΦ ∈ AC(R+) and for every yΦ0 ∈ R, the function

t → H�2(yΦ(t), uΦ(t)) with H�2 as in (4.24) and yΦ := Φ(uΦ, yΦ0), is right differentiable

and satisfies (4.25). Moreover, if the anhysteresis function fan satisfies fan(0) = 0, then

H�2 ≥ 0 and the Duhem operator is CW.

The proof of Theorem 4.3.6 is omitted here, since it is similar to the proof of

Theorem 4.3.1.
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Γ(yΦ0 , uΦ0)

H�2(yΦ0 , uΦ0)

νΦ

yΦ0

uΦ0

Figure 4.6: Graphical interpretation of the function H�2 in (4.24) where the Duhem

hysteresis operator Φ is defined in (3.1) with f1(γ, υ) = 1− 2γ, f2(γ, υ) = 1+ 2γ. for

any given (yΦ0 , uΦ0), the value of H�2(yΦ0 , uΦ0) is equal to the area in light grey.

Remark 4.3.7 In addition to the result in Theorem 4.3.6, if f1 and f2 satisfy the hypotheses

given in Theorem 4.3.6, then for every uΦ ∈ AC(R+) and yΦ0 ∈ R, the function t →
H�2(yΦ(t), uΦ(t)) with H�2 as in (4.38) is left-differentiable and satisfies

lim
hր0−

H�2(yΦ(t+ h), uΦ(t+ h))−H�2(yΦ(t), uΦ(t))

h
≤ yΦ(t)u̇Φ(t).

To generalize Theorem 4.3.6 to the hysteresis operator with saturated output, we

have the next proposition.

Proposition 4.3.8 Consider the Duhem hysteresis operator Φ defined in (3.1) and (4.1)

with C1 functions F,G : D → R and with the traversing function νΦ and the anhysteresis

function fan. Assume that the anhysteresis curve is in D and there exists an intersecting

function Γ (e.g., the hypotheses in Lemma 4.1.4 hold). Assume further that the Assumption

(B) holds for all (γ, υ) in D. Then for every uΦ ∈ AC(R+) and (yΦ0 , uΦ(0)) ∈ D, the func-

tion t → H�2(yΦ(t), uΦ(t)) with H�2 as in (4.24) and yΦ := Φ(uΦ, yΦ0) is right differen-

tiable and satisfies (4.25). Moreover, if the anhysteresis function fan satisfies fan(0) = 0,

then H�2 ≥ 0 and the Duhem operator is CW.
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The proof of Proposition 4.3.8 follows the same line as the proof of Theorem 4.3.1,

hence it is omitted here.

In this subsection, we have shown the dissipativity property of the Duhem hys-

teresis operator by constructing the storage function H�2 (4.38) based on the travers-

ing function νΦ which is dual to ωΦ. Furthermore, the radially unboundedness of

H�2 has also been studied.

4.3.3 Relations to The Available Storage Functions

In this section, we study the relations between the proposed storage functions H�1

to the available storage function given in [62].

Proposition 4.3.9 Consider the Duhem operator Φ satisfying the hypotheses in Theorem

4.3.1. Moreover, we assume that the anhysteresis function fan satisfies fan(υ) = 0 for all

υ ∈ R. Then for every yΦ0 , uΦ0 ∈ R, the function H�1 as in (4.24) satisfies

H�1(yΦ0 , uΦ0) = sup
uΦ∈AC(R+)
uΦ(0)=uΦ0

−
∫ T

0

y(τ)u̇(τ)dτ ,

where yΦ := Φ(uΦ, yΦ0). In other words, H�1 defines the available storage function (as

discussed in [62]) where the supply rate is given by yΦu̇Φ (instead of yΦuΦ as in [62]).

Proof: As given in the first part of the proof of Theorem 4.3.1, we have

d

dt
H�1(yΦ(t), uΦ(t)) = u̇Φ(t)yΦ(t)−

∫ u∗
Φ(t)

uΦ(t)

d

dt
ωΦ(υ, y(t), u(t))dυ. (4.39)

Integrating (4.39) from t = 0 to T , we obtain

H�1(T )−H�1(0) =

∫ T

0

yΦ(τ)u̇Φ(τ)dτ −
∫ T

0

∫ u∗
Φ

uΦ(t)

d

dτ
ωΦ(υ, y(τ), u(τ)dυdτ,

where u∗
Φ = Λ(yΦ(t), uΦ(t)) and we have used the shorthand notation of H�1(t) :=

H�1(yΦ(t), uΦ(t)).

By rearranging the terms in this equation, we arrive at

−
∫ T

0

yΦ(τ)u̇Φ(τ)dτ = H�1(0)−H�1(T )−
∫ T

0

∫ u∗
Φ

uΦ(t)

d

dτ
ωΦ(υ, yΦ(τ), uΦ(τ)dυdτ .

(4.40)
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The supremum of the LHS of (4.40) over all possible uΦ and T defines the available

storage function where the supply rate is yΦu̇Φ. Note that this supply rate is a par-

ticular class of the general supply rate as studied in [62]. Since the last two terms

on the RHS of (4.40) is non-positive, we show that we can define uΦ and T such

that these two terms are equal to zero, and thus the supremum of the LHS of (4.40)

is equal to H�1(yΦ(0), uΦ(0)), which is equivalent to H�1(yΦ0 , uΦ0), i.e., H�1 is the

available storage function.

From a given initial condition (yΦ0 , uΦ0), let us introduce an input signal uΦ(t) =

uΦ0(T − t) + tΛ(yΦ0 , uΦ0) for all t ∈ [0, T ] and uΦ(t) = Λ(yΦ0 , uΦ0) otherwise. This

means that we have an input signal uΦ which starts from uΦ0 , ends at Λ(yΦ0 , uΦ0) at

t = T and remains there for all t > T . Together with the corresponding signal yΦ =

Φ(uΦ, yΦ0), we have Λ(yΦ(t), uΦ(t)) = Λ(yΦ0 , uΦ0) for all t, i.e. the intersecting point

is always the same. Indeed, this follows the fact that Λ(yΦ(t), uΦ(t)) remains the

same along the trajectories that converge to the intersection point (ωΦ(u
∗
Φ, yΦ0 , uΦ0), u

∗
Φ)

where u∗
Φ = Λ(yΦ0 , uΦ0).

Following the same arguments as in the proof of Theorem 4.2.1 (c.f., the argu-

ments that lead to Eq. (4.34)), this input signal ensures that the last term on the RHS

of (4.40) is equal to zero. Since uΦ(T ) = Λ(yΦ0 , uΦ0) for all t > T , we also have that

H�1(yΦ(t), uΦ(t)) = 0 for all t > T , i.e. the second term on the RHS of (4.40) is zero

using such an input signal. Hence H�1 as in (4.24) is the available storage function.

�

As shown in Proposition 4.3.9, the storage function H�1 defines the available

storage function as shown in the classical dissipativity theory given by Willems [62]

where the supply rate is given by yΦu̇Φ.

4.4 Concluding Remarks

In this chapter, we have discussed two dissipativity property of the Duhem operator

Φ: the Duhem hysteresis operator with CCW I/O behavior and the Duhem hystere-

sis operator with CW I/O behavior. In both cases, explicit storage functions are

proposed based on four functions: the traversing function ωΦ (νΦ), the anhysteresis

function fan, the CCW intersecting function Ω (Υ) and the CW intersecting func-

tion Λ (Γ). It is shown that under some mild conditions on f1 and f2, the proposed

storage functions satisfy either CCW dissipation inequalities or CW dissipation in-

equalities, i.e. the Duhem hysteresis operator is either CCW or CW. Furthermore,

we have explored the relations between the storage functions we proposed to the

available storage function given in dissipativity concept by Willems [62].



Chapter 5

Absolute stability Analysis of Systems with
Duhem Hysteresis Nonlinearity

I
n this chapter, we investigate the absolute stability of a feedback interconnec-

tion between a linear system and a Duhem hysteresis operator. For solving this

absolute stability problem, sufficient conditions are given based on the counter-

clockwise (CCW) and clockwise (CW) input-output property of the linear system

and the Duhem operator. Furthermore, we extend the results to the case where the

Duhem operator is feedback interconnected to a nonlinear system.

P

Φ

Figure 5.1: Feedback interconnection between a linear plant P and a Duhem opera-

tor Φ.

In Chapter 4, we have discussed the dissipativity property of the Duhem hys-

teresis operator with CCW and CW I/O dynamics. In particular, we proposed a

candidate of the storage function for the Duhem operator in both cases. By ex-

ploiting the knowledge of the explicit storage functions H	1 and H�1 , we can solve

the absolute stability problem of an interconnected system as shown in Figure 5.1,

where P is a linear system and Φ is a hysteresis operator. We consider four cases

of interconnection where the plant P and hysteresis operator Φ can be assumed to

satisfy either CCW or CW I/O dynamics. These four cases are summarized in Table

5.1 and the stability analysis of these four cases are given in the following sections.
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❍
❍
❍
❍
❍❍

Φ

P
CCW CW

CCW a© b©
CW c© d©

Table 5.1: Four Possible cases of interconnection

5.1 CCW Linear System Interconnected with CCW Duhem

Hysteresis

5.1.1 Motivating Application

In the first case, we consider the feedback interconnection a© in Table 5.1, where

the Duhem hysteresis operator Φ has CCW I/O dynamics and the linear system P

also has CCW I/O dynamics. This is motivated by recent results on the positive-

feedback interconnection of negative imaginary system in [40] and of CCW systems

[60]. Note that in Chapter 2, we have shown that for linear systems the concept

negative imaginary is equivalent to CCW.

A possible application for this case is the piezo-actuated stage which is com-

monly used in the high-precision positioning mechanisms, see, for example [16, 28].

The piezo-actuated stage contains two parts: a piezo-actuator and a positioning

mechanism, which can be described by

P :
mq̈ + bq̇ + kq = Fpiezo,

V = cq,

Φ : Fpiezo = Φ(V ),







(5.1)

where m is the mass, b is the damping constant, k is the spring constant, c is the

proportional gain, V is the input voltage of the piezo-actuator, Fpiezo denotes the

force generated by the piezo-actuator, q denotes the displacement of the stage and

Φ denotes the hysteresis operator. It is well known that the piezoelectric actuator

have CCW hysteresis loops from the input voltage to the output generated force

(see, for example [8]). It can be checked that the linear mass-damper-spring system

P is also CCW from Fpiezo to q or, equivalently, P is a negative-imaginary system

[40].
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5.1.2 Stability Analysis

In the following theorem we show the absolute stability result of the interconnection

case a©.

Theorem 5.1.1 Consider a positive feedback interconnection of a linear system and a Duhem

operator Φ satisfying the hypotheses in Theorem 4.2.1 as follows

P :
ẋ = Ax+Bu,

y = Cx,

Φ : ẏΦ = f1(yΦ(t), uΦ(t))u̇Φ+(t) + f2(yΦ(t), uΦ(t))u̇Φ−(t),

u = yΦ, uΦ = y,

(5.2)

where A ∈ Rn×n, B ∈ Rn×1 and C ∈ R1×n. Suppose that there exist matrices L ∈ R1×n,

Q = QT > 0 and constants w ∈ R, ξ > 0 such that

ATQ+QA+ LTL ≤ 0, (5.3)

QB −ATCT = LTw, (5.4)

2CB = w2, (5.5)

Q− ξCTC > 0, (5.6)

hold and the anhysteresis function fan satisfies (fan(υ) − ξυ)υ ≤ 0 for all υ ∈ R (i.e.

fan belongs to the sector [0, ξ]). Then for every initial condition (x(0), yΦ(0)), the state

trajectory of the closed-loop system (5.2) is bounded and converges to the largest invariant

set in {(x, yΦ)|Lx− wyΦ = 0}.

Proof: Using VG(x) =
1
2x

TQx and (5.3) and (5.10), it can be checked that

V̇G =
1

2
xT (ATQ +QA)x+ xTQBu

≤ −1

2
xTLTLx+ xTQBu+ ẏu− xT (ATCT )u− uCBu

= ẏu− 1

2
(Lx− wu)2.

This implies that the linear system is CCW. By the assumptions of the theorem, the

Duhem operator Φ is also CCW with the storage function H	1 : R2 → R+ as given

in (4.9).

Now let Hcl(x, yΦ) = VG(x) +H	1(yΦ, Cx)−CxyΦ be a Lyapunov function can-

didate of the interconnected system (5.2). We show first that Hcl is lower bounded.
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Substituting the representation of VG and H	1 , we have

Hcl =
1

2
xTQx+ yΦCx−

∫ Cx

0

ωΦ(σ, yΦ, Cx) dσ − CxyΦ

+

∫ Ω(yΦ,Cx)

0

ωΦ(σ, yΦ, Cx)dσ −
∫ Ω(yΦ,Cx)

0

fan(σ)dσ

=
1

2
xTQx−

∫ Cx

0

fan(σ)dσ +

∫ Ω(yΦ,Cx)

Cx

ωΦ(σ, yΦ, Cx)− fan(σ)dσ

≥ 1

2
xTQx−

∫ Cx

0

(fan(σ) − ξσ)dσ −
∫ Cx

0

ξσdσ +

∫ Ω(yΦ,Cx)

Cx

ωΦ(σ, yΦ, Cx) − fan(σ)dσ

≥ 1

2
xT (Q − ξCTC)x +

∫ Ω(yΦ,Cx)

Cx

ωΦ(σ, yΦ, Cx) − fan(σ)dσ. (5.7)

where the last inequality is due to the sector condition on fan. In the following, we

prove that the last term on the RHS of (5.7) is lower bounded. Notice that since

f1 ≥ 0, f2 ≥ 0, (4.4) and (4.5) imply that dfan(υ)
dυ > ǫ for some ǫ > 0. Hence fan is

strictly increasing and invertible.

