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The matching conditions of controlled Lagrangians and IDA-passivity based control

GUIDO BLANKENSTEIN{*, ROMEO ORTEGA{ and ARJAN J. VAN DER SCHAFT}

This paper discusses the matching conditions resulting from the controlled Lagrangians method and the interconnection
and damping assignment passivity based control (IDA-PBC) method. Both methods have been presented recently in the
literature as means to stabilize a desired equilibrium point of an Euler±Lagrange, respectively Hamiltonian, system.

In the context of mechanical systems with symmetry, the original controlled Lagrangians method is reviewed, and an
interpretation of the matching assumptions in terms of the matching of kinetic and potential energy is given.

Secondly, both methods are applied to the general class of underactuated mechanical systems and it is shown that the
controlled Lagrangians method is contained in the IDA-PBC method. The ¶-method as described in recent papers for the
controlled Lagrangians method, transforming the matching conditions (a set of non-linear PDEs) into a set of linear
PDEs, is discussed. The method is used to transform the matching conditions obtained in the IDA-PBC method into a set
of quadratic and linear PDEs.

Finally, the extra freedom obtained in the IDA-PBC method (with respect to the controlled Lagrangians method) is
used to discuss the integrability of the closed-loop system. Explicit conditions are derived under which the closed-loop
Hamiltonian system is integrable, leading to the introduction of gyroscopic terms.

1. Introduction

Recently there has been a lot of interest in the stabil-

ization of underactuated mechanical systems using

methods that preserve the mathematical structure of

the system. A mechanical system is called underactuated

if the number of control inputs is strictly less that the

number of degrees of freedom of the system. Such

systems often occur, e.g. in robotics, and are generally

di� cult to control. While fully actuated mechanical

systems admit an arbitrary shaping of the potential

energy by means of feedback, and therefore a stabiliz-

ation to any desired equilibrium, such a strategy is in

general not possible for underactuated systems. Indeed,

underactuation puts a severe restriction on the poss-

ibilities to shape the potential energy. In certain cases

this problem can be overcome by also modifying the

kinetic energy of the system, thus leading to a new

mechanical system with a modi®ed total energy. A

well-known example is given by the inverted pendulum

on a cart. This is an underactuated system since only the

horizontal position of the cart can be controlled directly

by a force in this direction, whereas by the absence of a

torque the angle of the pendulum is uncontrolled. For

this system it is not possible to stabilize the upright

position of the pendulum by potential energy shaping

only. However, allowing in addition the shaping of
kinetic energy does stabilize the upright position of the

pendulum, as well as the horizontal position of the cart.

The closed-loop system is again described by a mechan-

ical system, with a modi®ed positive de®nite total energy
function.

The idea of kinetic energy shaping has led to a

method for stabilizing underactuated mechanical
systems, called the method of controlled Lagrangians.

This method was introduced (Bloch et al. 1997, 1998,

2000) for the stabilization of relative equilibria of

mechanical systems with symmetry. Starting point is
an underactuated mechanical control system described

by the forced Euler±Lagrange equations with a

Lagrangian being the di� erence of the kinetic and

potential energy of the system. The system is assumed

to admit a symmetry, in fact, the Lagrangian is assumed
to be invariant under the action of an Abelian Lie group

(in the case of a cart and pendulum this means that the

horizontal position of the cart is a cyclic variable). The
idea now is to stabilize a relative equilibrium of the

system (i.e. the upright position of the pendulum, irre-

spective of the horizontal position of the cart) by search-

ing for a suitable (stabilizing) closed-loop system which
is again in Euler±Lagrange format and preserves the

symmetry of the system. This is done by proposing a

class of Lagrangians, called controlled Lagrangians,

which preserve the symmetry of the system, and inves-
tigating which of these Lagrangians can possibily be

obtained as a closed-loop Lagrangian by choosing a

suitable feedback law for the original system. The con-

ditions under which such a feedback law exists are called
matching conditions, and in case these conditions are

satis®ed the original control system and the closed-

loop Euler±Lagrange system are said to match. The
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feedback law can be calculated by using the symmetry
properties of the system. The class of controlled
Lagrangians proposed by Bloch et al. (2000) consists
of Lagrangians being the di� erence of a shaped kinetic
energy and the potential energy of the original system.
That is, the kinetic energy is modi®ed (in a certain
restricted way), whereas the potential energy of the
system remains unchanged. In general, the matching
conditions for this class of controlled Lagrangians are
described by a set of non-linear partial di� erential equa-
tions to be solved for the closed-loop Lagrangian. In
special cases, the so-called simpli®ed matching assump-
tions (Bloch et al. 2000), de®ning a restrictive but useful
class of possible closed-loop controlled Lagrangians,
these PDEs are automatically solved. The desired rela-
tive equilibrium is locally stabilized by ®nding a con-
trolled Lagrangian, satisfying the matching
assumptions, such that the total energy of the closed-
loop system is (usually negative) de®nite around this
equilibrium. This method has proved to work well for
the examples of stabilization of an inverted pendulum
on a cart or an inverted spherical pendulum and the
stabilization of a satellite with an internal rotor (see
Bloch et al. 1997, 1998, 2000) for more details.

The method of Bloch et al. (1997, 1998, 2000) con-
cerning mechanical systems with symmetry, has been
re®ned in the work of Auckly et al. (2000), Auckly
and Kapitanski (2000) and Andreev et al. (2000) to
describe the stabilization of equilibria of general
mechanical systems (see also the work of Hamberg
1999). The idea is to stabilize a desired equilibrium by
searching for a closed-loop Euler±Lagrange system with
a modi®ed total energy, i.e. in addition to the shaping of
kinetic energy the shaping of potential energy is also
allowed. Again, the matching conditions are described
by a set of non-linear PDEs. Auckly et al. (2000)
describe a method to convert these non-linear PDEs
into a set of linear PDEs by the so-called ¶-method.
The method is designed for general mechanical systems
and does not require any symmetry of the system. In
fact, in general the symmetries present in the original
system will be destroyed by the shaping of the potential
energy in order to stabilize a desired equilibrium point.
For the cart and pendulum this means that besides sta-
bilizing the upright position of the pendulum, as in the
method of Bloch et al. (2000), the position of the cart is
stabilized towards a desired horizontal position simul-
taneously. We remark that the need for potential energy
shaping to stabilize an equilibrium point has also been
recognized in Bloch et al. (1999, 2001 b), where the term
symmetry-breaking potential has been used.

The method of controlled Lagrangians has been
extended in the work of Hamberg (2000 a) to describe
the matching of general Euler±Lagrange systems. These
systems are not restricted to be of a mechanical nature,

that is, the Lagrangian is not necessarily given by the

di� erence of a kinetic and a potential energy. Under
a regularity assumption on the Lagrangian the
matching conditions de®ne a set of non-linear PDEs,
generalizing the PDEs described previously for mechan-
ical systems.

Finally, we would like to remark that recently some
results have been obtained in Hamberg (2000 b) and
Zenkov et al. (2000) extending the method of controlled
Lagrangians to also include the matching and stabiliz-
ation of Euler±Lagrange systems with (non-holonomic)
contraints.

At the same time, on the Hamiltonian side a method
has been developed to stabilize port-controlled
Hamiltonian systems (Ortega et al. 2001 a,b). Port-
controlled Hamiltonian systems have shown to be
instrumental in the network modelling of energy conser-

ving physical systems. They strictly contain the class of
Euler±Langrange systems. See van der Schaft (2000) and
references therein for more information on the develop-
ment and the use of port-controlled Hamiltonian
systems. Analogously to the method of controlled
Lagrangians, the idea is to stabilize a desired equilib-
rium point of the system by searching for a suitable
closed-loop system which is again in port-
controlled Hamiltonian format. The closed-loop system
is de®ned by changing the internal interconnection
structure (i.e. the skew-symmetric structure matrix cor-
responding to the Poisson bracket of the system) and the

Hamiltonian (i.e. energy) function of the system. The
conditions under which these changes lead to a system
that can possibly be obtained as a closed-loop system of
the original system, by choosing a suitable feedback law,
constitute a new set of matching conditions. These are a
set of non-linear PDEs to be solved for the closed-loop
Hamiltonian and the closed-loop interconnection struc-
ture. The principal (energy) concept used to stabilize the
system is passivity, and since the closed-loop system is
de®ned by shaping the internal interconnection structure
of the system, the term interconnection and damping
assignment passivity based control (IDA-PBC) has been
coined to describe this method.{ We refer to Ortega et al.
(2001 a,b) for more details on the method and on the
underlying passivity concept. It is important to note that
the possibility of also changing the interconnection

structure, in addition to changing the Hamiltonian func-
tion, gives an extra degree of freedom to the IDA-PBC
method with respect to the controlled Lagrangians
method. Furthermore, since the class of port-controlled
Hamiltonian systems strictly contains the class of
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{ The method described in Ortega et al. (2001 a,b) allows
additionally the shaping of the damping structure of the
system. However, in this paper we will not consider this
possibility, see the remarks afterwards.



forced Euler±Lagrange systems, the IDA-PBC method
is more generally applicable than the controlled
Lagrangians method. In Ortega et al. (2001 a,b) it has
been shown that the method can be used to stabilize
electrical systems such as power converters, electro-
mechanical systems, e.g. synchronous motors, and
mass-balance systems. The application of IDA-PBC to
mechanical systems has been described in Ortega et al.
(2001 b,c).

1.1. Contributions and outline of the paper

In } 2 we discuss the matching of general Euler±
Lagrange systems. Necessary and su� cient conditions
are derived for two Euler±Lagrange systems to match,
resulting in a set of non-linear PDEs to be solved for the
closed-loop Lagrangian. The method of Bloch et al.
(2000) for mechanical systems with symmetry is
reviewed, and the matching conditions obained in that
method are given an interpretation in terms of the
matching of kinetic and potential energy. Section 3
recalls the matching of port-controlled Hamiltonian
systems, as used in the IDA-PBC method. In } 4 both
methods, applied to the class of mechanical systems, are
compared. It is shown that the controlled Lagrangians
method is strictly included in the IDA-PBC method (see
however Remark 9 for a novel extension of the con-
trolled Lagrangians method, yielding equivalence of
both methods). Furthermore, the ¶-method as described
in Auckly et al. (2000) for the controlled Lagrangians
method is extended to the IDA-PBC method. It is
shown that the matching conditions, consisting of a set
of non-linear PDEs, can be transformed into an equiva-
lent set of quadratic and linear PDEs, to be solved recur-
sively. In } 5 the extra degree of freedom provided by the
IDA-PBC method, i.e. the shaping of the internal inter-
connection structure, is used to discuss the integrability
of the closed-loop Hamiltonian system. Necessary and
su� cient conditions are given for the closed-loop system
to be integrable, leading to the introduction of
gyroscopic terms in the closed-loop system. Section 6
is dedicated to some conclusions and suggestions for
further research.

1.2. Important remarks

Before continuing with the technical part of the
paper it is important to make the following two
remarks. First, note that this paper is not concerned
with the actual stabilization of equilibrium points of
Euler±Lagrange or Hamiltonian systems. The (asympto-
tic) stabilization of equilibria is the aim of the papers
(Bloch et al. 2000, 2001 b, Ortega et al. 2001 a±c) where
the controlled Lagrangians method and the IDA-PBC
method are introduced. In this paper we are merely
interested in the matching of Euler±Lagrange, respect-

ively Hamiltonian systems, which is the fundamental
concept underlying both stabilization methods.

Second, for simplicity of exposition we do not con-
sider any natural damping to be present in the control
system, nor the introduction of energy dissipation by
feedback in the closed-loop system. That is, we consider
all systems to be energy conserving. The introduction of
damping by feedback, called damping injection or
damping assignment, is a very important issue in the
methods as described in Bloch et al. (2000, 2001 b) and
Ortega et al. (2001 a±c) to asymptotically stabilize an
equilibrium which is made stable by shaping the
Lagrangian, respectively the Hamiltonian and the inter-
nal interconnection structure, of the system. The inclu-
sion of damping assignment in the results of this paper
should be straightforward. Indeed, for mechanical
systems with no natural damping feeding back the pas-
sive output results (under some detectability condition)
in an asymptotically stable system. In this case the
damping does not appear in the matching conditions
(see Ortega et al. 2001 c).

