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Using the constructive theory of the Linear Complementarity Problem, conditions are given for
uniqueness of solutions of the hybrid dynamics in linear relay systems.

Abstract

Conditions are given for uniqueness of solutions of linear time-invariant systems under relay feedback. From a hybrid dynamical
point of view this entails the deterministic specification of the discrete transition rules. The results are based on the formulation of
relay systems as complementarity systems, and use the constructive theory of the Linear Complementarity Problem. ( 1999 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

In this paper we consider a special type of hybrid
dynamics as occurring in linear dynamical systems con-
taining ideal relay elements. The behavior of an ideal
relay (see Fig. 1) is given by three modes of operation

(i) f50, e"c
1
,

(ii) f40, e"!c
2
,

(iii) f"0,!c
2
4e4c

1
.

Such relay characteristics appear in various areas of
engineering. They serve as an idealized model of Coulomb
friction (with f being the velocity and e being the
Coulomb force). Within a control context various (phys-
ical) relay elements have been discussed in the literature,

see especially (Tsypkin, 1984). Furthermore, switching
control schemes such as

u"G
!1

1

if y'0,

if y(0,

(with y the output and u the input of a control system)
lead to a relay characteristic (with f"y and e"!u), by
using Filippov’s solution concept (Filippov, 1988) of
equivalent control or convex definition for y"0. (We
will briefly return to Filippov’s solution concept later on.)

From the point of view of dynamics, a fundamental
problem of systems containing ideal relay elements is
that existence and uniqueness of solutions is not guaran-
teed. An example of a system exhibiting non-uniqueness
of solutions is the following:

xR
1
(t)"x

2
(t), y (t)"x

2
(t)

xR
2
(t)"!x

1
(t)!u(t)

with,

u(t)"!1 if y (t)'0, (1)

u(t)"1 if y (t)(0,

!14u(t)41 if y (t)"0.
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Fig. 1. Characteristic of an ideal relay.

(This could be interpreted as a mass—spring system sub-
ject to a ‘‘reversed’’ — and thus non-physical —
Coulomb friction.) In this example, from any initial state
x(0)"(x

1
(0),x

2
(0)"(c, 0) , with Dc D(1, there are three

possible (smooth) initial solutions for t3[0, e[, e'0, that
are allowed by the equations and inequalities above:

(i) u (t)"1, x
1
(t)"(x

1
(0)#1) cos(t)!1,

x
2
(t)"y(t)"!(1#x

1
(0)) sin(t)(0,

(ii) u (t)"!1, x
1
(t)"(x

1
(0)!1) cos(t)#1,

x
2
(t)"y(t)"(1!x

1
(0)) sin(t)'0,

(iii) u (t)"!x
1
(0)3[!1, 1], x

1
(t)"x

1
(0),

x
2
(t)"y(t)"0.

So the above system (1) is not well-posed as a dynamical
system. If the sign in front of u in the first equation of (1) is
reversed however (and thus physically the Coulomb fric-
tion has the correct sign!), there is only one smooth
solution from every initial state x

0
, as will follow from the

main theorem of the present paper.
By associating three discrete states (‘‘locations’’ or

‘‘modes’’) to the three linear parts of the relay character-
istic, one can view (1) as a hybrid dynamical system. The
three possible smooth solutions (i)—(iii) in the above
example exactly correspond to these three discrete states.
Seen from this point of view the hybrid dynamical system
(1) serves as a clear example where the discrete state may
not be uniquely determined by the continuous state. (See
for a different type of example Barton and Pantelides,
1994.) While for general hybrid dynamical systems such
a subordination of the discrete state to the continuous
state is not necessary at all (even to the contrary!), for
relay systems such as (1) this is a very desirable property.
Indeed, since only the three locations (discrete states)
together with their invariants are given, while the speci-
fication of the transition rules from one location to an-
other is completely left open, the system equations are
only well posed if they admit only one ‘‘acceptable’’ full
specification of the hybrid dynamics. (In general, it seems
not reasonable to assign a non-deterministic behavior to
relay systems — think for example of a mechanical

system with Coulomb friction. Nevertheless, the classical
Painlevé example, as described e.g. in Brogliato (1996)
and Lötstedt (1981), does exhibit non-uniqueness of
solutions.)

Of course, the above example containing a single relay
element is easy to interpret by noting that for uniqueness
of solutions one needs the ‘‘correct’’, that is, negative,
feedback sign. A discussion of this phenomenon can be
found e.g. in Filippov (1988) and Utkin (1992). Neverthe-
less, for systems containing multiple relay-elements, pro-
viding conditions for uniqueness of solutions is not at all
trivial, and the present paper seems to be the first in
doing this. Furthermore, even if one knows (or trusts) the
system has unique solutions then the actual computation
of this solution may be far from easy, especially in the
multiple relay case. The main problem is precisely in
computing the ‘‘discrete part’’ of the hybrid dynamics
(the transitions from one location to another), since they
are not a priori specified by the system equations of the
relay system. Certainly for simulation purposes this is an
important topic (see Mattsson, 1996; Cellier et al., 1993
for a discussion of the problems which already arise in
single relay systems). In the context of simulation of
mechanical systems with multiple Coulomb friction ele-
ments, this computational issue has been studied inten-
sively, see e.g. Lötstedt (1981) and Glocker and Pfeiffer
(1993).

We emphasize at this point that we only consider ideal
relay elements. That means that we do not treat hysteresis
effects as usually occur in physical relay elements, al-
though it seems worthwhile to interpret our results for
the limiting behavior when the hysteresis gap tends to
zero (see e.g. Seidman, 1995, for studies in this area).
Furthermore, we do not treat Coulomb friction with
higher break-off friction than the slip friction, as is some-
times considered in the modeling of dry friction (see e.g.
Cellier et al., 1993; Mattsson, 1996).

