$/$
university of groningen

University of Groningen

The interpolation theorem in fragments of logics

Renardel de Lavalette, G.R.

Published in:
Indagationes Mathematicae

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1981

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Renardel de Lavalette, G. R. (1981). The interpolation theorem in fragments of logics. Indagationes Mathematicae, 43, 71-86.

[^0]Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

The interpolation theorem in fragments of logics

by G.R. Renardel de Lavalette
Mathematisch Instituut, Universiteit van Amsterdam, Postbus 20239, 1000 HE Amsterdam, the Netherlands

Communicated by Prof. A.S. Troelstra at the meeting of April 26, 1980

Abstract

In the first part of this paper, we prove that there are continuously many fragments of intuitionistic propositional calculus ($\mathbf{I p C}$) which fail to have the interpolation property, thereby extending a result of J.I. Zucker. Our proof makes use of the Rieger-Nishimura lattice. The second part is devoted to transferring this result to fragments of classical predicate calculus (CPC): this is done by giving a translation T of fragments of $\mathbf{I p C}$ in fragments of CPC which preserves the interpolation property.

1. INTRODUCTION

The Interpolation Theorem for CPC (classical predicate calculus) has been stated and proved for the first time by Craig [Cr]. Schütte [Sch] gives a proof for IPC (intuitionistic predicate calculus). Since then, the Interpolation Theorem (IT for short) has been shown to hold or to fail in quite a lot of logics (modal, higher-order, many-sorted, etc). There is an extensive literature on the subject which we shall not attempt to survey here.

In this paper, we are only interested in the IT in fragments of propositional and predicate logic. Ville proved that the IT holds in any fragment of $\mathbf{C p C}$ (\mathbf{p} for propositional); see [$\mathrm{K} \& \mathrm{~K}$], Chapter 1, Exercises. Zucker [Z] gives an example of a fragment of IpC for which interpolation fails; this was the starting-point for our investigations which led to the present paper.

In Section 2 we extend Zucker's result in that we give a set of $2^{\mathrm{N}_{0}}$ fragments of IpC for which the IT fails. Section 3 is devoted to transferring this to fragments
of CPC: we define a translation T which maps every fragment of IpC on one of CPC, preserving the IT in both directions.

I wish to thank Prof. Troelstra and Jeff Zucker for interesting me in this subject and for their comments on earlier versions of this paper.

2. $2^{x_{0}}$ FRAGMENTS OF INTUITIONISTIC PROPOSITIONAL LOGIC FOR WHICH INTERPOLATION FAILS

2.1. We start introducing some notation for this and the next section. For propositional logic, we use the language L_{0}, containing the connectives $\wedge, \vee, \rightarrow$, the propositional constants \perp and T , and $\boldsymbol{V}=\left\{p_{1}, p_{2}, \ldots\right\}$, the set of propositional variables; p, q, r, q_{1}, \ldots are metavariables for elements of \boldsymbol{V}.

Formulae are defined as usual. Form is the set of all formulae of $\boldsymbol{L}_{0} . \vdash_{c}\left(\vdash_{i}\right)$ denote classical (intuitionistic) derivability, \equiv_{c} and \equiv_{i} are used for derivable equivalence; we drop the subscript if that causes no confusion.

If A is a formula of some logic, then $P V(A)$ is the set of predicate or propositional variables occurring in A; similar for $F V$ (free individual variables) and $B V$ (bound individual variables).
$A[B / C]$ stands for the formula A^{\prime} which is formed by substituting B for every occurrence of C in A.
2.2. DEFINITION. i) If $A \in$ Form, $P V(A) \subset\left\{q_{1}, \ldots, q_{n}\right\}, n \geq 0, q_{1}, \ldots, q_{n}$ all different, then $\lambda q_{1} \cdots q_{n} \cdot A$ is a propositional (n-ary) connective abstracted from A.
ii) Con (Con ${ }^{n}$) is the set of (n-ary) connectives.
iii) If $c \in \operatorname{Con}^{n}, c=\lambda q_{1} \cdots q_{n} \cdot A$ and $B_{1}, \ldots, B_{n} \in$ Form, then

$$
c\left(B_{1}, \ldots, B_{n}\right)_{\operatorname{def}}^{=} A\left[B_{1}, \ldots, B_{n} / q_{1}, \ldots, q_{n}\right] .
$$

2.3. DEFINITION. i) Let $\boldsymbol{C} \subset$ Con. We define the propositional fragment $[\boldsymbol{C}]$ as the smallest subset of Form satisfying:
a) $V \subset[C]$, and
b) if $c \in C \cap C^{n} n^{n}$ and $A_{1}, \ldots, A_{n} \in[C]$, then $c\left(A_{1}, \ldots, A_{n}\right) \in[C]$.

We shall often write $\left[c_{1}, \ldots, c_{n}\right]$ for $\left[\left\{c_{1}, \ldots, c_{n}\right\}\right]$.
ii) Frag is the set of propositional fragments.
iii) If $\boldsymbol{f}, \boldsymbol{g} \in \operatorname{Frag}$ then \boldsymbol{f} and \boldsymbol{g} are called equivalent $(\boldsymbol{f} \equiv \boldsymbol{g})$ iff $\forall A \in \boldsymbol{f} \underset{\sim}{ } B \in \boldsymbol{g} A \equiv B$ and $\forall B \in g \not{ }_{g}^{\exists} A \in f B \equiv A$.

As a simple consequence of the Interpolation Theorem for $\mathbf{I p C}$, we see that the following holds:
2.4. THEOREM. Let $A, B \in[\wedge, \vee, \rightarrow, \perp], P V(A) \cap P V(B) \neq \emptyset, \vdash A \rightarrow B$. Then there is an $I \in[\wedge, \vee, \rightarrow, \perp]$ such that:
i) $\vdash A \rightarrow I, \vdash I \rightarrow B$;
ii) $P V(I) \subset P V(A) \cap P V(B)$.

Briefly: interpolation holds for $[\wedge, \vee, \rightarrow, \perp]$.
More generally, we say that interpolation holds for some fragment $f \in$ Frag iff Theorem 2.4 holds when $[\wedge, \vee, \rightarrow, \perp$] is replaced by f.

REMARK. Theorem 2.4 remains true if we skip the condition $P V(A) \cap$ $\cap P V(B) \neq \emptyset$. The reason we added it lies in the fact that in fragments without nullary connectives, formulae A with $P V(A)=\emptyset$ do not exist.
2.5. Zucker $[Z]$ shows that interpolation fails for $[\delta, \wedge, \rightarrow, \perp]$, where $\delta=\lambda p q r \cdot(p \vee \neg p) \wedge(p \rightarrow q) \wedge(\neg p \rightarrow r)$. He gives two proofs, the first one being syntactical, the second one (due to A.S. Troelstra) using the theory of (finite) Heyting algebras. We shall generalize the method of this second proof to obtain the result mentioned in the title of this section. For information about Heyting algebras we refer to Dummett [D, 5.2].

REMARK. We use the same names for the operators of a Heyting algebra as for the connectives they correspond with: however, it will always be clear from the context which meaning of $\wedge, \vee, \rightarrow$ is intended; idem for \perp and T. As to newly defined connectives, we suppose corresponding operators for Heyting algebras to be defined, too.

2.6. We now sketch Troelstra's proof of Zucker's theorem.

We have

$$
\exists p \delta\left(p, q_{1}, q_{2}\right) \equiv q_{1} \vee q_{2} \equiv \forall r\left(\left(q_{1} \rightarrow r\right) \wedge\left(q_{2} \rightarrow r\right)\right) \rightarrow r ;
$$

hence

$$
\begin{equation*}
\vdash \delta\left(p, q_{1}, q_{2}\right) \rightarrow\left(\left(\left(q_{1} \rightarrow r\right) \wedge\left(q_{2} \rightarrow r\right)\right) \rightarrow r\right) \tag{1}
\end{equation*}
$$

and if $I=I\left(q_{1}, q_{2}\right)$ is an interpolant for (1), then $I \equiv q_{1} \vee q_{2}$, so it suffices to demonstrate the undefinability of \vee in $[\delta, \wedge, \rightarrow, \perp]$.

