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ABSTRACT

Motivation: Animal models are important tools in drug discovery and

for understanding human biology in general. However, many drugs

that initially show promising results in rodents fail in later stages of

clinical trials. Understanding the commonalities and differences be-

tween human and rat cell signaling networks can lead to better ex-

perimental designs, improved allocation of resources and ultimately

better drugs.

Results: The sbv IMPROVER Species-Specific Network Inference

challenge was designed to use the power of the crowds to build

two species-specific cell signaling networks given phosphoproteo-

mics, transcriptomics and cytokine data generated from NHBE and

NRBE cells exposed to various stimuli. A common literature-inspired

reference network with 220 nodes and 501 edges was also provided

as prior knowledge from which challenge participants could add or

remove edges but not nodes. Such a large network inference chal-

lenge not based on synthetic simulations but on real data presented

unique difficulties in scoring and interpreting the results. Because any

prior knowledge about the networks was already provided to the par-

ticipants for reference, novel ways for scoring and aggregating the

results were developed. Two human and rat consensus networks

were obtained by combining all the inferred networks. Further analysis

showed that major signaling pathways were conserved between the

two species with only isolated components diverging, as in the case of

ribosomal S6 kinase RPS6KA1. Overall, the consensus between

inferred edges was relatively high with the exception of the down-

stream targets of transcription factors, which seemed more difficult

to predict.

Contact: ebilal@us.ibm.com or gustavo@us.ibm.com.

Supplementary information: Supplementary data are available at

Bioinformatics online.
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on September 30, 2014

1 INTRODUCTION

Unveiling the inner workings of cell signaling networks is one of

the long-standing challenges of systems biology. Small-scale ver-

sions of these networks have been built edge by edge using classic

laboratory techniques such as immunoprecipitation, which has

resulted in a large body of literature describing various gene and

protein interactions. Although successful in their initial scope,

these methods do not scale up to the genome level and are dif-

ficult to combine into a larger network, because of the different

contexts in which they were originally reported. Organism, cell

type, experiment timing and other conditions are crucial for

determining whether an edge exists in a signaling network.
The advent of large-scale assays that can simultaneously meas-

ure the activity of thousands of genes has circumvented these

aforementioned issues by enabling purely data-driven methods

to infer large-scale networks. Various algorithms have been de-

veloped, including models based on Bayesian networks (Perrin

et al., 2003), mutual information (Margolin et al., 2006), regres-

sion (Bonneau et al., 2006), neural networks (Xu et al., 2004),

Boolean networks (Mitsos et al., 2009) and differential equations

(Chen et al., 1999). Despite these advances, there is no clear best

method. Each method has strengths and limitations influenced

by how the methodology addresses the fact that network infer-

ence is inherently an underdetermined problem in the majority of

cases (Marbach et al., 2012; De Smet and Marchal, 2010).

However, it has been observed that the aggregation of different

network inference methods generates high-quality robust results

(Marbach et al., 2012).
Efforts to catalog and compare network inference algorithms

have occurred in the form of data prediction competitions such

as the ones organized by the Dialogue for Reverse Engineering

Assessments and Methods (DREAM) consortium (Stolovitzky

et al., 2007). DREAM challenges participants to reconstruct cell

signaling networks from gene expression datasets. Predicted net-

works are then evaluated based on a subset of known inter-

actions, or the complete network in cases where the

corresponding gene expression data were generated in silico

(i.e. simulated).
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DREAM is part of a larger group of successful crowd-sour-

cing initiatives in systems biology alongside CASP [critical as-
sessment of protein structure prediction (Moult et al., 1995)],

CAFA [critical assessment of function annotation (Radivojac

et al., 2013)], CAPRI [critical assessment of prediction of inter-

actions (Janin et al., 2003)], FlowCAP [critical assessment of

automated flow cytometry data analysis techniques

(Aghaeepour et al., 2013)] and Foldit [predicting protein struc-

ture with a multiplayer online game (Cooper et al., 2010)]. In the

same spirit as these academic initiatives, sbv IMPROVER is a

crowd-sourcing-based methodology for the verification of re-

search in an industrial setting (Meyer et al., 2012). In its

second installment, it challenges the research community to

solve four problems related to the translation of molecular biol-

ogy findings between rat and human model systems

(Rhrissorrakrai et al., 2015).
Here we present the analysis of the Species-Specific Network

Inference challenge, part of the sbv IMPROVER Species

Translation set of challenges (https://www.sbvimprover.com).