1.3. Notation

Let L…q; _qq† be a smooth function, there @qL denotes
the partial derivative of L with respect to q and @ _qqL
denotes the partial derivative of L with respect to _qq
(these are n 1 matrices). The second order derivatives
of L (which are n n matrices) are denoted by @qqL,

@q _qqL, etc. Furthermore, if Y…q; _qq† 2 n is a smooth vec-
tor-valued function of …q; _qq†, then @qY denotes the n n
matrix with …i; j†th entry being @qj

Yi…q; _qq†.

2. Matching of Euler±Lagrange systems

In this section we describe the matching of Euler±
Lagrange systems.

2.1. General matching conditions

Consider a forced Euler±Lagrange system with con-
®guration space Q, taken for simplicity to be equal to

n, and described by a Lagrangian L : TQ !
d

dt
@ _qqL…q; _qq† ¡ @qL…q; _qq† ˆ G…q†u …1†

The matrix G…q† : m ! Tq Q ’ n, with rank G ˆ m,
de®nes the force ®elds corresponding to the input
u 2 m. Note that if m ˆ n, then (1) describes a fully
actuated Euler±Lagrange system, whereas the system is
underactuated if (and only if ) m < n. Consider a second,
autonomous Euler±Lagrange system, de®ned by a
Lagrangian Lc : TQ ! (the subscript c suggestively
stands for closed-loop)

d

dt
@ _qqLc…q; _qq† ¡ @qLc…q; _qq† ˆ 0 …2†

Controlled Lagrangians and IDA-passivity 647



The question we ask ourselves is whether the system (2)
can be obtained as a possible closed-loop system corre-
sponding to (1) by choosing a suitable control law u. If
(2) is a possible closed-loop system of (1) then we say
that the systems (1) and (2) match.

Now, consider the system (1), and let G?…q† :
… n¡m†T ! … n†T denote a full rank left annihilator of
G…q†, i.e. G?…q†G…q† ˆ 0, 8q 2 Q. Note that from (1) it
follows that

G?…q† d

dt
@ _qqL…q; _qq† ¡ @qL…q; _qq† ˆ 0 …3†

Consider the system (2). First notice that
… n†T ˆ Im GT…q† Im G?…q†. This implies that (2) is
equivalent to the two equations

GT…q† d

dt
@ _qqLc…q; _qq† ¡ @qLc…q; _qq† ˆ 0 …4†

G?…q†
d

dt
@ _qqLc…q; _qq† ¡ @qLc…q; _qq† ˆ 0 …5†

The ®rst of these two equations can always be obtained
from (1) by choosing the control

u ˆ …GTG†¡1GT d

dt
@ _qqL ¡ @qL ¡ d

dt
@ _qqLc ¡ @qLc

2 m …6†

where we left out the arguments …q; _qq† for clarity (notice
that indeed GTG is square and has full rank m). This
leads to the following proposition.

Proposition 1: The systems …1† and …2† match if and
only if equation …5† holds along solutions of the system
…1; 6† …equivalently …3; 4††.

Proof: For su� ciency notice that (1) and (6) imply
(4). Necessity: Assume that (1) and (2) match, then

d

dt
@ _qqL…q; _qq† ¡ @qL…q; _qq† ¡ G…q†u

ˆ d

dt
@ _qqLc…q; _qq† ¡ @qLc…q; _qq† …7†

from which it follows that the control u is given by (6).
The equivalence of the systems (1, 6) and (3, 4) follows
by simple algebra. Indeed, (3) implies (1) for some time-
function u. Multiplying (1) on the left by GT and using
(4) implies (6). &

Remark 1: If rank G ˆ n then G? ˆ 0 and equation
(5) is trivially satis®ed, for any arbitrary closed-loop
Lagrangian Lc. This corresponds to the well known
fact that in case the system is fully actuated, its dy-
namics can be modi®ed arbitrarily.

Equation (5) is referred to as the matching con-
ditions. Following common terminology we call the
closed-loop Lagrangian Lc the controlled Lagrangian.

Recall that the matching conditions (5) have to be
satis®ed along solutions of the system (1, 6), or
equivalently (3, 4). Now take into account the regularity
of the Lagrangians L and Lc, that is @ _qq _qqL and @ _qq _qqLc are
invertible. Then by eliminating the accelerations, the
matching conditions (5) can be written as a set of non-
linear partial di� erential equations, to be satis®ed for all
…q; _qq†. Furthermore, the control law (6) is seen to be a
state feedback control law. The construction is as
follows.

Writing out the system (1) gives

…@ _qq _qqL† �qq ‡ …@q _qqL† _qq ¡ @qL ˆ Gu …8†

Assuming that the Lagrangian is regular the system can
be written as

�qq ˆ ¡…@ _qq _qqL†¡1…@q _qqL† _qq ‡ …@ _qq _qqL†¡1@qL ‡ …@ _qq _qqL†¡1Gu

…9†

Equivalently, the system (2) can be written as (assuming
regularity)

�qq ˆ ¡…@ _qq _qqLc†¡1…@q _qqLc† _qq ‡ …@ _qq _qqLc†¡1@qLc …10†

The systems (1) and (2) match, for some suitably de®ned
control law u, if the solutions of both systems are the
same. That is, …q…t†; u…t†† is a solution of (1) if and only
if q…t† is a solution of (2), or equivalently, …q…t†; u…t††
satis®es (9) if and only if q…t† satis®es (10). It follows
that (1) and (2) match if and only if

¡…@ _qq _qqL†¡1…@q _qqL† _qq ‡ …@ _qq _qqL†¡1@qL ‡ …@ _qq _qqL†¡1Gu

ˆ ¡…@ _qq _qqLc†¡1…@q _qqLc† _qq ‡ …@ _qq _qqLc†¡1@qLc …11†

which can be written as

Gu ˆ f@q _qqL ¡ …@ _qq _qqL†…@ _qq _qqLc†¡1…@q _qqLc†g _qq

¡ f@qL ¡ …@ _qq _qqL†…@ _qq _qqLc†¡1@qLcg …12†

Using the left annihilator G? of G, equation (12) can be
equivalently written as

G?‰f@q _qqL ¡ …@ _qq _qqL†…@ _qq _qqLc†¡1…@q _qqLc†g _qq

¡f@qL ¡ …@ _qq _qqL†…@ _qq _qqLc†¡1@qLcgŠ ˆ 0 …13†

Proposition 2: The systems …1† and …2† match if and
only if the matching conditions …13† hold. In that case,
the state feedback control law is explicitly given by

u ˆ …GTG†¡1GT …rhs of …12†† …14†

648 G. Blankenstein et al.



Remark 2: Writing out (6) and using (10) it is easy to

show that the control laws de®ned in (6) and (14) are

the same. Notice that the control law is a state feed-
back law, depending only on q and q.

Equation (13) is equivalent to the matching con-

ditions of (Hamberg 2000 a), equation (5).

Furthermore, notice that (13) de®nes a set of non-linear

PDEs, where L is given and Lc acts as the unknown

variable. The set of solutions Lc of (13) describes all
the possible Euler±Lagrangian closed-loop systems (2)

that can be obtained from (1) by a suitable choice …i.e.

…14†† of the control law.

2.2. Mechanical systems

In case the Euler±Lagrange systems (1) and (2)

both describe a mechanical system, then the matching

conditions (13) can be split into two parts. The ®rst
part describes the shaping of kinetic energy, whereas

the second part describes the shaping of potential

energy.

Assume that (1) describes an (under)actuated

mechanical system, that is, L is the di� erence of kinetic
and potential energy

L…q; _qq† ˆ 1
2

_qqTM…q† _qq ¡ V…q† …15†

where M ˆ MT describes the generalized mass matrix of
the system. We assume that M is invertible, which is

equivalent to L being regular (the usual assumption is

that M is positive de®nite.) We consider control laws

which render the closed-loop system to be a mechanical
system, that is, of the form (2) with controlled

Lagrangian being of the form

Lc…q; _qq† ˆ 1
2

_qqTMc…q† _qq ¡ Vc…q† …16†

for some shaped generalized mass matrix Mc ˆ MT
c

(assumed to be invertible) and potential energy function

Vc. In this case, the matching conditions (13) become

G?…q† f@q…M…q† _qq† ¡ M…q†M¡1
c …q†@q…Mc…q† _qq†g _qq

¡ @q…1
2

_qqTM…q† _qq† ¡ @qV…q† ¡ M…q†M¡1
c …q†

‰@q…1
2

_qqTMc…q† _qq† ¡ @qVc…q†Š ˆ 0 …17†

Collecting the terms dependent, respectively indepen-

dent, on _qq we see that (17) can be equivalently

written as a set of two non-linear PDEs in Mc…q† and

Vc…q†

G?…q† f@q…M…q† _qq† ¡ M…q†M¡1
c …q†@q…Mc…q† _qq†g _qq

¡ @q…1
2

_qqTM…q† _qq† ¡ M…q†M¡1
c …q†

‰@q…1
2

_qqTMc…q† _qq†Š ˆ 0 …18†

and

G?…q†‰@qV…q† ¡ M…q†M¡1
c …q†@qVc…q†Š ˆ 0 …19†

Equation (18) matches the kinetic energy and is indepen-
dent of the potential energy, whereas equation (19)
matches the potential energy of the closed-loop system
and depends on the shaped generalized mass matrix Mc.
Notice that (18) de®nes a homogeneous polynomial in _qq,
whereas (19) is independent of _qq.

The k-method of Auckly et al.: Equations (18) and
(19) constitute a set of two non-linear PDEs in Mc and
Vc. In Auckly et al. (2000), Auckly and Kapitanski
(2000) and Andreev et al. (2000) a method has been
described to solve (18) and (19) by recursively solving
a set of three linear PDEs, thereby greatly reducing the
complexity of ®nding solutions. Let us translate this
method into our notation.

Consider equation (18) and note that this equation
has to hold for all points …q; _qq† 2 TQ, whereby q and _qq
should be seen as independent variables (i.e. the state of
the system). This means that (18) can be equivalently
written as (at a point q0 2 Q)

G?…q0†M…q0†‰M¡1…q0†@q…M…q†v†jq0
v

¡M¡1…q0†@q…1
2
vTM…q†v†jq0

‡ …@qX†jq0
v

¡fM¡1
c …q0†@q…Mc…q†v†jq0

v

¡M¡1
c …q0†@q…1

2
vTMc…q†v†jq0

‡ …@qX†jq0
vgŠ ˆ 0 …20†

for all vector ®elds X 2 TQ with X…q0† ˆ v 2 Tq0
Q.

In …20† we recognize the expression for the covariant
derivative (see e.g. Marsden and Ratiu 1999). The co-
variant derivative, denoted by r, assigns to two vector
®elds X , Y 2 TQ a third one denoted by rX Y 2 TQ,
called the covariant derivative of Y with respect to X .
It is uniquely de®ned by the kinetic energy metric
g…X ; Y†…q† ˆ X…q†TM…q†Y…q†, X , Y 2 TQ.{ (The sym-
bol r is also called the Levi±Civita connection corre-
sponding to the metric g.) Let r̂r denote the covariant
derivative corresponding to the metric de®ned by the
matrix Mc. Then (20) can be written as (suppressing
the argument q0)
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G?M‰rXX ¡ r̂rXX Š ˆ 0; 8X 2 TQ …21†

This is exactly the matching condition as given in
Auckly et al. (2000, equation 1.4) (where G?M is
denoted by P) (see also Auckly and Kapitanski 2000,
Andreev et al. 2000). Writing out the expression for
the covariant derivative in the coe� cients of X using
the Christo� el symbols results in the matching con-
ditions as given in Hamberg (1999, Theorem 1).
Furthermore, the conrol law given in Hamberg (1999,
Theorem 1), equals the control law de®ned by (14).

