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MATHEMATICS Proceedings A 84 (l), March 20, 1981 

The interpolation theorem in fragments of logics 

by G.R. Renardel de Lavalette 

Mathematisch Instituut, Vniversiteit van Amsterdam, Postbus 20239, 
1000 HE Amsterdam, the Netherlands 

Communicated by Prof. AS. Troelstra at the meeting of April 26, 1980 

ABSTRACT 

In the first part of this paper, we prove that there are continuously many fragments of 
intuitionistic propositional calculus (IpC) which fail to have the interpolation property, thereby 
extending a result of J.I. Zucker. Our proof makes use of the Rieger-Nishimura lattice. The second 
part is devoted to transferring this result to fragments of classical predicate calculus (CPC): this is 
done by giving a translation T of fragments of IpC in fragments of CPC which preserves the 
interpolation property. 

1. INTRODUCTION 

The Interpolation Theorem for CPC (classical predicate calculus) has been 
stated and proved for the first time by Craig [Cr]. Schiitte [Sch] gives a proof 
for IPC (intuitionistic predicate calculus). Since then, the Interpolation 
Theorem (IT for short) has been shown to hold or to fail in quite a lot of logics 
(modal, higher-order, many-sorted, etc). There is an extensive literature on the 
subject which we shall not attempt to survey here. 

In this paper, we are only interested in the IT in fragments of propositional 
and predicate logic. Ville proved that the IT holds in any fragment of CpC (p 
for propositional); see [K & K], Chapter 1, Exercises. Zucker [Z] gives an 
example of a fragment of IpC for which interpolation fails; this was the 
starting-point for our investigations which led to the present paper. 

In Section 2 we extend Zucker’s result in that we give a set of 2xo fragments of 
IpC for which the IT fails. Section 3 is devoted to transferring this to fragments 
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of CPC: we define a translation T which maps every fragment of IpC on one of 
CPC, preserving the IT in both directions. 

I wish to thank Prof. Troelstra and Jeff Zucker for interesting me in this 
subject and for their comments on earlier versions of this paper. 

2. 2xO FRAGMENTS OF INTUITIONISTIC PROPOSITIONAL LOGIC FOR WHICH 
INTERPOLATION FAILS 

2.1. We start introducing some notation for this and the next section. For 
propositional logic, we use the language Lo, containing the connectives A, V, +, 
the propositional constants I and T, and V= (p1,p2, . . . }, the set of 
propositional variables; p, q, r, 41, . . . are metavariables for elements of V. 

Formulae are defined as usual. Form is the set of all formulae of Lo. +-c (i--i) 
denote classical (intuitionistic) derivability, =‘c and =i are used for derivable 
equivalence; we drop the subscript if that causes no confusion. 

If A is a formula of some logic, then PV(A) is the set of predicate or 
propositional variables occurring in A ; similar for FV (free individual 
variables) and B V (bound individual variables). 

A [B/C] stands for the formula A’ which is formed by substituting B for every 
occurrence of C in A. 

2.2. DEFINITION. i) If A~Form, PV(A)C{ql,..., qn}, nz0, ql,..., qn all 
different, then ;Iql ... qn* A is a propositional (n-ary) connective abstracted 
from A. 
ii) Con (Con”) is the set of (n-ary) connectives. 

iii) If ceCon”, c=lql.-.qn*A and Bl,...,B”~Form, then 

@I,..., Bn) zf API, . . . , Bn/ql, . . . , qnl. 

2.3. DEFINITION. i) Let CC Con. We define the propositional fragment [C] as 
the smallest subset of Form satisfying: 
a) Vc[C], and 
b)ifcECr)ConRandAt ,..., AnE[C], thenc(At ,..., An)E[C]. 

We shall often write [cl, . . . , cn] for [(cl, . . . , cn}]. 
ii) Frag is the set of propositional fragments. 

iii) If f, g E Frag then f and g are called equivalent (f= g) iff KA E f.B E gA = B 
and vBEggAEfB=A. 

As a simple consequence of the Interpolation Theorem for IpC, we see that 
the following holds: 

2.4. THEOREM. Let A,BE[A,v,-+, I], PV(A)nPV(B)#O, I-A+B. Then 
there is an IE [A, v,+, I] such that: 
i) I-A+I, i-1-B; 
ii) PV(I)CPV(A)nPV(B). 