In the present paper we will derive sufficient conditions
for uniqueness of solutions of linear time-invariant dy-
namical systems containing multiple (ideal) relay ele-
ments. The main tool is the theory of the ¸inear Comp-
lementarity Problem (LCP) from optimization theory, see
Cottle et al. (1992). The work can be regarded as a
continuation of the work on complementarity hybrid
systems (Van der Schaft and Schumacher, 1996, 1998;
Heemels et al., 1997), where the LCP was used for ana-
lyzing the dynamics of (possibly nonlinear) systems con-
taining ‘‘ideal diode characteristics’’ e50, f50, ef"0.
In fact, in Van der Schaft and Schumacher (1998) it was
already shown how systems with relay elements can be
represented as complementarity systems. The theory of
existence and uniqueness for complementarity systems as
developed in Van der Schaft and Schumacher (1996, 1998)
and Heemels et al. (1997) does not apply, however, to the
class of complementarity systems arising from relay sys-
tems. We will show that for these relay systems, contrary
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Fig. 2. Feedback system with m ideal relays.

Fig. 3. The characteristics of the m ideal relays.

to the ‘‘ideal diode’’ case considered in Van der Schaft and
Schumacher (1996, 1998) and Heemels et al. (1997), the
continuous-state part of the unique solution is continuous
as a function of time. This means that the switching from
one location (mode) to the other does not entail a re-
initialization of the continuous-state part of the system.
Because of this the technical difficulties of the generalized
(distributional) solution concept for complementarity sys-
tems as described in Heemels et al. (1997) and Van der
Schaft and Schumacher (1996) can be completely avoided.

A major advantage in the use of the LCP is that, apart
from giving elegant sufficient conditions for uniqueness
of solutions, it also provides a strong framework for
actually computing the unique solution. In fact, we believe
that efficient simulation routines can be based on our
approach. The usefulness of the LCP in computing solu-
tions of mechanical systems with Coulomb friction has
been realized before, at least starting with the work of
Lötstedt (1981) and continued by various authors, see e.g.
Glocker and Pfeiffer (1993) and the references quoted in
Brogliato (1996). The LCP-formulation of systems with
Coulomb friction employed in these papers is however
different from the formulation in present paper, and does
not seem to lead to simple uniqueness criteria. (Note also
that in these papers the maximal friction force is not
taken to be constant, but is a function of the normal
constraint force. The systems under consideration are
therefore more complex than in the present paper; more-
over they are nonlinear.)

2. Linear relay systems as complementarity systems

Consider an arbitrary (explicit) linear dynamics con-
taining m relay elements (and no external inputs). By first
extracting the m relay elements, and assigning to every
‘‘port’’ created in this manner an input and an output
variable uN

i
, resp. yN

i
, it is readily seen that such a system

can be represented as in Fig. 2.
Here, the input-state—output system P is given by

xR (t)"Ax (t)#BuN (t), x (t)3Rn, uN (t)3Rm,
(2)

yN (t)"Cx(t)#DuN (t), yN (t)3Rm.

The matrices A, B, C and D are given matrices of sizes
n]n, n]m, m]n and m]m, respectively.

The block ‘‘m relays’’ denotes m ideal relays with char-
acteristics as given in Fig. 3. The numbers (d

1
)
i
and (d

2
)
i
,

i"1,2,m, in this figure are the components of the
constant vectors d

1
and d

2
3Rm satisfying

d
1
50, d

2
50, d

1
#d

2
'0. (3)

Define as in Van der Schaft and Schumacher (1998)

u(t)"A
u
a
(t)

u
b
(t)B ,

as

u
a
(t)"d

1
#uN (t),

(4)

u
b
(t)"d

2
!uN (t),

and define y(t) by

y(t)"A
y
a
(t)

y
b
(t)B"A

(yN (t))`
(y(t))~B , (5)

where (yN (t))` is the non-negative part of vector yN (t), and
(y (t))~ is the non-positive part of this vector.

The relay system in Fig. 2 can then be described by
Eqs. (2)—(5), together with the complementarity con-
straints

y(t)"A
y
a
(t)

y
b
(t)B50,

u(t)"A
u
a
(t)

u
b
(t)B50, (6)

uT(t) y (t)"0.

Such systems have been called ‘‘complementarity sys-
tems’’ in Van der Schaft and Schumacher (1996, 1998).

From Eq. (6) we see that for every i"1, 2,2, 2m
either (u(t))

i
or (y(t))

i
is zero (or both). It is however not

possible that (u
a
(t))

i
"(u

b
(t))

i
"0, for it follows from

Eqs. (4) and (3) that

(u
a
(t))

i
#(u

b
(t))

i
"(d

1
#d

2
)
i
'0.
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Fig. 4. More general relay characteristics.

From this we conclude that for every i"1, 2,2,m, we
have

(u
a
(t))

i
'0 or (u

b
(t))

i
'0. (7)

Note that this implies, in accordance with Eq. (5), that

(y
a
(t))

i
"0 or (y

b
(t))

i
"0.

The set of Eqs. (2)—(6) thus defines a hybrid system with in
principle 22m different locations (modes) corresponding
to the equalities

u
i
"0 or y

i
"0, i"1, 2,2 , 2m.

However, because of Eq. (7), we see that the modes with
(u

a
)
i
"0 and (u

b
)
i
"0 for some i are void, thereby leaving

us with 3m modes, in accordance with the three-mode
characteristic of the ideal relay element.

Remark 1. For some applications it is useful to general-
ize the relay characteristics of Fig. 3 to the more general
characteristics as depicted in Fig. 4.