Consider the following Heyting algebra, given as a partially ordered system:

$$
\perp<a \wedge b<a, b<a \vee b<\mathrm{T} .
$$

The set $\{\perp, a \wedge b, a, b, \mathrm{~T}\}$ is closed under δ, \wedge and \rightarrow, so \vee is not definable in $[\delta, \wedge, \rightarrow, \perp]$.
2.7. For the generalization, we shall make use of the Rieger-Nishimura lattice: this is the Heyting algebra H_{R} with $X_{R}=\left\{\perp=a_{-1}, a_{0}, a_{1}, \ldots, b_{0}, b_{1}, \ldots, \mathrm{~T}\right\}$ as set of elements, where

$$
\begin{aligned}
& a_{n}=a_{n-1} \vee b_{n-1}, \quad n=1,2, \ldots, \\
& b_{n}=a_{n} \rightarrow a_{n-1}, \quad n=0,1,2, \ldots .
\end{aligned}
$$

Rieger $[R]$ was the first one to describe H_{R}; better accessible and more informative is Nishimura [N].
H_{R} is the free Heyting algebra over one generator: this means that if $A(p)$, $B(p)$ are propositional formulae in one variable, then

$$
A(p) \equiv B(p) \Leftrightarrow A\left(a_{0}\right)=B\left(a_{0}\right) .
$$

For a proof, see $[\mathrm{N}]$; there one can also find a list of all equalities of the form $a \wedge b=c, a \vee b=c$ and $a \rightarrow b=c$ which hold in \boldsymbol{H}_{R}.

We introduce the connectives

$$
\begin{aligned}
& \pi_{-1}=\underset{\text { def }}{=} \lambda p \cdot \perp ; \quad \pi_{0}=\lambda p \cdot p ; \\
& \pi_{n+1} \underset{\text { def }}{=} \lambda p \cdot \pi_{n}(p) \vee\left(\pi_{n}(p) \rightarrow \pi_{n-1}(p)\right), \quad n=0,1,2, \ldots .
\end{aligned}
$$

2.8. Lemma. Let $m \in \mathbb{N}$. Then:
i) $\pi_{m}\left(a_{n}\right)=a_{n}$ if $m=1$ and $n \geq 1$

$$
\begin{aligned}
& =a_{m} \text { if } n=0 \\
& =\mathrm{T} \text { if } n=-1 \text { or }(m \geq 2 \text { and } n \geq 1)
\end{aligned}
$$

ii) $\pi_{m}\left(b_{n}\right)=a_{2}$ if $(m=1$ or $m=2)$ and ($n=0$ or $n=1$)

$$
=b_{n} \text { if } m=1 \text { and } n \geq 2
$$

$$
=\mathrm{T} \text { if } m \geq 3 \text { or }(m=2 \text { and } n \geq 3) \text {; }
$$

iii) $\pi_{m}(\mathrm{~T})=\mathrm{T}$.

PROOF. We only prove (i); (ii) can be done the same way, and (iii) is trivial.
$m=1$ and $n \geq 1: \pi_{1}\left(a_{n}\right)=a_{n} \vee\left(a_{n} \rightarrow a_{-1}\right)=a_{n} \vee a_{-1}=a_{n} \vee \perp=a_{n}$.
$n=0: \pi_{0}\left(a_{0}\right)=a_{0}, \pi_{1}\left(a_{0}\right)=a_{0} \vee\left(a_{0} \rightarrow a \quad 1\right)=a_{1} ;$
$\pi_{m+1}\left(a_{0}\right)=\pi_{m}\left(a_{0}\right) \vee\left(\pi_{m}\left(a_{0}\right) \rightarrow \pi_{m-1}\left(a_{0}\right)\right)$, so if $\pi_{m}\left(a_{0}\right)=a_{m}$, $\pi_{m-1}\left(a_{0}\right)=a_{m-1}$, then $\pi_{m+1}\left(a_{0}\right)=a_{m} \vee\left(a_{m} \rightarrow a_{m-1}\right)=a_{m+1}$; with induction, we now get $\pi_{m}\left(a_{0}\right)=a_{m}$.
$n=-1: \pi_{1}\left(a_{-1}\right)=\perp \vee(\perp \rightarrow \perp)=\mathrm{T}$;
$\pi_{m+1}\left(a_{-1}\right)=\pi_{m}\left(a_{-1}\right) \vee\left(\pi_{m}\left(a_{-1}\right) \rightarrow \pi_{m-1}\left(a_{-1}\right)\right)$, so if $\pi_{m}\left(a_{-1}\right)=\mathrm{T}$, then $\pi_{m+1}\left(a_{-1}\right)=\mathrm{T}$; with induction, we get $\pi_{m}\left(a_{-1}\right)=\mathrm{T}$.
$m \geq 2$ and $n \geq 1: \pi_{2}\left(a_{n}\right)=\pi_{1}\left(a_{n}\right) \vee\left(\pi_{1}\left(a_{n}\right) \rightarrow \pi_{0}\left(a_{n}\right)\right)=a_{n} \vee\left(a_{n} \rightarrow a_{n}\right)=\mathrm{T}$;
as before, we have by induction $\pi_{m}\left(a_{n}\right)=\mathrm{T}$.
2.9. Lemma. Suppose $a, b, c \in X_{R}, c \notin\{a, b, T\}$. Then $a \wedge b=c, a \rightarrow b=c$ or $\pi_{n}(a)=c$ only in the following cases:
i) $\begin{aligned} b_{n} & =a_{n} \rightarrow a_{n-1}, \\ b_{n} & =b_{n-1} \rightarrow a_{n-1}, \\ b_{n} & =b_{n-1} \rightarrow a_{n-2}, \\ b_{n} & =b_{n+1} \rightarrow a_{n-1} ;\end{aligned}$
iii) $a_{n}=\pi_{n}\left(a_{0}\right)$,
$a_{2}=\pi_{1}\left(b_{0}\right)$,
$a_{2}=\pi_{1}\left(b_{1}\right)$,
ii) $a_{n}=a_{n+1} \wedge b_{n+1}$,
$a_{2}=\pi_{2}\left(b_{0}\right)$,
$a_{n}=b_{n+1} \wedge b_{n+2} ;$

PROOF. Straightforward.
From now on, we consider in this section only $C \in C o n$ of the form $\boldsymbol{C}_{0}=\{\wedge, \rightarrow, \perp\} \cup\left\{\pi_{n}: n \in \mathbb{\}}\right.$, where $\mathbb{\mathbb { C }} \mathbb{N}$. We shall prove that there are many non-equivalent fragments of the form [C_{0}].
2.10. definition. Let $\boldsymbol{C} \in \boldsymbol{C o n}, \boldsymbol{H}$ a Heyting algebra, $S \subset X_{H}$. Then S^{c}, the \boldsymbol{C} closure of S in H, is the smallest set containing S and closed w.r.t. the connectives of \boldsymbol{C}.

For $\left\{a_{0}\right\}^{c}$ we shall write $H_{R}(C)$.
2.11. lemma. Define $\square(n)=\mathbb{N}-\{n, n+1\}, n=1,2, \ldots$. Then
i) $H_{R}\left(\boldsymbol{C}_{1(n)}\right)=X_{R} \quad$ if $n=2$,
$=X_{R}-\left\{a_{n}, a_{n+1}, b_{n+2}\right\}$ if $n \neq 2$.
ii) $H_{R}\left(C_{\mathbb{N}-\{1,23\}}\right)=X_{R}-\left\{a_{1}, a_{2}, a_{3}, b_{3}, b_{4}\right\}$.