We can polarize (21) to get

0 ˆ 1
2
G?M‰rX‡Y …X ‡ Y† ¡ r̂rX‡Y …X ‡ Y†

¡ …rXX ¡ r̂rX X† ¡ …rY Y ¡ r̂rY Y†Š

ˆ 1
2
G?M‰rXY ‡ rYX ¡ r̂rX Y ¡ r̂rY X Š

ˆ G?M ‰rXY ¡ r̂rXY Š; 8X ; Y 2 TQ …22†

where we used that rXY ¡ rY X ˆ ‰X ; Y Š ˆ r̂rXY¡
r̂rY X , which follows easily from the formula for the
covariant derivative. Recall that G? denotes a full
rank left annihilator of G (i.e. normalizing G to ‰0 I ŠT
this means that G? ˆ ‰I 0Š). Instead, let ·GG? denote an
orthogonal projection matrix, i.e. … ·GG?†T ˆ ·GG? and
… ·GG?†2 ˆ ·GG?, such that ·GG?G ˆ 0. Normalizing G to
‰0 I ŠT this means that

·GG? ˆ
I 0

0 0
…23†

Then (22) still holds when one writes ·GG? instead of G?.
Now introduce a `new’ matrix variable by ¶ ˆ M¡1

c M.
Then a linear PDE in ¶ is obtained by taking
X ˆ ¶ ·GG?MX 0 and Y ˆ Y 0 and premultiplying (22) by
…X 0†TM. After some algebra, eliminating Y 0, this results
in the following equation (suppressing the prime and
writing X for X 0)

0 ˆ XTM ·GG?¶Tf‰@q…M ·GG?MX†ŠT ¡ ‰@q… ·GG?MX †ŠTM

¡ M@q… ·GG?MX†g ‡ XTM ·GG?f‰@q…¶ ·GG?MX †ŠTM

‡ M@q…¶ ·GG?MX † ¡ ‰@q…M¶ ·GG?MX†ŠTg;

8X 2 TQ …24†

Observe that (24) is a linear PDE in ¶. However, note
that a solution is only de®ned with respect to the image
of ·GG?, i.e. a solution is only de®ned for ¶ ·GG?M.
Equation (24) is called the ¶-equation and corresponds
to equation (1.11) in Auckley et al. (2000).

The complete solution ¶ (or, equivalently, Mc) of the
kinetic energy matching condition (18) can be found by
solving another linear PDE. Indeed, premultiply (18) by
M to get

0 ˆ M ·GG?¶Tf@q…1
2

_qqTMc _qq† ¡ @q…Mc _qq† _qqg

‡ M ·GG?f@q…M _qq† _qq ¡ @q…1
2

_qqTM _qq†g …25†

8…q; _qq† 2 TQ. Given a solution ¶ ·GG?M of (24) this a
linear PDE in Mc. Equation (25) corresponds to
equation (1.12) in Auckly et al. (2000) (with Z ˆ _qq and
eliminating X from (1.12)).

Finally, given Mc, the potential energy matching
condition (19) is a linear PDE in Vc. It can also be
written in terms of a solution ¶ ·GG?M of (24) by premul-
tiplying (19) by M to obtain

0 ˆ M ·GG?@qV ¡ M ·GG?¶T@qVc …26†

This equation corresponds to equation (1.13) in Auckly
et al. (2000).

In Auckly et al. (2000) and Auckly and Kapitanski
(2000) it is shown that the matching conditions (18) and
(19) can be solved by solving the equivalent set of three
linear PDEs (24), (25) and (26). That is, ®rst solving (24)
for ¶ ·GG?M, then (25) for Mc, and ®nally (26) for Vc.

2.3. Mechanical systems with symmetry

In this section we review the controlled Lagrangians
method as introduced by Bloch et al. (1997, 1998, 2000)
for mechanical systems with symmetry. In particular, we
interpret the matching conditions obtained in their work
in terms of the matching of kinetic and potential energy
as described by the PDEs (18) and (19).

Consider a mechanical system with con®guration
space an n-dimensional manifold Q ’ n. Let the con-
®guration coordinates be denoted by q ˆ …x; ³† 2 n.
Here x 2 n¡m are called the shape variables and
³ 2 m are called the group variables. We assume that
the group variables are fully actuated, whereas the shape
variables are unactuated, this corresponds to
G ˆ ‰0 ImŠT. Furthermore, we assume that the
Lagrangian of the system does not depend on the vari-
ables ³ (we call ³ cyclic variables).

Remark 3: The mathematical construction used in
Bloch et al. (2000) is to consider a principal ®bre bun-
dle Q ! Q=G corresponding to the regular action of
an Abelian (i.e. commutative) Lie group G on Q. Then
x 2 Q=G and ³ 2 G, and the Lagrangian L being cyclic
in ³ is equivalent to assuming that L is invariant under
the action of the group G.

The forced Euler±Lagrange equations become

d

dt
@ _xxL ¡ @xL ˆ 0 …27†

d

dt
@ _³³L ˆ u …28†

with

L…x; _xx; _³³† ˆ 1
2

_qqTM…x† _qq ¡ V…x†; _qq ˆ … _xx; _³³† …29†
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As explained in Bloch et al. (2000) quite a large class of
mechanical systems fall within this description. The goal
of the controlled Lagrangians method described in
Bloch et al. (2000) is to stabilize a relative equilibrium{
…x ˆ xe, _xx ˆ 0; _³³ ˆ 0† of the system. This is done by
searching for a stabilizing closed-loop Euler±
Lagrangian system which preserves the symmetry of
the system. In Bloch et al. (2000) a class of controlled
Lagrangians is proposed which have the property that ³
is a cyclic variable for Lc. This class can be described as
follows. First, decompose the generalized mass matrix
M as

M ˆ Mxx Mx³

M³x M³³

" #
…30†

according to the decomposition q ˆ …x; ³†. De®ne the
shaped generalized mass matrix as

Mc ˆ Mxx ‡ Mx³½ ‡ ½TM³x ‡ ½T…M³³ ‡ ¼†½ Mx³ ‡ ½TM³³

M³x ‡ M³³½ M³³

" #

…31†

Here, ½…x† 2 m n and ¼…x† 2 m m are matrices only
depending on the shape variables. In Bloch et al. (2000)

½ is called a `Lie algebra valued horizontal one-form’,
which means that it works only on vectors in the shape
space n¡m and takes values in m. The matrix ¼ is
called the `changed metric acting on horizontal vectors’,
which means that it changes the mass matrix in the
direction of the shape variables. The controlled
Lagrangian is then de®ned by, corresponding to formula
(2.11) in Bloch et al. (2000)

Lc…x; _xx; _³³† ˆ 1
2 _qqTMc…x† _qq ¡ V…x†; _qq ˆ … _xx; _³³† …32†

It is important to notice that only the kinetic energy is
changed whereas the potential energy of the system is
left unchanged. Since the controlled Lagrangian pre-
serves symmetry, i.e. Lc does not depend on ³, the cor-
responding Euler±Lagrange system looks like

d

dt
@ _xxLc ¡ @xLc ˆ 0 …33†

d

dt
@ _³³Lc ˆ 0 …34†

The idea of the method of Bloch et al. (2000) is to shape
the kinetic energy, by choosing suitable matrices ½ and

¼, in order to obtain a closed-loop Euler±Lagrangian
system (32±34) for which the desired relative equilibrium

is stable. The conditions under which Lc can be obtained
as a possible closed-loop Lagrangian by choosing a suit-
able control law for the system (27±29) are the matching
conditions of Bloch et al. (2000). In general, they consist
of a set of non-linear PDEs in the components of the
matrices ½ and ¼. In the next paragraph the derivation of
these matching conditions is described.

The matching conditions of Bloch et al.: Bloch et al.
(2000) essentially use Proposition 1 to deduce con-
ditions under which the systems (27±29) and (32±34)
match. That is, they give conditions under which (33)
holds along solutions of (27) and (34). Towards this
objective denote the x-component of the Euler±
Lagrange equations as

Ex…Lc† ˆ G? d

dt
@ _qqLc ¡ @qLc ˆ

d

dt
@ _xxLc ¡ @xLc …35†

Substracting (3), equivalently (27), this becomes

Ex…Lc† ˆ G? d

dt
@ _qqLc ¡ @qLc ¡

d

dt
@ _qqL ‡ @qL

ˆ G?……Mc ¡ M† �qq ‡ @q…Mc _qq† _qq ¡ @q…M _qq† _qq

¡ @q…1
2

_qqTMc _qq† ‡ @q…1
2

_qqTM _qq††

ˆ G?……I ¡ MM¡1
c †Mc �qq ‡ @q…Mc _qq† _qq ¡ @q…M _qq† _qq

¡ @q…1
2

_qqTMc _qq† ‡ @q…1
2

_qqTM _qq†† …36†

assuming Mc is invertible.
Now note that (34) de®nes the ®rst integral @ _³³Lc of

the controlled Lagrangian system. Decompose Mc,
de®ned in (31), according to the decomposition
q ˆ …x; ³† and write

Mc ˆ
Mxx

c Mx³
c

M³x
c M³³

c

" #
…37†

Then

@ _³³Lc ˆ M³x
c _xx ‡ M³³

c
_³³ …38†

which gives by (34), taking into account that ³ is a cyclic
variable

M³x
c �xx ‡ M³³

c
�³³ ‡ @x…M³x

c _xx† _xx ‡ @x…M³³
c

_³³† _xx ˆ 0 …39†

Assuming that M³³
c is invertible (note that a su� cient

condition for M³³
c to be invertible is that Mc is de®nite)

this results in

�³³ ˆ ¡…M³³
c †¡1M³x

c �xx ¡ …M³³
c †¡1

…@x…M³x
c _xx† _xx ‡ @x…M³³

c
_³³† _xx† …40†

Using (40) we can calculate
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{ The term relative equilibrium is used in reduction theory.
It denotes an equilibrium in the shape variables, whereas
motion with constant velocity (or better, momentum) in the
group variables is allowed. In our case the relative equilibrium
has velocity zero in the group variables. The con®guration ³ of
the group variables however is unspeci®ed.



Mc �qq ˆ
Mxx

c �xx ‡ Mx³
c

�³³

M³x
c �xx ‡ M³³

c
�³³

2

4

3

5

ˆ
…Mc �qq†x

¡…@x…M³x
c _xx† _xx ‡ @x…M

³³

c
_³³† _xx†

2

4

3

5

where

…Mc �qq†x ˆ …Mxx
c ¡ Mx³

c …M³³
c †¡1M³x

c † �xx

¡ Mx³
c …M³³

c †¡1…@x…M³x
c _xx† _xx ‡ @x…M³³

c
_³³† _xx†

…41†

Note that Sc :ˆ Mxx
c ¡ Mx³

c …M³³
c †¡1M³x

c is exactly the
Schur-complement of the matrix Mc. Since we assume
that Mc is invertible, it follows that Sc is invertible (see
e.g. Gantmacher 1966, p. 46).

Now substitute (41) into (36). The only terms of
Ex…Lc† involving accelerations are given by

G?…I ¡ MM¡1
c †

I

0

" #

Sc �xx …42†

Bloch et al. (2000) de®ne their ®rst matching condition,
Assumption M-1, in such a way as to cancel all the terms
in Ex…Lc† that involve the accelerations �xx. Indeed, con-
sider the expression of Ex…Lc† as in Bloch et al. (2000,
equation (2.20)), and note that Assumption M-1 is
`designed’ such that the time-derivative terms cancel. It
can be calculated that for the class of controlled
Lagrangians described in (31) and (32) the acceleration
terms are exactly given by (42), i.e. (where we use the
notation of Bloch et al. 2000)

G?…I ¡ MM¡1
c †

I

0

" #

Sc ˆ Mx³½ ‡ ½T¼½

ˆ g¬a½ a
 ‡ ¼ab½ a

 ½b
¬ …43†

Since Assumption M-1 makes the right-hand side of
…43† equal to zero and since Sc is invertible, we have
the following proposition, valid with respect to the
class of controlled Lagrangians (31) and (32) considered
in Bloch et al. (2000).

Proposition 3: The matching condition M-1 of Bloch et
al. (2000) is equivalent to the condition

G?…I ¡ MM¡1
c †

I

0

" #
ˆ 0 …44†

Remark 4: Note that
I
0

ˆ …G?†T.