For this challenge, participants were asked to infer human-

and rat-specific networks given phosphoprotein, gene expression

and cytokine data (Fig. 1). The organizers also provided a

common reference network from which participants had to

generate the two networks by adding and removing edges. The

purpose of this challenge was to augment and refine the reference

map in a species-specific manner using data-driven approaches.

2 METHODS

2.1 Evaluation of inferred networks

Most of the prior knowledge regarding the interactions between elements

in the cell signaling network was already incorporated in the reference

map provided to the challenge participants. Hence, this information

could not have been used as a gold standard against which to evaluate

inferred networks. To circumvent this issue, we proposed that the true

ranking of the submissions be viewed as a prediction problem in itself by

combining different scoring strategies. Rank-based aggregation of indi-

vidual predictions has been shown to provide robust results on par with

the best performing methods in other data prediction challenges (Bilal

et al., 2013; Marbach et al., 2012; Margolin et al., 2013). Drawing from

this result, the predicted networks were evaluated using softer methods

that did not involve the use of a gold standard where the final ranks were

derived by simply averaging the ranks obtained using the different scoring

strategies.

The first scoring method involved the use of a published network in-

ference algorithm (Mitsos et al., 2009) to generate a ‘silver standard’

network against which all submissions were evaluated. This is mainly a

pruning algorithm, hence only the subnetworks that intersected the ref-

erence network were scored. The following metrics were considered for

this purpose: the z-score of the Jaccard similarity (JS), Matthews correl-

ation coefficient (MCC) and the difference between the true-positive rate

and false-positive rate (TPR-FPR) (Jaccard, 1912; Powers, 2007). In add-

ition, two versions of the silver standard were generated: one that was

trained on only the data available to the participants and one that

also made use of part of the dataset that was kept hidden from partici-

pants and used as the gold standard in the other Species Translation

challenges.

For another scoring method, the write-ups describing the methodology

used for making the predictions were scored based on the following

criteria: rigor, defined as the soundness of the proposed methodology

based on valid statistics, arguments and premises without gaps in a lo-

gical, well-defined sequence of procedural steps; originality, defined as

novelty in concept when compared with existing methods and typical

approaches in the field; and practical implementation, defined as the

ability to instantiate the proposed methods with existing or clearly

described novel algorithms and commonly used computer architectures,

the use of data sources commonly available to the field and a reasonable

execution time. Three independent evaluators blindly assigned scores ran-

ging from 1 (very poor) to 5 (very good) for each criterion, and then the

final score was obtained by adding these points and then averaging

among the evaluators.
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Fig. 1. Overview of the Network Inference Challenge. Participants are provided with a reference network together with Affymetrix gene expression and

Luminex phosphoproteomics and cytokine data derived from human and rat bronchial epithelial cells. The goal is to generate two separate networks for

human and rat by adding and removing edges from the reference network using the data provided
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2.2 The reference network

The reference network represents an ensemble of canonical pathways and

was built following a top-down multi-layer hierarchical architecture start-

ing with the stimulus layer through multiple signaling cascades to the

transcription factor (TF) and secreted cytokine layers (Supplementary

Fig. S2). Only stimuli with known mode of action present in subset A

(training dataset) were included in the reference network.