PROOF. (i) \supset : If $i \neq n, n+1$, then $a_{i}=\pi_{i}\left(a_{0}\right) \in H_{R}\left(\boldsymbol{C}_{1(n)}\right)$; if $i \neq n, n+1, n+2$, then $b_{i}=a_{i} \rightarrow a_{i-1} \in \boldsymbol{H}_{R}\left(\boldsymbol{C}_{1(n)}\right)$; idem for $b_{n}\left(=b_{n-1} \rightarrow a_{n-1}\right)$ and $b_{n+1}\left(=b_{n} \rightarrow\right.$ $\left.\rightarrow a_{n-1}\right)$. If $n=2$, then $a_{2}=\pi_{1}\left(b_{0}\right) \in H_{R}\left(C_{0(2)}\right)$; idem for $b_{4}=b_{3} \rightarrow a_{2}$ and $a_{3}=b_{4} \wedge a_{4}$.

C: Let, for $x \in X_{R}, d(x)$ be the minimal number of connectives needed to define x (using only a_{0} and elements of $\boldsymbol{C}_{0(n)}$) if that is possible, else ∞. We observe that $a_{n}=a_{n+1} \wedge b_{n+1}=b_{n+1} \wedge b_{n+2}$, so we only have to prove $d\left(a_{n}\right)=\infty$ if $n \neq 2$.

Suppose $d\left(a_{n}\right)<\infty, n \neq 2$. By Lemma 2.9, a_{n} can only be obtained from b_{n+1} and (a_{n+1} or b_{n+2}), so

$$
\begin{equation*}
d\left(a_{n+1}\right)<d\left(a_{n}\right) \text { or } d\left(b_{n+2}\right)<d\left(a_{n}\right) \tag{1}
\end{equation*}
$$

To obtain a_{n+1}, we need (at least) b_{n+2}, hence

$$
\begin{equation*}
d\left(b_{n+2}\right)<d\left(a_{n+1}\right) \tag{2}
\end{equation*}
$$

finally, a_{n+1} or a_{n} is required for b_{n+2}, so

$$
\begin{equation*}
d\left(a_{n}\right)<d\left(b_{n+2}\right) \text { or } d\left(a_{n+1}\right)<d\left(b_{n+2}\right) \tag{3}
\end{equation*}
$$

Now (1), (2) and (3) give contradiction, so $d\left(a_{n}\right)=\infty$.
(ii): analogous.

The following lemma is quite trivial:
2.12. Lemma. If $\mathbb{B} \subset \mathcal{J}$, then $\boldsymbol{H}_{R}\left(\boldsymbol{C}_{0}\right) \subset \boldsymbol{H}_{R}\left(\boldsymbol{C}_{\mathfrak{J}}\right)$.

The last two lemmata can be combined to get

2.13. Lemma. Define

$$
\mathfrak{F}=\{\mathbb{\mathbb { N }}: 1 \in \mathbb{\|} \Leftrightarrow 2 \in \mathbb{\square} \text { and } \forall n \in \mathbb{N}(n \notin \mathbb{\mathbb { C }} \Rightarrow(n-1 \notin \mathbb{0} \text { or } n+1 \notin \mathbb{0}))\} .
$$

Then $\forall \mathbb{V} \in \mathfrak{F} \forall n \in \mathbb{N}\left(n \in \mathbb{\|} \Leftrightarrow a_{n} \in H_{R}\left(C_{0}\right)\right)$.
PROOF. \Rightarrow : trivial.
\Leftrightarrow : Suppose $n \notin \mathbb{\mathbb { l }}$. Now $n+1 \notin \mathbb{Z}$ or $n-1 \notin \mathbb{\mathbb { C }}$, so $\mathbb{C} \mathbb{N}-\{k, k+1\}$ with $k=n-1$ or $k=n$. We distinguish two cases:
i) $k=2$. Then, because of $1 \in \mathbb{\|} \Leftrightarrow 2 \in \mathbb{D}$, even $\subseteq \subset \mathbb{N}-\{1,2,3\}$, so (applying Lemma 2.11 (ii) and Lemma 2.12) $a_{n} \notin \boldsymbol{H}_{R}\left(\boldsymbol{C}_{1}\right)$.
ii) $k \neq 2$. Now $a_{n} \notin \boldsymbol{H}_{R}\left(\boldsymbol{C}_{0}\right)$ be Lemma 2.11(i) and Lemma 2.12.

COROLLARY. If $\mathbb{\|}, \mathbb{J} \in \mathfrak{J}, \| \neq \rrbracket$, then $\left[\boldsymbol{C}_{\mathbb{}}\right] \neq\left[\boldsymbol{C}_{\mathbb{J}}\right]$.
We take a subset of $\mathfrak{\xi}$:

$$
\mathfrak{S}_{\text {def }}^{=}\{0 \in \mathfrak{F}: \exists n \in \mathbb{N} n, n+1, n+2 \in 0\},
$$

and show that interpolation fails for all fragments corresponding with elements of \mathfrak{Y}^{\prime}; to do this, we need the next lemma.
2.14. Lemma. Let $X=\left\{\perp, a_{n}, a_{n+1}, b_{n+1}, b_{n+2}, b_{n+3}, \mathrm{~T}\right\}, n \in \mathbb{N}$. Then $X^{c_{l}}=X$ for all $\llbracket \subset \mathbb{N}$.

PROOF. Simple, using Lemma 2.9.
2.15. THEOREM. If $\mathbb{\rrbracket} \in \mathcal{Y}^{\prime}$, then interpolation fails for $\left[\boldsymbol{C}_{\bullet}\right]$.

Proof. Let $\mathbb{\square} \in \Im^{\prime}, n \in \mathbb{N}, n, n+1, n+2 \in \mathbb{D}$. Define

$$
\begin{aligned}
& \delta_{n}\left(p, q_{1}, q_{2}\right)=\pi_{n+2}(p) \wedge\left(\pi_{n+1}(p) \rightarrow q_{1}\right) \wedge\left(\left(\pi_{n+1}(p) \rightarrow \pi_{n}(p)\right) \rightarrow q_{2}\right), \\
& \varrho\left(q_{1}, q_{2}, r\right)=\left(\left(q_{1} \rightarrow r\right) \wedge\left(q_{2} \rightarrow r\right)\right) \rightarrow r .
\end{aligned}
$$

Now

$$
\vdash \delta_{n}\left(p, q_{1}, q_{2}\right) \rightarrow q_{1} \vee q_{2},
$$

because $\pi_{n+2}(p)=\pi_{n+1}(p) \vee\left(\pi_{n+1}(p) \rightarrow \pi_{n}(p)\right)$, and

$$
\vdash q_{1} \vee q_{2} \rightarrow \varrho\left(q_{1}, q_{2}, r\right),
$$

so we have

$$
\begin{equation*}
\vdash \delta_{n}\left(p, q_{1}, q_{2}\right) \rightarrow \varrho\left(q_{1}, q_{2}, r\right) . \tag{1}
\end{equation*}
$$

Suppose $t\left(q_{1}, q_{2}\right)$ is an interpolant for (1). We shall show that $t\left(q_{1}, q_{2}\right)$ cannot be in $\left[\boldsymbol{C}_{1}\right]$, by considering \boldsymbol{H}_{R} with the valuation Val $_{H}$, (partially) defined by:

$$
\begin{array}{ll}
\operatorname{Val}_{H}(p)=a_{0}, & \operatorname{Val}_{H}\left(q_{2}\right)=b_{n+1}, \\
\operatorname{Val}_{H}\left(q_{1}\right)=a_{n+1}, & \operatorname{Val}_{H}(r)=a_{n+2} .
\end{array}
$$

This gives

$$
\begin{aligned}
& \operatorname{Val}_{H}\left(\delta_{n}\left(p, q_{1}, q_{2}\right)\right)=\delta_{n}\left(a_{0}, a_{n+1}, b_{n+1}\right)=\pi_{n+2}\left(a_{0}\right) \wedge\left(\pi_{n+1}\left(a_{0}\right) \rightarrow a_{n+1}\right) \wedge \\
& \wedge\left(\left(\pi_{n+1}\left(a_{0}\right) \rightarrow \pi_{n}\left(a_{0}\right)\right) \rightarrow b_{n+1}\right)=a_{n+2} \wedge\left(a_{n+1} \rightarrow a_{n+1}\right) \wedge \\
& \wedge\left(b_{n+1} \rightarrow b_{n+1}\right)=a_{n+2} \wedge \mathrm{~T} \wedge \mathrm{~T}=a_{n+2}, \\
& \operatorname{Val}_{H}\left(\varrho\left(q_{1}, q_{2}, r\right)\right)=\varrho\left(a_{n+1}, b_{n+1}, a_{n+2}\right)=\left(\left(a_{n+1} \rightarrow a_{n+2}\right) \wedge\right. \\
& \left.\wedge\left(b_{n+1} \rightarrow a_{n+2}\right)\right) \rightarrow a_{n+2}=(\mathrm{T} \wedge \mathrm{~T}) \rightarrow a_{n+2}=a_{n+2} ;
\end{aligned}
$$

hence $\operatorname{Val}_{H}\left(l\left(q_{1}, q_{2}\right)\right)=l\left(a_{n+1}, b_{n+1}\right)=a_{n+2}$, which, together with Lemma 2.14, gives $\boldsymbol{l}\left(q_{1}, q_{2}\right) \notin\left[\boldsymbol{C}_{0}\right]$.