Condition (44) is an algebraic condition on the
kinetic energy metric de®ned by Mc. Assuming (44)
holds, let us calculate Ex…Lc†. First calculate that

¡ @q…Mc _qq† _qq ˆ
¡…@x…M³x

c _xx† _xx ‡ @x…M³³
c

_³³† _xx†

" #
…45†

Then after substitution of (41) into (36) and using (44)
and (45), equation (36) becomes

Ex…Lc† ˆ G?…¡…I ¡ MM¡1
c †@q…Mc _qq† _qq ‡ @q…Mc _qq† _qq

¡ @q…M _qq† _qq ¡ @q…1
2

_qqTMc _qq† ‡ @q…1
2
_qqTM _qq††

ˆ G?…MM¡1
c @q…Mc _qq† _qq ¡ @q…M _qq† _qq

¡ @q…1
2

_qqTMc _qq† ‡ @q…1
2

_qqTM _qq†† …46†

From the fact that ³ is a cyclic variable for Lc it follows
using (44) that

G?@q…1
2

_qqTMc _qq† ˆ G?
I

0

" #

@x…1
2

_qqTMc _qq†

ˆ G?MM¡1
c

I

0

" #

@x…1
2
_qqTMc _qq†

ˆ G?MM¡1
c @q…1

2 _qqTMc _qq† …47†

Finally, this results in the following equation for Ex…Lc†

Ex…Lc† ˆ G?…fMM¡1
c @q…Mc _qq† ¡ @q…M _qq†g _qq

¡ fMM¡1
c @q…1

2
_qqTMc _qq† ‡ @q…1

2
_qqTM _qq†g† …48†

This corresponds to equation (2.25) in Bloch et al.
(2000). Bloch et al. (2000) proceed by giving two con-
ditions, i.e. Assumption M-2 and Assumption M-3,
under which Ex…Lc† is identically zero, thereby accom-
plishing matching.

Interpretation of the matching conditions: According
to } 2.2 the systems (27±29) and (32±34) match if and
only if the two PDEs ((18) and (19)) hold. Note that
(19), describing the matching of the potential energy,
in this case becomes the algebraic equation

G?‰…I ¡ M…x†M¡1
c …x††@qV…x†Š ˆ 0 …49†

where G? ˆ ‰I 0Š. In the sequel we will interpret the
matching conditions obtained by Bloch et al. (2000) in
terms of the conditions (18) and (49).

As described above the Assumptions M-1, M-2 and
M-3 accomplish matching for the class of controlled
Lagrangians (31) and (32) considered in Bloch et al.
(2000). According to Proposition 3, Condition M-1 is
equivalent to (44). Now consider the matching condition
(49) for the potential energy. Since ³ is a cycle variable
for V , we have that
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@qV…x† ˆ
I

0
@xV…x† …50†

However, this means that (44) implies (49). Actually,
this holds for any function V which is independent of
the variables ³.

Proposition 4: Assumption M-1 of Bloch et al. (2000)
implies that the unchanged potential energy V matches.

In other words, Assumption M-1 takes care of the
matching of potential energy. Note that similarly to
(49), Assumption M-1 describes an algebraic equation
on the kinetic energy matrix Mc.

Secondly, assuming that condition M-1 holds, we
calculated Ex…Lc† to be as in (48). The condition that
Ex…Lc† is equal to zero is precisely the matching con-
dition (18) for the kinetic energy.

Proposition 5: Assume that condition M-1 holds. Then
Assumptions M-2 and M-3 are equivalent to the match-
ing condition (18) on the kinetic energy.

In other words, Assumptions M-2 and M-3 take care
of the matching of kinetic energy. Note that similar to
(18), Assumptions M-2 and M-3 de®ne a set of non-
linear PDEs, to be solved for the kinetic energy matrix
Mc (or its components ½ and ¼).

The above two propositions give an interpretation of
the matching conditions as de®ned in Bloch et al. (2000)
in terms of the matching of kinetic and potential energy.
These facts are not easily recognizable from the exten-
sive coordinate computations in Bloch et al. (2000).

Observe that to conclude if a certain controlled
Lagrangian can be obtained as a closed-loop
Lagrangian (i.e. matches) one needs to check the non-
linear PDEs (18) and (19). In case one considers the class
of systems and controlled Lagrangians as de®ned in
Bloch et al. (2000) this comes down to checking the
algebraic condition (44) and the non-linear PDE (18)
(or equivalently, checking Assumptions M-1, M-2 and
M-3). Bloch et al. (2000) have given a set of conditions,
called the simpli®ed matching assumptions, under which
(44) and (18) automatically hold. Let us translate these
conditions into the notation used in this paper.

Recall the decomposition of the matrix M as in (30)
and denote ¢ :ˆ Mx³…M³³†¡1M³x. The simpli®ed
matching Assumptions 2 and 4 (Bloch et al. 2000), can
be translated as

‰SM-1Š M³³…x† ˆ M³³

is a constant …invertible† matrix

‰SM-2Š @xj
Mxi³k ˆ @xi

Mxj ³k ;

i; j ˆ 1; . . . ; n ¡ m; k ˆ 1; . . . ; m

As remarked in Bloch et al. (2000), these conditions
imply that the mechanical connection corresponding to
the system is ¯at, that is, the system lacks gyroscopic
forces. The simpli®ed matching Assumptions 1 and 3
(Bloch et al. 2000), can be translated into taking{

½ ˆ µ…M³³†¡1M³x; ¼ ˆ ¡ 1

µ
M³³ …51†

for some arbitrary non-zero constant µ 2 , which can
be seen as a design parameter. This results in the shaped
kinetic energy matrix Mc

‰SM-3Š Mc ˆ
Mxx ‡ µ…µ ‡ 1†¢ …µ ‡ 1†Mx³

…µ ‡ 1†M³x M³³

" #

Now we can translate the result of Bloch et al. (2000)
into the following proposition.

Proposition 6 (Bloch et al. 2000) : Assume that the La-
grangian …29† satis®es Assumptions SM-1 and SM-2.
Take the controlled Lagrangian Lc to be of the form
…32†, with Mc as in SM-3 (for arbitrary µ). Then Lc is
a matching Lagrangian, that is, the systems …27-29† and
…32-34† match.

Although the Assumptions SM-1, SM-2 and SM-3
are quite restrictive{, they seem to work well for the
matching and stabilization of a number of interesting
systems like the inverted pendulum on a cart and the
spherical inverted pendulum. See Bloch et al. (2000)
for worked examples.

2.4. The cart and pendulum

In this section we want to make a few remarks on the
matching methods we have described so far, taking as a
guideline the example of an inverted pendulum on a
cart. This system was ®rst stabilized using the method
of controlled Lagrangians by Bloch et al. (1997, 2000).
We described this method in the previous section. The
method has two key features:

(I) The method stabilizes a relative equilibrium.

In the case of the cart and pendulum this means that the
upright position of the pendulum is stabilized, irrespec-
tive of the horizontal position of the cart.

(II) The kinetic energy of the closed-loop system is
negative de®nite.

Controlled Lagrangians and IDA-passivity 653

{ For µ ˆ 0: take ½ ˆ 0 and ¼ any matrix. Then Mc ˆ M.
{ However, in the case n ˆ 2, m ˆ 1 (e.g. inverted

pendulum on a cart) Assumptions M-1, M-2, M-3 and
Assumptions SM-1, SM-2, SM-3 are equivalent, as can easily
be seen.



This means that the closed-loop system simulates a
mechanical system with negative masses and inertias,
which is physically not very appealing{.

The ®rst problem can easily be overcome by also
allowing the shaping of potential energy (recall that in
the method of Bloch et al. (2000) the potential energy
was unchanged). This destroys the symmetry present in
the system but in return stabilizes the group variables
(i.e. the position of the cart) at a desired equilibrium
point. Extending the above method by also including
potential energy shaping was described in Bloch et al.
(1999) (see also the recent paper by Bloch et al. 2001 b).
In that paper, the kinetic energy is still shaped according
to Assumptions SM-1, SM-2 and SM-3, and in addition
the potential energy is also shaped (by introducing a new
matching assumption) . This solves the ®rst problem,
however, it cannot solve the second problem. In fact,
for the cart and pendulum example, it can easily be
checked that taking the shaped kinetic energy according
to Assumptions SM-1, SM-2 and SM-3, the potential
energy can never be shaped in such a way that the sta-

bilizing closed-loop kinetic energy is positive de®nite at
the desired equilibrium (i.e. upright position of the pen-
dulum, cart at a desired horizontal position). This seems
to be a structural property of the method as described in
Bloch et al. (1999, 2000). The reason for this could be as
follows. Recall that the method is originally designed as
to shape only the kinetic energy of the system and to
leave the potential energy unchanged. Since for the cart
and pendulum example (as for a lot of other examples)
the desired equilibrium point is a maximum of the poten-
tial energy, this means that in order to make the total
energy de®nite at this point (which is a su� cient con-
dition or stability), we should make the kinetic energy
have a maximum, i.e. negative de®nite, at this point. It is
very reasonable to expect that allowing also the shaping
of potential energy, but still shaping the kinetic energy
according to the earlier results, leaves not enough free-
dom to make the total energy positive de®nite at the
desired equilibrium point. (As said, this is exactly what
happens in the case of the cart and pendulum.)

On the other hand, if we consider the more general
matching conditions as described in } 2.2, then problems
(I) and (II) are absent. Indeed, as shown in Hamberg
(1999) and Auckly et al. (2000), it is possible to stabilize
the cart and pendulum system at the desired equilibrium
point, such that the total energy of the closed-loop
system is positive de®nite. This means that the closed-

loop system corresponds to a physically existing
mechanical system, with positive masses and inertias.
Remark that indeed the corresponding shaped kinetic
energy matrix does not have the form as in SM-3.

We conclude that although the controlled
Lagrangians method, and the corresponding (simpli®ed)
matching assumptions, described in Bloch et al. (1999,
2000) and } 2.3, can be very helpful in solving the match-
ing conditions and stabilizing a mechanical system, for a
large class of examples it leads to closed-loop systems
having a negative de®nite total energy, something which
is physically not very appealing (and can become pro-
blematic in the presence of damping). This problem does
not occur when one shapes the energy according to the
more general matching conditions described in } 2.2 (see
Hamberg 1999, Auckly et al. 2000 for examples).

3. Matching of port-controlled Hamiltonian systems

Recently in Ortega et al. (2001 a,b) a method has
been developed to stabilize a desired equilibrium point
of a port-controlled Hamiltonian system. The class of
port-controlled Hamiltonian systems strictly contains
the class of regular Euler±Lagrange systems. The
method is called the interconnection and damping assign-
ment passivity based control (IDA-PBC) method.
Analogously to the method of controlled Lagrangians
the basic idea is to search for a closed-loop stabilizing
system which is again in port-controlled Hamiltonian
format. As in the previously described method this
leads to a set of matching conditions, described by a
set of non-linear PDEs. In this section we recall the
method developed in Ortega et al. (2001 a,b), and its
application to mechanical systems.

3.1. General matching conditions

Consider a port-controlled Hamiltonian system of
the form

_zz ˆ J…z†@zH…z† ‡ g…z†u …52†

where z 2 M (a manifold) J…z† ˆ ¡JT…z†: Tz M !
TzM is a skew-symmetric matrix (or better, vector
bundle map) describing the internal interconnection
structure of the system, g…z†: m ! TzM describes the
input vecor ®elds corresponding to the input u 2 m and
H…z† is the Hamiltonian (or energy) function of the
system. The objective of IDA-PBC is to stabilize a
desired equilibrium point of the system. Analogously
to the method of controlled Lagrangians this goal is
being pursued by considering static state feedback laws
which render the closed-loop system in port-controlled
Hamiltonian format. That is, the closed-loop system is
described by the equations

_zz ˆ Jd…z†@zHd…z† …53†
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{ Besides, the problem of a negative de®nite kinetic energy
becomes serious in the presence of physical damping. Indeed
physical damping dissipates energy, pushing the state towards
a minimum of the energy. This means that in order for the
controlled Lagrangians method to work the (usually
unknown) damping has to be compensated (see also Woolsey
et al. 2001).