Consider the case when yΦ ≥ fan(Cx) which implies also that Ω(yΦ, Cx) ≥
f−1
an (yΦ) ≥ Cx by the definition of Ω. Using the monotonicity of ωΦ we have

∫ Ω(yΦ,Cx)

Cx

ωΦ(σ, yΦ, Cx)− fan(σ)dσ

≥
∫ Ω(yΦ,Cx)

Cx

yΦ − fan(σ)dσ ≥
∫ f−1

an (yΦ)

Cx

yΦ − fan(σ)dσ.

Define W (yΦ, Cx) :=
∫ f−1

an (yΦ)

Cx yΦ − fan(σ)dσ and let c := yΦ−fan(Cx)
2 + fan(Cx). It

follows that f−1
an (yΦ) ≥ f−1

an (c) and fan(σ) ≤ c for all σ ∈ [Cx, f−1
an (c)]. Therefore

W (yΦ, Cx) ≥
∫ f−1

an (c)

Cx

yΦ − fan(σ)dσ ≥
∫ f−1

an (c)

Cx

yΦ − c dσ

=
1

2
(yΦ − fan(Cx))(f−1

an (c)− Cx) ≥ 0.

Thus,
∫ Ω(yΦ,Cx)

Cx
yΦ − fan(σ)dσ is lower bounded by W (yΦ, Cx) which is positive

definite (it is equal to zero only if yΦ = fan(Cx)) and W (yΦ, Cx) → ∞ as yΦ → ∞.

When yΦ < fan(Cx), we obtain the same result where
∫ Ω(yΦ,Cx)

Cx yΦ − fan(σ)dσ

is lower bounded by W (yΦ, Cx) which is positive definite and W (yΦ, Cx) → ∞ as

yΦ → −∞.

Therefore, using (5.7), we have Hcl ≥ 1
2x

T (Q − ξCTC)x + VG(yΦ, Cx), which is

radially unbounded.
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Now computing the time derivative of Hcl, we obtain Ḣcl = V̇G+ Ḣ	1 −CẋyΦ−
CxẏΦ ≤ − 1

2 (Lx− wyΦ)
2.

This inequality together with the radially unboundedness of Hcl implies that

the trajectory (x, yΦ) is bounded. Using LaSalle’s invariance principle, we conclude

that the trajectory (x, yΦ) of (5.2) converges to the largest invariant set contained in

M := {(x, yΦ) ∈ Rn × R|Lx− wyΦ = 0}. �

We illustrate Theorem 5.1.1 in the following simple example.

Example 5.1.2 Consider

P :
ẋ =

[
0 1

− k
m

− b
m

]

x+
[

0
1
m

]

u,

y = [ c1 c2 ]x,

Φ : ẏΦ = f1(yΦ(t), uΦ(t))u̇Φ+(t) + f2(yΦ(t), uΦ(t))u̇Φ−(t),

u = yΦ, uΦ = y,

where x(t) ∈ R, c1, c2 ∈ R+, m, b, k > 0 and the functions f1, f2 satisfy the hypotheses

in Theorem 4.2.1. Note that this example represents the piezo-actuated stage as described in

(5.1) where c1 = c and c2 = 0.

Using Q =
[
c1k c2k
c2k c2b+c1m

]
, it can be checked that if c2k − c1b ≤ 0, then (5.3) − (5.5)

hold with

w =

√

2c2
m

, L =
[
k
√
2c2m
m

b
√
2c2m
m

]

.

Using Hcl as in the proof of Theorem 5.1.1, let us define Hcl(x, yΦ) = 1
2x

TQx +

H	1(yΦ, y)− yyΦ and a routine computation shows that

Ḣcl ≤ ẏyΦ +
d
︷︸︸︷

Φ(y)

dt
y − ẏyΦ − yẏΦ − 1

2
(Lx− wyΦ)

2

= −1

2
(Lx− wyΦ)

2.

Note that (5.6) holds if there exists ξ ∈ R+ such that k − ξc1 > 0. This means that the

result in Theorem 5.1.1 holds if the anhysteresis function fan satisfies (fan(υ)− ξυ)υ ≤ 0,

for all v ∈ R and ξ < k/c1. In other words, fan should belong to the sector [0, k/c1) for the

stability of the closed-loop system using a positive feedback interconnection. △
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5.2 CW Linear System Interconnected with CCW Duhem

Hysteresis

5.2.1 Motivating Application

In this subsection, we consider the interconnection case b© in Table 5.1. A possi-

ble application for this case is the active vibration mechanism using piezo-actuator,

which has been used for vibration control in mechanical structures [26, 12]. The

mechanism can be described by

P :
mq̈ + bq̇ + kq = Fpiezo,

V = −cq̈,

Φ : Fpiezo = Φ(V ).







(5.8)

It is well know that the piezoelectric actuator has CCW I/O dynamics [14] and it

can be checked that the mass-damper-spring system P is CW from Fpiezo to q̈.

5.2.2 Stability Analysis

In the following theorem we show the absolute stability result of the interconnection

case b©.

Theorem 5.2.1 Consider a negative feedback interconnection of a linear system and a

Duhem operator Φ satisfying the hypotheses in Theorem 4.2.1 as follows

P :
ẋ = Ax+Bu,

y = Cx+Du,

Φ : ẏΦ = f1(yΦ(t), uΦ(t))u̇Φ+(t) + f2(yΦ(t), uΦ(t))u̇Φ−(t),

u = −yΦ, uΦ = y,

(5.9)

where A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n and D ∈ R. Assume that CB < 0 and there exist

w, L and P = PT > 0, such that the following linear matrix inequalities (LMI)
[

P CT

C D

]

> 0 (5.10)

ATP + PA+ LTL ≤ 0 (5.11)

PB +ATCT = −LTw (5.12)

2CB = −w2 (5.13)

hold. Then for every initial condition (x(0), yΦ(0)), the state trajectory of the closed-loop

system (5.9) is bounded and converges to the largest invariant set in {(x, yΦ)|Lx− wyΦ =

0}.
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Proof: By the assumptions of the theorem, the Duhem operator Φ is CCW with the

function H	1 : R2 → R+ as given in (4.9).

Using VG = 1
2x

TPx+ (y −Du)u+ D
2 u

2, a routine computation shows that

V̇G =
1

2
xT (ATP + PA)x+ xTPBu+

˙︷ ︸︸ ︷

(y −Du)u+ (y −Du)u̇+Du̇u

=
1

2
xT (ATP + PA)x+ xT (PB +ATCT )u+ uCBu+ yu̇.

Using (5.11), (5.12) and (5.13), V̇G ≤ yu̇− 1
2 (Lx−wyΦ)

2. This inequality implies that

the linear system defined in (5.9) is CW.

Now take Hcl(x, yΦ) = H	1(yΦ, Cx−DyΦ) + VG(x,−yΦ) as the Lyapunov func-

tion of the interconnected system (5.9), where Hcl is radially unbounded by (5.10)

and the non-negativity of H	1 . It is straightforward to see that

Ḣcl = Ḣ	1 + V̇G +DẏΦyΦ

≤ ẏΦuΦ + (y −Du)u̇− 1

2
(Lx− wyΦ)

2 +DẏΦyΦ

= −1

2
(Lx− wyΦ)

2 (5.14)

where the last equation is due to the interconnection conditions u = −yΦ and y =

uΦ. It follows from (5.14) and from the radial unboundedness (or properness) of Hcl,

the signals x and yΦ are bounded.

Based on LaSalle’s invariance principle [30], the semiflow (x, yΦ) of (5.9) converges

to the largest invariant set contained in M := {(x, yΦ) ∈ R
n × R|Lx− wyΦ = 0}. �

To illustrate Theorem 5.2.1, let us consider the following simple example.

Example 5.2.2 Let

P :
ẋ =

[
0 1

− k
m

− b
m

]

x+
[

0
1
m

]

u,

y = [−c1 −c2 ]x+ u,

Φ : ẏΦ = f1(yΦ(t), uΦ(t))u̇Φ+(t) + f2(yΦ(t), uΦ(t))u̇Φ−(t),

u = −yΦ, uΦ = y,

where x(t) ∈ R, c1, c2 ∈ R+, m, b, k > 0 and the functions f1, f2 satisfy the hypotheses in

Theorem 4.2.1. This example represents the active vibration mechanism using piezo-actuator

as described in (5.8).

By using P =
[
c1k c2k
c2k c1m+c2b

]
, it can be checked that, if c2k − c1b ≤ 0 and c1k(c1m +

c2b)− c22k
2 > c31m+ c21c2b− c1c

2
2k, then (5.10) − (5.13) hold with

w =

√

2c2
m

, L =
[

−k
√
2c2m
m − b

√
2c2m
m

]

.
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Following the same construction as in the proof of Theorem 5.2.1, we define

Hcl(x, yΦ) =
1

2
xTPx− [−c1 −c2 ]xyΦ +

1

2
y2Φ +H	1(yΦ, [−c1 −c2 ]x− yΦ).

A routine computation shows that

Ḣcl ≤ −1

2
(Lx− wyΦ)

2 + yẏΦ −
˙︷︸︸︷

Φ(y)y

= −1

2
(Lx− wyΦ)

2.

Thus, we can conclude that (x, yΦ) converges to the invariant set contained in M :=

{(x, yΦ) ∈ Rn × R|Lx− wyΦ = 0}. △

5.3 CCW Linear System Interconnected with CW Duhem

Hysteresis

5.3.1 Motivating Application

The interconnection case c© specifies that P has CCW I/O dynamics and Φ has CW

I/O dynamics.

A motivating example for this case is the mechanical systems with friction [38],

which is given by

P : mq̈ + kq = −Ffriction,

Φ : Ffriction = Φ(q),







(5.15)

whereFfriction is the friction force. As discussed in [38], the friction force has CW I/O

dynamics where the input is the displacement. On the other hand, the mechanical

system is CCW from the friction force Ffriction to the displacement q.

5.3.2 Stability Analysis

In the following theorem we give the sufficient conditions on the linear system and

the Duhem hysteresis operator which guarantee the stability of the closed-loop sys-

tem of the interconnection case c©.
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Theorem 5.3.1 Consider a negative feedback interconnection of a linear system and a

Duhem operator Φ satisfying the hypotheses in Proposition 4.3.5 as follows

P :
ẋ = Ax+Bu,

y = Cx,

Φ : ẏΦ = f1(yΦ(t), uΦ(t))u̇Φ+(t) + f2(yΦ(t), uΦ(t))u̇Φ−(t),

u = −yΦ, uΦ = y,

(5.16)

where A ∈ Rn×n, B ∈ Rn×1 and C ∈ R1×n. Suppose that there exist L, w and Q = QT >

0 such that

ATQ+QA+ LTL ≤ 0, (5.17)

QB −ATCT = LTw, (5.18)

2CB = w2, (5.19)

hold. Then for every initial condition (x(0), yΦ(0)), the state trajectory of the closed-loop

system (5.16) is bounded and converges to the largest invariant set in {(x, yΦ)|Lx+wyΦ =

0}.

Proof: Let VG(x) = 1
2x

TQx, and using (5.17)−(5.19), it can be checked that V̇G =
1
2x

T (ATQ + QA)x + xTQBu ≤ ẏu − 1
2 (Lx + wyΦ)

2. This indicates that the linear

system is CCW.

By the assumptions of the theorem, the Duhem operator Φ is CW with the func-

tion H�1 : R2 → R+ as given in (4.24).

Now let Hcl(x, yΦ) = VG(x) +H�1(yΦ, Cx) as the Lyapunov function of the sys-

tem (5.16). According to Proposition 4.3.5, H�1(yΦ, Cx) is radially unbounded for

every x, which implies that Hcl(x, yΦ) is radially unbounded.

Computing the time derivative of Hcl, we obtain

Ḣcl = V̇G + Ḣ�1 ≤ 1

2
(Lx+ wyΦ)

2.

This inequality together with the radially unboundedness of Hcl implies that the

trajectory (x, yΦ) is bounded. Using the LaSalle’s invariance principle, we conclude

that the trajectory (x, yΦ) of (5.16) converges to the largest invariant set contained in

M := {(x, yΦ) ∈ Rn × R|Lx+ wyΦ = 0}. �

To illustrate Theorem 5.3.1 we can use the following example.
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Example 5.3.2

P :
ẋ =

[
0 1

− k
m

− b
m

]

x+
[

0
1
m

]

u,

y = [ c1 c2 ]x,

Φ : ẏΦ = f1(yΦ(t), uΦ(t))u̇Φ+(t) + f2(yΦ(t), uΦ(t))u̇Φ−(t),

u = −yΦ, uΦ = y,

where x(t) ∈ R, c1, c2 ∈ R+, m, b, k > 0 and the functions f1, f2 satisfy the hypotheses

in Theorem 4.3.1. As given in Example 5.1.2, using Q =
[
c1k c2k
c2k c2b+c1m

]
, we have that if

c2k − c1b ≤ 0, then (5.17) − (5.19) hold with

w =

√

2c2
m

, L =
[
k
√
2c2m
m

b
√
2c2m
m

]

.