The signaling cascade layer connected stimuli to latent (i.e. not mea-

sured) and measured (phosphoproteins) nodes representative of a mem-

brane-to-nucleus protein signaling cascade (i.e., from stimuli to TF via

kinase proteins). The identification and prioritization of latent nodes and

edges (connectivity between stimuli, latent nodes and measured nodes)

were conducted using various biological pathway databases (e.g. KEGG,

Biocarta) and the ensemble network published by Kirouac et al. (2012),

embodying the union of several online pathway databases. The network

was traversed using a depth-first search algorithm, computing its transi-

tive closure and identifying paths. Latent nodes that were not transitively

connected to a stimulus or a measured node were removed. Additional

latent nodes were identified based on topological features of the ensemble

network. These highly connected nodes (counting the largest amount of

incoming and outgoing connections) with a minimum overlap between

them were identified using standard k-means clustering and integrated in

the reference network.

For the TF layer, TFs corresponding to a subset of measured nodes

and selected latent nodes were connected to a subset of target genes.

These genes were identified using the Transcriptional Regulatory

Element Database (Jiang et al., 2007; Zhao et al., 2005).

The cytokine layer was constructed by connecting target genes to cor-

responding measured cytokines. The final step included a manual verifi-

cation and curation of the reference network to prune and refine it using

literature reviews and various pathway databases (e.g. Biocarta, KEGG).

2.3 The silver standard network

The construction of the silver standard networks was based on a method

developedbyMitsos et al. (Melas et al., 2011;Mitsos et al., 2009). Theoutline

of this approach is to use Boolean logic to model signal transduction and

integer linear programming (ILP) to fit the model to the data. In particular,

Boolean logic was used to represent signal transduction in a prior knowledge

network (i.e. reference network) to create a model capable of predicting the

state of a node in a given experiment. Because Booleanmodels are limited to

qualitative predictions, discretization of the experimental datawas necessary.

The discretization of the datasets was done by use of double threshold func-

tions. In particular, the thresholds were set at�2-fold changes for the gene

expression data,�3 standard residuals for the phosphoproteomics data and

�2 standard residuals for the cytokine data. The initial choice of thresholds

was done in accordance with the processing methods used for the different

data types as described in Poussin et al. (2014). In addition, a sensitivity

analysis was performed to ensure that the final network would be robust

on slight variations of the thresholds.

ILP was further used to combine the Boolean model with the experimen-

tal data by formulating an optimization problem that sought tominimize the

mismatches between the predictions derived from the final network and the

data at hand. The optimization procedure was performed by removing re-

actions from the reference network that were contradicted by the data and

thus created a smaller data-specific network. More details about the silver

standard model are available in the Supplementary Material.

2.4 The consensus network

The predictions from each of the M challenge participants can be orga-

nized as a binary vector xj=ðx1j; x2j; :::; xNjÞ where j=1:::M and N is the

total number of possible edges, while the unknown gold standard net-

work is represented as the vector y=ðy1; y2; :::; yNÞ. Each element xij or yi
can either be 1 (edge exists) or 0 (edge does not exist).

Let PT be the probability that a method predicts the existence of an

edge given that the edge exists, and PF the probability of predicting the

existence of an edge given that the edge does not exist. If Xi and Y are

random variables with realizations xj and y, respectively, then XijY=1�

Bernoulli(PT) and XijY=0� Bernoulli(PF). Assuming that the predictions

are independent given the true edge label, then the conditional distribu-

tions of the sum X=X1+X2+:::+XM are modeled by the Binomial

distributions:

Pr ðX=kjY=1Þ=
M

k

 !
Pk
Tð1� PTÞ

M�k
ð1Þ

Pr ðX=kjY=0Þ=
M

k

 !
Pk
Fð1� PFÞ

M�k
ð2Þ

where k is effectively the number of ‘votes’ received by an edge.

Therefore, the probability density function that k teams picked the

same edge is as follows:

PrðX=kÞ=
E

N
PrðX=kjY=1Þ+

N� E

N
PrðX=kjY=0Þ ð3Þ

where E is the number of true edges.