Here, Jd…z† ˆ ¡JT
d …z† denotes the closed-loop intercon-

nection matrix and Hd…z† the closed-loop Hamiltonian
function. The system (53) can be obtained from (52) by
state feedback u ˆ u…z† if and only if

Jd…z†@zHd…z† ˆ J…z†@zH…z† ‡ g…z†u…z† …54†

Let g?…z† denote a full rank left annihilator of g…z†, then
(54) can be equivalently written as

g?…z†‰Jd…z†@zHd…z† ¡ J…z†@zH…z†Š ˆ 0 …55†

which are the matching conditions of the IDA-PBC
method (Ortega et al. 2001 a,b). Note that the matching
conditions (55) de®ne a set of non-linear PDEs, to be
solved for the shaped Hamiltonian Hd and the shaped
interconntection matrix Jd . If the matching conditions
are satis®ed, i.e., the systems (52) and (53) match, then
the corresponding state feedback law is explicitly given
by

u…z† ˆ …gT…z†g…z††¡1gT…z†fJd…z†@zHd…z† ¡ J…z†@zH…z†g
…56†

Remark 5: In Ortega et al. (2001 a,b) the following
equivalent form of the matching conditions can be
found. Write Ja ˆ Jd ¡ J and Ha ˆ Hd ¡ H, then
equation (54) becomes

…J…z† ‡ Ja…z††@zHa…z† ˆ ¡Ja…z†@zH…z† ‡ g…z†u…z† …57†

and the matching conditions (55) get the form

g?…z†‰…J…z† ‡ Ja…z††@zHa…z† ‡ Ja…z†@zH…z†Š ˆ 0 …58†

which is a set of non-linear PDEs to be solved for Ha

and Ja.

Remark 6: Suppose (52) represents a linear port-
controlled Hamiltonian system, i.e. _zz ˆ JQz ‡ gu for
constant matrices J ˆ ¡JT; g; and Hamiltonian func-
tion H…z† ˆ 1

2
zTQZ, Q ˆ QT, and suppose that also

the closed-loop system (53) is a linear system. It has
been shown in Prajna et al. (2001) that in this case the
matching conditions (55), as well as the conditions for
stability of the closed-loop system, can be transformed
into a set of linear matrix inequalities (LMIs). Power-
ful algorithms for solving these LMIs are available in
several software packages.

Remark 7: Equivalence under state feedback. The
closed-loop system (53) does not include the descrip-
tion of external inputs. This stems from the fact that
the IDA-PBC method is designed to construct feed-
back controllers u ˆ u…z† which stabilize an assigned
equilibrium point z , that is, the closed-loop system
(53) has a stable equilibrium point at z . The addition
of external inputs to the closed-loop system, yielding

_zz ˆ Jd…z†@zHd…z† ‡ g…z†v; v 2 m …59†

can be of importance in reaching additional control
objectives. For instance, feeding back the passive output
y ˆ gT@zHd by v ˆ ¡Ky, K > 0, yields under suitable
assumptions asymptotic stability (see e.g. Ortega et al.
2001 c). However, the addition of external inputs to the
closed-loop system does not change the matching con-
ditions (55). The systems (52) and (53) are equivalent
under state feedback u…z; v† ˆ ¬…z† ‡ v if and only if
(55) holds. The corresponding control law ¬…z† is
de®ned by (56). Of course, an analogous remark can
be made for the controlled Lagrangians method.

3.2. Mechanical systems

In this section we apply the method described above
to mechanical systems (see Ortega et al. 2001 c). A
mechanical system can be described by a port-controlled
Hamiltonian system of the form (52)

_qq

_pp
ˆ

0 In

¡In 0

@qH

@pH
‡

0

G…q†
u …60†

where …q; p† (consisting of con®guration coordinates q
and impulses p) denote coordinates for the state space
M ˆ T Q ’ 2n, with Q ’ n denoting the con®gura-
tion space of the mechanical system. The matrix G…q†:

m ! Tq Q ’ n de®nes the force ®elds corresponding
to the input u 2 m. The Hamiltonian function H…q; p†
is given by the total, i.e. kinetic plus potential, energy in
the system

H…q; p† ˆ 1
2
pTM¡1…q†p ‡ V…q† …61†

where M ˆ MT describes the generalized mass matrix of
the system, and is assumed to be invertible (for most
physical systems M will be positive de®nite). Note that
from (60) and (61) it follows that the impulses are
de®ned as usual by p ˆ M…q† _qq. As in Ortega et al.
(2001 c) we propose the shaped Hamiltonian function
Hd…q; p† to be again of the form (61)

Hd…q; p† ˆ 1
2
pTM¡1

d …q†p ‡ Vd…q† …62†

for some shaped generalized mass matrix Md ˆ MT
d

(assumed to be invertible) and potential energy function
Vd…q†. The shaped interconnection matrix is taken to be
in the most general form

Jd…q; p† ˆ 0 M¡1…q†Md…q†
¡Md…q†M¡1…q† J2…q; p†

" #
…63†

for some skew-symmetric matrix J2…q; p†. Then, system
(53) becomes

_qq

_pp
ˆ 0 M¡1Md

¡MdM¡1 J2

@qHd

@pHd

…64†

Remark 8: Since _qq is a non-actuated coordinate, it
follows that the relationship _qq ˆ M¡1…q†p should also
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hold in closed-loop. Fixing (53) and (62) this explains
the ®rst row of the matrix Jd .

In this case the matching conditions (55) become

G?‰@qH ¡ MdM¡1@qHd ‡ J2M¡1
d pŠ ˆ 0 …65†

Using (61) and (62) and collecting terms dependent, re-
spectively independent, of p we see that (65) can be
equivalently written as a set of two non-linear PDEs

G?…q†‰@q…1
2
pTM¡1…q†p† ¡ Md…q†M¡1…q†@q…1

2
pTM¡1

d …q†p†

‡ J2…q; p†M¡1
d …q†pŠ ˆ 0 …66†

and

G?…q†‰@qV…q† ¡ Md…q†M¡1…q†@qVd…q†Š ˆ 0 …67†

Like in the Lagrangian case, equation (66) matches the
kinetic energy and is independent of the potential energy,
whereas equation (67) matches the potential energy of
the closed-loop system (and depends on Md). The PDEs
contain the unknown variables Md and Vd , whereas the
matrix J2 acts as a free parameter which can be suitably
chosen to allow the PDEs to be solvable for speci®c
choices of Md and Vd (directed by the stabilizability
objective). In case of matching the corresponding feed-
back law is given by (56)

u ˆ …GTG†¡1GTf@qH ¡ MdM¡1@qHd ‡ J2M
¡1
d pg …68†

Again remark that (66) and (67) de®ne a set of non-
linear PDEs, which are in general not easy to solve.
However, for a special class of systems these PDEs
can be transformed into a set of non-linear ODEs
which are much easier to solve. This is described in
GoÂ mez-Estern et al. (2001). The class of systems for
which this transformation is possible is de®ned by the
following assumptions: (i) the system is assumed to have
n degrees of freedom and n ¡ 1 actuators (i.e. there is
only one unactuated coordinate), and (ii) the kinetic
energy matrix M is assumed only to depend on the
unactuated coordinate. This class of systems is quite
common in underactuated mechanical systems and
includes for instance the cart and pendulum example.
By choosing the shaped kinetic energy matrix Mc to
only depend on the unactuated coordinate, it can be
shown that the set of PDEs (66) and (67) can be trans-
formed into an equivalent set of ODEs. In GoÂ mez-
Estern et al. (2001) the method is applied to the ex-
amples of a cart and pendulum system and a ball and
beam system. For general systems we will show in } 4.2
that the ¶-method as described in } 2.2 can also be used
to simplify the process of solving the matching con-
ditions (66) and (67), by transforming them into a set
of quadratic and linear PDEs.

4. Comparison between the two methods

In }} 2 and 3 we described the matching of Euler±
Lagrange systems, respectively of port-controlled
Hamiltonian systems. Since the class of regular Euler±
Lagrange systems is strictly contained in the class of
port-controlled Hamiltonian systems, the method of
} 2 should be a special case of the more general method
described in } 3. In this section we consider both
methods as applied to mechanical systems (see }} 2.2
and 3.2) and show that Euler±Lagrange matching is a
special case of port-controlled Hamiltonian matching.
Notice that the IDA-PBC method has an extra degree
of freedom with respect to the controlled Lagrangians
method in the sense that in addition to shaping the total
energy of the system, it is also possible to shape the
internal interconnection structure of the system. This
extra freedom means that the IDA-PBC method results
in a larger class of matching closed-loop systems than
the controlled Lagrangians method described in } 2.2.
This can be an important point in ®nding suitable
stabilizing feedback controllers. Furthermore, the ¶-
method described in } 2.2 is shown to be useful in solving
the matching conditions obtained in the IDA-PBC
method.

4.1. The controlled Lagrangians case of IDA-PBC

Consider a mechanical system described by the
Euler±Lagrange system (1, 15). This system is equivalent
via the Legendre transformation to the Hamiltonian
system (60, 61). In } 2.2 we gave conditions under
which the autonomous Euler±Lagrange system (2, 16)
matches with the system (1, 15). The system (2, 16) is
equivalent to a canonical Hamiltonian system in the
following way. De®ne the impulse to be

pc ˆ @ _qqLc ˆ Mc…q† _qq …69†

and the Hamiltonian by the Legendre transformation

Hc…q; pc† ˆ 1
2
pT

c M¡1
c …q†pc ‡ Vc…q† …70†

Then the Euler±Lagrange system (2, 16) can be equiva-
lently written as the Hamiltonian system

_qq

_ppc

ˆ
0 In

¡In 0|‚‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚‚}
Jc

@qHc

@pc
Hc

…71†

It follows that in the particular case that we choose Md

and Jd such that the closed-loop Hamiltonian system
(62, 64) is equivalent (by a coordinate transformation)
to the Hamiltonian system (70, 71), then the IDA-PBC
method e� ectively results in the controlled Lagrangians
method. Indeed, we will show that for a certain choice of
Mc (or equivalently, for Md ) and J2 the systems (70, 71)
and (62, 64) are equivalent, as well as the corresponding
matching conditions (18, 19) and (66, 67). This means
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that for this particular choice of J2 (and therefore of the
shaped interconnection structure Jd ) the IDA-PBC and
the controlled Lagrangians method are equivalent.

The systems (70, 71) and (62, 64) are equivalent (by a
coordinate transformation) if and only if the
Hamiltonians Hc and Hd are equivalent and in addition
the structure matrices Jc and Jd are equivalent. Note
that pc ˆ McM

¡1p, and calculate Hc in the coordinates
…q; p† to obtain

Hc…q; p† ˆ 1
2
pTM¡1…q†Mc…q†M¡1…q†p ‡ Vc…q† …72†

The Hamiltonians Hc and Hd are equivalent if and
only if

Mc…q† ˆ M…q†M¡1
d …q†M…q† and Vc…q† ˆ Vd…q†

…73†

Note that there is a one-to-one relation between Mc and
Md . (73) implies

pc ˆ M…q†M¡1
d …q†p …74†

The structure matrices Jc and Jd are the same if and only
if Jd becomes in the coordinates …q; pc† the canonical
matrix Jc (in that case we call …q; pc† canonical coordi-
nates for the matrix Jd ). This means that the Poisson
brackets of the coordinates …q; pc† should satisfy

fq; qgd ˆ 0; fq; pcgd ˆ In and f pc; pcgd ˆ 0

…75†

where f ; gd denotes the Poisson bracket corresponding
to the structure matrix Jd . It is easy to check that the
®rst two conditions in (75) are satis®ed, while for the
last one

f pc; pcgd ˆ fMM¡1
d p; MM¡1

d pgd

ˆ ‰@q…MM¡1
d p† MM¡1

d Š

0 M¡1Md

¡MdM¡1 J2

" #
‰@q…MM¡1

d p†ŠT

M¡1
d M

" #

ˆ ¡‰@q…MM¡1
d p†ŠT ‡ @q…MM¡1

d p†

‡ MM¡1
d J2M

¡1
d M …76†

Thus f pc; pcgd is equal to zero if and only if

J2…q; p† ˆ MdM¡1‰‰@q…MM¡1
d p†ŠT

¡ @q…MM¡1
d p†ŠM¡1Md …77†

(For clarity we left out the argument q of the matrices M
and Md .) Note that J2 is clearly skew-symmetric. In
conclusion, the Hamiltonian systems (70, 71) and (62,
64) are equivalent if and only if conditions (73) and (77)
hold.