Define Hcl(x, yΦ) =
1
2x

TQx+H�1(yΦ, [ c1 c2 ]x), a routine computation shows that

Ḣcl ≤ ẏyΦ − ẏyΦ − 1

2
(Lx+ wyΦ)

2

= −1

2
(Lx+ wyΦ)

2.

This inequality implies that (x, yΦ) converges to the invariant set contained in M :=

{(x, yΦ) ∈ Rn × R|Lx+ wyΦ = 0}. △

5.4 CW Linear System Interconnected with CW Duhem

Hysteresis

To complete the Table 5.1, in this section we consider the interconnection case d©
where a CW linear system is positive feedback interconnected with a CW Duhem

hysteresis operator.

5.4.1 Stability Analysis

Theorem 5.4.1 Consider a positive feedback interconnection of a linear system and a Duhem

operator Φ satisfying the hypotheses in Theorem 4.3.1 as follows

P :
ẋ = Ax+Bu,

y = Cx+Du,

Φ : ẏΦ = f1(yΦ(t), uΦ(t))u̇Φ+(t) + f2(yΦ(t), uΦ(t))u̇Φ−(t),

u = yΦ, uΦ = y,

(5.20)
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where A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n and D ∈ R. Assume that f1(γ, v) ≤ η and

f2(γ, v) ≤ η for all (γ, v) ∈ R2. Suppose that there exist w, L and P = PT > 0, such that

[
P − 2ηCTC CT (1 − 2ηD)

C(1 − 2ηD) D(1− 2ηD2)

]

> 0 (5.21)

ATP + PA+ LTL ≤ 0 (5.22)

PB +ATCT = −LTw (5.23)

2CB = −w2 (5.24)

hold. Then for every initial condition (x(0), yΦ(0)), the state trajectory of the closed-loop

system (5.20) is bounded and converges to the largest invariant set in M := {(x, yΦ) ∈
Rn × R|Lx+ wyΦ = 0}.

Proof: Define VG(yΦ, x) =
1
2x

TPx+(y−Du)u+ D
2 u

2. Using (5.22), (5.23) and (5.24),

we have V̇G ≤ yu̇− 1
2 (Lx+ wu)2, i.e., the linear system is CW.

Next we take Hcl(x, yΦ) = H�1(yΦ, y)+VG(yΦ, x)−yyΦ as the Lyapunov function

of the interconnected system. We show first that Hcl is lower bounded. Using the

definition of V as above and H�1 as in (4.24), we have

Hcl =
1

2

[
u xT

]
[
D CT

C P

] [
u

x

]

+

∫ uΦ

0

ωΦ(σ, yΦ, uΦ)dσ − uΦyΦ

+

∫ Λ(yΦ,uΦ)

0

fan(σ)− ωΦ(σ, yΦ, uΦ)dσ.

Since uΦ = y, u2
Φ = [ u xT ]

[
D2 DC

CTD CTC

]

[ ux ]. By the assumption on P , there exists

η, ε > 0 such that
[
P−2ηCTC CT (1−2ηD)

C(1−2ηD) D(1−2ηD2)

]

> εI . Then

Hcl =
1

2

[
u xT

] [ P−2ηCTC CT (1−2ηD)

C(1−2ηD) D(1−2ηD2)

] [u

x

]

+

∫ Λ(yΦ,uΦ)

0

fan(σ)− ωΦ(σ, yΦ, uΦ)dσ

+ ηu2
Φ +

∫ uΦ

0

ωΦ(σ, yΦ, uΦ)dσ − uΦyΦ

≥ ε

2

∥
∥
∥
∥

[
u

x

]∥
∥
∥
∥

2

+

∫ Λ(yΦ,uΦ)

0

fan(σ) − ωΦ(σ, yΦ, uΦ)dσ

+

∫ uΦ

0

(ωΦ(σ, yΦ, uΦ)− yΦ + ηuΦ) dσ (5.25)

It can be checked that the second term of (5.25) is nonnegative. Indeed, it follows

from the property of the CW intersecting function Λ that if Λ(yΦ, uΦ) ≥ 0 we have

that fan(σ) ≥ ωΦ(σ, yΦ, uΦ) for all σ ∈ [0,Λ(yΦ, uΦ)] and if Λ(yΦ, uΦ) < 0 then
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fan(σ) ≤ ωΦ(σ, yΦ, uΦ) for all σ ∈ [Λ(yΦ, uΦ), 0].

To check whether the last term of (5.25) is lower bounded, we use the definition of

ωΦ given in the Section 4.1.2. Consider the case uΦ ≥ 0. Using the definition of ωΦ

in (4.2), the last term of (5.25) can be written by
∫ uΦ

0

(ωΦ(σ, yΦ, uΦ)− yΦ + ηuΦ) dσ

=

∫ uΦ

0

(

yΦ +

∫ σ

uΦ

f2(ωΦ(s, yΦ, uΦ), s)ds

)

dσ +

∫ uΦ

0

ηuΦ − yΦdσ

=

∫ uΦ

0

∫ uΦ

σ

η − f2(ωΦ(s, yΦ, uΦ), s)dsdσ +
η

2
u2
Φ ≥ 0,

where the last inequality is due to fact that f2(γ, v) ≤ η for all (γ, v) ∈ R2. In a

similar way, we can obtain the non-negativity of
∫ uΦ

0
(ωΦ(σ, yΦ, uΦ)− yΦ + ηuΦ)dσ

for the case uΦ < 0. Therefore, (5.25) implies that Hcl is lower bounded and radially

unbounded.

It can be computed that Ḣcl = V̇G + Ḣ�1 − ẏyΦ − yẏΦ ≤ − 1
2 (Lx + wyΦ)

2. Hence,

by the radially unboundedness of Hcl, it implies that (x, yΦ) is bounded. Using the

LaSalle’s invariance principle, we can conclude that the trajectory (x, yΦ) of (5.20)

converges to the largest invariant set contained in M := {(x, yΦ) ∈ Rn × R|Lx +

wyΦ = 0}. �

To illustrate Theorem 5.4.1, let us consider the Example 5.2.2, where we replace

the negative feedback interconnection by a positive one.

Example 5.4.2

P :
ẋ =

[
0 1

− k
m

− b
m

]

x+
[

0
1
m

]

u,

y = [−c1 −c2 ]x+ u,

Φ : ẏΦ = f1(yΦ(t), uΦ(t))u̇Φ+(t) + f2(yΦ(t), uΦ(t))u̇Φ−(t)

u = yΦ, uΦ = y,

where x(t) ∈ R, c1, c2 ∈ R+, m, b, k > 0 and the functions f1, f2 satisfy the hypotheses in

Theorem 4.3.1. As given in Example 5.2.2, by using P =
[
c1k c2k
c2k c1m+c2b

]
, we have that, if

c2k− c1b ≤ 0 and c1k(c1m+ c2b)− c22k
2 > c31m+ c21c2b− c1c

2
2k, the conditions in (5.22),

(5.23) and (5.24) hold with

w =

√

2c2
m

, L =
[

− k
√

2c2m

m
− b

√
2c2m

m

]
.

Additional, if there exists η > 0 such that 1 − ηD > 0 and k − D2+1−ηD
D c1 > 0, then

(5.21) holds.
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Using Hcl(x, yΦ) =
1
2x

TPx+[−c1 −c2 ]xyΦ+
1
2y

2
Φ+H�1(yΦ, [−c1 −c2 ]x+yΦ)−yyΦ,

routine computation shows that Ḣcl ≤ − 1
2 (Lx + wyΦ)

2. Hence, if f1(γ, v) ≤ η and

f2(γ, v) ≤ η for all (γ, v) ∈ R2, then (x, yΦ) converges to the invariant set contained in

M := {(x, yΦ) ∈ Rn × R|Lx+ wyΦ = 0} following Theorem 5.4.1. △

5.5 Extension to Nonlinear Plants

In the previous sections, we have discussed the absolute stability of a feedback in-

terconnection between a Duhem hysteresis operator and a linear system. Here, we

extend the previous results to the case where a Duhem hysteresis operator is feed-

back interconnected to a nonlinear system. Similar to the linear case, we proceed

the stability analysis based on the CCW or CW properties of the nonlinear system.

This study is motivated by [1] and [60], where a positive feedback interconnection

between two CCW nonlinear systems has been studied.

Consider a nonlinear system of the following form

ẋ = f(x, u), y = h(x), (5.26)

where x ∈ Rn, u ∈ R, y ∈ R and f : Rn × R → Rn is locally Lipschitz.

Then the feedback interconnection between the system (5.26) and a Duhem hys-

teresis operator can be given as follows

ẋ = f(x, u),

y = h(x),

ẏΦ = f1(yΦ(t), uΦ(t))u̇Φ+(t) + f2(yΦ(t), uΦ(t))u̇Φ−(t),

(5.27)

Proposition 5.5.1 Consider a negative feedback interconnection of a nonlinear system and

a Duhem operator Φ satisfying the hypotheses in Proposition 4.3.5 as follows

ẋ = f(x, u),

y = h(x),

ẏΦ = f1(yΦ(t), uΦ(t))u̇Φ+(t) + f2(yΦ(t), uΦ(t))u̇Φ−(t),

u = −yΦ, y = uΦ

(5.28)

If there exists a Lyapunov function VG : Rn → R+ and ε > 0 such that

∂VG(x)

∂x
f(x, u) ≤

〈
∂h(x)

∂x
f(x, u), u

〉

− ε

∥
∥
∥
∥

∂h(x)

∂x
f(x, u)

∥
∥
∥
∥

2

, (5.29)

hold. Assume further that VG is radially unbounded.Then for every initial condition (x(0), yΦ(0)),

the state trajectory of the closed-loop system (5.27) is bounded and converges to the largest

invariant set in {(x, yΦ)|∂h(x)∂x f(x, yΦ) = 0}.
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Proof: Since the Duhem operator satisfies the Proposition 4.3.5, then there exists a

storage function H�1 : R2 → R+ such that for every uΦ ∈ AC(R+) and for ev-

ery admissible yΦ0 , the CW dissipation inequality (4.25) holds and H�1 is radially

unbounded w.r.t its first argument.

Let Hcl = VG(x) +H�1(yΦ, h(x)) be the total Lyapunov function for the closed-

loop system. Then compute the time derivative of Hcl we have

Ḣcl = V̇G + Ḣ�1 ≤ −ε

∥
∥
∥
∥

∂h(x)

∂x
f(x, u)

∥
∥
∥
∥

2

,

where the last inequality is obtained by applying the interconnection properties

u = −yΦ and y = uΦ. Since VG is radially unbounded, we have that Hcl is ra-

dially unbounded. Based on LaSalle’s invariance principle, we can conclude that

the trajectory (x, yΦ) of (5.27) converges to the largest invariant set contained in

M := {(x, yΦ) ∈ Rn × R|
∥
∥
∥
∂h(x)
∂x f(x, u)

∥
∥
∥

2

= 0}. �

Proposition 5.5.2 Consider a positive feedback interconnection of a nonlinear system and

a Duhem operator Φ satisfying the hypotheses in Theorem 4.2.1 as follows

ẋ = f(x, u),

y = h(x),

ẏΦ = f1(yΦ(t), uΦ(t))u̇Φ+(t) + f2(yΦ(t), uΦ(t))u̇Φ−(t),

u = yΦ, y = uΦ

(5.30)

If there exists a Lyapunov function VG : Rn → R+ and ε > 0 such that

∂VG(x)

∂x
f(x, u) ≤

〈
∂h(x)

∂x
f(x, u), u

〉

− ε

∥
∥
∥
∥

∂h(x)

∂x
f(x, u)

∥
∥
∥
∥

2

, (5.31)

hold. Assume further that Hcl(x, yΦ) = H	1(yΦ, h(x)) + VG(x) − yΦh(x) is radially un-

bounded. Then for every initial condition (x(0), yΦ(0)), the state trajectory of the closed-loop

system (5.27) is bounded and converges to the largest invariant set in {(x, yΦ)|∂h(x)∂x f(x,−yΦ) =

0}.

The Proof of Proposition 5.5.2 is omitted here, since it is similar to the proof of Propo-

sition 5.5.1.

Now let us consider the interconnection cases: a CW nonlinear system is feed-

back interconnected to a CCW Duhem hysteresis operator and a CW nonlinear sys-

tem is feedback interconnected to a CW Duhem hysteresis operator. The absolute

stability results can be summarized in the following two propositions.
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Proposition 5.5.3 Consider a negative feedback interconnection of a nonlinear system and

a Duhem operator Φ satisfying the hypotheses in Theorem 4.2.1 as follows

ẋ = f(x, u),

y = h(x, u),

ẏΦ = f1(yΦ(t), uΦ(t))u̇Φ+(t) + f2(yΦ(t), uΦ(t))u̇Φ−(t),

u = −yΦ, y = uΦ

(5.32)

If there exists θ, VG : Rn+1 → R+ such that

[
∂VG(u,x)

∂u
∂VG(u,x)

∂x

] [ vd
f(x, u)

]

≤ h(x, u)vd − θ(u, x), (5.33)

for all u ∈ R and vd ∈ R hold. Assume further that VG is radially unbounded. Then for

every initial condition (x(0), yΦ(0)), the state trajectory of the closed-loop system (5.27) is

bounded and converges to the largest invariant set in {(x, yΦ)|θ(−yΦ, x) = 0}.