The Equations (1) and (2) assume the performance of predictions is

constant, modeled by parameters PT and PF; however, this is not true in

practice. The variation in prediction performance between different algo-

rithms can be modeled by imposing PT and PF to follow Beta distribu-

tions, normally used to model random variables limited to intervals of

finite length. Consequently, the conditional probability functions in

Equations (1) and (2) become the Beta-Binomial compound distributions:

PrðX=kjY=1Þ=
M

k

 !
Bðk+a1;M� k+b1Þ

Bða1; b1Þ
ð4Þ

PrðX=kjY=0Þ=
M

k

 !
Bðk+a2;M� k+b2Þ

Bða2; b2Þ
ð5Þ

where PT follows the beta distribution B(a1,b1) with shape parameters a1
and b1, and PF follows the beta distribution B(a2,b2) with shape param-

eters a2 and b2.

The model described by the Equations (3), (4) and (5) can be fitted to

the distribution of the data comprising the number of times each edge was

present among the different proposed networks. An optimal consensus

network can be reconstructed using all the predictions by finding the

minimum number of votes per edge that satisfies the condition

Pr(Y= 1jX= k) 4 Pr(Y= 0jX= k). This threshold can be easily

found by numerically solving the following equation:

Pr ðY=1jX=kÞ

Pr ðY=0jX=kÞ
=

Pr ðX=kjY=1ÞPr ðY=1Þ

Pr ðX=kjY=0ÞPr ðY=0Þ
=1 ð6Þ

where Pr(Y= 1) and Pr(Y= 0) are prior probabilities related to the true

number of edges in the network:

PrðY=1Þ=
E

N
ð7Þ

PrðY=0Þ=1�
E

N
ð8Þ

3 RESULTS

The described methodology for building the reference network

created a directed graph with 220 nodes and 501 edges organized

into cascading layers where the edges are oriented from the top

to the bottom layers. At the top is the stimulus layer that
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contains a subset of the compounds used to generate the training

data, followed by receptor, adaptor, signaling, TF, target and

cytokine layers (Supplementary Fig. S2). It is interesting to

note that not all the TFs are reachable from all the stimuli

nodes. The addition of a top stimuli layer to an otherwise generic

network introduces the notion of context to pathways that are

only active under certain conditions.
By mapping the nodes from the reference network to the genes

from the canonical pathways listed in the Molecular Signature

Database v3.1 (Subramanian et al., 2005), we observe a diverse

representation of cellular processes. Among the most common

were cell growth and survival (EGF, INSULIN, PDGF and

RAS), interleukin (IL1R, IL3 and IL4), inflammatory response

(NFKB) and cell signaling (MAPK) as shown in Figure 2.

3.1 Comparison of predicted networks

Challenge participants were allowed to add or remove edges

from the reference network, although they were not allowed to

add extra nodes. The purpose of this was to make submissions
comparable and to put some boundaries that were relevant to the

experiments performed. It is interesting to note that most pro-
posed networks were built by removing edges from the reference

network rather than adding additional interactions, which led to
a bigger consensus on the existence of edges that were already

part of the reference network. (Supplementary Figs S3 and S4).

The median number of edges of the proposed networks was 406
for human and 429 for rat compared with 501 edges of the ref-

erence network.
In the case of the silver standard, two versions of the networks

were considered: one that relied only on the training dataset and
numbered 131 edges for human and 175 for rat, and one that

used the full dataset (training and testing sets) and numbered 114
edges for human and 162 edges for rat. The JS between the two

silver standards was 0.50 for human and 0.67 for rat. However,
when using the two silver standard versions to evaluate the sub-

missions, the scores obtained were very similar (Supplementary

Table S1). This led to the decision to use only the first proposal,
which used the same data as the challenge participants.