Briefly: interpolation holds for [A, V, +, I 1. 
More generally, we say that interpolation holds for some fragment f~ Frag 

iff Theorem 2.4 holds when [A, V,-+, I] is replaced by f. 
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REMARK. Theorem 2.4 remains true if we skip the condition PI/(A)fl 
nPV(B)#O. The reason we added it lies in the fact that in fragments without 
nullary connectives, formulae A with PI/(A) =0 do not exist. 
2.5. Zucker [Z] shows that interpolation fails for [&A,-+, I], where 
6= Lpqr*(pv ~p)n(p--+q)l\( lp+r). He gives two proofs, the first one being 
syntactical, the second one (due to A.S. Troelstra) using the theory of (finite) 
Heyting algebras. We shall generalize the method of this second proof to obtain 
the result mentioned in the title of this section. For information about Heyting 
algebras we refer to Dummett [D, 5.21. 

REMARK. We use the same names for the operators of a Heyting algebra as for 
the connectives they correspond with: however, it will always be clear from the 
context which meaning of A, V, -+ is intended; idem for I and T. As to newly 
defined connectives, we suppose corresponding operators for Heyting algebras 
to be defined, too. 

2.6. We now sketch Troelstra’s proof of Zucker’s theorem. 
We have 

ZTp&p,qi,qa)=q1Vq2= vr((ql+r)A(q2-)r))-+r; 

hence 

(1) t--&~,ql~qz)-‘(((q1 -+r)A(q2*r))+rh 
and if I=l(ql, q2) is an interpolant for (l), then I=:1 vq2, so it suffices to 
demonstrate the undefinability of V in [S, A, -+, I 1. 

Consider the following Heyting algebra, given as a partially ordered system: 

I <aAb<a,b<aVb<T. 

The set { I,aA b, a, b, T} is closed under 6, A and -+, so v is not definable in 
k%A,-‘, 11. 0 

2.7. For the generalization, we shall make use of the Rieger-Nishimura lattice: 
this is the Heyting algebra HR with XR={I =a-l,ao,al,...,bo,bl,...,T) as 
set of elements, where 

an=an-IVb,,-1, n=1,2 ,..., 

bn=an-+an-1, n=O 12 , , ,*--. 

Rieger [R] was the first one to describe HR; better accessible and more 
informative is Nishimura [N]. 

HR is the free Heyting algebra over one generator: this means that if A@), 
B@) are propositional formulae in one variable, then 

A@)=B(p)eA(ao)=B(ao). 

For a proof, see [N]; there one can also find a list of all equalities of the form 
aAb=c. avb=c and a+b=c which hold in HR. 
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We introduce the connectives 

2.8. LEMMA. Let m E N. Then: 

i) 7rm(an)=anifm=I andnrl 
=am if n=O 
=T ifn=-1 or(mz2andn>l); 

ii) 7cm(bn)=a2if(m=1 orm=2)and(n=Oorn=l) 
=b,,ifm=landnz2 
=T ifmz3 or(m=2andnz3); 

iii) n&T) = T. 

PROOF. We only prove (i); (ii) can be done the same way, and (iii) is trivial. 
m=l andnzl: nl(an)=anV(an+a-l)=anVa-I=anVI =an. 

n=O: no(ao)=ao, 7cl(ao)=aoV(ao-+a-l)=al; 

7rm+~(a0)=7h(a0)V(nm(a0)~7h-I), so if 7rm(a0)=am, 

nm-I(ao)=am-1, then nm+l(ao)=amV(am+am-l)=am+I; with 
induction, we now get rm(ao) = am. 

n=-1: nr(a-l)=IV(I+l.)=T; 
~r,+~(a-l)=nm(a-~)V(nm(a-~)-,~m-l(a-~)), so if Irm(a-l)=T, 
then 7rrn + ](a - I) = T; with induction, we get n&a - I) = T . 

mr2 and nrl: R2(an)=n1(an)V(711(an)-‘Ko(an))=anV(an-’an)=T; 

as before, we have by induction K&Z,) = T. 0 

2.9. LEMMA. Suppose a,b,CE&, ce{a,b,T). Then aAb=c, a-+b=c or 

nn(a) = c only in the following cases: 

i) b n=an-wn-l, 
bn=bn-l-an-l, 
b,,=b,,-l-an-z, 
bn=b n+l-+an-;; 

ii) an= an+ll\bn+l, 
an=bn+1Abn+2; 

iii) an = 7rn(a0), 

a2 = R 1 (bo), 
a2= nl(bl), 
a2 = m(h), 
a2 = nz(bl). 

PROOF. Straightforward. 0 

From now on, we consider in this section only C~con of the form 
CO = {A, -*, I } U { xn : n E 0 ), where 0 C N. We shall prove that there are many 
non-equivalent fragments of the form [Co]. 