COROLLARY. There are $2^{\mathrm{N}_{0}}$ non-equivalent fragments of IpC for which interpolation fails.

PROOF. $\mathfrak{S}^{\prime}=2^{x_{0}}$, for $\{\{1,2,3\} \cup\{n+3: n \in \mathbb{\square}\}: \llbracket \subset \mathbb{N}\} \subset \mathfrak{S}^{\prime}$.
REMARK. All fragments considered here have the definability property, which states that implicit definability implies explicit definability. This follows from Kreisel's [Kr] and the fact that $\mathrm{T}(=\perp \rightarrow \perp)$ is definable in our fragments.

3. INTERPOLATION IN FRAGMENTS OF CLASSICAL PREDICATE LOGIC

3.1. First some preliminaries, extending those of 2.1 for predicate logic. L_{1} is a language for predicate logic, containing $\wedge, \vee, \rightarrow, \forall, \exists, \perp, \mathrm{T}$, the individual variables x_{1}, x_{2}, \ldots (metavariables $x, y, z, y_{1}, y_{2}, \ldots$) and predicate variables P_{1}, P_{2}, \ldots (metavariables $P, Q, R, Q_{1}, Q_{2}, \ldots$); ${ }^{\#} P$ is the 'arity' of P. If we write $P y_{1} \cdots y_{n}$, we suppose ${ }^{\#} P=n$.

Formulae are defined as usual; together they form the set FORM.
For convenience, we shall suppose FORM to contain only formulae A for which $F V(A) \cap B V(A)=\emptyset$.

When writing $A[B / C]$, we presume $F V(B) \cap B V(A) \subset F V(C)$.
If $x \in B V(A)$ (so $x \notin F V(A)$), $y \notin B V(A) \cup F V(A)$, then we consider $A[y / x]$ to be equal to A. We shall use this convention when, in manipulating with formulae and variables, a formulae A with $x \in B V(A)$ comes into the scope of a quantor $\forall x$, or is subjected to the substitution $[x / y]$; then we tacitly take $A[z / x]$ ($z \notin B V(A) \cup F V(A)$) instead of A.
3.2. DEFINITION. i) If $A \in F O R M, F V(A) \subset\left\{y_{1}, \ldots, y_{n}\right\}, n \geq 0, y_{1}, \ldots, y_{n}$ all different, then $\lambda y_{1} \cdots y_{n} \cdot A$ is an n-ary predicate abstracted from A.
ii) $P \boldsymbol{R}^{n}$ is the set of n-ary predicates. If $B \in P \boldsymbol{R}^{n}$, then ${ }^{\#} B={ }_{\text {def }} n$.
iii) If $\lambda y_{1} \cdots y_{n} \bullet A \in P R^{n}$, then

$$
\lambda y_{1} \cdots y_{n} \bullet A\left(z_{1}, \ldots, z_{n}\right)=A\left[z_{i} / y_{i}\right]_{i=1, \ldots, n} .
$$

When P is an n-ary predicate variable we identify P and $\lambda x_{1} \cdots x_{n} \cdot P x_{1} \cdots x_{n}$. We shall use the notation $A[B / C]$ also for substitution of the n-ary predicate B for the n-ary predicate C in A.
3.3. DEFINITION. i) If $A \in F O R M, P V(A) \subset\left\{Q_{1}, \ldots, Q_{k}\right\}, F V(A) \subset\left\{y_{1}, \ldots, y_{n}\right\}$, $k, n, \geq 0$ and $Q_{1}, \ldots, Q_{k}, y_{1}, \ldots, y_{n}$ all different, then $\lambda Q_{1} \cdots Q_{k} y_{1} \cdots y_{n} \cdot A$ is a predicate operator of type $\left(k,{ }^{\#} Q_{1}, \ldots,{ }^{\#} Q_{k}, n\right)$ obtained from A.
ii) $P R O$ is the set of predicate operators.
iii) If $c=\lambda Q_{1} \cdots Q_{k} y_{1} \cdots y_{n} \cdot A \in \operatorname{PRO}, B_{i} \in \operatorname{PR}^{*} Q_{i}(i=1, \ldots, k)$, then

$$
c\left(B_{1}, \ldots, B_{k}, z_{1}, \ldots, z_{n}\right) \underset{\text { def }}{=} A\left[B_{1}, \ldots, B_{k} / Q_{1}, \ldots, Q_{k}\right]\left[z_{i} / y_{i}\right]_{i=1, \ldots, n}
$$

3.4. DEFINITION. i) To every $A \in F O R M$, we associate the predicate $\bar{A}=\operatorname{def} \lambda y_{1} \cdots y_{n} \cdot A$, where $\left\{y_{1}, \ldots, y_{n}\right\}=F V(A), y_{1}, \ldots, y_{n}$ are all different and ordered according to their leftmost occurrence in A.
ii) To every $A \in F O R M$, we associate the predicate operator $A=$ def $={ }_{\text {def }} \lambda Q_{1} \cdots Q_{k} y_{1} \cdots y_{n} \cdot A$, where $\left\{Q_{1}, \ldots, Q_{k}\right\}=P V(A),\left\{y_{1}, \ldots, y_{n}\right\}=F V(A)$, Q_{1}, \ldots, Q_{k} resp. y_{1}, \ldots, y_{n} are all different and ordered according to their leftmost occurrence in A.

From now on, we suppose every connective or predicate operator c to be equivalent (disregarding the order of abstracted variables) to \boldsymbol{A} for some formulae A (unless c has type ($k, 0, \ldots, 0, n$) with $n \neq 0$). An example may justify this: if $\underline{A}=\lambda Q_{1} \cdots Q_{k} y_{1} \cdots y_{n} \cdot A$, then $\lambda Q_{1} \cdots Q_{i} Q Q_{i+1} \cdots Q_{k} y_{1} \cdots y_{n} \cdot A=\underline{A}^{\prime}$, where A^{\prime} is obtained from A by replacing the leftmost occurrence of Q_{i} by $Q_{i} \wedge \forall x(Q x \cdots x \rightarrow Q x \cdots x)$.
3.5. DEFINITION. Let $C \subset C O n \cup P R O$. We define the fragment $[C]$ as the minimal set of FORM satisfying:
a) if P is a predicate variable, ${ }^{\#} P=n$, then $P y_{1} \cdots y_{n} \in[C]$;
b) if $c \in \boldsymbol{C} \cap \boldsymbol{C o n}^{n}$ and $A_{1}, \ldots, A_{n} \in[\boldsymbol{C}]$, then $c\left(A_{1}, \ldots, A_{n}\right) \in[\boldsymbol{C}]$;
c) if A_{1}, \ldots, A_{k} are predicates abstracted from formulae of $[C]$ and if $c \in C \cap P R O$ is a predicate operator of type $\left(k,{ }^{\#} A_{1}, \ldots,{ }^{\#} A_{k}, n\right)$, then $c\left(A_{1}, \ldots, A_{k}, y_{1}, \ldots, y_{n}\right) \in[C]$.