Here a, d
1
, d

2
3Rm only need to satisfy the requirement

(d
1
#d

2
)'0. (8)

This still can be modeled within the complementarity
framework as follows. If we apply the coordinate trans-
formation

uJ "uN #1
2
(d

1
!d

2
),

we find

xR (t)"Ax (t)#BuJ (t)!1
2
B (d

1
!d

2
),

(9)

yN (t)"Cx(t)#DuJ (t)!1
2
D(d

1
!d

2
).

Now, defining

y(t)"A
y
a
(t)

y
b
(t)B"A

(yN (t)!a)`

(yN (t)!a)~B , (10)

and

u(t)"A
u
a
(t)

u
b
(t)B"A

1
2
(d

1
#d

2
)#uJ (t)

1
2
(d

1
#d

2
)!uJ (t)B , (11)

the characteristics are described by Eqs. (6), (8)—(11). It is
straightforward to extend the results derived in this paper
to these generalized characteristics.

3. A frequency-domain approach

Continuing upon the work in Van der Schaft and
Schumacher (1998) and Heemels et al. (1997) we will
study existence and uniqueness of the solutions of comp-
lementarity system (2)—(6) by transforming the equations
to the frequency domain.

Let ¼(s) be a strictly proper rational function in the
complex variable s with real coefficients. To this function
we can associate the coefficients wj of its power series
expansion around infinity

¼ (s)"
w0

s1
#

w1

s2
#

w2

s3
#2 . (12)

The corresponding real-analytic time function w (t) ob-
tained by inverse Laplace transformation is then given by

w(t)"w0#w1t#
1

2!
w2t2#

1

3!
w3t3#2 . (13)

Both the conditions ¼(s)50 for sufficiently large s3R

and w (t)50 for t3[0, e[, e'0 sufficiently small, are
then equivalent to the condition that either all
wi (i"0, 1, 2) are zero or the first nonzero element of
(w0, w1, w2, 2) is positive.

The relay system described in the previous section can
be rewritten to the frequency domain as follows. By
taking the Laplace transform of Eq. (2), we get

½M (s)"(C (sI
n
!A)~1B#D)ºM (s)#C (sI

n
!A)~1x

0
, (14)

where x
0
"x (0) is the initial state of the system. The

Laplace transforms of Eqs. (4) and (5) are given by

º
a
(s)"

1

s
d
1
#ºM (s),

(15)

º
b
(s)"

1

s
d
2
!ºM (s),

respectively,

½(s)"A
½
a
(s)

½
b
(s)B"A

(½M (s))`
(½M (s))~B . (16)

Condition (6) is in the frequency domain replaced with

½(s)50

º(s)50H for sufficiently large s3R,

(17)
ºT(s)½ (s)"0.

Furthermore, with the notation

¹(s)
Def
" C(sI

n
!A)~1,

G(s)
Def
" C(sI

n
!A)~1B#D,
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The equalities (14)—(16) can be rewritten as

C
º

a
(s)

º
b
(s)D"C

!G~1(s)¹(s)x
0
#1

s
d
1

G~1(s)¹(s)x
0
#1

s
d
2
D

#C
G~1(s) !G~1 (s)

!G~1(s) G~1 (s)D C
½
a
(s)

½
b
(s)D (18)

or

º(s)"q (s)#M(s)½ (s), (19)

where q(s) and M(s) are given by

q(s)"C
!G~1(s)¹ (s)x

0
#1

s
d
1

G~1(s)¹ (s)x
0
#1

s
d
2
D ,

(20)

M(s)"C
G~1 (s) !G~1(s)

!G~1 (s) G~1(s)D .

For constant s3R sufficiently large, the set of Eqs. (18)
together with complementarity conditions (17) is known
as a ¸inear Complementarity Problem. For completeness
we recall from Cottle et al. (1992) the formulation of the
¸inear Complementarity Problem (LCP).

Linear Complementarity Problem (LCP(q, M)). Given
a matrix M3Rn]n and a vector q3Rn, find w, z3Rn such
that

w"q#Mz,

w50, z50,

zTw"0

or show that no such vectors w, z exist.

In this definition (and in the rest of this paper), the
inequalities should be considered to hold compon-
entwise. The inequality x5y, x, y3Rn, means x

i
5y

i
,

i"1, 2,2 , n, while x'y means x
i
'y

i
, i"1, 2,2, n.

A vector z satisfying the inequalities z50 and
q#Mz50 is said to be feasible. The LCP(q,M) is said
to be feasible if a feasible vector exists. The LCP(q,M) is
said to be solvable if it has a solution (Cottle et al., 1992).

We introduce some further definitions and recall
a basic result concerning the LCP (see e.g. Cottle et al.,
1992):

Definition 2. Let M3Rm]n be given. For index sets
I-M1, 2,2 , mN and J-M1, 2,2 , nN, the submatrix
M

IJ
of M is the matrix whose entries lie in the rows of

M indexed by I and the columns indexed by J. If
I"M1, 2,2 , mN, we denote M

IJ
by M

>J
; similarly, if

J"M1, 2,2, nN, we denote M
IJ

by M
I>

.

Definition 3. Given a matrix M3Rn]n and two
nonempty subsets I and J of M1, 2,2 , nN of equal car-
dinality, the (I, J)-minor of M is the determinant of the

square submatrix M
IJ

Def
" (m

ij
)
i|I, j|J

. The principal mi-
nors are those with I"J.

Definition 4. A matrix M3Rn]n is said to be a P-matrix if
all its principal minors are positive. M is said to be
a P

0
-matrix if all its principal minors are non-negative.