2.10. DEFINITION. Let CE Con, Ha Heyting algebra, ScX,y. Then SC, the C- 
closure of S in If, is the smallest set containing S and closed w.r.t. the 
connectives of C. 

For {aO}C we shall write HR(C). 
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2.11. LEMMA. Define O(n)=N-(n,n+l), n=l,2 ,... . Then 
i) HR(CO(n)) =XR if n=2, 

=XR-{an,an+l,bn+2} ifn22. 
ii) H~(C~-{1,~3~)=X~-{a1,az,a3,b3,b4}. 

PROOF. (i) >: If ifn, n+ 1, then ai=ni(ao)EHR(Cu(n)); if i#n, n+ 1, n+2, 
then bi=ai~ai-lEHR(Cn(n)); idem for bn (=bn-l-tan-l) and bn+l (=bn+ 
-an.- I). If n =2, then a2= nl(bo) EHR(CO(Z)); idem for b4= b3+az and 
a3=b4Aa4. 

C: Let, for XEXR, d(x) be the minimal number of connectives needed to 
define x (using only ao and elements of Co(,)) if that is possible, else 00. We 
observe that a,, = an + 1 A b,, + I= b, + I A bn + 2, so we only have to prove &J = a 
if n=k2. 

Suppose d(a,) < 00, n # 2. By Lemma 2.9, an can only be obtained from bn+ 1 
and (an + I or b, + 2), so 

(1) d(an + I) < d(an) or d(b, + 2) < d(a,). 

To obtain an + I, we need (at least) bn+z, hence 

(2) d(b,+z)<d(an+l); 

finally, an + I or a,, is required for bn + 2, SO 

(3) d(an)cd(bn+z) or d(a,+l)<d(b,tz). 

Now (l), (2) and (3) give contradiction, so d(an) = 03. 
(ii): analogous. 0 

The following lemma is quite trivial: 

2.12. LEMMA. If ll cd, then HR(C~)CHR(CJ). q 

The last two lemmata can be combined to get 

2.13. LEMMA. Define 

!j={OCN: 1~0~2~0 and Vnen\i (n$U*(n--l$U orn+l$U))}. 

PROOF. =+: trivial. 
c:Supposen~D.Nown+l$Uorn-l~O,soUC~-{k,k+l)withk=n-l 

or k = n. We distinguish two cases: 
i) k=2. Then, because of 1 EU@~EO, even OC~J-{1,2,3}, so (applying 
Lemma 2.ll(ii) and Lemma 2.12) a,,$tf~(Cu). 
ii) k#2. Now an$HR(Co) be Lemma 2.11(i) and Lemma 2.12. 0 
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COROLLARY. If O,JE$ 0231, then [Co]+[[c~]. 

We take a subset of 3:: 

3’~~{oE3::~~ENn,n+l,n+2EO}, 

and show that interpolation fails for all fragments corresponding with elements 
of 3’; to do this, we need the next lemma. 

2.14. LEMMA. LetX=(l,an,an+l,bn+l,bn+2,bn+3,T), nEiN.Then 

Po=Xfor all OCIN. 

PROOF. Simple, using Lemma 2.9. 0 

2.15. THEOREM. If 0 E 3’, then interpolation fails for [CO]. 

PROOF. Let 11 ES’, VEIN, n, n+ 1, n+2~ 0. Define 

6n(p,ql,q2)=7Cn+2@)A(71n+l~)-‘ql)A((~n+107)-,~~~))‘q2)~ 

e(ql,q2,~)=((ql+0A(q2+~))+~- 

Now 
l---6n@,ql,q2)-+qlVq2, 

because n,+z07)=~~+l@)V(7ln+l~)~nn(p)), and 

kqlvq2-+e(qbq2,r), 

so we have 

(1) 1-6~(P,ql,q2)-‘e(ql,q2,r). 

Suppose z(qi, q2) is an interpolant for (1). We shall show that 441 I q2) cannot be 
in [co], by considering HR with the valuation VU~H, (partially) defined by: 

VdH@)=aO, Valff(q2)=bn+ 1, 

‘VaiH(ql)=&z+l, Valff( r) = an + 2. 

This gives 

V~~H(~n@,q,,q2))=6n(ao,Un+l,bn+I)=;rm+2(~O)~(~n+1(~O)~an+l)A 

A((~~+,(ao)~nn(ao))~bn+l)=~n+2A(~n+l--’~n+1)A 

/\(bn+1~bn+1)=an+2ATAT=an+2, 

vd~(@(q,,q2,r))=@(Un+I,bn+l,~n+2)=((~n+l+~n+2)~ 

A(bn+l~an+z))-‘an+2=(TAT)~an+2=an+2; 

hence v&&(ql, q2)) = r(an + I, bn + 1) = an +2, which together with Lemma 2.14, 

gives z(q1,42) $ [Cd. 0 
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COROLLARY. There are 2xo non-equivalent fragments of IpC for which inter- 
polation fails. 