The heatmaps in Figure 3 show the similarity between pre-
dicted networks together with the silver standard using MCC

in the space of the reference network edges. Both panels suggest
an emerging pattern where a few of the networks are more simi-

lar to each other and to the silver standard. The same can be
observed when looking at the number of edges that overlaps

between the different networks (Supplementary Tables S2 and

S3). These are the networks that were ranked higher independent
of the scoring metric used (i.e., JS, MCC or TPR-FPR)

(Supplementary Table S4).
The second method for evaluating submissions used the scores

obtained by the accompanying write-ups describing the algo-
rithms used to build the species-specific networks. The scores

listed in Supplementary Table S5 are separated by criterion (ori-
ginality, rigor, practical implementation) and show remarkable

consistency between reviewers. In the end, the final ranking was

Fig. 3. The predicted networks for human (A) and rat (B) were compared with the silver standard and against each other usingMCC. Only edges present

in the reference network were considered
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Fig. 2. The top 10 canonical pathways represented in the reference net-

work. The pathways are ordered by the proportion of genes present in the

reference network
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calculated by averaging the ranks obtained by each team for the

two scoring methods and are listed in Supplementary Table S6.
All the predicted networks can be used to construct a consen-

sus network by keeping the edges chosen by at least a predeter-

mined number of teams. Supplementary Figure S5 shows how all

the participating teams would have fared against a consensus

network constructed using different thresholds from three to

seven teams. Because two of the teams had similar entries (Fig.

3), one of them was discarded (Team 93) to avoid bias when the

consensus network was built. It is worth noting that the top

performing teams determined by consensus scoring using large

thresholds (Teams 116 and 55) were the same as the ones that

were the challenge best performers according to Supplementary

Table S6. In contrast, the performance of lower ranked teams

was less consistent between the different scoring strategies.

3.2 Optimal consensus network

The optimal threshold for building the consensus network was

determined by fitting the model described in Section 2

(Equations 3, 4, and 5) followed by solving Equation 6. The

data used for the fit were assembled by counting the number

of ‘votes’ received by each edge in the reference network from

the participating teams (excluding Team 93) and the silver stand-

ard network. This was performed separately for human and rat

networks, and then the resulting datasets were mixed to improve

the fit. Maximizing the log likelihood function of the mixture of

two beta-binomial distributions (Equation 3) for different mixing

constants led to Pr(Y= 1)= 0.16, Pr(Y= 0)= 0.84 (Fig. 4A)

and shape parameters a1=8.77e+06, b1=1.95e+06,

a2=3.46e+06 and b2=1.57e+06. Using this result and after

solving Equation 6, it was found that it takes approximately

eight votes to verify the condition Pr(Y= 1jX= k) 4
Pr(Y= 0jX= k). This result can also be visualized in

Figure 4B by tracing the intersection of the two mixture compo-

nents depicted in black.
The model was tested on two additional datasets and showed a

good overall fit (Supplementary Fig. S6). In the first case, the

edge counts shown in Figure 4B were extended to all possible

edges, including the ones not present in the reference network. In

the second case, a completely new set of network predictions was

obtained from DREAM 3 (Prill et al., 2010). For this challenge,

27 participants had to predict de novo a synthetic network with

50 nodes and 82 edges from simulated gene expression data with-

out knowing the identity of the nodes.

3.3 Conservation and divergence of human and rat cell

signaling networks

Using the threshold determined in the previous section, two con-

sensus networks were built for human and rat using the networks

predicted by participants together with the silver standard. The

individual edges that resulted are depicted in Supplementary

Figure S7 and color-coded based on their presence in the

human, rat or both consensus networks. The number and the

size of the resulting connected components are listed in

Supplementary Table S7. Two of these subnetworks are shown

in Figure 5 panels A and B as examples of predicted differences

between human and rat cell signaling networks. Although there

were plenty of edges that were active only in human or rat, these

differences were rather isolated. The differences between human

and rat did not scale up to the level of pathways or other higher

levels of organization, as will be reinforced in the following

analysis.
For any group of edges, a consensus score can be calculated by

averaging the individual scores associated with each edge, which

is simply the percentage of times the edge was predicted to exist.