Theorem 5 (see e.g. Theorem 3.3.7 in Cottle et al.,
1992). A matrix M3Rn]n is a P-matrix if and only if the
¸CP(q, M) has a unique solution for all vectors q3Rn.

Remark 6. An attempt to interpret the notion of a P-
matrix is the following. It can be readily seen that the
equation w"q#Mz has for all index sets ILM1,2 , nN
a unique solution w, z3Rn with w

i
"0, i3I, and z

j
"0,

jNI, if and only if the principal minors of M are all
non-zero. By enforcing this condition to positive principal
minors one ensures the existence of a unique solution
w, z3Rn satisfying additionally w50, z50, with I being
determined by q. (One may also note, see e.g. Cottle et al.
(1992, p. 147), that a symmetric matrix is a P-matrix if it is
positive definite and one only needs to check positivity of
the leading principal minors.)

How do we solve the LCP(q(s), M(s)), with q (s) and M(s)
as in (20), for s3R sufficiently large? First, we note that
we cannot use Theorem 3 directly since detM(s)"0. On
the other hand, the special structure of M(s) allows us to
write

M(s)"C
I
m

!I
m
DG~1(s) [I

m
!I

m
].

and to relate the properties of M (s) directly with those of
G(s), as will follow from the next technical lemmas.

Lemma 7. If H3Rk]k is a P-matrix, then H~1 is a P-
matrix.

Proof. According to Theorem 3.3.4 in Cottle et al. (1992),
the following two statements are equivalent:

(i) M is a P-matrix,
(ii) [z

i
(Mz)

i
40 for all i] N [z"0].

Let H be a P-matrix. Let z3Rk, define y by y"H~1z,
then

z
i
(H~1z)

i
"(Hy)

i
(H~1Hy)

i
"y

i
(Hy)

i
40 for all i.

Since H is a P-matrix, it follows that y"0, hence z"0,
and thus H~1 is a P-matrix. K

Lemma 8. ¸et H3Rk]k be a P-matrix and

M"[I
k
!IT

k
]T H[I

k
!I

k
].

¹hen we have the following statements:

(1) A principal minor of M is either a principal minor of
H or zero.
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(2) M is a P
0
-matrix.

(3) For each index set a with det Maa"0, the columns of
M

>a are linearly dependent.

Proof. Let a-M1, 2,2, 2kN be an index set. By decom-
posing a into two index sets, we can write

a"IXJ, I-M1, 2,2 ,kN, J-Mk#1, k#2,2 , 2kN.

Define JK "Mi D i#k3JN, aJ "IXJK , n
I
"card I and

n
JK
"card JK . If a"I or a"J, it follows directly from the

definition of M that

detMaa"detHaJ aJ .

If IO0 and JO0, then it can be easily checked that

Maa"C
M

II
M

IJ
M

JI
M

JJ
D

"C
H

II
!H

IJ
K

!H
J
K
I

H
J
K
J
K D

"C
I
nI

O
nI]nJK

O
nJK]nI

!I
nJK
D C

H
II

H
IJ
K

H
J
K
I

H
J
K
J
K D C

I
nI

O
nI]nJK

O
nJK]nI

!I
nJK
D

and, consequently,

detMaa"G
det HaJ aJ
0

if IWJK "0,

if IWJK O0.

It is now obvious that M is a P
0
-matrix and if

detMaa"0, then the columns of Maa are linearly
dependent. K

Lemma 9. ¸et H3Rk]k be a P-matrix and

M"[I
k

!I
k
]T H[I

k
!I

k
].

It follows that

z
i
(MTz)

i
40 for all i"1, 2,2 , 2k N

z
i
(MTz)

i
"0 for all i"1, 2,2 , 2k.

Proof. Assume that z
i
(MTz)

i
40 for all i"1, 2,2 , 2k.

Let

z"A
u

vB ,

with u, v3Rk.

MTz"[I
k
!I

k
]T HT [I

k
!I

k
] A

u

vB"A
HT(u!v)

!HT(u!v)B .

For 14i4k follows that

z
i
(MTz)

i
"u

i
(MTz)

i
"u

i
[HT (u!v)]

i

and for k#14i42k

z
i
(MTz)

i
"v

i~k
(MTz)

i
"v

i~k
[!HT (u!v)]

i~k
.

And so

u
i
[HT(u!v)]

i
40 and!v

i
[!HT(u!v)]

i
40

for all i"1, 2, 2k,

or

(u!v)
i
[HT(u!v)]

i
40 for all i"1, 2,2, k.

Because H is a P-matrix, it follows from Theorem 3.3.4 of
Cottle et al. (1992), that u!v"0. So

MTz"A
HT (u!v)

!HT (u!v)B"0N z
i
(MTz)

i
"0

for all i"1, 2,2 , 2k. K

Lemma 10. ¸et H and M as in ¸emma 9. ¹he ¸CP(q, M)
is solvable whenever it is feasible.

Proof. (In the proof of this Lemma, we use the
terminology and notation from Cottle et al., 1992.) From
Lemma 9 it follows that M is a row sufficient matrix and
hence, according to Corollary 3.5.5 in Cottle et al. (1992),
a Q

0
-matrix. By the definition of Q

0
-matrices, this means

that LCP(q,M) is solvable whenever it is feasible. K

Lemma 11. If for some real s'0, G(s) is a P-matrix, then
the ¸CP(q(s),M(s)), with q (s) and M(s) as defined in Eq.
(20), is solvable.