PROOF. g’=2xo, for {{1,2,3}U{n+3:n~U): OcN}c~‘. 0 

REMARK. All fragments considered here have the definability property, which 
states that implicit definability implies explicit definability. This follows from 
Kreisel’s [Kr] and the fact that T( = I -+ I) is definable in our fragments. 

3. INTERPOLATION IN FRAGMENTS OF CLASSICAL PREDICATE LOGIC 

3.1. First some preliminaries, extending those of 2.1 for predicate logic. f 1 is a 
language for predicate logic, containing A, V, -), V, 3, I, T, the individual 
variables x1,x2, . . . (metavariables X, y, z,yr, yt, . . . ) and predicate variables 
P1,P2, . . . (metavariables P, Q, R, QI, Q2, . ..). #P is the ‘arity’ of P. If we write 
Pyl *a* yn, we suppose #P= n. 

Formulae are defined as usual; together they form the set FORM. 
For convenience, we shall suppose FORM to contain only formulae A for 

which FV(A)nBV(A)=O. 
When writing A[B/C], we presume FV(B)nBV(A)cFV(C). 
If xeBV(A) (so x@FV(A)), yeBV(A)lJFV(A), then we consider A[y/x] to 

be equal to A. We shall use this convention when, in manipulating with 
formulae and variables, a formulae A with x E B V(A) comes into the scope of a 
quantor I?x, or is subjected to the substitution [x/y]; then we tacitly take A [z/x] 
(ze BV(A)UFV(A)) instead of A. 

3.2. DEFINITION. i) If AEFORM, FV(A)c(yl,..., m}, n?O, yl,..., yn all 
different, then Ayl ..+ yn*A is an n-ary predicate abstracted from A. 
ii) PR” is the set of n-ary predicates. If BE PR”, then #B=def n. 
iii) If Lyr .a. y,*A E PR”, then 

~y~...yn*A(~~,...,~n)~~A[z;/yi]i=~,...,n. 

When P is an n-ary predicate variable we identify P and LXI **. xn*Pxl *.a xn. We 
shall use the notation A[B/C] also for substitution of the n-ary predicate B for 
the n-ary predicate C in A. 

3.3. DEFINITION. i)IfAczFORM, PV(A)C{Ql,..., Q~},FV(A)C{y1,..., m}, 
k, n, 10 and Qr ,..., Qk, yl,..., y,, all different, then nQ1 .a. Qky~ a** yn*A is a 
predicate operator of type (k, “Qr , . . . , *Qk, n) obtained from A. 
ii) PRO is the set of predicate operators. 

iii) If c= AQI ... Qkyl -.- yn*A E PRO, BiE PR’Qi(i= 1, . . . , k), then 

C(BI ,..., Bk,Zl,... ,z~)~~A[BI,...,B~/QI,...,Q~][Z~/Y~]~=~,..., n. 

3.4. DEFINITION. i) To every A E FORM, we associate the predicate 
A=defAyl***yn*A, where (yl,...,y,}=FV(A), y~,...,y, are all different and 
ordered according to their leftmost occurrence in A. 
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ii) To every AE FORM, we associate the predicate operator 4 =def 

=def@l -a- Qkyl ---yn*A, where {Qi, . . . , Qk} =PV(A), {yl, . . . ,yn} =FV(A), 
QI,..., Qk resp. yl , . . . ,y,, are all different and ordered according to their 
leftmost occurrence in A. 

From now on, we suppose every connective or predicate operator c to be 
equivalent (disregarding the order of abstracted variables) to 4 for some 
formulae A (unless c has type (k, 0, . . . , 0, n) with n # 0). An example may justify 
this: ifA =nQi -.*,Qkyi .--yn*A, thenllQi ..- QiQQi+l e-s Qky~ --y,*A =A’, 
where A’ is obtained from A by replacing the leftmost occurrence of Qi by 
QiA Vx(QX***X+QX***X). 

3.5. DEFINITION. Let CcConUPRO. We define the fragment [C] as the 
minimal set of FORM satisfying: 
a) if P is a predicate variable, #P= n, then Pyl ---y,~ [Cl; 
b) if cECfTCon”andA1,...,AnEIC], then c(AI,...,A~)E[C]; 
c) if AI , . . . ,Ak are predicates abstracted from formulae of [C] and if 
c E Cn PRO is a predicate operator of type (k, #AI, . . . , #Ak, n), then 
c(A I , . . . ,A,YI ,...,Yn)E[Cl. 