If necessary, we make distinction between fragments of propositional and predicate logic by writing [$]_{p}$ and [] $]_{p}$, respectively.
FRAG is the set of fragments of predicate logic.
REMARK. It is possible to give a more general definition of fragments of predicate logic, namely by dropping the condition $F V(A) \subset\left\{y_{1}, \ldots, y_{n}\right\}$ in the definition of predicates (Definition 3.2). With such a definition, we get

$$
\begin{equation*}
\text { FORM }=[\neg, \wedge, \lambda P \cdot \forall x P x] ; \tag{1}
\end{equation*}
$$

in the present situation, however, the right-hand side of (1) only contains those closed formulae in which no nested quantification occurs; but we do have

$$
\text { FORM } \equiv\left[\{\neg, \wedge\} \cup\left\{\lambda P_{n} x_{1} \cdots x_{n-1} \cdot \forall x_{n} P_{n} x_{1} \cdots x_{n}: n \in \mathbb{N}\right\}\right] .
$$

See also the remark after Definition 3.13.
For some proofs which proceed by formula induction, we need a measure for the complexity of a formula in a fragment.
3.6. DEFINITION. Let \boldsymbol{f} be some fragment, $\boldsymbol{f}=[\boldsymbol{C}]$.

We define $\delta_{f}: f \rightarrow \mathbb{N} \cup\{0\}$ as follows:
a) $\delta_{f}(A)=0$ if A atomic;
b) if $c \in C$, then $\delta_{f}\left(c\left(A_{1}, \ldots, A_{k}, y_{1}, \ldots, y_{n}\right)\right)=\max \left\{\delta_{f}\left(A_{1}\right), \ldots, \delta_{f}\left(A_{k}\right)\right\}+1$.

CONVENTION. We write δ for δ_{f} if this can give no confusion; ditto for ϱ_{f} and σ_{f}, to be defined later.
3.7. DEFINITION. Let $\boldsymbol{F} \in \boldsymbol{F R A G}$. We say that interpolation holds in \boldsymbol{F} iff:
(2) $\left.\begin{array}{ll}A, B \in F \\ & \vdash_{c} A \rightarrow B \\ & P V(A) \cap P V(B) \neq \emptyset \\ & F V(A) \cap F V(B) \neq \emptyset\end{array}\right\} \Rightarrow I \in F$ with $\left\{\begin{array}{l}\vdash_{c}(A \rightarrow I) \wedge(I \rightarrow B) \\ P V(I) \subset P V(A) \cap P V(B) \\ F V(I) \subset F V(A) \cap F V(B)\end{array}\right.$

REMARK. For the reason why we added the condition $F V(A) \cap F V(B) \neq \emptyset$ in the premiss, see the remark at the end of 2.4 .
3.8. Now we set out to define the translation T.
T works roughly as follows: if $f \in \operatorname{Frag}$, then $T f \in \operatorname{FRAG}$, and there are functions $\varrho: f \rightarrow T f$ and $\sigma: T f \rightarrow f$ satisfying

$$
\begin{align*}
& A, B \in f, \vdash_{i} A \rightarrow B \Rightarrow \vdash_{c} \varrho A \rightarrow \varrho B, \tag{3}\\
& A, B \in T f, \vdash_{c} A \rightarrow B \Rightarrow \vdash_{i} \sigma A \rightarrow \sigma B .
\end{align*}
$$

To accomplish this, we need a function κ :Form \rightarrow FORM. A well-known candidate which appears to be fit for our purpose is defined by

$$
\begin{aligned}
& \kappa\left(p_{i}\right)=\forall x_{2}\left(R x_{1} x_{2} \rightarrow P_{i} x_{2}\right), i=1,2, \ldots ; \kappa \perp=\perp ; \kappa \mathrm{T}=\mathrm{T} ; \\
& \kappa(A \wedge B)=\kappa A \wedge \kappa B ; \kappa(A \vee B)=\kappa A \vee \kappa B ; \\
& \kappa(A \rightarrow B)=\forall x_{n}\left(R x_{1} x_{n} \rightarrow(\kappa A \rightarrow \kappa B)\left[x_{n} / x_{1}\right]\right), \text { where } n \text { is the smallest } \\
& \quad \text { index (of } x)>1 \text { not occurring in } \kappa A \rightarrow \kappa B .
\end{aligned}
$$

κ translates every formula A of $\mathbf{I p C}$ into a formula κA, containing unary predicate variables P_{i} for every p_{i} in A, one binary predicate variable R and one free variable $x_{1} ; \kappa A$ expresses that, if R is reflexive and transitive, then A is forced in node x_{1} of the Kripke model $K=\langle\boldsymbol{U}, R, \Vdash\rangle$, where \boldsymbol{U} is the universe over which our individual variables range and the forcing relation \Vdash is determined by

$$
x \Vdash p_{i}=P_{\text {def }} x, i=1,2, \ldots
$$

See Kripke [K] for more information. In the same article, IpC is proved to be complete w.r.t. reflexive and transitive Kripke models, which implies

$$
\begin{equation*}
\vdash_{i} A \rightarrow B \Leftrightarrow \vdash_{c} \forall x R x x \wedge \forall x y z(R x y \wedge R y z \rightarrow R x z) \rightarrow(\kappa A \rightarrow \kappa B), \tag{5}
\end{equation*}
$$

so we are well on our way to (3) and (4).
Two obstacles are still before us:

1) the condition upon R in the right-hand side of (5); this will be eliminated by putting it in the translation ϱ;
2) κ creates two new parameters for which there is no equivalent in the argument, viz. x_{1} and R. R in particular causes a lot of trouble in the fragment $T f$; to cope with it, we have to extend the condition $\operatorname{Adm}(R)$ on R in ϱ, and to
build up a machinery of definitions and lemmata before we can prove the desired result.

First we need a sentence $\operatorname{Adm}(R), R$ a binary predicate, satisfying:
(6) IpC is complete w.r.t. the class of Kripke frames $K=\langle U, R\rangle$ which satisfy $\operatorname{Adm}(R)$;

$$
\begin{align*}
& A d m(\lambda x y \cdot P x) \equiv A d m(\lambda x y \cdot P y) \equiv \perp \tag{7}\\
& A d m(R) \wedge A d m(\check{R}) \equiv \perp(\check{R} \underset{\text { def }}{=} \lambda x y \cdot R y x) \tag{8}
\end{align*}
$$

REMARK. The reasons we want $\operatorname{Adm}(R)$ to satisfy (6), (7), (8) are the following. We use $A d m$ in the predicate operators of the fragments $T f$ to enforce reflexiveness and transitivity of some binary predicate S. Now, if S is not essentially binary (i.e. S is obtained by vacuous abstraction), then (7) will cause formulae in which S is substituted in $A d m$ to collapse. It will appear that R and \check{R} are the only essentially binary predicates in $T f$; (8) reduces formulae in which R and \dot{R} both are substituted in (different instances of) $A d m$ to simpler ones.
3.9. DEFINITION.
i) $A d m(R)=_{\text {def }} \forall x R x x \wedge \forall x y z(R x y \wedge R y z \rightarrow R x z) \wedge \exists x \forall y R x y \wedge \forall x \exists y \neg R y x$.
ii) $A \equiv s B=\operatorname{def} \vdash_{c} A d m(S) \rightarrow(A \leftrightarrow B), S$ a binary predicate.
3.10. lemma. (6), (7), (8) hold for $A d m(R)$.

PROOF. (7), (8) are easily seen to hold.
Ad (6): If $A d m(R)$, then R is reflexive and transitive, hence $\langle U, R\rangle$ is a Kripke frame for $\mathbf{I p C}$; on the other hand, $\mathbf{I p C}$ is complete w.r.t. the class of finite Kripke trees (for a proof see [K]), and these are quickly transformed in structures with an order relation R satisfying $\operatorname{Adm}(R)$: just add branches, if necessary. Conclusion: $\operatorname{Adm}(R)$ satisfies (6).