Proof. Assume that for some real s'0, G (s) is a
P-matrix. Then also G~1(s) is a P-matrix (Lemma 7).
According to Lemma 10, it is sufficient to show that a
feasible vector pair ½(s), º (s) exists for this s. Let
½
a
(s)"(¹(s)x

0
)`50 be the non-negative part of vector

¹(s)x
0

and let ½
b
(s)"(¹(s)x

0
)~50 be the non-positive

part of this vector. Substituting this vector

A
½
a
(s)

½
b
(s)B"A

(¹ (s)x
0
)`

(¹ (s)x
0
)~B

in Eq. (18) we find

º
a
(s)"!G~1(s)¹ (s)x

0
#

1

s
d
1
#G~1(s)(¹ (s)x

0
)`

!G~1(s)(¹ (s)x
0
)~

"!G~1(s)¹ (s)x
0
#

1

s
d
1
#G~1(s)¹(s)x

0

"

1

s
d
1
50

and

º
b
(s)"G~1 (s)¹ (s)x

0
#

1

s
d
2
!G~1(s) (¹(s)x

0
)`

#G~1(s)(¹ (s)x
0
)~
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"G~1 (s)¹ (s)x
0
#

1

s
d
2
!G~1(s)¹(s)x

0

"

1

s
d
2
50.

So the LCP(q(s),M(s)) is feasible. K

After these preliminary lemmas, we now obtain our
first main result.

Theorem 12. If for some real s'0, G (s) is a P-matrix,
then the ¸CP(q(s),M(s)) has a unique solution
º"(ºT

a
,ºT

b
)T, ½"(½T

a
,½T

b
)T. ¹his solution is such that

½T
a
½
b
"0.

Proof. Assume that there exists an s'0 for which G(s)
is a P-matrix, then we know from Lemma 11 that the
LCP(q (s),M(s)) has a solution. We will now prove that
this solution is unique.

Assume that both

A
º

a
º

b
B , A

½
a

½
b
B and A

ºI
a

ºI
b
B , A

½I
a

½I
b
B

are solutions to the LCP(q(s), M(s)).
From Lemma 8 follows that M(s) satisfies condition (c)

of Theorem 3.4.4 of Cottle et al. (1992). Therefore
(½T

a
,½T

b
)T and (½I T

a
,½I T

b
)T satisfy

M(s) C
½
a
!½I

a
½
b
!½I

b
D"C

G~1(s) !G~1(s)

!G~1(s) G~1(s)D C
½
a
!½I

a
½
b
!½I

b
D"0

or

G~1 (s)((½
a
!½I

a
)!(½

b
!½I

b
))"0.

The matrix G(s) was assumed to be a P-matrix, and so we
have

½
a
!½I

a
"½

b
!½I

b
.

Now, define a vector *3Rm by

*
i
"(½

a
)
i
!(½I

a
)
i
"(½

b
)
i
!(½I

b
)
i
, i"1, 2,2 , m.

This results in

(½
a
)
i
(½

b
)
i
"(½I

a
)
i
(½I

b
)
i
#(½I

a
#½I

b
)
i
*

i
#*2

i
,

i"1, 2,2, m. (21)

Because ½
a
"(½M )`, and ½

b
"(½M )~, we have ½T

a
½
b
"0

and also ½I T
a
½I
b
"0. Substituting this in Eq. (21), results in

(½I
a
#½I

b
)
i
*
i
#*2

i
"0,

so

*
i
"!(½I

a
#½I

b
)
i

or *
i
"0.

Both possibilities result in *
i
"0 for i"1, 2,2 ,m, be-

cause in the first case we get

(½
a
)
i
"(½I

a
)
i
!(½I

a
#½I

b
)
i
"!(½I

b
)
i
,

(½
b
)
i
"(½I

b
)
i
!(½I

a
#½I

b
)
i
"!(½I

a
)
i

and from the non-negativeness of (½
a
)
i
, (½

b
)
i
, (½I

a
)
i
and

(½I
b
)
i
follows *

i
"0 for i"1, 2,2, m. We conclude that

½
a
"½I

a
and ½

b
"½I

b
, and, consequently,

C
º

a
º

b
D"q (s)#M(s) C

½
a

½
b
D

"q (s)#M(s) C
½I
a

½I
b
D"C

ºI
a

ºI
b
D . K

After having provided in Theorem 12 sufficient condi-
tions for unique solvability of the LCP(q(s),M (s)) for
sufficiently large s3R, we now turn to the existence and
uniqueness of solutions to the original complementarity
system (2)—(6). This is done via the Rational Comp-
lementarity Problem (RCP), as introduced initially by
Van der Schaft and Schumacher (1998), and generalized
in Heemels et al. (1997):

Rational Complementarity Problem (RCP(qJ (s),MI (s)). ¸et
qJ (s)3Rk(s) and MI (s)3Rk]k (s) be given.

Find rational functions ½(s) and º(s) such that the
equalities

º(s)"qJ (s)#MI (s)½ (s) and ºT(s)½ (s)"0

hold for all s, and that there exists an sJ3R
`

such that for
all real s5sJ we have

º(s)50, ½ (s)50.

For the RCP(q (s), M(s)), with q (s) and M(s) as in (20),
we can prove the following main result.

Theorem 13. If G(s) is a P-matrix for all real s5s
0

for
some s

0
3R

`
, then the RCP(q(s), M(s)) has a unique solu-

tion

º(s)"A
º

a
(s)

º
b
(s)B , ½(s)"A

½
a
(s)

½
b
(s)B

with º (s), ½(s), ºM (s)"1
2
(º

a
(s)#º

b
(s))!(1/s)(d

1
!d

2
)

and ½ (s)"½
a
(s)!½

b
(s) strictly proper rational functions.