If necessary, we make distinction between fragments of propositional and 
predicate logic by writing [ lP and [ ]P, respectively. 

FRAG is the set of fragments of predicate logic. 

REMARK. It is possible to give a more general definition of fragments of 
predicate logic, namely by dropping the condition FV(A) c {yl, . . . ,yn} in the 
definition of predicates (Definition 3.2). With such a definition, we get 

(1) FORM 7 [l, A,~P* VxPx]; 

in the present situation, however, the right-hand side of (1) only contains those 
closed formulae in which no nested quantification occurs; but we do have 

FORM~[{~,A}U{~P~~~~~~~~-~~V~~P~~I~~~X~:~ER\I}]. 

See also the remark after Definition 3.13. 

For some proofs which proceed by formula induction, we need a measure for 
the complexity of a formula in a fragment. 

3.6. DEFINITION. Let f be some fragment, f= [Cl. 
We define 6r: f+ N U (0) as follows: 

a) &(A) = 0 if A atomic; 
b) if cEC, then Gr(c(Al, . . . . Ak,yI ,... ,yn))=max{6r(A1), . . . . &(Ak)} + 1. 

CONVENTION. We write 6 for 6r if this can give no confusion; ditto for ef and 
of, to be defined later. 

78 



3.7. DEFINITION. Let FE FRAG. We say that interpolation holds in F iff: 

A,BeF 
’ t-c(A--+Z)/\(I-+B) 

(2) 
hA+B 

t*&rZ~Fwith ( PV(I)CPV(A)nPV(B) 
PV(A)~IPV(B)#~ < IV(Z) cFV(A) fWV(B) 
FV(A)fVV(B)#0 ’ 

REMARK. For the reason why we added the condition FV(A)nFV(B)#it in 
the premiss, see the remark at the end of 2.4. 

3.8. Now we set out to define the translation T. 
T works roughly as follows: if fe Flag, then Tfe FRAG, and there are 

functions Q : f-+ Tf and ~7 : Tf-+f satisfying 

(3) A,Bef, I-~A~B*~-QA-+QB, 

(4) A,Be Tf, I--rA-‘B*t-iaA-+oB. 

To accomplish this, we need a function K: Form-+FORM. A well-known 
candidate which appears to be fit for our purpose is defined by 

K(p)= vX#?Xlxz+P1X2), i= 1,2, . . . ; K -L = 1; KT = T; 

K(AAB)=KAAKB; K(AVB)=KAVKB; 

K(A --, B) = Vxn(Rxrxn + (KA -+ KB)[xJxI]), where n is the smallest 
index (of x) > 1 not occurring in KA + KB. 

K translates every formula A of IpC into a formula KA, containing unary 
predicate variables Pi for every pi in A, one binary predicate variable R and one 
free variable xl; KA expresses that, if R is reflexive and transitive, then A is 
forced in node XI of the Kripke model K = ( U, R, IF>, where U is the universe 
over which our individual variables range and the forcing relation I-- is 
determined by 

Xlf-pizfPiX, i= 1,2, . . . . 

See Kripke [K] for more information. In the same article, IpC is proved to be 
complete w.r.t. reflexive and transitive Kripke models, which implies 

(5) FiA+B o I--C ~‘xRxxA VXJCZ(RX~A R~z+Rxz)+(KA-+KB), 

so we are well on our way to (3) and (4). 
Two obstacles are still before us: 

1) the condition upon R in the right-hand side of (5); this will be eliminated by 
putting it in the translation Q; 
2) K creates two new parameters for which there is no equivalent in the 
argument, viz. XI and R. R in particular causes a lot of trouble in the fragment 
Tc to cope with it, we have to extend the condition Adm(R) on R in Q, and to 
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build up a machinery of definitions and lemmata before we can prove the 
desired result. 

First we need a sentence A&z(R), R a binary predicate, satisfying: 

(f-4 IpC is complete w.r.t. the class of Kripke frames K= (U,R) 
which satisfy Adm(R); 

(7) Adm(Axy l Px) =Adm(lxy l Py) = I ; 

(8) Adm(R)l\Adm(+ I (lbf kxy.Ryx). 

REMARK. The reasons we want Adm(R) to satisfy (6), (7), (8) are the 
following. We use Adm in the predicate operators of the fragments Tf to 
enforce reflexiveness and transitivity of some binary predicate S. Now, if S is 
not essentially binary (i.e. S is obtained by vacuous abstraction), then (7) will 
cause formulae in which S is substituted in Adm to collapse. It will appear that 
R and R’ are the only essentially binary predicates in Tf; (8) reduces formulae in 
which R and R’ both are substituted in (different instances of) Adm to simpler 
ones. 