Since under conditions (73, 77) the Euler±Lagrange
system (2, 16) and the Hamiltonian system (62, 64) are

equivalent, the corresponding matching conditions
(18, 19) and (66, 67) should also be equivalent. Indeed,
it is easy to see that (73) implies that the matching con-
ditions (19) and (67), describing the matching of poten-
tial energy, are the same. Furthermore, consider (18),
describing the matching of kinetic energy, and use (73)
to obtain

G?‰f@q…M…q† _qq† ¡ Md…q†M¡1…q†@q…M…q†M¡1
d …q†M…q† _qq†g _qq

¡ f@q…1
2

_qqTM…q† _qq† ¡ Md…q†M¡1…q†

@q…1
2

_qqTM…q†M¡1
d …q†M…q† _qq†gŠ ˆ 0 …78†

After some lengthy computations it can be shown that
(78) is equal to (66) if J2 is de®ned as in (77). We refer to
Appendix 7 for details. Since under conditions (73, 77)
the matching conditions (18, 19) (or equivalently (13))
and (66, 67) (or equivalently (65)) are equal, it follows
immediately that the corresponding feedback laws (14)
and (68) are also equal. In conclusion, we have the fol-
lowing proposition.

Proposition 7: Consider the controlled Lagrangians
method described in } 2 and the IDA-PBC method de-
scribed in } 3, both applied to the class of mechanical
systems (see } 2.2, respectively 3.2). The IDA-PBC
method is equivalent to the controlled Lagrangians
method if and only if the shaped interconnection struc-
ture is chosen as in …77†. The controlled Lagrangian Lc

and the shaped Hamiltonian Hd are related by …73†.

Remark 9: Proposition 7 states that the controlled
Lagrangians method as described in } 2.2 is a special
case of the more general IDA-PBC method (namely,
with J2 chosen equal to (77)). Independently from the
present paper, Bloch et al. (2001 a) have recently ex-
tended the controlled Lagrangians method in such a
way that for mechanical systems it becomes equivalent
with the IDA-PBC method. Essentially, instead of
restricting to systems of the form (2), they also allow
to include some external forces into the closed-loop
Euler±Lagrange system (i.e. the right-hand side of (2) is
not necessarily equal to zero, but can be any external
force). In this way, it is possible to write any mechani-
cal Hamiltonian system in Euler±Lagrange format by
including the non-integrable part of the Hamiltonian
system (corresponding to the failure of the Jacobi
identity by the Poisson bracket) as an external (gyro-
scopic) force into the Euler±Lagrange system. Note
that this method only works for the class of simple
mechanical systems (i.e. with total energy consisting of
kinetic plus potential energy). Considering this larger
class of closed-loop Euler±Lagrange systems (Bloch
et al. 2001 a) show that for simple mechanical systems
the controlled Lagrangians method is equivalent to the
IDA-PBC method.
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Finally we derive a formula for J2 equivalent to (77).
Recall that …q; pc† are canonical coordinates for the
matrix Jd , satisfying the Poisson bracket relations (75).
Reversely, the coordinates …q; p† satisfy the Poisson
bracket relations

fq; qgc ˆ 0; fq; pgc ˆ M¡1…q†Md…q†

and f p; pgc ˆ J2…q; p† …79†

where f ; gc denotes the canonical Poisson bracket
corresponding to the structure matrix Jc. From …74† it
follows that the ith component of p can be written as

pi ˆ eT
i MdM¡1pc ˆ pT

c M¡1Mdei ˆ pT
c …M¡1Md†i;

i ˆ 1; . . . ; n …80†

where ei denotes the ith standard basis vector on n, and
…M¡1Md†i denotes the ith column of the matrix M¡1Md .
Furthermore, recall the formula

f pT
c X ; pT

c Ygc ˆ ¡pT
c ‰X ; Y Š;

for any two vector fields X ; Y on Q; …81†

where ‰ ; Š denotes the usual Lie bracket of vector ®elds
on Q. The above two expressions yield

f pi; pjgc ˆ f pT
c …M¡1Md†i; pT

c …M¡1Md†jgc

ˆ ¡pT
c ‰…M¡1Md†i; …M¡1Md†jŠ

ˆ ¡pTM¡1
d M‰…M¡1Md†i; …M¡1Md†jŠ;

i; j ˆ 1; . . . ; n …82†

Together with (79) this results in the following formula
for J2, equivalent to formula (77)

…J2†i j…q; p† ˆ ¡pTM¡1
d M‰…M¡1Md†i; …M¡1Md†jŠ;

i; j ˆ 1; . . . ; n …83†

4.2. The ¶-method for Hamiltonian matching

In } 2.2 we described the ¶-method of Auckly et al.
(2000). This method describes a way to solve the match-
ing condition (18), a non-linear PDE in Mc, by recur-
sively solving the two linear PDEs (24) and (25). In this
section we will show that the method can also be used to
solve the matching condition (66) obtained in the IDA-
PBC procedure. However, instead of recursively solving
two linear PDEs, we now have to solve one quadratic
PDE and afterwards a linear PDE. Solving the quadra-
tic PDE might be simpli®ed by using the freedom in J2.

Consider the kinetic energy matching condition (66)
obtained in the IDA-PBC procedure

G?…q†‰@q…1
2
pTM¡1…q†p† ¡ Md…q†M¡1…q†

@q…1
2
pTM¡1

d …q†p† ‡ J2…q; p†M¡1
d …q†pŠ ˆ 0 …84†

Without loss of generality we may write the skew-
symmetric matrix J2 as

J2…q; p† ˆ MdM¡1‰‰@q…MM¡1
d p†ŠT

¡ @q…MM¡1
d p†ŠM¡1Md ‡ U…q; p† …85†

where U…q; p† is a skew-symmetric matrix, free to
choose by the designer. According to the theory
above, equation (84) then results in

G?‰f@q…M _qq† ¡ MM¡1
c @q…Mc _qq†g _qq

¡ f@q…1
2

_qqTM _qq† ¡ MM¡1
c ‰@q…1

2
_qqTMc _qq†Šg

‡ U…q; M _qq†M¡1Mc _qqŠ ˆ 0; 8…q; _qq† 2 TQ …86†

As explained in } 2.2 this can be equivalently written as

G?M ‰rXX ¡ r̂rXX ‡ M¡1U…q; MX†M¡1McX Š ˆ 0;

8X 2 TQ …87†

Equations (86) and (87) clearly show the extra freedom,
represented by U , obtained in the IDA-PBC method
with respect to the controlled Lagrangians method
(equations (18) resp. (21)). Consider (86) and note that
in order to satisfy the matching condition the term
G?U…q; M _qq†M¡1Mc _qq should be quadratic in _qq.
Therefore we take U…q; p† to be linear in its second
component. In that case we can write

U…q; p† ˆ
Xn

kˆ1

pkUk…q†; UT
k ˆ ¡Uk …88†

where pk denotes the kth component of the vector p.

Remark 10: In general U can also be chosen to in-
clude terms independent of p. These terms however
will not be present in the quadratic (in _qq) part of
matching condition. Indeed, they should satisfy a
matching condition on their own (see } 5.3). Terms in
U independent of p come up in the matching of inte-
grable Hamiltonian systems, see } 5.

Next we will show that the non-linear PDE (86),
or equivalently (87), can be solved by ®rst solving a
quadratic PDE in ¶ ˆ M¡1

c M and afterwards a linear
PDE in Mc. First, de®ne the skew-symmetric matrices
Wk by

Uk ˆ 2¶TWk¶; i.e. U…q; p† ˆ 2
Xn

kˆ1

pk¶TWk…q†¶

…89†
Then (87) becomes

G?M ‰rX X ¡ r̂rXX Š ‡ 2
Xn

kˆ1

G?…MX†k¶TWkX ˆ 0;

8X 2 TQ …90†
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where again …MX†k denotes the kth component of the
vector MX . We can polarize this equation to obtain the
equivalent condition

G?M‰rXY ¡ r̂rXY Š

‡
Xn

kˆ1

G?‰…MX†k¶TWkY ‡ …MY †k¶TWkX Š ˆ 0;

8X ; Y 2 TQ …91†

As in the original method of Auckly et al. (2000), see
} 2.2, consider (91) with the orthogonal projection
matrix ·GG? instead of G?. Furthermore, take
X ˆ ¶ ·GG?MX 0 and Y ˆ Y 0 and premultiply (91) by
…X 0†TM. Then the second term on the left-hand side
of (91) can be written as

Xn

kˆ1

…X 0†TM ·GG?‰…M¶ ·GG?MX 0†k¶TWkY 0

‡ …MY 0†k¶TWk¶ ·GG?MX 0Š

ˆ
Xn

kˆ1

…M¶ ·GG?MX 0†k|‚‚‚‚‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚‚‚‚‚}
2

…X 0†TM ·GG?¶TWkY 0

‡ ……X 0†TM ·GG?¶TWk¶ ·GG?MX 0†|‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚}
2

Mk Y 0 …92†

where Mk denotes the kth row of the matrix M.
As described in } 2.2 the ®rst term of the left-hand
side of (91) will result in the right-hand side of the ¶-
equation (24). Then by eliminating Y 0 the non-linear
PDE (91) beomes (suppressing the prime and writing
X for X 0)

0 ˆ XTM ·GG?¶Tf‰@q…M ·GG?MX†ŠT

¡ ‰@q… ·GG?MX†ŠTM ¡ M@q… ·GG?MX †g

‡ XTM ·GG?f‰@q…¶ ·GG?MX†ŠTM

‡ M@q…¶ ·GG?MX† ¡ ‰@q…M¶ ·GG?MX†ŠTg

‡
Xn

kˆ1

……M¶ ·GG?MX †kXTM ·GG?¶TWk

‡ …XTM ·GG?¶TWk¶ ·GG?MX†Mk †; 8X 2 TQ …93†

This PDE is quadratic in ¶ in the sense that the last
two terms are quadratic in the components of ¶.
Notice however that the derivatives of ¶ appear linear
in the equation. Equation (93) can be seen as the ¶-
equation for the matching of port-controlled
Hamiltonian systems. Analogously to (24) it can be
solved for ¶ ·GG?M.

Remark 11: Remember that the skew-symmetric
matrices Wk are designer chosen matrices. Exploiting
the freedom in Wk might simplify the search for
solutions of (93). Furthermore, notice that by taking

Wk ˆ 0, i.e. U…q; p† ˆ 0, equation (93) results in
original ¶-equation (24) (a linear PDE in ¶), and
the method reduces to the method of Auckly et al.
(2000).

Once we have found a solution ¶ ·GG?M (together with
some suitably chosen matrices Wk) of (93), the complete
solution ¶ (or, equivalently, Mc) of the kinetic energy
matching condition (86) can be found by solving a linear
PDE. Indeed, premultiply (86) by M to obtain

0 ˆ M ·GG?¶Tf@q…1
2

_qqTMc _qq† ¡ @q…Mc _qq† _qqg

‡ M ·GG?f@q…M _qq† _qq ¡ @q…1
2

_qqTM _qq†g

‡ 2
Xn

kˆ1

…M _qq†kM ·GG?¶TWk _qq; 8…q; _qq† 2 TQ …94†

Given a solution ¶ ·GG?M of (93), this is a linear PDE
in Mc.

In conclusion, this suggests the following approach
for solving the non-linear matching PDE (84). First
solve the ¶-equation (93) for ¶ ·GG?M , thereby choosing
suitable matrices Wk. Afterwards solve (94) for Mc.
Then the solution of (84) is given by Md ˆ
MM¡1

c M ˆ M¶ and J2 as in (85), where U…q; p† is
de®ned in (89).

5. Integrability

In the previous section we showed that if we choose
J2 to be equal to (77), or equivalently (83), then there
exist canonical coordinates …q; pc† such that in these
coordinates the structure matrix Jd (63) becomes the
canonical matrix Jc. By Darboux’s Theorem the exist-
ence of canonical coordinates is equivalent to the
Poisson bracket satisfying the Jacobi identity. In this
case we call the Poisson bracket, or equivalently Jd ,
integrable.