Proof. The fact that the RCP(q(s), M(s)) has a unique
solution º (s), ½ (s) follows immediately from the ra-
tionality of M(s) and q(s) and Heemels et al. (1998), where
it is shown that the LCP(q (s), M(s)) for sufficiently large
real s has a unique solution if and only if RCP(q(s), M (s))
has a unique solution. Note that ºM (s) and ½M (s) are
rational functions of s because º

a
(s), º

b
(s), ½

a
(s) and ½

b
(s)

are rational functions. From Eq. (15) and the conditions
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Fig. 5. The state x(t).

º
a
(s)50, º

b
(s)50 for sufficiently large s, we see that

!

1

s
d
1
4ºM (s)4

1

s
d
2

for sufficiently large s.

From this we conclude that ºM (s) is a strictly proper rational
function. Consequently, also º

a
(s)"(1/s)d

1
#ºM (s)

and º
b
(s)"(1/s)d

2
!ºM (s) are strictly proper rational

functions. Now, consider Eq. (14). The matrix
C(sI

n
!A)~1B#D is a proper matrix, C(sI

n
!A)~1 is

a strictly proper matrix and ºM (s) is strictly proper. We
immediately conclude that ½M (s) is strictly proper.

Finally, ½
a
(s) and ½

b
(s) satisfy ½M (s)"½

a
(s)!½

b
(s) and

½T
a
(s)½

b
(s)"0. From the last equality follows that

(½
a
(s))

i
,0, or (½

b
(s))

i
,0, i"1, 2,2 ,m

and so

(½M (s))
i
"(½

a
(s))

i
or (½M (s))

i
"!(½

b
(s))

i
, i"1, 2,2, m.

We conclude that ½
a
(s) and ½

b
(s) are strictly proper. K

Finally, using the correspondence between strictly
proper rational functions and real-analytic time func-
tions as given in Eqs. (12) and (13), it follows (see also
Heemels et al., 1998) that if the RCP(q (s), M(s)) has
a unique solution for all q (s) as in Eq. (20) then the
complementarity system (2)—(6) has for every fixed initial
state x

0
a unique solution on some interval [0, e[, e'0,

with u (t), y (t), uN (t) and yN (t) real-analytic functions of t.
This implies that also the state x (t) is real-analytic on
[0, e[. Now define t

1
as the maximal e such that u(t), y(t) is

a solution to Eqs. (2), (4)—(6). If t
1
"R then this means

that there is a global solution from x
0

corresponding to
one location (discrete state) of the relay system. If t

1
(R,

then this means that t
1

is a switching time, where we have
to switch to another location (mode). Define

x
1

Def
" lim

t­tÇ

x (t).

Then also from x
1

there exists a unique analytic solution
of Eqs. (2), (4)—(6) on some interval [t

1
, t

2
[ of maximal

length (with t
2
4R). If t

2
(Rthen t

2
is the next switch-

ing time, and we define x
2
"lim

t­tÈ
x (t) as the initial

condition for the next mode of operation of the relay
system. Repeating this process we have obtained the
following conclusion (see Fig. 5 for an illustration).

Theorem 14. Consider the relay system given in Fig. 2.
Assume that the transfer matrix G(s)"C(I

n
s!A)~1

B#D is a P-matrix for s3R sufficiently large. ¹hen from
every initial condition x

0
and initial time t

0
"0 there

exists a unique solution uN (t), x (t), yN (t), t50, such that x (t)
is a continuous function of t. Furthermore, this unique
solution is piecewise real-analytic, in the sense that there
exists a countable number of switching times t

i
such that

uN (t), x (t), yN (t) is real analytic on every time-interval
[t

i
, t

i`1
[.

Remark 15. Note that we have not excluded the possibil-
ity of existence of a finite accumulation point of the
switching instants t

i
. Nevertheless, ‘‘deadlock’’ is ex-

cluded also at such an accumulation point, since there
exists a solution from the state reached at the accumula-
tion point. An example of a finite accumulation point of
switching instants is provided by the following relay
system, which is derived by reversing time from an
example of nonuniqueness of solutions in Filippov
(1988):

xR
1
(t)"u

1
(t)!2u

2
(t),

xR
2
(t)"2u

1
(t)#u

2
(t),

y
1
(t)"x

1
(t),

y
2
(t)"x

2
(t)

with,

u
i
(t)"!1 if y

i
(t)'0

u
i
(t)"1 if y

i
(t)(0 i"1, 2.

!14u
i
(t)41 if y

i
(t)"0

It can be verified that

d

dt
( Dx

1
(t) D#Dx

2
(t) D )"!2,

which means that from every initial condition the system
converges in finite time to the origin. Since solutions
cannot arrive at the origin without going through an
infinite number of mode switches, this means there is an
accumulation of event times.

Remark 16. The LCP formulation of mechanical sys-
tems with Coulomb friction as employed in Lötstedt
(1981) and Glocker and Pfeiffer (1993) is different from
ours in at least two aspects. First, our formulation as
a complementarity system as in Section 2 is different from
Lötstedt (1981) and Glocker and Pfeiffer (1993). Secondly,
in the present section we have transformed the comp-
lementarity conditions in the time-domain, via the RCP,
to a simple LCP(q(s),M(s)) for s large enough. As a result
the complexity of the LCP to be solved in our formula-
tion is much less than in Lötstedt (1981) and Glocker and
Pfeiffer (1993). Therefore, our LCP formulation does
not seem to suffer from the drawbacks as mentioned in
Cellier et al. (1993).
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Remark 17. Even if the solution is unique, we note, as in
Van der Schaft and Schumacher (1996, 1998) that the
corresponding mode need not be unique. (In these par-
ticular cases the input-output values (uN

i
, yN

i
) remain at

one of the two corners of the i-th relay characteristic for
some i.)