3.9. DEFINITION. 
i) Adm(R) =&f VxRxx A Vxyz(Rxy A Ryz-+ Rxz) A 3x VyRxy A ifx,!i’y 1 Ryx. 

ii) A =s B =&f kcAdm(S)+(A HB), S a binary predicate. 

3.10. LEMMA. (6), (7), (8) hold for Adm(R). 

PROOF. (7), (8) are easily seen to hold. 
Ad (6): If Adm(R), then R is reflexive and transitive, hence (U, R) is a 

Kripke frame for IpC; on the other hand, IpC is complete w.r.t. the class of 
finite Kripke trees (for a proof see [K]), and these are quickly transformed in 
structures with an order relation R satisfying Adm(R): just add branches, if 
necessary. Conclusion: Adm(R) satisfies (6). 0 

COROLLARY. If A, B E Form, then 

t-iA-rBe~-,Adm(R)+(rcA-+tcB). 

3.11. LEMMA. If A e Form, then KA ‘R tryRx~y+~A[y/x~]. 

PROOF. An immediate consequence of the following property of Kripke 
models for IpC: 

k/-A and Rkk’*k’It-A, 

which is proved by induction over the complexity of A. q 

From the substitution property of CPC follows: 

3.12. LEMMA. A=sB*C=sC[A/Bl. Cl 
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Now we know enough about K to define the translation T and the functions Q 
and u between f and Tf, and to prove their characteristics. 

IMPORTANT CONVENTION. From now on, our language Lr is supposed 
to contain as predicate variables only PI, P2, . . . (all unary) and R (binary). 

3.13. DEFINITION. i) The function t: Con+PRO is defined by: 

tA = KA AA&~(R). 

ii) We define T: Frag+FRAG as follows: 

T([C],)= [(tc: CE C> U{O)]p, where 

q zf ~(App) (=APRx. Vy(Rxy-+Py)~Adm(R)). 

REMARK. It is obvious that all predicate operators of a fragment Tf, f e Frag, 
are of type (n + 1, 1, . . . , 1,2, I), i.e. look like API... P,Rxl *A, A some formula; 
a direct consequence of this, and of the condition FV(A)C (~1, . . ..u.,} in the 
definition of predicates, is: all non-atomic formulae in Tf have at most one free 
variable, so R and I? are the only essentially binary predicates in Tf (as was 
announced in the remark at the end of 3.8). Without the condition on FI+I), 
this would not be the case; also the next lemma, which is crucial for the rest of 
our argument, would vanish. 

CONVENTION. A =A(S) and A =A(S,xi), where SE PR2 and A E Tf for some 
f e Flag, mean: A is not atomic and of the form c(A 1, . . . ,A,, S,Xi). 

It is clear that we have: 

(9) A E Tr, A =,4(S)* I--,A-+Adm(S). 

3.14. LEMMA. If A,BE Tfi A =A(St), B=B(S2), then 

I--,A+B*A= I or Sl=S.z=R or Sr=&=x. 

PROOF. R and R’ are the only binary predicates in Tf without vacuous 
abstraction, so with Lemma 3.10 we have R#Sl#&*A(S1)= I. 

Now let A f I, then Si =R or Sr =&. By (9), we have I-~A -+Adm(Sr) A 
AA&Z(&); together with Lemma 3.1 and A + I this gives St = S2. 0 

3.15. LEMMA. If A E Tf, then 

A =A(S,Xi)~A~~O(A,S,Xi). 

PROOF. By Lemma 3.14, we only have to consider S= R or S=J?. We treat 
S = R; S = R” goes analogous. First we observe 

(10) t--A’* I-A’[B/P], P a predicate variable, *B= #P. 
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Now 
A=KB[Al,..., A,,R/PI ,..., Pn,~l[xi~xllAA~~(~) 

GR KB[A I, . . . , An/P], . . . ,Pn][xi/xI] 

=R V~$!X;JJ+(KB[AI, . . . ,An/Pl, . . . ,PnlD/.~l) 
(by Lemma 3.11 and (10)) 

3R a@, R, Xi); 

since ~AhAdrn(R), F q (A,R,xi)-+Adm(R), we have A E q (A,R,x$ 0 

3.16. DEFINITION. Let f= [C] E Frag. We define the function @r: f+ Tf as 
follows: 
i) e&i) = q (Pi, 4x1); 

ii) if cECnCon”, Bl,..., BnEf, then 

er(c(Bl, . . . , Bn)) = (tc)(erB1, . . . , erBn, R,xI). 