5.1. Integrability of the structure matrix

In this section we give necessary and su� cient con-
ditions for the structure matrix Jd to be integrable.
Recall the structure matrix Jd (63)

Jd…q; p† ˆ 0 M¡1…q†Md…q†
¡Md…q†M¡1…q† J2…q; p†

" #
…95†

Assume the matrix Jd is integrable and let the canonical
coordinates be denoted by …qc; pc† ˆ …qc…q; p†; pc…q; p††.
According to the next proposition we can assume with-
out loss of generality that qc ˆ q. Although this general
result follows from a small adjustment of the Darboux
Theorem, we have not been able to ®nd it in the litera-
ture. Therefore, a short proof is included.

Proposition 8: Consider a smooth n-dimensional mani-
fold M together with a non-degenerate Poisson bracket

Controlled Lagrangians and IDA-passivity 659



denoted by f ; g: C1…M† C1…M† ! C1…M†.
Assume that the Poisson bracket satis®es the Jacobi
identity (i.e. is integrable).{ Furthermore, assume that
locally{ around a point x0 2 M there exist coordinates
…x1; . . . ; xn; xn‡1; . . . ; x2n† for M such that

fxi; xjg ˆ 0; i; j ˆ 1; . . . ; n …96†

Then there exist locally} around x0 canonical coordinates
…qc

1; . . . ; qc
n; pc

1; . . . ; pc
n† of M such that qc

i ˆ xi,
i ˆ 1; . . . ; n.

Proof: Consider the coordinates x1; . . . ; xn. By (96)
the corresponding Hamiltonian vector ®elds vxi

,
i ˆ 1; . . . ; n; de®ned by vxi

… f † ˆ fxi; f g, 8f 2 C1…M†,
are commuting

‰vxi
; vxj

Š ˆ vfxi ;xj g ˆ 0; i; j ˆ 1; . . . ; n …97†

Then there exists a smooth function pc
1 on a neighbour-

hood of x0 such that

fx1; pc
1g ˆ 1; fxi; pc

1g ˆ 0; i ˆ 2; . . . ; n …98†

Indeed, since the vector ®elds commute it follows by the
Frobenius Theorem that there exist local coordinates
z1; . . . ; zn such that vxi

ˆ @=@zi, i ˆ 1; . . . ; n. De®ne
pc

1 ˆ z1, then fxi; pc
1g ˆ vxi

… pc
1† ˆ …@=@zi†…z1† ˆ 1 if

i ˆ 1 and zero if i ˆ 2; . . . ; n. Note that by (98) it follows
that the functions x1; . . . ; xn; pc

1 are independent (for if
pc

1 would be a function of x1; . . . ; xn then by (96),
fx1; pc

1g ˆ 0 which contradicts (98)). Denote qc
1 ˆ x1.

This yields

fqc
1; qc

1g ˆ f pc
1; pc

1g ˆ 0; fqc
1; pc

1g ˆ 1 …99†

Consider the submanifold M2n¡2 » M de®ned by the
equations qc

1 ˆ pc
1 ˆ 0. In fact, M2n¡2 is transversal to

vqc
1
; vpc

1
. Indeed, vqc

1
ˆ @=@pc

1 and vpc
1

ˆ ¡@=@qc
1 (since

vpc
1
…qc

1† ˆ f pc
1; qc

1g ˆ ¡1†, and therefore TM ˆ
span fvqc

1
; vpc

1
g TM2n¡2 (since ¡@=@qc

1 and @=@pc
1 are

perpendicular to M2n¡2†. This shows that M2n¡2 is
transversal to vqc

1
; vpc

1
. By (96) and (98), vqc

1
…xi† ˆ

vpc
1
…xi† ˆ 0, i ˆ 2; . . . ; n and therefore x2; . . . ; xn are

®rst integrals of the ¯ows corresponding to the vector
®elds vqc

1
; vpc

1
. This implies that x2; . . . ; xn form a partial

set of coordinates for the manifold M2n¡2. Complete
x2; . . . ; xn to a set of local coordinates x2; . . . ;
xn; ~xxn‡2; . . . ; ~xx2n for M2n¡2.

In Arnold (1978, } 43D), it is shown that the Poisson
bracket f ; g restricts to a Poisson bracket f ; g2 on
M2n¡2. Then

fxi; xjg2 ˆ fxi; xjg ˆ 0; i; j ˆ 2; . . . ; n …100†

Now repeat the process on the sympletic manifold
…M2n¡2; !2† and continue inductively. This proves the
proposition. &

Now, let …qc; pc† ˆ …q; pc…q; p†† be canonical coordi-
nates for Jd . This means that the relations (75) must be
satis®ed. Calculate

fq; pcgd ˆ ‰I 0Š
"

0 M¡1Md

¡MdM¡1 J2

#"
‰@q pcŠT

‰@q pcŠT

#

ˆ M¡1Md ‰@p pcŠT …101†

which is equal to In if and only if

pc…q; p† ˆ M…q†M¡1
d …q†p ‡ Q…q† …102†

with Q…q† any smooth vecor-valued function of the
coordinates q. Secondly, calculate

f pc; pcgd ˆ fMM¡1
d p ‡ Q; MM¡1

d p ‡ Qgd

ˆ ‰@q…MM¡1
d p† ‡ @qQ MM¡1

d Š

0 M¡1Md

¡MdM¡1 J2

" #

‰@q…MM¡1
d p†ŠT ‡ ‰@qQŠT

M¡1
d M

" #

ˆ ¡‰@q…MM¡1
d p†ŠT ¡ ‰@qQŠT ‡ @q…MM¡1

d p†

‡ @qQ ‡ MM¡1
d J2M

¡1
d M …103†

This is equal to zero if and only if

J2 ˆ MdM¡1‰‰@q…MM¡1
d p†ŠT ¡ @q…MM¡1

d p†ŠM¡1Md

‡ MdM¡1‰‰@qQŠT ¡ @qQŠM¡1Md …104†

We ®nd it convenient to write J2…q; p† ˆ J82…q; p†‡ ĴJ…q†,
with J82 equal to (77) and

ĴJ…q† ˆ MdM¡1‰‰@qQŠT ¡ @qQŠM¡1Md …105†

So, if Jd is integrable then J2 necessarily has the form
(104). Conversely, if J2 has the form (104), then clearly
qc ˆ q and pc (102) are canonical coordinates for J2.
Note that Q…q† ˆ 0 yields ĴJ ˆ 0 and consequently
J2 ˆ J82, for which the canonical coordinates are
…q; pc† ˆ …q; MM¡1

d p† as we have seen in the previous
section.

Proposition 9: The structure matrix Jd de®ned in …95†
is integrable if and only if J2 has the form …104†, for
some smooth vector-valued function Q…q†.

5.2. Gyroscopic terms

Consider the Hamiltonian Hd expressed in the cano-
nical coordinates …q; pc†. For …q; pc† ˆ …q; MM¡1

d p†,
corresponding to J82, the Hamiltonian Hd (62) becomes
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the canonical Hamiltonian Hc (70) with Mc and Vc

de®ned by (73). Similar to Hd the canonical
Hamiltonian Hc has the form of the sum of kinetic
and potential energy. However, this is not the case any-
more for ĴJ 6ˆ 0. Indeed, take ĴJ as in (105), then in the
canonical coordinates the Hamiltonian Hd becomes the
canonical Hamiltonian Hc de®ned by (note that
p ˆ MdM¡1… pc ¡ Q††

Hc…qc; pc† ˆ 1
2
‰MdM¡1… pc ¡ Q†ŠT

M¡1
d ‰MdM¡1… pc ¡ Q†Š ‡ Vd

ˆ 1
2
pT

c M¡1MdM¡1pc ¡ pT
c M¡1MdM¡1Q

‡ 1
2
QTM¡1MdM¡1Q ‡ Vd …106†

The canonical Hamiltonian includes the gyroscopic
terms

¡pT
c M¡1MdM¡1Q …107†

which are terms linear in the p-variables (the momenta).
In addition the potential energy is augmented to be

Vc ˆ 1
2
QTM¡1MdM¡1Q ‡ Vd …108†

Thus in case ĴJ is de®ned as in (105), then the system (62±
64) becomes in the canonical coordinates qc ˆ q and pc

(102) the canonical Hamiltonian system (71, 106). If
Q…q† is chosen to be non-zero then gyroscopic terms
are introduced into the system and in addition the
potential energy is augmented.

Remark 12: The canonical Hamiltonian system (71,
106) corresponds via the inverse Legendre transforma-
tion to the Euler±Lagrange system (2) with Lagrangian
de®ned by

Lc…q; _qq† ˆ 1
2

_qqTM…q†M¡1
d …q†M…q† _qq ‡ _qqTQ…q† ¡ Vd…q†

…109†

An interesting question is if the gyroscopic terms
introduced by ĴJ are intrinsic or not, de®ned in the
following way.

De®nition 1: The gyroscopic terms are called intrinsic
if there does not exist a canonical transformation
…qc; pc† 7! …·qqc; ·ppc† such that in the new coordinates
…·qqc; ·ppc† the Hamiltonian …106† becomes the quadratic
Hamiltonian

·HHc…·qqc; ·ppc† ˆ 1
2

·ppT
c L¡1…·qqc†·ppc ‡ U…·qqc† …110†

for some L and U.
That is, the gyroscopic terms are intrinsic if they

cannot be removed by a canonical coordinate trans-
formation (and therefore the Hamiltonian cannot be
transformed into the form of kinetic plus potential
energy). The following proposition gives an answer to
the above question.

Proposition 10: The gyroscopic terms are intrinsic to

the closed-loop system if and only if ‰@qQŠT 6ˆ @qQ

(which is equivalent to ĴJ 6ˆ 0).

First recall the following lemma.

Lemma 1: A coordinate transformation of the form

…q; p† 7! …q; p ¡ Q…q†† is canonical if any only if

‰@qQŠT ˆ @qQ (equivalently, if and only if Q ˆ @qP…q†
for some function P…q† 2 C1…Q†).

This lemma can easily be proved by writing out the

necessary Poisson bracket relations. The lemma can also

be found in Marsden and Ratiu (1999) under the name

Momentum Shifting Lemma, Proposition 6.1.1.{

Proof of Proposition 10:

): Suppose ‰@qQŠT ˆ @qQ. It is clear that Hc (106)

is quadratic in the coorrdinates …·qqc ·ppc† ˆ …qc; pc ¡ Q†.
By Lemma 1 the transformation …qc; pc† 7!…·qqc; ·ppc† is

canonical Thus the gyroscopic terms are not intrinsic.

(: Consider the Hamiltonian Hc (106). The only

possible cotangent bundle coordinates in which Hc

becomes the quadratic form (110) are given by

…·qqc; ·ppc† ˆ …S…qc†; P…qc†… pc ¡ Q††, for some vector

valued function S and matrix P. In order for …·qqc; ·ppc†
to be canonical, i.e. f·qqc; ·ppcgc ˆ In, necessarily

P ˆ ‰@qc
SŠ¡T. However, if …S…qc†; ‰@qc

SŠ¡T… pc ¡ Q†† are

canonical coordinates, then also …qc; pc ¡ Q† are cano-

nical coordinates, since the contangent lift of the map

S¡1: Q ! Q de®nes a canonical transformation on T Q
(see Marsden and Ratiu 1999, Proposition 6.3.2).

Furthermore, it is clear that Hc (106) is again quadratic

in these coordinates. So without loss of generality we

can assume that the only possible canonical coordinates

which make Hc quadratic are given by …·qqc; ·ppc† ˆ
…qc; pc ¡ Q†.