The Proof of Proposition 5.5.3 is omitted here, since it follows the same line as the

proof of Proposition 5.5.1.

Proposition 5.5.4 Consider a positive feedback interconnection of a nonlinear system and

a Duhem operator Φ satisfying the hypotheses in Theorem 4.3.1 as follows

ẋ = f(x, u),

y = h(x, u),

ẏΦ = f1(yΦ(t), uΦ(t))u̇Φ+(t) + f2(yΦ(t), uΦ(t))u̇Φ−(t),

u = yΦ, y = uΦ

(5.34)

If there exists θ, VG : Rn+1 → R+ such that

[
∂VG(u,x)

∂u
∂VG(u,x)

∂x

] [ vd
f(x, u)

]

≤ h(x, u)vd − θ(u, x), (5.35)

for all u ∈ R and vd ∈ R hold. Assume further that Hcl(x, yΦ) = H�1(yΦ, h(x, yΦ)) +

VG(yΦ, x)−yΦh(x, yΦ) is radially unbounded. Then for every initial condition (x(0), yΦ(0)),

the state trajectory of the closed-loop system (5.27) is bounded and converges to the largest

invariant set in {(x, yΦ)|θ(yΦ, x) = 0}.

The Proof of Proposition 5.5.4 is omitted, since it is similar to the proof of Proposition

5.5.1.

In this section, the stability analysis for a feedback interconnection of a Duhem

hysteresis operator and a nonlinear plant is presented. Here, the absolute stability

problem can also be solved based on the CCW or CW properties of the nonlinear

system, which is an extension to the case of the linear plant.
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5.6 Concluding Remarks

In this chapter, we present the stability analysis of a linear system with a Duhem

hysteresis nonlinearity. The absolute stability is based on the I/O property of the

corresponding hysteresis operator and the linear system. Four possible intercon-

nection cases are discussed, which are motivated by real applications. Extension to

the nonlinear case is also given. The absolute stability analysis results can be applied

to design controller for hysteretic systems which are presented in Chapter 6.



Chapter 6

Controller Design for a System with Duhem
Hysteresis Nonlinearity

I
n this chapter, we focus on the controller design for a linear system intercon-

nected with a hysteretic actuator (sensor). Based on the stability results given

in the previous chapter, a general linear controller design algorithm is proposed

here. The proposed controller guarantees the stability of the closed-loop system, so

that the state trajectories are converging to an invariant manifold. Furthermore, two

study cases are given for a second-order linear system with a hysteretic actuator.

The hysteretic actuator is modeled by a Duhem model which exhibits: (i) clock-

wise (CW) input-output (I/O) dynamics (such as the Dahl model, LuGre model

and Maxwell-Slip model, which describe hysteresis phenomena in mechanical fric-

tion); (ii) counter-clockwise(CCW) input-output (I/O) dynamics (such as the Jiles-

Atherton model, the Coleman model, which describes the hysteresis phenomena in

piezo-actuator). For the case where the hysteretic actuator has CW I/O dynamics, a

proportional, integral and derivative (PID) controller is applied. In particular, suf-

ficient conditions on the controller gains are given such that the origin of the plant

and the state of the hysteresis is globally attractive. For the case where the hysteretic

actuator has CCW I/O dynamics, a proportional and derivative (PD) controller is

applied. Similarly, sufficient conditions on the control parameters are given such

that the closed-loop system is globally asymptotic stable with respect to an invari-

ant set where the velocity is equal to zero. The robustness of the closed-loop system

is also presented by using the integral input-to-state stability (iISS) concept.

6.1 General Case

The stability analysis given in the Chapter 5 can be used to design a controller for

a linear plant with hysteretic sensor/actuator. In this section, we present controller

design algorithm for the general case, where we give sufficient conditions on the

control parameters such that the controlled system is stable.
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Φ

C

G

(a)

Φ

C

G

(b)

Figure 6.1: Feedback interconnection of a linear plant G, controller C and hystere-

sis operator Φ. (a) An interconnection example where the plant G is driven by a

hysteretic actuator Φ; (b) An interconnection example where the dynamics of G is

measured by a hysteretic sensor Φ.

6.1.1 Controller Design Algorithm

Consider the closed-loop system as shown in Figure 6.1, where G and C are the

linear plant and controller, respectively, and they are given by

G :

{
ẋG = AGxG +BGuG,

yG = CGxG +DGuG,
(6.1)

C :

{
ẋC = ACxC +BCuC ,

yC = CCxC +DCuC .

Thus depending on the location of the hysteretic element, the cascaded linear sys-

tems can be compactly written into

ẋ = Ax+Bu

y = Cx+Du,
(6.2)

where x = [ xG
xC

] and for the case of hysteretic actuator as shown in Figure 6.1(a), A =
[

AG 0
BCCG AC

]
, B =

[
BG

BCDG

]
, C = [DCCG CC ], D = DCDG, or for the case of hysteretic

sensor as shown in Figure 6.1(b), A =
[
AG BGCC

0 AC

]
, B =

[
BGDC

BC

]
, C = [CG DGCC ],

D = DGDC .

The controller design can then be carried out as follows.

• Control design algorithm for the case of CCW Φ:

1. Determine, if possible, the anhysteresis function fan of the Duhem oper-

ator Φ and the desired L and w.

2. Find C such that either (5.3)-(5.6) or (5.10)-(5.13) holds.
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3. If (5.3)-(5.6) is solvable, then C stabilizes the closed-loop system with a

negative feedback interconnection; otherwise

4. If (5.10)-(5.13) is solvable, then C stabilizes the closed-loop system with a

positive feedback interconnection.

• Control design algorithm for the case of CW Φ:

1. Determine, if possible, the functions f1 and f2 of the Duhem operator Φ

and the desired L and w.

2. Find C such that either (5.17)-(5.19) or (5.21)-(5.24) holds.

3. If (5.17)-(5.19) is solvable, then C stabilizes the closed-loop system with a

negative feedback interconnection; otherwise

4. If (5.21)-(5.24) is solvable, then C stabilizes the closed-loop system with a

positive feedback interconnection.

Based on the control design algorithm stated above, we present some numerical

examples in the following subsection.

6.1.2 Mass-damper-spring System with Hysteretic Actuator

x
k

Φ

b

m

Figure 6.2: Mass-damper-spring system connected with a hysteretic actuator

As an example, let us consider a mass-damper-spring plant G with a hysteretic

actuator Φ, as shown in Figure 6.2, where the input to the controller C is the dis-

placement x and the control output v is the driving signal of the actuator. By con-

sidering numerical values of the mass m = 1, the damping constant b = 2 and the

spring constant k = 1, the dynamics of the plant G is given by

ẋG =

[
0 1

−1 −2

]

xG +

[
0

1

]

uG, yG =
[
1 0

]
xG. (6.3)
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CCW Hysteretic Actuator

Let us first consider the case when the hysteretic actuator has CCW I/O dynamics,

such as piezo-actuators [28]. Assume that the actuator is represented by the Duhem

operator (3.1) where

f1(γ, υ) = −γ + 0.475υ+ 0.3, f2(γ, υ) = γ − 0.475υ + 0.3, ∀(γ, υ) ∈ R
2. (6.4)

It can be verified that fan(υ) = 0.475υ and the functions f1 and f2 satisfy the hy-

potheses given in Theorem 4.2.1.

Since we have fan(υ) = 0.475v, then by taking Ac =
[

0 1
−2 −4

]
, Bc = [ 01 ], Cc =

[ 1 1 ] and Dc = 0 to the controller C as in (6.1), it can be checked that the cascaded

system (of G and C) in (6.2) satisfies (5.3)-(5.6) with ξ = 0.5 and

Q =







6 1 −6 −2

1 4 −1 −4

−6 −1 7 3

−2 −4 3 7






.

In this case L = [ 1 0 −2 −3 ] and w = 0. Moreover, fan belongs to the sector [0, 0.5].

It follows from Theorem 5.1.1 that the closed-loop system converges to the largest

invariant set contained in {(x, yΦ)|Lx − wyΦ = 0} = {(x, yΦ)| [ 1 0 −2 −3 ]x = 0}.

This implies that the velocity of the mass-damper-spring system converges to zero

and the position of the mass-damper-spring system converges to a constant. The

simulation results is shown in Figure 6.3(a).

CW Hysteretic Actuator

For the case of a CW hysteretic actuator, see for example the magnetorheological

(MR) damper used in the structure control [45], the mass-damper-spring system is

given by (6.3). Assume that the actuator is represented by the Duhem operator (3.1)

where

f1(γ, υ) = 0.25(1− γ), f2(γ, υ) = 0.25(1 + γ), ∀(γ, υ) ∈ R
2. (6.5)

The anhysteresis function for this Duhem operator is fan = 0. In addition f1 and f2
satisfy the hypotheses in Theorem 4.3.1, hence the Duhem operator with (6.5) is CW

by using Ac =
[

0 1
−2 −4

]
, Bc = [ 01 ], Cc = [ 1 1 ] and Dc = 0 in the controller C as in

(6.1). The conditions (5.17)-(5.19) are solvable for the cascaded system in (6.2) with

P =







5 1 −5 −2

1 3 −1 −3

−5 −1 6 3

−2 −3 3 6






,
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Figure 6.3: Simulation results of the numerical example. (a) For the case of CCW

hysteretic actuator in the positive feedback interconnection with the initial condition

x(0) = [−10 10]T ; (b)For the case of CW hysteretic actuator in the negative feedback

interconnection with the initial condition x(0) = [10 5]T .

L = [ 1 0 −2 −3 ] and w = 0. Hence the controller C can stabilize the closed-loop

system with negative feedback interconnection. According to Theorem 4.3.1 the

closed-loop system converges to the largest invariant set in {(x, yΦ)|Lx + wyΦ =

0} = {(x, yΦ)| [ 1 0 −2 −3 ]x = 0}. This implies that the velocity of the mass-damper-

spring system converges to zero and the position of the mass-damper-spring system

converges to a constant. The simulation results are shown in Figure 6.3(b) with the

initial condition x(0) = [10 5]T .

6.2 PID Control of a Hysteretic Second-order System

In this section, we focus on a second-order hysteretic system where two cases are

considered:

Case 1 the hysteresis system has CW I/O behavior. An example to this problem is

position control of a (micro-)vehicle where we manipulate the rotation of the

wheels in order to exert forces to the vehicle’s body via friction forces;

Case 2 the hysteresis system has CCW I/O behavior. An example to this problem

is the piezo-actuated stage, where the velocity of the stage is controlled by a

piezo-actuator. It is well known that a piezo-actuator exhibits CCW hysteresis

from input voltage to output displacement;



82 6. Controller Design for a System with Duhem Hysteresis Nonlinearity

Φ

C

d1 d2

ycu
P

−

yΦ uΦ

x1

x2

Figure 6.4: Negative feedback interconnection with a linear system P, a controller

C and a Duhem hysteresis operator Φ.

6.2.1 Hysteresis System with CW I/O Behavior

Consider a feedback interconnection of a second-order single-input single-output

(SISO) linear system with a PID and a hysteretic actuator as shown in Figure 6.4,

where P represents the linear plant, C is the PID controller and Φ represents the

Duhem hysteresis operator. In Figure 6.4, the measurement noise is represented by

the disturbance d1 and d2. The disturbance d1 and d2 can also be regarded as the

estimation error which could result from the application of a state observer for the

plant P.

The closed-loop system as shown in Figure 6.4, is given by

P : ẋ = Ax+Bu,

C :
ż = x1 + d1,

yc = kiz +
[
kp kd

]
x− kpd1 − kdd2,

(6.6)

Φ : ẏΦ = f1(yΦ, uΦ)u̇Φ+ + f2(yΦ, uΦ)u̇Φ−,

uΦ = −yc, u = yΦ,

where A ∈ R2×2, B ∈ R2×1, C ∈ R1×2 and x = [ x1 x2 ]
T

. For the PID controller C, z

is the state of the integrator, kp > 0, ki > 0 and kd > 0 are the controller gains. For

the Duhem hysteresis operator Φ, the functions f1 and f2 are assumed to be locally

Lipschitz.

Theorem 6.2.1 Consider system (6.6) with d1 = 0 and d2 = 0. Assume that the Duhem

hysteresis operator Φ satisfies all the hypotheses of Theorem 4.3.1. If there exists Q = QT >
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0, L, kp > 0, ki > 0 and kd > 0 such that the following inequalities

ATQ+QA+ LTL ≤ 0 (6.7)

QB −AT
[
kp kd

]T −
[

ki
0

]

= LTw (6.8)

2
[
kp kd

]
B = w2 + v (6.9)

hold for some w ∈ R, v > 0 and the tuple (A,L) is observable, then for every initial

condition (x0, z0) ∈ R
3 and every admissible yΦ0 ∈ R, the state trajectories of the closed-

loop system (6.6) are bounded and converge to A := {(x, z, yΦ) ∈ R4|x = 0, yΦ = 0}, i.e.

the closed-loop system is globally asymptotic stable with respect to A (A-GAS).