The following lemma characterizes Q: 

3.17. LEMMA. AE[C]~*KA=RQA. 

PROOF. Induction over 6A: 
i) 6A = 0. Then A =pi for some i: KA =R KpiAAdm(R) = QA. 

ii) 6A>O. Suppose A=&(Bl,..., Bn), lj=Apl---pn*B~C, BI ,..., Bne[Clp, 
~BI, . . . . 6B, < 6A. Induction hypothesis: KBi =R QBi, i = 1, . . . , n. For simplicity 
we suppose n = 1. Now 

@A = (@)(s, , R, xl) (def. of Q) 

=rcBAAdm(R)(s1,R,xI) (def. of 7) 

=RK&%,R,X~) (def. Of =R) - 

= KB[$&/PI] (def. of connective) 

=R~B[a,/pl] (ind. hyp.) 

= KB[ VX~RXIXZ +KBI [x2/x1]/ Vxaxlxz +P1x2] (by definition of 
K, PI occurs only in subformulae of the form VxzRx1x2+ 

-+ PlX2) 

~RKB[KBI/~TX~RX~XZ~PIX~] (Lemma 3.11, 3.12) 

= K(B[BI/PI]) 

=K(&(&))=KA. 0 

(def. of K) 

Now we simply prove the property of Q which was mentioned in (3): 

3.18. LEMMA. If A,Bef, then 

I-~A+B*~QA-‘QB. 
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PROOF. ~iA~B=,~-cAdm(R)-*(KA-*rcB) (Lemma 3.12) 

* ~cA&z(Z?)-(,+4 -+QB) (Lemma 3.17) 

=) t--CQA-+QB (because of (9)). 0 

3.19. DEFINITION. Let f= [Cl, E Frag. 
We define of: Tf- {Rxixj: i#tj}-[CU { I ,T}], as follows: 

i) OPiXj=pi; 
ii) aRxixi= T; 

iii) o( q (B, S, xj)) = oB if B atomic and (S = R or S = @) 
orifB=B(R)andS=R 
or if B = B(R”) and S = R”, 

= I otherwise; 
iv) a((rc)(Bl,..., Bn,S,xj))=c(A1,..., An) if S=R orS=H 

= I otherwise, 
where A i = aBi if Bi atomic or Bi = Bi(S) 

= I otherwise, i=l,... ,n. 

A direct consequence of Definition 3.16 and 3.19 is 

3.20. LEMMA. AEf*o@A=A. 

PROOF. Simple induction over 6A: 
i) A atomic: aeA=aepi=a(O(P;,R,xl))=a(PiXl)=pi=A. 

ii) A=c(Al,..., A,): o~A=a((rc)(eAl,..., ~An,R,xl)=c(a~Al,..., aeA.)= 
=c(Al,..., A,) =A (the third equality is a consequence of the induction 
hypothesis). 0 

So G is a left inverse of Q. At the same time, it nearly is a right inverse: 

3.21. LEMMA. Let A = A(S,xl) E Tf. Then 
i) S=R*@oA=A; 

ii) S=H*@crA)[&R]=A; 
iii) R#S#?t*pA=A= I. 

PROOF. Induction over 6A; A = A(S), so 6A > 0. We only prove (i); (ii) goes 
analogous, and (iii) is trivial, for then Adm(S)= I. 

We distinguish two cases: 

a) A = Cl@, R,xI). 

a.1) B=Pix: then pA=~pi= q (Pi,R,xl)=A. 
a.2) B = Rxx: then pA = QT = Vy(Rxy+ T) AAdm(R) = Adm(R), and A = 
= Vy(Rxy-+ Ryy) A Adm(R) = T A Adm(R), for t- Adm(R)-, VyRyy, so @aA = 
=A. 
a.3) B=B(R): then, by induction hypothesis, pB=B; also (from the 
definition of cr) CJA = aB, so B = ~4; because of Lemma 3.15, B = q (B, R, x1) = 
=A, so pA=A. 
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a.4) B=B(S’,y), S’#R, so B=B’I\Adm(S’); now 

A = Vxz(Rxlxz+(B’AAdm(S’))[xz/y]) AAdm(R) 

= Vx2(Rx~x~+(B’[x2/y]~Adm(S’)AAdm(R)))AAdm(R) 

= Vx2(Rx1x2-+ I)AAdm(R) (by Lemma 3.10) 

= -Gxtixlx2AAdm(R) = I, for t-Adm(R)-r VXIZZXZRX~X~; 

alsoeaA=pl= I, so~oA=A. 