COROLLARY. If $A, B \in$ Form, then

$$
\vdash_{i} A \rightarrow B \Leftrightarrow \vdash_{c} A d m(R) \rightarrow(\kappa A \rightarrow \kappa B) .
$$

3.11. LEMMA. If $A \in$ Form, then $\kappa A \equiv_{R} \forall y R x_{1} y \rightarrow \kappa A\left[y / x_{1}\right]$.

PROOF. An immediate consequence of the following property of Kripke models for IpC:

$$
k \Vdash A \text { and } R k k^{\prime} \Rightarrow k^{\prime} \Vdash-A
$$

which is proved by induction over the complexity of A.
From the substitution property of CPC follows:
3.12. Lemma. $A \equiv s B \Rightarrow C \equiv s C[A / B]$.

Now we know enough about κ to define the translation T and the functions ϱ and σ between \boldsymbol{f} and $T \boldsymbol{f}$, and to prove their characteristics.

IMPORTANT CONVENTION. From now on, our language L_{1} is supposed to contain as predicate variables only P_{1}, P_{2}, \ldots (all unary) and R (binary).
3.13. DEFINITION. i) The function $\tau: \operatorname{Con} \rightarrow \boldsymbol{P R O}$ is defined by:

$$
\tau \underline{A}=\underline{\kappa A \wedge A d m(R)} .
$$

ii) We define $T: \operatorname{Frag} \rightarrow \boldsymbol{F R A G}$ as follows:

$$
\begin{aligned}
& T\left([C]_{p}\right)=[\{\tau c: c \in C\} \cup\{\square\}]_{P}, \text { where } \\
& \square \underset{\text { def }}{=\tau(\lambda p \cdot p)(=\lambda P R x \cdot \forall y(R x y \rightarrow P y) \wedge A d m(R)) .}
\end{aligned}
$$

REMARK. It is obvious that all predicate operators of a fragment $T f, f \in$ Frag, are of type ($n+1,1, \ldots, 1,2,1$), i.e. look like $\lambda P_{1} \cdots P_{n} R x_{1} \cdot A, A$ some formula; a direct consequence of this, and of the condition $F V(A) \subset\left\{y_{1}, \ldots, y_{n}\right\}$ in the definition of predicates, is: all non-atomic formulae in Tf have at most one free variable, so R and \check{R} are the only essentially binary predicates in Tf (as was announced in the remark at the end of 3.8). Without the condition on $F V(A)$, this would not be the case; also the next lemma, which is crucial for the rest of our argument, would vanish.

CONVENTION. $A=A(S)$ and $A=A\left(S, x_{i}\right)$, where $S \in P R^{2}$ and $A \in T f$ for some $f \in$ Frag, mean: A is not atomic and of the form $c\left(A_{1}, \ldots, A_{n}, S, x_{i}\right)$.

It is clear that we have:

$$
\begin{equation*}
A \in T f, A=A(S) \Rightarrow \vdash_{c} A \rightarrow A d m(S) \tag{9}
\end{equation*}
$$

3.14. lemma. If $A, B \in T f, A=A\left(S_{1}\right), B=B\left(S_{2}\right)$, then

$$
\vdash_{c} A \rightarrow B \Rightarrow A \equiv \perp \text { or } S_{1}=S_{2}=R \text { or } S_{1}=S_{2}=\check{R} .
$$

PROOF. R and \check{R} are the only binary predicates in $T f$ without vacuous abstraction, so with Lemma 3.10 we have $R \neq S_{1} \neq \check{R} \Rightarrow A\left(S_{1}\right) \equiv \perp$.

Now let $A \not \equiv \perp$, then $S_{1}=R$ or $S_{1}=\check{R}$. By (9), we have $\vdash_{c} A \rightarrow A d m\left(S_{1}\right) \wedge$ $\wedge A d m\left(S_{2}\right)$; together with Lemma 3.1 and $A \not \equiv \perp$ this gives $S_{1}=S_{2}$.
3.15. lemma. If $A \in T f$, then

$$
A=A\left(S, x_{i}\right) \Rightarrow A \cong_{c} \square\left(\bar{A}, S, x_{i}\right) .
$$

proof. By Lemma 3.14, we only have to consider $S=R$ or $S=\check{R}$. We treat $S=R ; S=\check{R}$ goes analogous. First we observe
(10) $\quad \vdash A^{\prime} \Rightarrow \vdash A^{\prime}[\bar{B} / P], P$ a predicate variable, ${ }^{\#} \bar{B}={ }^{\#} P$.

Now

$$
\begin{aligned}
& A= \kappa B\left[A_{1}, \ldots, A_{n}, R / P_{1}, \ldots, P_{n}, R\right]\left[x_{i} / x_{1}\right] \wedge A d m(R) \\
& \equiv_{R} \kappa B\left[A_{1}, \ldots, A_{n} / P_{1}, \ldots, P_{n}\right]\left[x_{i} / x_{1}\right] \\
& \equiv_{R} \forall y R x_{i} y \rightarrow\left(\kappa B\left[A_{1}, \ldots, A_{n} / P_{1}, \ldots, P_{n}\right]\left[y / x_{1}\right]\right) \\
& \quad(\text { by Lemma 3.11 and (10)) } \\
&= \equiv_{R} \square\left(\bar{A}, R, x_{i}\right) ;
\end{aligned}
$$

since $\vdash A \rightarrow A d m(R), \vdash \square\left(\bar{A}, R, x_{i}\right) \rightarrow A d m(R)$, we have $A \equiv \square\left(\bar{A}, R, x_{i}\right)$.
3.16. Definition. Let $\boldsymbol{f}=[\boldsymbol{C}] \in$ Frag. We define the function $\varrho_{f}: f \rightarrow T f$ as follows:
i) $\varrho_{f}\left(p_{i}\right)=\square\left(P_{i}, R, x_{1}\right)$;
ii) if $c \in C \cap \operatorname{Con}^{n}, B_{1}, \ldots, B_{n} \in f$, then

$$
\varrho_{f}\left(c\left(B_{1}, \ldots, B_{n}\right)\right)=(\tau c)\left(\overline{\varrho f}_{1}, \ldots, \overline{\varrho f}^{\varrho_{f}}, R, x_{1}\right) .
$$

The following lemma characterizes ϱ :
3.17. Lemma. $A \in[C]_{p} \Rightarrow \kappa A \equiv_{R} \varrho A$.

PROOF. Induction over δA :
i) $\delta A=0$. Then $A=p_{i}$ for some $i: \kappa A \equiv_{R} \kappa p_{i} \wedge A d m(R)=\varrho A$.
ii) $\delta A>0$. Suppose $A=\underline{B}\left(B_{1}, \ldots, B_{n}\right), \underline{B}=\lambda p_{1} \cdots p_{n} \cdot B \in C, B_{1}, \ldots, B_{n} \in[C] p$, $\delta B_{1}, \ldots, \delta B_{n}<\delta A$. Induction hypothesis: $\kappa B_{i} \equiv_{R} \varrho B_{i}, i=1, \ldots, n$. For simplicity we suppose $n=1$. Now

$$
\begin{array}{rlrl}
\varrho A= & (\tau \underline{B})\left(\overline{\varrho B}_{1}, R, x_{1}\right) & & \text { (def. of } \varrho) \\
& = & \kappa B \wedge A d m(R)\left(\overline{\varrho B}_{1}, R, x_{1}\right) & \\
\text { (def. of } \tau) \\
& \equiv_{R} \kappa \overline{\kappa B}\left(\overline{\varrho B}_{1}, R, x_{1}\right) & & \text { (def. of } \left.\equiv_{R}\right) \\
& =\kappa B\left[\varrho \overline{\varrho B}_{1} / P_{1}\right] & & \text { (def. of connective) } \\
& \equiv_{R} \kappa B\left[\overline{\kappa B}_{1} / P_{1}\right] & & \text { (ind. hyp.) } \\
= & \kappa B\left[\forall x_{2} R x_{1} x_{2} \rightarrow \kappa B_{1}\left[x_{2} / x_{1}\right] / \forall x_{2} R x_{1} x_{2} \rightarrow P_{1} x_{2}\right] \text { (by definition of } \\
& \kappa, P_{1} \text { occurs only in subformulae of the form } V x_{2} R x_{1} x_{2} \rightarrow \\
& \left.\rightarrow P_{1} x_{2}\right) & & \\
& \equiv_{R} \kappa B\left[\kappa B_{1} / \forall x_{2} R x_{1} x_{2} \rightarrow P_{1} x_{2}\right] & & \text { (Lemma 3.11, 3.12) } \\
= & \kappa\left(B\left[B_{1} / p_{1}\right]\right) & & \text { (def. of } \kappa) \\
= & \kappa\left(\underline{B}\left(B_{1}\right)\right)=\kappa A . & \square &
\end{array}
$$