Note that v > 0 in (6.9) will be used later to show the dissipativity property for

robustness analysis.

Proof: By assumption, the Duhem operator Φ is CW and there exists a function

H�1 : R2 → R+ such that

Ḣ�1(yΦ(t), uΦ(t)) ≤ yΦ(t)u̇Φ(t). (6.10)

Using VG(x) =
1
2x

TQx, (6.6) and (6.7)-(6.9), we have

V̇G(x) =
1

2
xT (ATQ +QA)x+ xTQBu

= ẏcu+
1

2
xT (ATQ+QA)x+ xTQBu− ẏcu

= ẏcu+
1

2
xT (ATQ+QA)x+ xT

(

QB −
[

ki
0

])

u

− xTAT
[
kp kd

]T
u−

[
kp kd

]
Bu2,

≤ ẏcu− 1

2
xTLTLx+ xTLTwu − 1

2
w2u2 − 1

2
vu2,

≤ ẏcu− 1

2
(Lx− wu)T (Lx− wu)− 1

2
vu2.

Based on Definition 2.3.3, it can be easily checked that the linear system is CCW.

Now using Vcl(x, z, yΦ) = VG(x) + H�1(yΦ,−kiz − [ kp kd ]x) as the Lyapunov

function of the closed-loop system (6.6) and substituting the interconnection condi-

tions uΦ = −yc and u = yΦ, we obtain

V̇cl = V̇G + Ḣ�1 ,

≤ ẏcu− 1

2
(Lx− wu)T (Lx− wu) + yΦu̇Φ,

= −1

2
(Lx− wu)T (Lx− wu)− 1

2
vu2.
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Since VG is proper in x, this inequality implies that x is bounded. Moreover,

using Proposition 4.3.5, we also have the boundedness of yΦ. Based on LaSalle’s

invariance principle and the compactness of (x, yΦ), the trajectories converge to the

largest invariant set O contained in M := {(x, yΦ) ∈ R3|Lx − wyΦ = 0, yΦ = 0} as

t → ∞.

Since yΦ = 0 and Lx = 0 in the invariant set O in M , the linear system P (in

the invariant set O) satisfies LAx = 0. By the observability of (A,L), Lx = 0 and

LAx = 0 imply that x = 0. Thus, it follows that yΦ = 0 and x = 0 in O and we

conclude that (6.6) is GAS with respect to A := {(x, z, yΦ) ∈ R
4|x = 0, yΦ = 0}. �

To illustrate Theorem 6.2.1, consider the following force-actuated mass-damper-

spring system with PID controller and a hysteretic actuator

[
ẋ1

ẋ2

]

=

[
0 1

− k
m − b

m

] [
x1

x2

]

+

[
0
1
m

]

u

ż = x1 (6.11)

yc = kiz + kpx1 + kdx2

yΦ = Φ(uΦ)

uΦ = −yc, u = yΦ

where x1 is the displacement, x2 is the velocity, z is the state of the integrator, k > 0

is the spring constant, b > 0 is the damping constant and m > 0 is the mass.

Corollary 6.2.2 Assume that for the Duhem hysteresis operator Φ there exists H� : R2 →
R+ such that for every uΦ ∈ AC(R+) and for every admissible yΦ0 ∈ R, (6.10) holds with

yΦ := Φ(uΦ, yΦ0). If ki ≥ kkd

2m and kp ≥ mki

b + b
2mkd, then the closed-loop system (6.11)

satisfies (6.7), (6.8) and (6.9) with L =
[

k

√

kd
m b

√

kd
m

]
, w =

√
kd

m , v = kd

m and

Q =

[
bki + kkp − bk

m kd mki
mki mkp

]

.

In other words, (6.11) is A-GAS.

Robustness Analysis

In the next case, we study the robustness of the closed-loop system (6.6) by adding

disturbances d1 and d2 to the measurement of the plant’s state. This is related to the

case where d1 and d2 are regarded as the state estimation error due to the application
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of a state observer. In [49, 2], a notion of integral input-to-state stability is introduced

for the stability analysis of nonlinear systems given a bounded-energy input signal.

It is shown in [2] that a system is integral input-to-state stable (iISS) if the system is

(a) 0-GAS and (b) dissipative with supply rate σ. In [23] it is shown that for a class

of dissipative systems, the iISS gain is equal to the supply rate σ. Here, we study the

robustness of system (6.6) by applying the modified concept of iISS, where instead of

discussing the iISS with respect to the origin, we are interested in the iISS property

with respect to a set A (A-iISS). The definitions of iISS and A-iISS are given in

Chapter 2.

Lemma 6.2.3 Consider the system in (6.6) with d1, d2 ∈ C1(R+) s.t. ḋ1, ḋ2 ∈ AC(R+).

Assume that the hypotheses of Theorem 6.2.1 hold. Then there exists a µ > 0, such that (6.6)

is dissipative with supply rate σ(d1, ḋ1, ḋ2) = µ

∥
∥
∥
∥

d1

ḋ1

ḋ2

∥
∥
∥
∥

2

.

Proof: Let Vcl = VG + H�1 be the Lyapunov function for the closed-loop system,

where VG and H�1 have the same descriptions as in the proof of Theorem 6.2.1.

Then we have

V̇cl = V̇G + Ḣ�1 ,

≤ ẏcu− 1

2
(Lx− wu)T (Lx− wu) + yΦu̇Φ − 1

2
vu2,

= −1

2
(Lx− wu)T (Lx− wu) + kpyΦḋ1 + kdyΦḋ2 + kiyΦd1 −

1

2
vu2

where the last equality is obtained since uΦ = −yc + kpd1 + kdd2. Using Young’s

inequality and u = yΦ, we have

V̇cl ≤
kiη

2
d21 +

1

2η
y2Φ +

kdǫ

2
ḋ2

2
+

1

2ǫ
y2Φ +

kpδ

2
ḋ1

2
+

1

2δ
y2Φ − 1

2
vy2Φ,

=
kiη

2
d21 +

kpδ

2
ḋ1

2
+

kdǫ

2
ḋ2

2 − 1

2
(v − 1

ǫ
− 1

δ
− 1

η
)y2Φ

where ǫ and δ are arbitrary positive constants. Since v > 0, we can take ǫ and δ such

that

1

ǫ
+

1

δ
+

1

η
≤ v (6.12)

holds. This implies that system (6.6) is dissipative with respect to σ where σ(d1, ḋ1, ḋ2) =

µ

∥
∥
∥
∥

d1

ḋ1

ḋ2

∥
∥
∥
∥

2

and µ = max{kiη
2 , kdδ

2 , kdǫ
2 }. �
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Theorem 6.2.4 Consider the system in (6.6) with d1, d2 ∈ C1(R+) s.t. ḋ1, ḋ2 ∈ AC(R+).

Assume that the hypotheses in Theorem 6.2.1 hold and additionally, (6.12) is satisfied with

ǫ, δ > 0. Assume that the functions f1 and f2 of the Duhem operator Φ satisfy

(B) For every compact set K ∈ R, there exists c > 0 such that

‖f1(ν, ξ)‖ ≤ c, ‖f2(ν, ξ)‖ ≤ c ∀ν ∈ K, ξ ∈ R. (6.13)

Then (6.6) is iISS with respect to A (A-iISS), with iISS gain γ

(∥
∥
∥
∥

d1

ḋ1

ḋ2

∥
∥
∥
∥

)

= µ

∥
∥
∥
∥

d1

ḋ1

ḋ2

∥
∥
∥
∥

2

,

where µ > 0.

Proof: The proof of Theorem 6.2.4 follows the same arguments as in the proof of The-

orem 6.2.1 in [23]. Firstly, the arguments in [49] which use the converse Lyapunov

theorem for GAS system are replaced by the similar arguments using the converse

Lyapunov theorem for A-GAS system as discussed in [55].

Notice that the system (6.1) with d1 = 0 and d2 = 0 can be written explicitly as

[
ż
ẋ
ẏΦ

]

=

[ x1

Ax+ByΦ

f1(yΦ,uΦ)(−([ ki 0 ]+[ kp kd ]A)x−[kp kd ]ByΦ)+
+f2(yΦ,uΦ)(−([ ki 0 ]+[ kp kd ]A)x−[ kp kd ]ByΦ)−

]

, (6.14)

where uΦ = −kiz − [ kp kd ]x. It can be checked that the RHS of equation (6.14) is

locally Lipschitz. Let us write (6.14) by ζ̇ = f(ζ) where ζ = [ xT z yΦ ]
T . Based on

the converse Lyapunov theorem [55, Corollary 2], Theorem 6.2.1 implies that there

exists a smooth Lyapunov function VG : R4 → R+ such that

• there exist K∞ functions α1 and α2 such that

α1(‖ζ‖A) ≤ VG(ζ) ≤ α2(‖ζ‖A) ∀ζ ∈ R
4.

• there exists a continuous, positive definite function α3 such that

dVG(ζ)

dζ
f(ζ) ≤ −α3(‖ζ‖A) ∀ζ ∈ R

4.

With the disturbance d1 and d2, the system (6.6) can be written as

ζ̇ = f(ζ, d1, d2, ḋ1, ḋ2) =










x1+d1

Ax+ByΦ

f1(yΦ,uΦ)(−([ ki 0 ]+[ kp kd ]A)x

−[ kp kd ]ByΦ−[ kp kd ]

[

ḋ1

ḋ2

]

)+

+f2(yΦ,uΦ)(−([ ki 0 ]+[ kp kd ]A)x

−[ kp kd ]ByΦ−[ kp kd ]

[

ḋ1

ḋ2

]

)−










,
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uΦ = −kiz − [ kp kd ]x − [ kp kd ]
[
d1

d2

]
. Using Assumption (B), we have that for

every BA
l =

{[ z
x
yΦ

]
∣
∣
∣
∣

∥
∥
∥
∥

x

yΦ

∥
∥
∥
∥
≤ l

}

, there exists c > 0 such that

‖f(ζ, d1, d2, ḋ1, ḋ2)‖ ≤ c

(

1 + µ

∥
∥
∥
∥

d1

ḋ1

ḋ2

∥
∥
∥
∥

2
)

∀(ζ, d1, d2, ḋ1, ḋ2) ∈ B
A
l ×R

4. (6.15)

By replacing the compact set K ⊂ Rn in [23, Assumption (A)] and in the rest of

the proof in [23] by BA
l , we can obtain the same lemmas as given in [23, Lemma 3.2,

Lemma 3.3 and Lemma 3.4], see, in Appendix .1. This together with the converse

Lyapunov function for A-GAS system, we can obtain the A-iISS Lyapunov function

similar to the proof of [23, Theorem 3.1]. �

Numerical Example
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Figure 6.5: The state trajectories of the closed-loop system (6.16) with x10 = −5,

x20 = 10, yΦ0 = 0.5. (a) without disturbance d1 and d2; (b) with disturbance d1 =

d2 = 1
1+t2 .

To illustrate the above results, we simulate the force-actuated mass-damper-

spring system as given in (6.11) in MATLAB. In the simulation setup, we consider

m = 1, k = 1 and b = 2. The friction force is modeled by the Dahl hysteresis model
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as described in Chapter 3 with Fc = 0.75, ρ = 1.5 and r = 1. Then (6.11) becomes

[
ẋ1

ẋ2

]

=

[
0 1

−1 −2

] [
x1

x2

]

+

[
0

1

]

u

ż = x1 (6.16)

yc = kiz + kpx1 + kdx2

ẏΦ = 1.5(1− yΦ
0.75

)u̇Φ+ + 1.5(1 +
yΦ
0.75

)u̇Φ−

uΦ = −yc, u = yΦ

The control parameters are chosen as kp = 1, ki = 1/2 and kd = 1/4 where it can be

easily checked that by taking

Q =

[
3
2

1
2

1
2 1

]

,

inequalities (6.7)-(6.9) are satisfied.

We remark that the Dahl model given in (6.16) satisfies Assumption (B) in The-

orem 6.2.4.

First, let us consider the case when there is no disturbance in the system. Given

the initial condition x10 = −5, x20 = 10 and yΦ0 = 0.5, Figure 6.5(a) shows that

the state trajectories converge to the invariant set A := {(x1, x2, z, yΦ)|x1 = 0, x2 =

0, yΦ = 0} in agreement with Theorem 6.2.1.

For the next case, we add the disturbance d1 = d2 = 1
1+t2 as in (6.1). The sim-

ulation results are shown in Figure 6.5(b), which shows that all state trajectories

converge to A. This is a consequence of the A-iISS property of the closed-loop sys-

tem.