Here we assume that consensus between participants regarding

an edge is associated with higher probability that the edge is real.

The panel C in Figure 5 shows the average consensus scores

of the edges between consecutive layers for human and rat

together with the associated standard errors. Although there

were no significant differences between human and rat, the over-

all consensus for the edges downstream of TFs seemed to be

much lower than the rest, suggesting that these edges were

more difficult to predict. The consensus scores of the edges in

Fig. 4. (A) The beta-binomial mixture weight can be calculated by maximizing the log-likelihood function. (B) Using this value, the fitted mixture is

shown in red together with the individual-weighted components in black. Only edges present in the reference network were used in this case
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the canonical pathways listed in Figure 2 also showed no signifi-

cant differences between human and rat (Supplementary Fig.

S8A).
The conservation of phosphoprotein activity was measured by

calculating the average consensus score of all edges adjacent to a

phosphoprotein node (Supplementary Fig. S8B). From all the

proteins measured, RPS6KA1 had a significantly higher consen-

sus score in human (P-value=0.0161) and WNK1 had a signifi-

cantly higher consensus score in rat (P-value=0.0498).

Similarly, the conservation of TF activity was assessed by calcu-

lating the consensus score of the edges upstream of a TF

(Supplementary Fig. S8C) and then downstream of it

(Supplementary Fig. S8D). Edges upstream of STAT1 had a

higher consensus score in human than in rat

(P-value=0.0004), whereas edges downstream of MYC also

showed a higher consensus score in human (P-value=0.0287).

Significantly higher consensus scores in rat were found for edges

downstream of TCF3, GLI2 and SMAD3 (P-values=8.8-e06,

0.0287 and 0.0156).

4 DISCUSSION

The scope of sbv IMPROVER Species Translation challenges

was to assess the limits of using rat models to predict human

biology in the specific context of bronchial epithelial cells

exposed to various stimuli. Along these lines, the rationality

behind the Network Inference challenge was to build two spe-

cies-specific cell signaling networks starting from a generic litera-

ture-inspired network and using high-throughput proteomics

and transcriptomics data to add or reject edges. This challenge

differed from other challenges because it did not come with a

gold standard (i.e. the true human and rat networks are un-

known) and this posed difficulties in scoring and interpreting

the results. The current work details how the aforementioned

issues were addressed together with the lessons learned from

organizing and curating such a challenge.
Despite the apparent top-down organization of the reference

network, some feedback loops were present consistent with the

structure of known pathways. However, the challenge

experiments were designed to capture a broad area of the signal-

ing network and not feedback mechanisms. The latter would

have required a different experimental setup with more samples

collected at later time points, as feedback loops tend to be more

prominent at longer time scales.

Without a gold standard, individual scoring criteria can poten-

tially be useful in separating poor performers from good per-

formers, but can also have flaws. The silver standard is biased

by the choice of algorithm used to generate it, and the quality of

the write-ups does not always predict the best performing

algorithms. It is thus advisable to combine the rankings resulting

from individual scoring methods to reduce bias. The best

performers obtained in this manner were the same as the ones

obtained by comparing predictions with a consensus network

built by aggregating the submissions from all participants. This

result suggests that consensus scoring could be used as a legitimate

scoring strategy for future challenges where a gold standard is

absent.
The network aggregation procedure described in this article

provides a statistically sound way of merging predicted networks

or any other binary predictions given a sufficiently large sample

space. This is especially useful when a clear way of assessing the

best performing method is absent. However, even when one can

accurately determine the best algorithm for performing a specific

task, the result might be context dependent. It has been shown

that disease classifiers vary greatly in performance when applied

to different datasets (Tarca et al., 2013). Aggregating multiple

predictions has been proven to generate a more robust outcome

on par with the best performing methods (Bilal et al., 2013;

Marbach et al., 2012).