b) A = (rc)(& , . . . , B,,, R,xg). Without loss of generality, we suppose that IZ = 3, 
BI is atomic, Bz=B2(R) and B3 =B3(S’) with s’# R. Now 

A=(zc)(~l,&,B3~Adm(S’),R,x1)AAdrn(R) 

=(zc)(&,&, i,R,xl)AAdm(R) (here i =Lx- I) 
and 

@aA = e(c(oB 1, oB2, I)) 

= Q(c@, a&, I)) 0, =pi (if Bi = PiX) or T(if BI = Rxx)) 
-- 

= (zc)(ep, ed32, e I, R XI) 

=(rc)(Bi,&, i, R,xI) (ind. hyp. and def. of Q), 

so &luA=A. 0 

Now it is simple to prove the desired property of o: 

3.22. LEMMA. If fE/%g, A,BE Tt A =A(R,xl), B=B(R,xl), then: 

I-cA+B*+iOA+UB. 

PROOF. 

I--~A+B*~--,QuA+Q~B (Lemma 3.21) 

*c-,Adm(R)-+(rcaA-+~aB) (Lemma 3.17) 

*kiOA+DB (corollary of Lemma 3.10). 0 

Finally, we can prove the theorem we did all the work for: 

3.23. THEOREM. Let f= [C],E Frag. Then 
i) interpolation holds in f= interpolation holds in Tf; 

ii) interpolation holds in 7% interpolation holds in [CU {T, I}lp. 

PROOF. i) Suppose A,BE Tf, hA+B, PV(A)I~PV(B)#~#FFV(A)~FV(B). 

Case 1. A is atomic. Then B is atomic, for B not atomic implies B= B A 

AAdm(S) for some SE PR2, and then I-A+Adm(S) which, together with A 
atomic, yields A = I, so PI/(A) = 0. From A, B atomic and I-A+B follows 
A = B, so A is interpolant. 
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Case 2. B is atomic, A not. We have the following subcases: 
a) B = PiXj or B = RXiXi. Then B is interpolant. 
b) B = Rxixj, iz j. 
b.1) A =A(R,Xj). Then I-A*ZJJVXRX~. But A =Ar\Ah(R), SO t-A-+ 
-+ VjG’xl Rxy; hence A = I. A is not atomic, so A = c(A 1, . . . , An, R, Xi) for 
some CE C. Now 

-- 
Ao~~c(Rxx, . . . , RXX, AXJ’ l RXX, Xj) 

is an interpolant, for Ao=Adm(Lxy* Rxx) = I . 
b.2) A =A(R,xi). Then I-A + V’yRXiy. Together with I-A +( VyRXiy+A[y/Xi]) 
(a consequence of Lemma 3.15), this gives I-A + VXiA, which yields even 
t-A -+ VXiyRXiy; since A =A AA&Z(R) and I-A&Z(R)-+ VxZy1 Ryx, we now 
get A = I, and Ao is interpolant. 
b.3) A =A(l?,xj). Analogous to (b.2). 
b.4) A =A(@,xi). Analogous to (b.1). 
b.5) A =A@), R # S#R. Then A = I and Ao is interpolant. 

Cuse3. A =A(Sl,xi), B=B(&,x). According to Lemma 3.14, there are three 
possibilities: 
a) SI = S2= R. We take for simplicity i= 1 (i# 1 requires some substitution). 
kcA-+B, hence, with Lemma 3.22, FiOA+OB. Let IE f be an interpolant of 
this last implication. Then (Lemma 3.18) IYQOA+QI and I-~QI-+Q~B. Now 
Lemma 3.21 says QOA =A, @oB= B, so ~1 is interpolant for hA -+B. 
b) SI = &=x. Analogous to (a). 
c) A E I . Then AO is interpolant. 

ii) SupposeA,BE[CU{T, I}lp, t-iA+B, PV(A)flPV(B)#0. 

Case 1. A (or B) is atomic. Then A (or B) is interpolant. 

Case 2. A nor B is atomic. By Lemma 3.18, ä QA--+QB. Let ZE Tf be an 
interpolant of this last implication. Then I= I (and I is interpolant for 
A+B), or I is not atomic (for c-,Z+QB, so I--cI-+Adm(R)). In this last case, 
I-ia~A--+aI and I-iOI-toeB, because of Lemma 3.22. But (Lemma 3.20) 
a@A =A, a@B= B, hence aI is interpolant for A -+B. 0 

COROLLARY. There are 2ko fragments of CPC for which interpolation fails. 

PROOF. Follows immediately from Theorem 2.18 and 3.23(ii). •1 
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