6.2.2 Hysteresis System with CCW I/O Behavior

As a different case study, we consider hysteretic actuators with CCW I/O behav-

ior (for example piezo-actuator). Consider a feedback interconnection of a mass-

damper-spring system with a PD controller and a hysteretic actuator as shown in

Figure 6.6, where P represents the linear plant, C is the PD controller and Φ rep-

resents the CCW Duhem hysteresis operator. In Figure 6.6, the exogeneous distur-

bance signal is represented by d. The closed-loop system as shown in Figure 6.6, is
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−

Φ

C

d

ycyu
P

+

yΦ uΦ

Figure 6.6: Negative feedback interconnection with a linear system P, a controller

C and a Duhem hysteresis operator Φ.

given by

P : ẋ =

[
0 1

− k
m − b

m

]

x+

[
0
1
m

]

u,

y =
[
c1 c2

]
x

C : yc = kpy + kdẏ,

Φ : ẏΦ = f1(yΦ, uΦ)u̇Φ+ + f2(yΦ, uΦ)u̇Φ−,

uΦ = yc, u = d− yΦ,







(6.17)

where x = [ x1 x2 ]T with x1 be the position and x2 be the velocity, and c1, c2 are the

measurement gains of the position and velocity, respectively. For the PD controller

C, kp > 0 and kd > 0 are the controller gains. For the Duhem hysteresis operator Φ,

the functions f1 and f2 are assumed to be locally Lipschitz.

First, we consider the case where d = 0, i.e. there is no input disturbance in the

closed-loop system. Let G denote the cascaded system of P and C, then we have

G :

{
ẋ = Ax+Bu,

yc = Cx+Du,
(6.18)

where

A =

[
0 1

− k
m − b

m

]

, B =

[
0
1
m

]

,

C =
[
kpc1 − kdc2k

m kpc2 + kdc1 − kdc2b
m

]
, D =

kdc2
m

.
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Theorem 6.2.5 Consider the closed-loop system in (6.17) with d = 0. Assume that the

Duhem hysteresis operator Φ satisfies all the assumptions in Theorem 4.2.1. If there exists

Q = QT > 0, L = [ l1 l2 ], w ,kp > 0 and kd > 0 such that the following inequalities hold.

[
Q CT

C D

]

> 0 (6.19)

ATQ+QA+ LTL ≤ 0 (6.20)

QB +ATCT = LTw (6.21)

2CB = −w2, (6.22)

and − b
m+ l2

wm < 0, then for every initial conditions x0 ∈ R2 and every admissible yΦ0 ∈ R,

the state trajectories of the closed-loop system (6.17) are bounded and converge to A :=

{(x1, x2, yΦ) ∈ R3|x2 = 0}, i.e. the closed-loop system is globally asymptotic stable with

respect to A (A-GAS).

Proof:

By the assumption of the theorem, the Duhem operator Φ is CCW and there

exists a function H	1 : R2 → R+ such that

Ḣ	1(yΦ(t), uΦ(t)) ≤ ẏΦ(t)uΦ(t). (6.23)

Using VG = 1
2x

TQx+ (yc −Du)u+ D
2 u

2 as the Lyapunov function for the linear

systems G, and (6.20)-(6.22), we have

V̇G =
1

2
xT (ATQ +QA)x+ xTQBu+ xTATCTu+ uCBu+ ycu̇

≤ ycu̇− 1

2
(Lx− wu)2.

Based on Definition 2.3.6, it can be easily checked that G is CW.

Now take Vcl(x, yΦ) = VG +H	1(yΦ, yc) as the Lyapunov function of the closed-

loop system (6.17) and substituting the interconnection conditions uΦ = −yc and

u = yΦ, we obtain

V̇cl = V̇G + Ḣ	1 ,

≤ ycu̇− 1

2
(Lx− wu)2 + ẏΦuΦ,

= −1

2
(Lx− wu)2.

Using (6.19), it can be checked that VG is proper in x and yΦ. Based on LaSalle’s

invariance principle and the compactness of (x, yΦ), the trajectories converge to the

largest invariant set O contained in M := {(x, yΦ) ∈ R3|Lx− wyΦ = 0} as t → ∞.
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In the invariant set O in M, yΦ = −L
wx, i.e., u = L

wx. Substituting u = L
wx in P,

we have

ẋ =

[
0 1

− k
m + l1

wm − b
m + l2

wm

]

x (6.24)

From (6.22), we have that w = ±
√

2kdc2b−2m(kpc2+kdc1)

m . Using (6.20) and (6.21),

it can be computed that l1 has a unique solution l1 =
k
√

2kdc2b−2m(kpc2+kdc1)

m if w =√
2kdc2b−2m(kpc2+kdc1)

m or l1 = −k
√

2kdc2b−2m(kpc2+kdc1)

m if w = −
√

2kdc2b−2m(kpc2+kdc1)

m .

Substituting these w and l1 into (6.24), we get

ẋ =

[
0 1

0 − b
m + l2

wm

]

x (6.25)

holds which implies that x2 = 0 in the invariant set O. By LaSalle’s principle, this

implies that x2(t) → 0 as t → ∞ if − b
m + l2

wm < 0. Hence, the closed-loop system is

GAS with respect to A := {(x1, x2, yΦ) ∈ R3|x2 = 0}. �

Remark 6.2.6 The conditions given in (6.19)-(6.22) can provide the interval of control pa-

rameters such that the closed-loop system is A-GAS. For instance, if kp ≤ kdc2k
c1m

, kp ≤
kdc2b−kdc1m

c2m
and kp > kd

b3c2−b2c1m−kc1m
2

b2c2m+kc2m2−bc1m2 then the closed-loop system (6.17) satisfies

(6.19)-(6.22) with L = [
√

2qk
m

0 ], w =
√
2q
m and

Q =

[
kdc2k

2

m − kpc1k
qk
m

qk
m kdc2k − kpc1m− qb

m

]

where q = (kdc2b− kpc2m− kdc1m).

Robustness Analysis

Now let us proceed our analysis with d 6= 0, i.e., we study the robustness of the

closed-loop system (6.17) by adding disturbances d to the input of the plant. In this

case the robustness of the closed-loop system is also based on the concept of A-iISS.

Lemma 6.2.7 Consider the closed-loop system in (6.17) with d ∈ C1(R+) s.t. ḋ ∈ AC(R+).

Assume that the Duhem hysteresis operator satisfies the hypotheses given in Theorem 6.2.5.

If there exists Q = QT > 0, L = [ l1 l2 ], w, kp > 0 and kd > 0 such that the following



92 6. Controller Design for a System with Duhem Hysteresis Nonlinearity

inequalities hold.

[
Q CT

C D

]

> 0 (6.26)

ATQ+QA+ LTL+ ǫ1I ≤ 0 (6.27)

QB +ATCT = LTw (6.28)

2CB = −w2 − ǫ2, (6.29)

for some positive constants ǫ1 and ǫ2. Suppose − b
m + l2

wm < 0, then there exists µ > 0

such that the closed-loop system is dissipative with respect to the supply function σ(d, ḋ) =

µ
∥
∥ d

ḋ

∥
∥
2
.

Proof: Let Vcl = VG + H	1 be the Lyapunov function for the closed-loop system,

where VG and H	1 have the same descriptions as in the proof of Theorem 6.2.5.

Then using (6.26)- (6.29) we have

V̇cl = V̇G + Ḣ	1 ,

≤ ycu̇− 1

2
(Lx− wu)T (Lx− wu) + ẏΦuΦ − 1

2
ǫ1x

Tx− 1

2
ǫ2u

2,

= −1

2
(Lx− wu)T (Lx− wu) + ycḋ−

1

2
ǫ1x

Tx− 1

2
ǫ2u

2

where the last equality is obtained since u = d − yΦ. Using Young’s inequality,

u = yΦ and ǫ3 > 0, we have

V̇cl ≤
η

2
ḋ2 +

1

2η
y2c −

1

2
ǫ1x

Tx− 1

2
ǫ2u

2

≤ η

2
ḋ2 +

1

2η
D2u2 +

1

2η
xTCTCx− 1

2
ǫ1x

Tx− 1

2
ǫ2u

2

≤ η

2
ḋ2 +

η

2
d2

where the last inequality is obtained since η is an arbitrary positive constant. This

implies that system (6.17) is dissipative with respect to σ where σ(d, ḋ) = µ
∥
∥ d

ḋ

∥
∥
2

and µ := η/2. �

Theorem 6.2.8 Consider the closed-loop system in (6.17) with d ∈ C1(R+) s.t. ḋ ∈
AC(R+). Assume that the hypotheses in Lemma 6.2.7 hold. Then (6.17) is iISS with respect

to A (A-iISS), with iISS gain γ
(∥
∥ d

ḋ

∥
∥
)
= µ

∥
∥ d

ḋ

∥
∥
2
, where µ > 0.
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Proof: The proof of the Theorem 6.2.8 is similar to the proof of Theorem 3.1 in [23].

First of all, consider the system (6.17) with d = 0 which has the following form








ẋ

ẏΦ = Ax−ByΦ
f1(yΦ,uΦ)

1+Df1(yΦ,uΦ) (CAx − CByΦ)+

+ f2(yΦ,uΦ)
1+Df2(yΦ,uΦ) (CAx− CByΦ)−







, (6.30)

where u = −yΦ. It can be checked that the RHS of equation (6.30) is locally Lips-

chitz. Let us write (6.30) as ζ̇ = f(ζ) where ζ = [ xT yΦ ]
T . Based on the converse Lya-

punov theorem [55, Corollary 2], Theorem 6.2.5 implies that there exists a smooth

Lyapunov function VG : R3 → R+ such that

• there exist K∞ functions α1 and α2 such that

α1(‖ζ‖A) ≤ VG(ζ) ≤ α2(‖ζ‖A) ∀ζ ∈ R
3.

• there exists a continuous, positive definite function α3 such that

dVG(ζ)

dζ
f(ζ) ≤ −α3(‖ζ‖A) ∀ζ ∈ R

3.

In the case when the input disturbance d 6= 0, the system (6.17) can be written as

ζ̇ = f(ζ, d, ḋ) where

f(ζ, d, ḋ) =






Ax+B(d− yΦ)
f1(yΦ,uΦ)

1+Df1(yΦ,uΦ) (CAx + CB(d− yΦ) +Dḋ)+

+ f2(yΦ,uΦ)
1+Df2(yΦ,uΦ) (CAx + CB(d− yΦ) +Dḋ)−




 ,

u = d− yΦ. Since f1(yΦ, uΦ) ≥ 0 and f2(yΦ, uΦ) ≥ 0 according to the assumptions of

Theorem 4.2.1, then

f1(yΦ, uΦ)

1 +Df1(yΦ, uΦ)
∈ [0, 1],

f2(yΦ, uΦ)

1 +Df1(yΦ, uΦ)
∈ [0, 1].

Hence, we have that for every BA
l =

{

[ x
yΦ ]

∣
∣
∣
∣

∥
∥
∥
∥

x

yΦ

∥
∥
∥
∥
≤ l

}

, there exists a c > 0 such

that

‖f(ζ, d, ḋ)‖ ≤ c
(

1 + µ
∥
∥ d

ḋ

∥
∥
2
)

, ∀(ζ, d, ḋ) ∈ B
A
l × R

2. (6.31)
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The rest of the proof can use the same arguments as in [23] where the compact set

K ⊂ Rn in [23] is replaced by BA
l . It can be checked that the same lemmas as given

in [23, Lemma 3.2, Lemma 3.3 and Lemma 3.4] (see, in Appendix .1) can also be

obtained in this case. Applying the Lemmas and the converse Lyapunov function

for A-GAS system, we can obtain the A-iISS Lyapunov function similar to the proof

of [23, Theorem 3.1]. �

Numerical Example

To illustrate the above results, we provide a numerical example of system (6.17), a

typical application of such system is the piezo-actuated stage. For the mass-damper-

spring system, we set m = 1, b = 2 and k = 4. The hysteretic actuator is represented

by the Bouc-Wen model as introduced in Subsection 3.2.4, with the parameters kx =

1.2117×10−7, kw = −5.08×10−6, n = 1.27, ρ = 8.93×10−3 and σ = 0.74. The control

parameters for the PD controller can then be obtained based on the parameters of

the linear plant. It can be checked that with kp = 3
2 , kd = 2, L = [ 4 0 ] and w = 1, the

matrix

Q =

[
26 2

2 5.5

]

satisfies the conditions as given in (6.19)-(6.22).
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Figure 6.7: The state trajectories of the closed-loop system (6.17) with x10 = 1, x20 =

−1, yΦ0 = 0.5. (a) without disturbance d ; (b) with disturbance d = 10−4

t2+1 .
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First, let us consider the case when there is no disturbance in the system. Given

the initial condition x10 = −2 × 10−5, x20 = 10−5 and yΦ0 = −5.08 × 10−6, Figure

6.7(a) shows that the state trajectories converge to the invariant setA := {(x1, x2, z, yΦ)|x2 =

0} in agreement with Theorem 6.2.5.

For the next case, we add a disturbance signal d(t) = 10−4

t2+1 , which satisfies d, ḋ ∈
L2, to the input of the linear plant. The simulation result is shown in Figure 6.7(b),

which shows that all state trajectories converge to A := {(x1, x2, z, yΦ)|x2 = 0}. This

is a consequence of the A-iISS property of the closed-loop system.