Remark 18. It has been shown in this section that the
condition of G(s) being a P-matrix for real s large enough
is sufficient for uniqueness of solutions for arbitrary in-
itial conditions x

0
. An interesting and important ques-

tion is how close this condition is to being necessary as
well.

It can be shown (starting from Theorem 3) that the
LCP(q (s), M(s)) for fixed real s'0 has a unique solution
º"(ºT

a
,ºT

b
)T, ½"(½T

a
,½T

b
)T for all q3Rn if and only if

G(s) is a P-matrix. However, in the LCP(q(s),M (s)) the
vector q (s) has the specific structure (16), with x

0
being

any initial condition. This implies that the rational vec-
tors q (s) in the RCP(q(s),M(s)) obtained by letting
x
0

range through Rn are not arbitrary. Thus the necessity
of G(s) being a P-matrix for uniqueness of solutions for
all x

0
is not guaranteed. Indeed, in the following example

G(s) is only a P
0
-matrix, while uniqueness of solutions for

all x
0

does hold.

Example 19.

xR
1
(t)"!u

2
(t)

xR
2
(t)"u

1
(t),

y
1
(t)"x

1
(t),

y
2
(t)"x

2
(t)

with,

u
i
(t)"!1 if y

i
(t)'0

u
i
(t)"1 if y

i
(t)(0 i"1, 2.

!14u
i
(t)41 if y

i
(t)"0

It can be easily seen that this system has a unique solu-
tion for every initial condition x

0
, while

G(s)"A
0 !1

s
1
s

0B
is only a P

0
-matrix.

We conjecture that G(s) being a P
0
-matrix is a

necessary condition for uniqueness of solutions º and ½

for all x
0
.

Another problem concerning uniqueness of solutions
is that even if solutions º"(ºT

a
,ºT

b
)T, ½"(½T

a
,½T

b
)T

and ºM , ½M may not be unique, the state-space solution
x may still be unique, as was kindly pointed out to us by
an anonymous reviewer. A typical example is the case of
two relays in parallel, where the total input may be
unique, but not its distribution over the two relays. (In
this case, the B and the C matrix in (2) are not injective,
respectively, surjective.)

It is of interest to find necessary and sufficient condi-
tions for uniqueness of the solution x (t). Again, we
conjecture that G(s) being a P

0
-matrix is a necessary

condition.

Remark 20. In switching control schemes such as (see
Eq. (1)) u"1 for y(0 and u"!1 for y'0, the dynam-
ics for y"0 is usually deliberately left open. Indeed, the
dynamics for y"0 will be seen as the limit of a chattering
behavior around the level set y"0 in the state space
(rapid switchings between u"1 and u"!1). In this
context Filippov’s equivalent control or convex defini-
tion (equivalent for systems linear in u) is employed. Note
however (see e.g. Filippov, 1988) that this assumes that
the velocity vector xR for u"1 points for y close to 0 into
the direction of the subset of the state space defined by
y'0, and the velocity vector xR for u"!1 points for
y close to 0 into the direction of the subset of the state
space defined by y(0. (Otherwise we do not obtain
chattering.)

On the other hand, if G(s) is a P-matrix then based
upon Theorem 14, we may look at the situation in the
following manner. Consider for simplicity the single-relay
case with D"0. Let x

0
be an initial condition with y"0.

By Theorem 14 there exists a unique solution from
x
0
corresponding either to u"!1, u"1 or y"0 (in the

equivalent control sense). If the unique solution corres-
ponds to u"!1 or u"1 then obviously we are done.
Now consider the case that the unique solution only
corresponds to the mode y"0. Then by the very fact
that there is no solution corresponding to u"1 or
u"!1 it follows that the velocity vector xR for u"1
points for y"0 into the direction of the set y'0,
and for u"!1 into the direction of the set y(0. Thus
Filippov’s equivalent control definition does make sense.
This discussion can be extended to the general case of
G(s) being a P-matrix.

Our theoretical results suggest the following approach
to simulation of relay systems (see Mattsson, 1996; Cellier
et al., 1993) for a clear discussion of the basic issues in
simulation of such systems, and Heemels et al., 1997 for
a similar approach to simulation of complementarity
systems arising from ideal diode characteristics).

Let x
0

be the initial condition and t
0

the initial time.
Consider M (s), q (s) as determined in Eq. (20), and solve
the LCP(q (s),M(s)) for fixed real s large enough. This
yields a unique solution ºM (s), ½M (s), with index sets
I
1
, I

2
LM1, 2,2 , mN with I

1
WI

2
"0 (not necessarily

uniquely determined), such that

½M
i
(s)'0, i3I

1
,

½M
i
(s)(0, i3I

2
,

½M
i
(s)"0, iNI

1
XI

2
.

(22)
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Fig. 6. Two blocks with Coulomb friction.

Based on these index sets we consider the system of
differential-algebraic equations (DAEs)

xR "Ax#BuN , x (t
0
)"x

0
,

0"(Cx#DuN )
i
, iNI

1
XI

2
,

(23)
uN
i
"!(d

1
)
i
, i3I

1
,

uN
i
"(d

2
)
i
, i3I

2
.

If we have chosen s large enough then it follows from
Theorems 13 and 14 that the unique solution of Eq. (23)
satisfies

yN
i
(t)50, i3I

1
,

yN
i
(t)40, i3I

2
, (24)

uN
i
(t)3[!(d

1
)
i
, (d

2
)
i
], iNI

1
XI

2
,

for t3[t
0
, t

0
#e[, e'0. Hence we may numerically

simulate the set of DAEs (23), while monitoring inequali-
ties (24). (Obviously, the simulation of the DAEs (23) may
not be an easy task, and, for example, we may wish to
convert Eq. (23) into a set of explicit differential equa-
tions first.) If for some time t

1
't

0
inequalities (24) are

going to be violated (event detection), then for this
switching time t

1
we again consider the LCP(q (s),M(s)),

for fixed real s large enough, with now q (s) determined as
in Eq. (18) by

x(t
1
)"lim

t­tÇ

x (t).