Now assume that the gyroscopic terms are not

intrinsic, then there exists a canonical transformation

…qc; pc† 7! …·qqc; ·ppc† such that Hc becomes quadratic in

the new coordinates. Without loss of generality we can

assume that the new coordinates have the form

…·qqc; ·ppc† ˆ …qc; pc ¡ Q†. By Lemma 1, …qc; pc† 7! …·qqc; ·ppc†
being a canonical transformation implies that

‰@qQŠT ˆ @qQ. &

5.3. Integrability and matching

Consider the matching condition (66) for the kinetic

energy and plug in J2 as de®ned in (104) to get
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G?…q†‰@q…1
2
pTM¡1…q†p† ¡ Md…q†M¡1…q†

@q…1
2
pTM¡1

d …q†p† ‡ J82…q; p†M¡1
d …q†pŠ

‡ G?…q†‰ĴJ…q†M¡1
d …q†pŠ ˆ 0 …111†

This equation has to hold for all …q; p† 2 IR2n. Since the
®rst term of (111) is quadratic in p (recall that J82 is linear
in p) and the second term is linear in p, it follows that
(111) holds for all …q; p† if and only if the following two
conditions hold

G?…q†‰@q…1
2
pTM¡1…q†p† ¡ Md…q†M¡1…q†

@q…1
2
pTM¡1

d …q†p† ‡ J82…q; p†M¡1
d …q†pŠ ˆ 0 …112†

and

G?…q†ĴJ…q†M¡1
d …q† ˆ G?MdM¡1‰‰@qQŠT ¡ @qQŠM¡1 ˆ 0

…113†

for all …q; p† 2 IR2n. Equation (112) is nothing but the
matching condition (66) with J2 ˆ J82. Since it is equiva-
lent to the matching condition (18), see } 4, it can be
solved by the ¶-method. Equation (113) de®nes a
matching condition for ĴJ . Given a solution Md of
(112), it is a linear PDE in Q. It can also be written in
terms of a solution ¶ ·GG?M of the ¶-equation (24) by
premultiplying (113) with M to obtain (notice that

¶ ˆ M¡1
c M ˆ M¡1Md†

M ·GG?¶T‰‰@qQŠT ¡ @qQŠM¡1 ˆ 0 …114†

This result leads to the following parameterization of
matching integrable Hamiltonian systems:

Proposition 11: Assume that the Hamiltonian system
…62-64† with J2 ˆ J82 …77† satis®es the matching con-
ditions …66; 67†, i.e. matches with the port-controlled
Hamiltonian system (60, 61). Then every Hamiltonian
system …62-64; 104†; with ĴJ satisfying condition …113†,
is integrable and matches with the port-controlled Ha-
miltonian system …60; 61†. Furthermore, this class of
systems (parametrized by ĴJ) describes exactly all the
possible integrable Hamiltonian systems with Hamilto-
nian …62† that match with …60; 61†.

We remark that the Hamiltonian matching described
in Proposition 11 can also be described as Lagrangian
matching with the closed-loop Lagrangian given by
(109).

6. Conclusions and future research

In this paper we considered two recently developed
methods for the stabilization of underactuated mechan-
ical systems. The ®rst is the controlled Lagrangians
method, de®ned for Euler±Lagrange systems. The sec-
ond is the interconnection and damping assignment pas-
sivity based control (IDA-PBC) method, which

considers port-controlled Hamiltonian systems. The
fundamental idea underlying both methods is that of
matching, that is, ®nding a suitable closed-loop Euler±
Lagrange, respectively port-controlled Hamiltonian,
system which stabilizes the desired equilibrium point
(the conditions under which the corresponding control
law exists are called matching conditions).

The controlled Lagrangians method as originally
introduced in Bloch et al. (2000) for mechanical systems
with symmetry is reviewed and the matching conditions
obtained in that paper are interpreted in terms of kinetic
and potential energy matching. Since the class of Euler±
Lagrange systems is contained in the class of port-
controlled Hamiltonian systems, the IDA-PBC method
includes the controlled Lagrangians method. In fact, the
possibility of shaping not only the energy function but
also the interconnection structure of the system gives an
extra degree of freedom to the IDA-PBC method. It is
shown that for a particular choice of this interconnec-
tion structure the IDA-PBC method results in the con-
trolled Lagrangians method. Furthermore the
integrability of the closed-loop Hamiltonian systems is
investigated. Explicit (necessary and su� cient) con-
ditions on the interconnection structure are given
under which the closed-loop Hamiltonian system is
integrable (i.e. corresponds to an Euler±Lagrange
system). In general, this includes the introduction of
intrinsic gyroscopic terms in the closed-loop system.

Finally, recall that the matching conditions generally
consist of a set of non-linear PDEs, to be solved either
for the closed-loop Lagrangian function (in the con-
trolled Lagrangians method) or for the closed-loop
Hamiltonian function and the interconnection structure
(in case of the IDA-PBC method). The ¶-method
described in Auckly et al. (2000) for the controlled
Lagrangians method converts these non-linear PDEs
into a set of linear PDEs, to be solved recursively. It
is shown that the ¶-method can also be applied to the
PDEs obtained in the IDA-PBC method, leading to set
of quadratic and linear PDEs to be solved recursively.

Future research areas could include the following:
First, the matching conditions are described by a set
of non-linear PDEs, which are not easy to solve in gen-
eral. Some methods which could help in solving these
PDEs are mentioned in the paper (see }} 2.2, 2.3, 3.2 and
4.2). It would be desirable to study the PDEs in more
detail, on the one hand to obtain a more systematic
design procedure, and on the other hand to understand
the intrinsic limitations of the methodology (with
respect to the solvability conditions of the matching
PDEs). Second, in this paper the matching conditions
were derived considering only static state feedback con-
trol laws. Motivated by practical considerations (e.g.
partial state measurement) it is of interest to also include
the possibility of dynamic feedback control, and to iden-
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tify the corresponding matching conditions on both the
Lagrangian and the Hamiltonian side. The port-
controlled Hamiltonian (PCH) framework (used in the
IDA-PBC method) seems particularly suited for this
extension. Indeed, a dynamic controller which itself
can be written as a PCH system, will result in an overall
closed-loop system which again can be written as a PCH
system, and for which the matching conditions can be
immediately written down. See Ortega et al. (2001 a, } 7),
for details and Ortega et al. (2001 c) for an example of
dynamic output feedback in stabilizing an inertia wheel
pendulum. Third, it is of obvious interest to extend the
controlled Lagrangians method and the IDA-PBC
method to the class of systems with constraints (e.g.
mechanical systems with non-holonomic constraints).
This seems especially promising for the IDA-PBC
method by passing from the port-controlled
Hamiltonian framework to the implicit port-controlled
Hamiltonian framework (see van der Schaft 2000 and
references therein). Current research is under way to
extend the IDA-PBC method to the class of constrained
systems. We refer to Hamberg (2000 b) and Zenkov et
al. (2000) for some preliminary results in extending the
controlled Lagrangians method to the class of mechan-
ical systems with (non-holonomic) constraints.
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Appendix

In this appendix we show that under conditions (73,
77) the matching conditions (18) and (66), describing the
matching of kinetic energy, are the same. For conveni-
ence, let us recall equation (66) (for clarity we leave out
the arguments throughout this appendix)

G?‰@q…1
2
pTM¡1p† ¡ MdM¡1@q…1

2
pTM¡1

d p† ‡ J2M
¡1
d pŠ ˆ 0

…115†

Recall that (18) together with (73) gives equation (78)

G?‰f@q…M _qq† ¡ MdM¡1@q…MM¡1
d M _qq†g _qq

¡f@q…1
2

_qqTM _qq† ¡ MdM¡1@q…1
2

_qqTMM¡1
d M _qq†gŠ ˆ 0

…116†

The following calculations show that (115) and (116) are
equivalent.

We ®rst recall the following basic product rule for
di� erentiating the inner product of two vectors (giving
another vector, the gradient). Let v, w be vectors, whose
entries are (multivariable) functions of q, and let
v w ˆ vTw denote their inner product, then

@q…v w† ˆ …@qv†Tw ‡ …@qw†Tv …117†

From the product rule the following useful equation is
obtained

@q… _qqTM _qq† ˆ ‰@q…M _qq†ŠT _qq …118†

Using the above two formulas we can prove the formu-
las

@q… _qqTM _qq† ˆ ¡@q… pTM¡1p† …119†

@q… _qqTMM¡1
d M _qq† ˆ ¡@q… pTM¡1

d p†

‡ 2‰@q…M¡1
d M _qq†ŠTM _qq …120†

Proof of formula (119): The proof is straightforward
(we leave out the arguments for clarity)

@q… pTM¡1p† ˆ @q… _qqTMM¡1M _qq† ¡ 2‰@q…M _qq†ŠTM¡1M _qq
|‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚}

chain rule

ˆ @q… _qqTM _qq† ¡ 2@q… _qqTM _qq†

ˆ ¡@q… _qqTM _qq† …121†

Note that (121) also follows from the Legendre trans-
formation, transforming the Lagrangian function (dif-
ference between kinetic and potential energy) into the
Hamiltonian function (sum of kinetic and potential
energy). &

Proof of formula (120): Applying the product rule
gives us the formula

@q… _qqTMM¡1
d M _qq† ˆ @q……M _qq† …M¡1

d M _qq††

ˆ ‰@q…M _qq†ŠTM¡1
d M _qq

‡ ‰@q…M¡1
d M _qq†ŠTM _qq …122†

Using this formula we can prove (120)

@q… pTM¡1
d p† ˆ @q… _qqTMM¡1

d M _qq† ¡ 2‰@q…M _qq†ŠTM¡1
d M _qq

|‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚}
chain rule

ˆ @q… _qqTMM¡1
d M _qq†

¡ 2f@q… _qqTMM¡1
d M _qq† ¡ ‰@q…M¡1

d M _qq†ŠTM _qqg

ˆ ¡@q… _qqTMM¡1
d M _qq† ‡ 2‰@q…M¡1

d M _qq†ŠTM _qq

…123†

&
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Using (119, 120) we see that (115) and (116) are
equal if J2 (77) satis®es the equation

J2M¡1
d p ˆ MdM¡1‰@q…M¡1

d M _qq†ŠTM _qq

‡ f@q…M _qq† ¡ MdM¡1@q…MM¡1
d M _qq†g _qq …124†

Proof of formula (124): Write (124) as

J2M
¡1
d p ˆ MdM¡1‰MM¡1

d @q…M _qq† _qq ‡ ‰@q…M¡1
d M _qq†ŠTM _qq

¡ @q…MM¡1
d M _qq† _qqŠ …125†

Using the product rule it follows that, analogously to
(118)

@q… _qqTMM¡1
d M _qq† ˆ ‰@q…MM¡1

d M _qq†ŠT _qq …126†

which together with (122) implies that

‰@q…M¡1
d M _qq†ŠTM _qq

ˆ f¡‰@q…M _qq†ŠTM¡1
d M ‡ ‰@q…MM¡1

d M _qq†ŠTg _qq …127†

Now we rewrite the part between braces in (127) as a
function of q and p. Therefore note that

‰@q…MM¡1
d M _qq†ŠT ˆ ‰@q…MM¡1

d p†ŠT ‡ ‰@q…M _qq†ŠTM¡1
d M

…128†

Indeed

‰@q…MM¡1
d M _qq†ŠTv ˆ @q…vTMM¡1

d M _qq†

ˆ @q…vTMM¡1
d p†

‡ ‰@q…M _qq†ŠTM¡1
d Mv

ˆ ‰@q…MM¡1
d p†ŠTv

‡ ‰@q…M _qq†ŠTM¡1
d Mv …129†

for all vectors v (independent of q), implying (128). Then
(127) becomes

‰@q…M¡1
d M _qq†ŠTM _qq ˆ ‰@q…MM¡1

d p†ŠT _qq …130†

From (128) it also follows that

@q…MM¡1
d M _qq† ˆ @q…MM¡1

d p† ‡ MM¡1
d @q…M _qq† …131†

Now (130) and (131) imply that (125) becomes

J2M¡1
d p ˆ MdM¡1f‰@q…MM¡1

d p†ŠT ¡ @q…MM¡1
d p†g _qq

…132†

Finally, substituting _qq ˆ M¡1Md…M¡1
d p† into (132)

implies that

J2…q; p† ˆ MdM¡1‰‰@q…MM¡1
d p†ŠT ¡ @q…MM¡1

d p†ŠM¡1Md

…133†

which equals (77). So indeed, J2 (77) satis®es equation
(124). &

We conclude that (115) and (116) are equivalent, and
therefore (18) and (66) are equivalent.
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