6.3 Application to Set-point Velocity Tracking

Micro/nano positioning mechanisms are commonly used to drive stages to follow

a desired pattern/trajectory. For example, in the atomic force microscopy, the sam-

ple is placed on a stage which is driven by a piezo-actuator and a fixed cantilever

is placed on top of the sample. Then the stage moves in a raster pattern (move

back and forth at a constant speed) where the roughness of the sample is measured

through the deflection of the cantilever by a laser sensor. However, without a proper

velocity tracking, the quality of the measurement degrade [34].

In this section, we apply our results of Section 6.2 in an experiment using a piezo-

actuated stage. The control goal is to design a PD controller such that the stage will

track a constant speed, similar to the raster scanning scenario.

6.3.1 Experimental Results

Consider again the closed-loop system (6.17) with d = 0. Let x̄2 = v̄ denote the

desired constant velocity and the corresponding steady-state displacement is then

given by x̄1 = v̄t (up to a constant) with t ∈ R+. It follows from the state equations

of the closed-loop system in (6.17) that in the steady-state, ȳΦ = −kv̄t − bv̄ (up to a

constant). Denote ζ̄ = [ x̄1 x̄2 ȳΦ ]
T

, e = [ e1 e2 eΦ ]
T

, where e1 = x1 − x̄1, e2 = x2 − x̄2

and eΦ = yΦ − ȳΦ. Let ũΦ = uΦ − ūΦ where ūΦ satisfies −kw + kxūΦ = ȳΦ. It

can be computed that, in the neighborhood of (eΦ, ũΦ) = (0, 0), the operator eΦ =

Φ̃(ũΦ) can be approximated by a Duhem operator. Hence the error dynamics can be

described by

f(e) =





e2
− k

me1 − b
me2 − 1

meΦ
f1(eΦ, ũΦ)( ˙̃uΦ)+ + f2(eΦ, ũΦ)( ˙̃uΦ)−



 , (6.32)

Applying Theorem 6.2.5, we can obtain that the error system (6.32) is locally

asymptotically stable with respect to A := {(e1, e2, eΦ) ∈ R3|e2 = 0}, in other words,
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the velocity tracking is achieved. We remark that in the original coordinates, the

applied control input is given by uΦ = ũΦ+ ūΦ where ũΦ := kp(y− v̄t− v̄)+kd(ẏ− v̄)

is the output of the PD controller. The control parameters can then be obtained

dependent on the parameters of the linear plant.

D

Piezo-actuated stage

dSPACE

Piezo amplifier

Figure 6.8: The experiment setup: piezo-actuated stage, piezo-amplifier and Dspace.

Figure 6.8 illustrates the experiment setup of the piezo-actuated stage, where the

piezo-actuated stage P611.2S from Physik Instrumente (PI) is used combined with

the piezo amplifier E610.S0 from Physik Instrumente (PI). The piezo-actuated stage

P611.2S is a 2-Axis piezo system and the travel range of this stage is 100 × 100µm.

Note that, in our experiment, only one axis is used. The displacement of the stage

is measured by a strain gauge sensor with a resolution of 2 nanometer. The input

voltage is controlled by a PC computer where the MATLAB Real-Time Workshop

is used. The DS1104 PPC control board is used as the real-time controller and the

control algorithm is implemented in Simulink/MATLAB. The control scheme is de-

scribed in Figure 6.9.

The piezo-actuated stage contains two parts: a hysteretic actuator and a posi-

tioning mechanism which can be considered as a mass-damper-spring system. The

system modeling of the piezo-actuated stage is shown in Figure 6.10.
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Figure 6.10: The system modeling of the piezo-actuated stage.

The system equation of the piezo-actuated stage are given by

P : ẋ =

[
0 1

− k
m − b

m

]

x+

[
0
1
m

]

u,

y =
[
1 0

]
x (6.33)

Φ : ẏΦ = f1(yΦ, uΦ)u̇Φ+ + f2(yΦ, uΦ)u̇Φ−,

where x = [ x1 x2 ]
T

, x1 denotes the displacement and x2 denotes the velocity. The

hysteresis system Φ is represented by the Bouc-Wen model as introduced in (3.22)

in Chapter 3 with

{

f1(γ, υ) = kx + kwρ− kwρσ|γ−kxυ
kw

|n−1 γ−kxυ
kw

− kwρ(1 − σ)|γ−kxυ
kw

|n
f2(γ, υ) = kx + kwρ+ kwρσ|γ−kxυ

kw
|n−1 γ−kxυ

kw
− kwρ(1 − σ)|γ−kxυ

kw
|n. (6.34)

Since the hysteretic actuator and the mass-damper-spring system are coupled,

i.e., no measurements on the output of the hysteretic actuator are available. This

coupling can be clearly observed from the figures. The changes of the input-output

map of the piezo-actuated stage for different input frequencies in Figure 6.11 indi-

cates that the input-output response of the piezo-actuated stage is frequency depen-

dent, i.e., when the input frequency is low the linear dynamics fade out and the

hysteresis dominates the system behavior. When the input frequency is high the

linear dynamics dominate the system behavior.
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Figure 6.11: The input-output response of the piezo-actuated stage with different

input frequency.

The identification process is separated into two parts: the identification of the

Bouc-Wen model and the identification of the mass-damper-spring system.

First of all, we identify the hysteresis system by applying low frequent input

signals, in which case the linear plant can be considered as a DC gain, which is

approximately 1
k . Then the parameters of the Bouc-Wen model become k̄x = kx

k and

k̄w = kw

k in (6.34). To identify parameters of the Bouc-Wen model (6.34), we first

determine the initial parameters of the Bouc-Wen model based on the limit cycle

approach as proposed in [16].

• Excite the piezo-actuated stage with a wave signal v and wait till the output
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yΦ reach a steady state ȳΦ.

• Choose a nonzero constant q1 and excite the piezo-actuated stage with a wave

signal v1 = v + q1 and wait till the output yΦ1 reach a steady state ȳΦ1 .

• Determine k̄x by using k̄x =
ȳΦ1(v+q1)−ȳΦ(v)

q1
.

• Compute θ(v) = ȳΦ(v)− k̄xv.

• Determine v∗ such that θ(v∗) = 0.

• Compute a by using a =
(

dθ(v)
dv

)

v=v∗
.

• Choose two constant v∗1 and v∗2 such that v∗2 > v∗1 > v∗. Then compute

n =

log

(
( dθ(v)

dv
)v=v∗2−a

(
dθ(v)
dv

)v=v∗1−a

)

log
(

θ(v∗2)

θ(v∗1)

)

̟ =
a− (dθ(v)dv )v=v∗2

θ(v∗2)
n

• Compute k̄w = n
√

a
̟ and ρ = a

k̄w
.

• Compute σ by using

σ =
1

2






1
k̄w

(dθ(v)
dv

)v=v∗3
ρ − 1

(− θ(v∗3)

k̄w
)n

+ 1




 .

The obtained initial parameters for the Bouc-Wen model are k̄x = 1.2381× 10−5,

k̄w = −1.038× 10−6, σ = 12.31, n = 1 and ρ = 4.43. Then an optimal nonlinear least

square algorithm (lsqcurvefit) in MATLAB is used to estimate the real parameters

of the Bouc-Wen model. Based on these two steps, the identified parameters for the

Bouc-Wen model (6.34) are: k̄x = 0.2379, k̄w = −0.0723, ρ = 2.57, σ = 3.53 and

n = 1.46. The identification results are shown in Figure 6.12, where a triangular

input signal with amplitude 2 and frequency 0.01Hz is applied to the model and the

setup.

Based on the parameters of the Bouc-Wen model, we continue to identify the

mass-damper-spring system. In this case, a sinus input signal with amplitude 1.5

and frequency 10Hz is applied to the setup. To determine the parameters, we use the

nonlinear least square optimization toolbox (lsqcurvefit). The obtained parameters
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Figure 6.12: The identification results of the Bouc-Wen model, where the red line

indicates the model output and the blue line is the measured output.
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Figure 6.13: The identification results of the piezo-actuated stage, where the red line

indicates the model output and the blue line is the measured output.

are m = 0.0352, b = 80.0543 and k = 2.5541 × 104. The identification results are

shown in Figure 6.13.

To validate the identified parameters, we apply a mixed frequency sinus signal

to the identified model obtained above and the real setup. Denote yΦr
the measured

output sequence, yΦm
the model output sequence and N the length of the output

sequence. Then the average estimation error e is quantified as e =

√
(yΦr−yΦm )2

N ,
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which is equal to 1.0107 × 10−9. The comparison results are shown in Figure 6.14

which indicates that the model fits the system well.
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(a) Comparison between the model output and

the measured output in input-output plane
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Figure 6.14: Identification results for the piezo-actuated stage, where the red line is

the output of the model and the blue line is the measured output from the setup.

Based on the identified parameters, it can be checked that with kp = 2000, kd = 1,

L = [ 3.1981×106 0 ] and w = 125.215, we can obtain the matrix Q

Q =

[
1.85× 1010 7.04× 106

7.04× 106 3.4× 103

]

,

which satisfies the conditions given in (6.19)-(6.22). The simulation result of tracking

a constant velocity v̄ = 5µm/s is shown in Figure 6.15(a). The experimental result

is shown in Figure 6.15(b) where we use constant reference velocity of v̄ = 5µm/s.

The experimental result indicate that the stage tracks asymptotically the reference

velocity 5µm/s in agreement with Theorem 6.2.5.

To show the robustness of the controlled system, an input disturbance is intro-

duced to the setup by using a DC motor (LSC30/2 from Maxon Motor) as shown in

Figure 6.16. The motor rotates at a constant speed where a flexible flap is attached to

the motor so that a periodic disturbance force can be introduced to the stage. In the

experiment, the motor is turned on for a short period of time when the controlled

system reaches its steady state in order to simulate bounded energy disturbance sig-

nal. The disturbance force that is introduced to the system is given in Figure 6.17(a).

The simulation results are shown in Figure 6.17(c), and the experimental results

are shown in Figure 6.17(d), where we use constant reference velocity 2µm/s. The

experimental results show the robustness of the closed-loop system as presented

earlier in Theorem 6.2.8.
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Figure 6.15: (a) Simulation results of the piezo-actuated stage system for tracking a

constant velocity 5µm/s; (b) Experimental results of the piezo-actuated stage system

for tracking a constant velocity 5µm/s.

6.4 Concluding Remarks

In this chapter, a controller design methodology has been given based on the abso-

lute stability results presented in Chapter 5. Firstly, a general linear controller design

algorithm is proposed, where the proposed controller can guarantee the stability of

the closed-loop system, so that the state trajectories converge to an invariant set.

Secondly, we provide a simple control design for two cases: a second-order system

with a CW hysteretic actuator and a second-order system with a CCW hysteretic ac-

tuator. For both cases, sufficient conditions on the control parameters are presented

such that the controlled system is GAS with respect to an invariant set. Furthermore,

the robustness analysis of the closed-loop system is shown based on the concept of

iISS. Finally, a PD controller is designed for a piezo-actuated stage such that the

stage can track a constant velocity.
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Figure 6.16: Experimental setup with disturbance generator.
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(b) Disturbance force (zoom in)
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Figure 6.17: (a) and (b) Disturbance force applied to the system; (c) Simulation re-

sults of the piezo-actuated stage system for tracking a constant velocity 2µm/s with

input disturbance; (d) Experimental results of the piezo-actuated stage system for

tracking a constant velocity 2µm/s with input disturbance.



Chapter 7

Conclusions and Future Research

7.1 Conclusions

This thesis exploits a natural input-output (I/O) property of hysteresis operator,

in the stability analysis, as well as, the controller design for such systems. Two

classes of Duhem hysteresis operator are considered: the Duhem hysteresis operator

with CCW I/O behavior and the Duhem hysteresis operator with CW I/O behavior.

The first part of this work is to study these I/O properties by providing suffi-

cient conditions for CCW and CW Duhem operator. In particular, explicit storage

functions are proposed such that they satisfy the CCW or CW dissipation inequality.

Furthermore, the relation between the proposed storage function and the available

storage function from the classical dissipativity theory is also discussed.

The second part of this work addresses the stability analysis and controller de-

sign for systems with hysteresis nonlinearity. Using the results from the first part, I

investigate the absolute stability of a feedback interconnection between a linear sys-

tem and a Duhem hysteresis operator. For solving this absolute stability problem,

sufficient conditions are given based on the counter-clockwise (CCW) or clockwise

(CW) input-output property of the linear system and the Duhem operator. Conse-

quently, a linear controller design algorithm is proposed which can guarantee the

stability of the closed-loop system, i.e. the state trajectories are converging to an

invariant set.

Furthermore, two case-studies have been studied for a second-order linear plant

with a hysteretic actuator controlled by a proportional, integral and derivative (PID)

controller. Using the CCW and CW properties of the hysteresis system and the linear

system, sufficient conditions on the control parameters can be given such that the

states of the linear plant and the hysteresis system converge to zero. The robustness

of the closed-loop system with respect to the measurement noise is also investigated,

using the integral input-to-state stability (iISS) concept.

Finally, experiments on a piezo-actuated stage has been conducted to validate

our stability and control design approach.
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7.2 Future work

This thesis has addressed the stability analysis and controller design for systems

with Duhem type hysteresis nonlinearity. There remains a number of open problems

with regards to the analysis of hysteretic systems. In the following, I list few of these

problems that can extend the results in this thesis.