This will yield again a unique solution uN @ (s), yN @ (s), with
index sets I @

1
, I @

2
defining as in Eq. (23) a set of DAEs,

which then can be simulated, etc.
Note that the LCP(q(s),M (s)), even for large m, admits

efficient solution routines (see e.g. Cottle et al., 1992), and
so the above strategy seems to offer a convenient way to
handle simulation of relay systems.

Obviously, the weak point in the suggested strategy, is
that we do not know beforehand ‘‘how large’’ s has to be
chosen for the LCP(q(s),M (s)) at every switching time. If
we take s too small, then we will select different index sets
I
1
, I

2
, and the solution of the DAE’s (23) will not satisfy

Eq. (24).
On the other hand, after solving the LCP(q(s),M (s))

for some s3R, and thus obtaining index sets I
1

and
I
2
, it is possible to check algebraically whether these

index sets I
1
, I

2
provide a solution for the RCP(q(s),

M(s)), or equivalently (using the aforementioned
correspondence between strictly proper rational func-

tions in s and real-analytic time-functions, a solution for
Eq. (24).

4. Examples

Example 21 (System (1)). Consider again the system (1)
described in Section 1. For this system G(s) is
given by

G(s)"[0 1] C
s !1

1 sD
~1

C
0

!1D"!

s

s2#1
.

Obviously G(s) does not satisfy the conditions of
Theorem 13, and so, uniqueness of solutions is not
guaranteed, in accordance with the further treatment of
this system in Section 1. If the sign in front of u in the first
equation of Eq. (1) is reversed, then G(s)"s/(s2#1) does
satisfy the conditions of Theorem 13, and so there is only
one solution from every initial state.

Example 22 (Coulomb friction). Consider the system
with multiple Coulomb friction as given in Fig. 6 (see also
Glocker and Pfeiffer, 1993). In this figure we see two rigid
blocks that are connected to a fixed wall by springs. The
block on the bottom has mass m

1
'0, the block on top

has mass m
2
'0. The blocks make contact at the points

1 and 2. In these points Coulomb friction forces F
c1

and
F
c2

act. By definition F
c2

is the Coulomb friction as it is
acting on block 2. There is of course also an equal, but
opposite friction-force acting on block 1. Let x

1
represent

the deviation of the bottom block from its equilibrium
position (no elongations of the spring k

1
). Let x

2
repres-

ent the position of the top block, relative to the bottom
block. This coordinate is chosen in such a manner that
the system is in equilibrium for x

1
"x

2
"0. Let x

3
and

x
4

denote the corresponding velocities. The Coulomb
friction characteristic of F

c1
is as in Fig. 1 with e"F

c1
and f the velocity xR

1
(while c

1
"c

2
"1). Similarly for the

Coulomb friction F
c2

with regard to the velocity xR
2
.

The system can be described by the equations of a re-
lay system as in Section 3. The plant dynamics described
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by Eq. (2) are for this system given by

xR (t)"

0 0 1 0

0 0 0 1

!

k
1

m
1

0 0 0

k
1

m
1

!

k
2

m
2

!

k
2

m
2

0 0

x(t)

#

0 0

0 0

1

m
1

!

1

m
1

!

1

m
1

1

m
1

#

1

m
2

C
uN
1
(t)

uN
2
(t)D ,

(uN
i
"!F

ci
, i"1, 2),

yN (t)"C
0 0 1 0

0 0 0 1D x (t)

with

uN
i
(t)"!1 if yN

i
(t)'0,

uN
i
(t)"1 if yN

i
(t)(0,

!14uN
i
(t)41 if yN

i
(t)"0.

For this relay system the transfer matrix G(s) is given by

G(s)"

s

m
1
s2#k

1

!

s

m
1
s2#k

1

!

s

m
1
s2#k

1

s ((m
1
#m

2
)s2#k

1
#k

2
)

(m
1
s2#k

1
) (m

2
s2#k

2
)

.

This matrix is a P-matrix if and only if the principal
minors of this matrix are positive:

s

m
1
s2#k

1

'0 (25)

and

s((m
1
#m

2
)s2#k

1
#k

2
)

(m
1
s2#k

1
)(m

2
s2#k

2
)
'0 (26)

and
s2

(m
1
s2#k

1
) (m

2
s2#k

2
)
'0 (27)

(in fact, because the matrix G(s) is symmetric, we may as
well restrict (see Cottle et al., 1992) to the leading princi-
pal minors (25) and (27)). We immediately see that this is
true for real s large enough if m

1
'0 and m

2
'0. Thus

(as is physically evident), the system has unique solutions
if both m

1
and m

2
are positive.

5. Conclusions

Relay systems form a particular type of hybrid dynam-
ical systems, where the discrete transition rules (from one
mode to another) are not a priori given. For linear
time-invariant relay systems we have shown, based on
the formulation of a relay system as a complementarity
system, that if the transfer matrix is a P-matrix (for real
s large enough) then the relay system has a unique solu-
tion that is continuous in the state; thereby specifying the
discrete transition rules of the system. We have argued
that our results suggest a promising approach to the
simulation of relay systems, by solving at every switching
time an LCP and simulating during the subsequent time-
interval a set of DAEs specified by the solution of this
LCP. Further topics for research concern the generaliz-
ation of the obtained results to linear dynamical systems
containing arbitrary piecewise-linear characteristics, and
the extension to nonlinear dynamics.
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