Now we simply prove the property of ϱ which was mentioned in (3):
3.18. LEMMA. If $A, B \in \boldsymbol{f}$, then

$$
\vdash_{i} A \rightarrow B \Rightarrow \vdash_{c} \varrho A \rightarrow \varrho B .
$$

PROOF. $\vdash_{i} A \rightarrow B \Rightarrow \vdash_{c} A d m(R) \rightarrow(\kappa A \rightarrow \kappa B) \quad$ (Lemma 3.12)

$$
\begin{array}{ll}
\Rightarrow \vdash_{c} A d m(R) \rightarrow(\varrho A \rightarrow \varrho B) & \text { (Lemma 3.17) } \\
\Rightarrow \vdash_{c} \varrho A \rightarrow \varrho B & \text { (because of (9)). }
\end{array}
$$

3.19. DEFINITION. Let $\boldsymbol{f}=[\boldsymbol{C}]_{p} \in$ Frag.

We define $\sigma_{f}: T f-\left\{R x_{i} x_{j}: i \neq j\right\} \rightarrow[C \cup\{\perp, T\}]_{p}$ as follows:
i) $\sigma P_{i} x_{j}=p_{i}$;
ii) $\sigma R x_{i} x_{i}=T$;
iii) $\sigma\left(\square\left(B, S, x_{j}\right)\right)=\sigma B$ if B atomic and $(S=R$ or $S=\check{R})$
or if $B=B(R)$ and $S=R$
or if $B=B(\bar{R})$ and $S=\check{R}$,
$=\perp$ otherwise;
iv) $\sigma\left((\tau c)\left(B_{1}, \ldots, B_{n}, S, x_{j}\right)\right)=c\left(A_{1}, \ldots, A_{n}\right)$ if $S=R$ or $S=\dot{R}$ $=\perp$ otherwise,
where $A_{i}=\sigma B_{i}$ if B_{i} atomic or $B_{i}=B_{i}(S)$

$$
=\perp \text { otherwise, } i=1, \ldots, n .
$$

A direct consequence of Definition 3.16 and 3.19 is
3.20. lemma. $A \in f=\sigma \varrho A=A$.

Proof. Simple induction over δA :
i) A atomic: $\sigma \varrho A=\sigma \varrho p_{i}=\sigma\left(\square\left(P_{i}, R, x_{1}\right)\right)=\sigma\left(P_{i} x_{1}\right)=p_{i}=A$.
ii) $A=c\left(A_{1}, \ldots, A_{n}\right): \quad \sigma \varrho A=\sigma\left((\tau c)\left(\varrho A_{1}, \ldots, \varrho A_{n}, R, x_{1}\right)=c\left(\sigma \varrho A_{1}, \ldots, \sigma \varrho A_{n}\right)=\right.$ $=c\left(A_{1}, \ldots, A_{n}\right)=A$ (the third equality is a consequence of the induction hypothesis).

So σ is a left inverse of ϱ. At the same time, it nearly is a right inverse:
3.21. Lemma. Let $A=A\left(S, x_{1}\right) \in T f$. Then
i) $S=R \Rightarrow \varrho \sigma A \equiv A$;
ii) $S=\check{R} \Rightarrow(\varrho \sigma A)[\check{R} / R] \equiv A$;
iii) $R \neq S \neq \tilde{R} \Rightarrow \varrho \sigma A \equiv A \equiv \perp$.

Proof. Induction over $\delta A ; A=A(S)$, so $\delta A>0$. We only prove (i); (ii) goes analogous, and (iii) is trivial, for then $\operatorname{Adm}(S) \equiv \perp$.

We distinguish two cases:
a) $A=\square\left(\bar{B}, R, x_{1}\right)$.
a.1) $B=P_{i} x$: then $\varrho \sigma A=\varrho p_{i}=\square\left(P_{i}, R, x_{1}\right)=A$.
a.2) $B=R x x$: then $\varrho \sigma A=\varrho \top=\forall y(R x y \rightarrow \mathrm{~T}) \wedge A d m(R) \equiv \operatorname{Adm}(R)$, and $A=$ $=\forall y(R x y \rightarrow R y y) \wedge A d m(R) \equiv T \wedge A d m(R)$, for $\vdash A d m(R) \rightarrow \forall y R y y$, so $\varrho \sigma A=$ $=A$.
a.3) $B=B(R)$: then, by induction hypothesis, $\varrho \sigma B \equiv B$; also (from the definition of σ) $\sigma A=\sigma B$, so $B \equiv \varrho \sigma A$; because of Lemma 3.15, $B \equiv \square\left(\bar{B}, R, x_{1}\right)=$ $=A$, so $\varrho \sigma A=A$.
a.4) $B=B\left(S^{\prime}, y\right), S^{\prime} \neq R$, so $B=B^{\prime} \wedge A d m\left(S^{\prime}\right)$; now

$$
\begin{aligned}
A & =\forall x_{2}\left(R x_{1} x_{2} \rightarrow\left(B^{\prime} \wedge A d m\left(S^{\prime}\right)\right)\left[x_{2} / y\right]\right) \wedge A d m(R) \\
& \equiv \forall x_{2}\left(R x_{1} x_{2} \rightarrow\left(B^{\prime}\left[x_{2} / y\right] \wedge A d m\left(S^{\prime}\right) \wedge A d m(R)\right)\right) \wedge A d m(R) \\
& \equiv \forall x_{2}\left(R x_{1} x_{2} \rightarrow \perp\right) \wedge A d m(R) \quad(\text { by Lemma } 3.10) \\
& \equiv \neg \exists x_{2} R x_{1} x_{2} \wedge A d m(R) \equiv \perp, \text { for } \vdash A d m(R) \rightarrow \forall x_{1} \exists x_{2} R x_{1} x_{2} ;
\end{aligned}
$$

also $\varrho \sigma A=\varrho \perp \equiv \perp$, so $\varrho \sigma A \equiv A$.
b) $A=(\tau c)\left(\bar{B}_{1}, \ldots, \bar{B}_{n}, R, x_{1}\right)$. Without loss of generality, we suppose that $n=3$, B_{1} is atomic, $B_{2}=B_{2}(R)$ and $B_{3}=B_{3}\left(S^{\prime}\right)$ with $S^{\prime} \neq R$. Now

$$
\begin{aligned}
A & \equiv(\tau c)\left(\bar{B}_{1}, \bar{B}_{2}, \overline{B_{3} \wedge A d m\left(S^{\prime}\right)}, R, x_{1}\right) \wedge A d m(R) \\
& \equiv(\tau c)\left(\bar{B}_{1}, \bar{B}_{2}, \overline{\bar{\perp}}, R, x_{1}\right) \wedge A d m(R) \quad(\text { here } \bar{\perp}=\lambda x \cdot \perp)
\end{aligned}
$$

and

$$
\begin{aligned}
\varrho \sigma A & =\varrho\left(c\left(\sigma B_{1}, \sigma B_{2}, \perp\right)\right) \\
& =\varrho\left(c\left(p, \sigma B_{2}, \perp\right)\right) \quad\left(p=p_{i}\left(\text { if } B_{1}=P_{i} x\right) \text { or } \mathrm{T}\left(\text { if } B_{1}=R x x\right)\right) \\
& =(\tau c)\left(\overline{\varrho p}, \overline{\varrho \sigma B_{2}}, \overline{\varrho \perp}, R, x_{1}\right) \\
& \left.\equiv(\tau c)\left(\bar{B}_{1}, \bar{B}_{2}, \bar{\perp}, R, x_{1}\right) \quad \text { (ind. hyp. and def. of } \varrho\right),
\end{aligned}
$$

so $\varrho \sigma A \equiv A$.
Now it is simple to prove the desired property of σ :
3.22. Lemma. If $f \in \operatorname{Frag}, A, B \in T f, A=A\left(R, x_{1}\right), B=B\left(R, x_{1}\right)$, then:

$$
\vdash_{c} A \rightarrow B \Rightarrow \vdash ; \sigma A \rightarrow \sigma B .
$$