• For stability analysis, this thesis mainly focuses on the feedback interconnec-

tion between a linear system and a Duhem hysteresis nonlinearity. In Sec-

tion 5.5, the absolute stability analysis of a feedback interconnection between

a nonlinear system and a Duhem hysteresis nonlinearity has been briefly in-

troduced. The extensive investigation for feedback interconnection between a

nonlinear system and a Duhem nonlinearity can be studied further.

• For the controller design approach, the interval of the control parameters are

determined in a particular way so that the cascaded system of the linear sys-

tem and the controller exhibits CCW or CW behavior. It is of interest to inves-

tigate how conservative this interval is.

• This work mainly focuses on the symmetric and rate-independent hysteresis.

Since in some applications, hysteresis phenomena can be asymmetric and rate-

dependent, an extension of this work is to establish results for asymmetric

Duhem hysteresis operator [41, 24] and for rate-dependent one [35, 38].

• In Section 6.2.2, a case-study of CCW hysteretic actuator has been discussed,

where a PID controller is applied to achieve set-point velocity tracking. We

think that the stability analysis framework as discussed in Chapter 5 can be

used to design a PID controller for position tracking using a CCW hysteresis

operator. So far, we are unable to provide a rigorous proof for such claim

despite the fact that it has been confirmed by simulation results.

• Another extension of this work is on how to generalize the construction of the

storage functions for general hysteresis operator, for example, multi-dimensional

hysteresis operator, such as, the hysteresis exhibited by a magnetorheological

damper [10] which has two input signals: voltage and displacement, and the

general semilinear Duhem operator as introduced in [35].
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.1 Reference lemmas

Consider a nonlinear system with input u, of the form

ẋ = f(x, u), x(0) = x0 ∈ R
n, f(0, 0) = 0, (1)

where f : Rn × R
m → R

n is locally Lipschitz.

Theorem .1.1 [23, Theorem 3.1] Assume that (1) is 0 −GAS and dissipative with supply

function σ ∈ K. Assume further that f and σ are such that the following holds.

(C) For each compact set K ⊂ Rn there exists c > 0 such that

‖f(ξ, ν)‖ ≤ c(1 + σ(‖ν‖)) ∀(ξ, ν) ∈ K × R
m.

Then (1) is iISS with iISS gain γ = σ.

Lemma .1.2 [23, Lemma 3.2] Let f : Rn × Rm → Rn be continuous. Then, for each

compact set K , there exists a function ρK ∈ K∞ such that

‖f(ξ, ν)− f(ξ, 0)‖ ≤ ρK(‖ν‖) ∀(ξ, ν) ∈ K × R
m.

Lemma .1.3 [23, Lemma 3.3] Let f : Rn × Rm → Rn be continuous and σ ∈ K. Assume

that (C) holds. Let w : Rn → R+ be continuous and such that, for some α ∈ K∞

α(‖ξ‖) ≤ w(ξ) ∀ξ ∈ R
n.

Then, for every continuous function θ : (0,∞) → (0,∞), there exist a continuous function

δ : (0,∞) → (0,∞) such that

‖f(ξ, ν)− f(ξ, 0)‖ ≤ θ(w(ξ)) + δ(w(ξ))σ(‖ν‖), ∀ξ ∈ R
n \ 0 ∀ν ∈ R

n.

Lemma .1.4 [23, Lemma 3.4] Let f : Rn×Rm → Rn be locally Lipschitz with f(0, 0) = 0

and σ ∈ K. Assume (C) holds and (1) is 0-GAS. For every ǫ > 0, there exists a continuous

positive definite function α : R+ → R+ and a C1 function W : R
n → R+ such that

W (0) = 0, W (x) > 0 for x 6= 0 and, for all (ξ, ν) ∈ Rn × Rm

〈W (ξ), f(ξ, ν)〉 ≤ −α(‖ξ‖) + ǫσ(‖ν‖).
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Summary

Hysteresis is a nonlinear phenomenon that presents in many physical systems, such

as piezo-actuator, magneto-rheological damper, ferromagnetic material and friction-

induced mechanical systems. The existence of hysteresis in physical systems has

been shown to affect the performance and even the stability of the system. There-

fore, a proper handling by a controller is needed for a system contains hysteresis.

To describe the hysteresis phenomenon in different systems, many mathematical

models have been proposed. This thesis focuses on one class of hysteresis model,

namely, the Duhem hysteresis operator, which has been successfully used to repre-

sent the hysteresis phenomena in many physical systems.

In the first part of this thesis, two dissipativity properties of the Duhem hystere-

sis operator are investigated: the Duhem hysteresis operator with counterclockwise

input-output behavior (CCW I/O behavior) and the Duhem hysteresis operator

with clockwise input-output behavior (CW I/O behavior). We have provided suffi-

cient conditions on the Duhem operator such that it is CCW (or CW). In particular,

we show the dissipativity property of the CCW (or CW) Duhem hysteresis operator

by constructing an explicit storage function satisfying the CCW (or CW) dissipation

inequality. Moreover, the relations between the constructed storage functions to the

available storage functions used in the classical dissipation theory have also been

discussed.

Based on the dissipativity property of the Duhem hysteresis operator and moti-

vated by real applications, we investigate the stability of a feedback interconnection

between a linear system and a Duhem hysteresis operator. For solving this absolute

stability problem, sufficient conditions have been presented based on the counter-

clockwise (CCW) or clockwise (CW) input-output property of the linear system and

the Duhem operator. Furthermore, we have also extended the results to the case

where the Duhem operator is feedback interconnected to a nonlinear system.



As an application to the absolute stability analysis, we study the control design

for a linear system interconnected with a hysteretic actuator (or sensor). Further-

more, we have studied the robustness property of a second-order linear plant con-

trolled by a proportional, integral and derivative (PID) controller with a hysteretic

actuator. The hysteretic actuator is modeled by a Duhem model which exhibits:

(i) clockwise (CW) input-output (I/O) dynamics (such as the Dahl model, LuGre

model and Maxwell-Slip model, which have been used to describe hysteresis phe-

nomena in mechanical friction); (ii) counter-clockwise(CCW) input-output (I/O)

dynamics(such as the Jiles-Atherton model, Coleman model and Bouc-Wen model

which have been used to describe the hysteresis phenomena in piezo-actuator).

Based on our absolute stability results, we provide sufficient conditions on the con-

troller gains that depend on the plant parameters such that the closed-loop system

is globally asymptotic stable with respect to a set. The robustness of the closed-

loop system with respect to the measurement noise is also given, using the integral

input-to-state stability (iISS) concept.

Finally, experiments on a piezo-actuated stage has been conducted to validate

our stability and controller design approach which are presented in the first six

chapters.



Samenvatting

Hysterese is een niet-lineair verschijnsel dat in veel fysische systemenaanwezig is,

waaronder piëzo-actuatoren, magnetisch-reologische dempers, ferromagnetisch ma-

teriaal en mechanische systemen onderhevig aan wrijving. Het is aangetoond dat

de aanwezigheid van hysterese in fysische systemen invloed heeft op de prestatie

en zelfs de stabiliteit van het systeem. Daarom is een adequate aanpak met behulp

van een regelaar nodig voor een systeem met hysterese.

Om het hysterese verschijnsel te beschrijven in verschillende soorten systemen,

zijn vele wiskundige modellen voorgesteld. Dit proefschrift richt zich op een spec-

ifieke klasse onder de hysterese modellen, de zogenaamde Duhem hysterese oper-

ator, welke succesvol is gebruikt om hysterese te beschrijven in veel fysische syste-

men.

In het eerste deel van dit proefschrift worden twee dissipativiteits eigenschap-

pen van de Duhem hysterese operator bestudeerd: de Duhem hysterese operator

met tegenwijzerzin ingang-uitgang gedrag (TWZ I/U gedrag) en de Duhem hys-

terese operator met wijzerzin ingang-uitgang gedrag (WZ I/U gedrag). We hebben

een voldoende voorwaarde verstrekt voor de Duhem operator wanneer hij TWZ (of

WZ) is. In het bijzonder laten we de dissipativiteits eigenschap van de TWZ (of WZ)

Duhem hysterese operator zien, door een expliciete opslagfunctie te construeren

die aan de TWZ (of WZ) dissipatie ongelijkheid voldoet. Bovendien worden de re-

laties tussen de construeerde opslagfuncties en de beschikbare opslagfuncties uit

klassieke dissipatie theorie besproken.

Op basis van de dissipativiteits eigenschap van de Duhem hysterese operator en

gemotiveerd door reële toepassingen onderzoeken we de stabiliteit van een terugkop-

pelingsverbinding tussen een lineair systeem en een Duhem hysterese operator.

Voor de oplossing van dit absolute stabiliteit probleem worden voldoende voor-

waarden gepresenteerd op basis van de tegenwijzerzin (TWZ) of wijzerzin (WZ)



ingang-uitgang eigenschap van het lineaire systeem en de Duhem operator. Boven-

dien hebben we de resultaten uitgebreid voor het geval waar de Duhem operator

via terugkoppeling is verbonden met een niet-lineair systeem.

Als een mogelijke toepassing van deze absolute stabiliteit analyse, bestuderen

we het regelaar ontwerp voor een lineair systeem verbonden met een hysterese ac-

tuator (of sensor). Daarnaast hebben we de robuustheid van een tweede orde lin-

eaire installatie, aangestuurd door een proportionele, integrerende, differentiërende

(PID) regelaar met een hysteretische actuator bestudeerd. De hysteretische actua-

tor is gemodelleerd als een Duhem model met: (i) wijzerzin (WZ) ingang-uitgang

(I/U) dynamica (zoals het Dahl model, LuGre model en Maxwell-Slip model, welke

gebruikt worden voor het beschrijven van hysterese verschijnselen ten gevolge van

mechanische wrijving); of (ii) tegenwijzerzin (TWZ) ingang-uitgang (I/U) dynam-

ica (zoals het Jiles-Atherton model, Coleman model en Bouc-Wen model, welke ge-

bruikt worden om de hysterese verschijnselen in piëzo-actuatoren te beschrijven).

Op basis van onze absolute stabiliteit resultaten, verstrekken we voldoende voor-

waarden voor de regelaar constanten, die afhangen van de installatie parameters,

zodanig dat het gesloten lus systeem globaal asymptotisch stabiel is ten aanzien

van een verzameling. De robuustheid van het gesloten lus systeem ten aanzien van

meet ruis is ook gegeven, gebruik makend van het integraal ingang-naar-toestand

stabiliteit (iITS) concept.

Tot slot zijn er experimenten uitgevoerd met een piëzo-aangestuurd platform om

onze stabiliteit en regelaar ontwerp methode, die gepresenteerd is in de eerste zes

hoofdstukken, te valideren.


	Acknowledgements
	List of symbols
	List of figures
	List of tables
	Introduction
	Introduction to Hysteresis
	Review of Related Work 
	Contributions of this Thesis
	Organization of this Thesis 

	Preliminaries
	Basic Stability Theory
	Dissipative System
	Counter-clockwise and Clockwise Dynamics
	Counter-clockwise Dynamics
	Clockwise Dynamics

	Hysteresis Operator

	Duhem Hysteresis Operator and Its Applications
	Definition of The Duhem Hysteresis Operator
	Duhem Hysteresis Operator with Unsaturated Output
	The Backlash Operator
	The Coleman-Hodgdon Model
	The Jiles-Atherton Model
	The Bouc-Wen Model
	The Chua-Stromsmoe Model

	Duhem hysteresis Operator with Saturated Output
	The Elastic-Plastic operator
	The Dahl Model
	The LuGre Model

	Concluding Remarks

	Dissipativity of The Duhem Hysteresis Operator
	Function Definition
	The Anhysteresis Function
	The Traversing Function
	The CCW Intersecting Function
	The CW Intersecting Function

	Dissipativity of The Duhem Hysteresis Operator with CCW I/O Behavior
	Storage Function Using 
	Storage Function Using 
	Relations to the Available Storage Functions

	Dissipativity of The Duhem Hysteresis Operator with CW I/O Behavior
	Storage Function Using 
	Storage Function Using 
	Relations to The Available Storage Functions

	Concluding Remarks

	Absolute stability Analysis of Systems with Duhem Hysteresis Nonlinearity
	CCW Linear System Interconnected with CCW Duhem Hysteresis
	Motivating Application
	Stability Analysis

	CW Linear System Interconnected with CCW Duhem Hysteresis
	Motivating Application
	Stability Analysis

	CCW Linear System Interconnected with CW Duhem Hysteresis
	Motivating Application
	Stability Analysis

	CW Linear System Interconnected with CW Duhem Hysteresis
	Stability Analysis

	Extension to Nonlinear Plants
	Concluding Remarks

	Controller Design for a System with Duhem Hysteresis Nonlinearity
	General Case
	Controller Design Algorithm
	Mass-damper-spring System with Hysteretic Actuator

	PID Control of a Hysteretic Second-order System
	Hysteresis System with CW I/O Behavior
	Hysteresis System with CCW I/O Behavior

	Application to Set-point Velocity Tracking 
	Experimental Results

	Concluding Remarks

	Conclusions and Future Research
	Conclusions
	Future work

	Appendices
	Reference lemmas

	Bibliography
	Summary