PROOF.

$$
\begin{array}{rlr}
\vdash_{c} A \rightarrow B & \Rightarrow \vdash_{c} \varrho \sigma A \rightarrow \varrho \sigma B & \text { (Lemma 3.21) } \\
& \Rightarrow \vdash_{c} A d m(R) \rightarrow(\kappa \sigma A \rightarrow \kappa \sigma B) & \text { (Lemma 3.17) } \\
& \Rightarrow \vdash_{i} \sigma A \rightarrow \sigma B & \text { (corollary of Lemma 3.10). }
\end{array}
$$

Finally, we can prove the theorem we did all the work for:
3.23. THEOREM. Let $f=[C]_{p} \in$ Frag. Then
i) interpolation holds in $f \Rightarrow$ interpolation holds in $T f$;
ii) interpolation holds in $T f \Rightarrow$ interpolation holds in $[C \cup\{T, \perp\}]_{p}$.

PRoof. i) Suppose $A, B \in T f, \vdash_{c} A \rightarrow B, P V(A) \cap P V(B) \neq \emptyset \neq F V(A) \cap F V(B)$.
Case 1. A is atomic. Then B is atomic, for B not atomic implies $B \equiv B \wedge$ $\wedge A d m(S)$ for some $S \in P R^{2}$, and then $\vdash A \rightarrow A d m(S)$ which, together with A atomic, yields $A=\perp$, so $P V(A)=\emptyset$. From A, B atomic and $\vdash A \rightarrow B$ follows $A=B$, so A is interpolant.

Case 2. B is atomic, A not. We have the following subcases:
a) $B=P_{i} x_{j}$ or $B=R x_{i} x_{i}$. Then B is interpolant.
b) $B=R x_{i} x_{j}, i \neq j$.
b.1) $A=A\left(R, x_{j}\right)$. Then $\vdash A \rightarrow \exists y \forall x R x y$. But $A \equiv A \wedge A d m(R)$, so $\vdash A \rightarrow$ $\rightarrow V y \exists x \neg R x y$; hence $A \equiv \perp . A$ is not atomic, so $A=c\left(A_{1}, \ldots, A_{n}, R, x_{j}\right)$ for some $c \in C$. Now

$$
\left.A_{0}=c \overline{\operatorname{def}} c \overline{R x x}, \ldots, \overline{R x x}, \lambda x y \cdot R x x, x_{j}\right)
$$

is an interpolant, for $A_{0} \equiv A d m(\lambda x y \cdot R x x) \equiv \perp$.
b.2) $A=A\left(R, x_{i}\right)$. Then $\vdash A \rightarrow \forall y R x_{i} y$. Together with $\vdash A \rightarrow\left(\forall y R x_{i} y \rightarrow A\left[y / x_{i}\right]\right)$ (a consequence of Lemma 3.15), this gives $\vdash A \rightarrow \forall x_{i} A$, which yields even $\vdash A \rightarrow \forall x_{i} y R x_{i} y$; since $A \equiv A \wedge A d m(R)$ and $\vdash A d m(R) \rightarrow \forall x \exists y \neg R y x$, we now get $A \equiv \perp$, and A_{0} is interpolant.
b.3) $A=A\left(\dot{R}, x_{j}\right)$. Analogous to (b.2).
b.4) $A=A\left(\tilde{R}, x_{i}\right)$. Analogous to (b.1).
b.5) $A=A(S), R \neq S \neq \check{R}$. Then $A \equiv \perp$ and A_{0} is interpolant.

Case 3. $A=A\left(S_{1}, x_{i}\right), B=B\left(S_{2}, x_{i}\right)$. According to Lemma 3.14, there are three possibilities:
a) $S_{1}=S_{2}=R$. We take for simplicity $i=1$ ($i \neq 1$ requires some substitution). $\vdash_{c} A \rightarrow B$, hence, with Lemma 3.22, $\vdash_{i} \sigma A \rightarrow \sigma B$. Let $I \in f$ be an interpolant of this last implication. Then (Lemma 3.18) $\vdash_{c} \varrho \sigma A \rightarrow \varrho I$ and $\vdash_{c} \varrho I \rightarrow \varrho \sigma B$. Now Lemma 3.21 says $\varrho \sigma A \equiv A, \varrho \sigma B \equiv B$, so ϱI is interpolant for $\vdash_{c} A \rightarrow B$.
b) $S_{1}=S_{2}=\check{R}$. Analogous to (a).
c) $A \equiv \perp$. Then A_{0} is interpolant.
ii) Suppose $A, B \in[C \cup\{T, \perp\}] p, \vdash_{-i} A \rightarrow B, P V(A) \cap P V(B) \neq \emptyset$.

Case 1. $A($ or B) is atomic. Then $A($ or $B)$ is interpolant.
Case 2. A nor B is atomic. By Lemma 3.18, $\vdash_{c} \varrho A \rightarrow \varrho B$. Let $I \in T f$ be an interpolant of this last implication. Then $I \equiv \perp$ (and \perp is interpolant for $A \rightarrow B$), or I is not atomic (for $\vdash_{c} I \rightarrow \varrho B$, so $\vdash_{c} I \rightarrow A d m(R)$). In this last case, $\vdash_{i} \sigma \varrho A \rightarrow \sigma I$ and $\vdash_{i} \sigma I \rightarrow \sigma \varrho B$, because of Lemma 3.22. But (Lemma 3.20) $\sigma \varrho A=A, \sigma \varrho B=B$, hence σI is interpolant for $A \rightarrow B$.

COROLLARY. There are $2^{{ }^{N}}$ fragments of CPC for which interpolation fails.
PROOF. Follows immediately from Theorem 2.18 and 3.23 (ii).

REFERENCES

[Cr]. Craig, W. - Linear reasoning. A new form of the Herbrand-Gentzen Theorem, J. Symbolic Logic, 22, 250-268 (1957).
[D]. Dummett, M. - Elements of Intuitionism (Oxford Univ. Press, 1977).
[Kr]. Kreisel, G. - Explicit definability in intuitionistic logic (abstract), J. Symbolic Logic, 25, 389-390 (1960).
[K \& K]. Kreisel, G. and J.L. Krivine - Elements of Mathematical Logic (Model Theory), (North-Holland Publ. Co., Amsterdam, 1967).
[K]. Kripke, S. - Semantical analysis of intuitionistic logic, in: J.N. Crossley and M.A.E. Dummett (eds.), Formal systems and recursive functions (North-Holland Publ. Co., Amsterdam, 1965), 92-130.
[N]. Nishimura, I. - On formulas of one variable in intuitionistic propositional calculus, J. Symbolic Logic, 25, 327-331 (1960).
[R]. Rieger, L.S. - On the lattice theory of Brouwerian propositional logic, Acta Fac. Rerum Nat. Univ. Carolinae, 189, 3-40 (1949).
[Sch]. Schütte, K. - Der Interpolationssatz der intuitionistischen Prädikatenlogik, Math. Ann. 148, 192-200 (1962).
[Z]. Zucker, J.I. - Interpolation for fragments of the propositional calculus (preprint ZW 116/78, Mathematisch Centrum, Amsterdam, 1978).

[^0]: Copyright
 Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