The generation of a consensus prediction can potentially have

benefits beyond that of robustness and performance, particularly

in the absence of a gold standard. The data shown in

Supplementary Figure S5 suggest that predictions can be

scored against a consensus network instead of using a silver

standard, with similar top rankings when an appropriate thresh-

old is used. Consensus scoring can thus avoid any bias caused by

the choice of algorithm for the silver standard; however, it could

be sensitive to outliers (e.g. predictions that are much better than

Fig. 5. Panels A and B show two example subnetworks of the consensus network where in blue are human-specific edges, in red rat-specific edges and in

black edges common to both species. Depicted in gray are edges from the original reference network that did not gather sufficient consensus between

participants. Panel C shows the average consensus score of the edges between a layer and the next one downstream from it for human and rat networks
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the rest), or multiple correlated predictions caused by collaborat-
ing teams or the use of similar methods.
The predicted networks were aggregated using a mixture of

two beta-binomial distributions as shown in Section 2. To find
the optimal threshold for determining the existence of an edge, a
two-step process was used. First, the distribution in Equation 3

was fitted to the consensus data; then the minimum number of
teams k was determined for which Pr(Y= 1jX= k) 4
Pr(Y= 0jX= k). From the first step, the value of the mixture

constant Pr(Y= 1) (Equation 7) can give an indication of the
proportion of true edges in the reference network which in this
case was 16%. Despite this, the solution to the second step re-

sulted in consensus networks with 7.4% edges for human and
6.7% edges for rat out of all the reference network edges. This
result suggests that less than half of the potential regulatory con-

nections were discovered and more challenge participants were
needed to increase statistical power and reconcile the two esti-
mates of the number of true edges.

Despite these limitations, the consensus network shown in
Supplementary Figure S7 displays some interesting patterns,
some of which are shown in Figure 5A and B. Overall, the

cAMP-responsive element-binding protein 1, also known as
CREB1, showed the best consensus for the edges upstream of
it (Supplementary Fig. S8C) but with a couple of differences

between human and rat: the connection from RPS6KA1 was
present only in the human consensus network (Fang et al.,
2005), whereas the connection from PRKACA was present

only in the rat consensus network (Wang et al., 2006). The preva-
lence of RPS6KA1 (a.k.a. RSK1) interactions in human
(Supplementary Fig. S8B) might be explained by the fact that

human isoforms of RSK1 have functional redundancy (i.e.
RPS6KA3 [RSK2]; RPS6KA2 [RSK3]; and RPS6KA6 [RSK4]).
In contrast, this is most likely not the case in rodents; Zeniou

et al. (2002) reported that the mouse RSK1 and RSK3 genes may
not be able to fully compensate for the lack of RSK2 function.
The consensus results also suggest a preference for JAK1 ac-

tivation through EGFR for human and the PDGFR complex for
rat. Direct interaction between JAK1 and IRS1 has been re-
ported in cultured human peripheral blood T cells (Johnston

et al., 1995). In rat, however, the interaction seems to be indirect
through proteins SOCS2, SOCS3 and JAK2 (Calegari et al.,
2003; Park et al., 2000). Other conserved interactions include

IFNGR1 to JAK2 and JAK2 to STAT5A, which are parts of
the interferon gamma pathway known to be conserved across
vertebrate species (Pestka et al., 2004).

Additional references are provided for the majority of edges
from the consensus networks and are available as Supplementary
Material. These references are categorized by organism and

tissue context as follows: airway cells, non-lung cells and lung
cancer epithelial cells. Although numerous pathway databases
are widely available, they are too generic and lack specific con-

text when displaying an interaction. The purpose of this chal-
lenge was to fine tune one of these generic networks based on
data collected from bronchial primary cells exposed to specific

stimuli (compounds). When comparing the resulting consensus
network to networks obtained from the Ingenuity Pathway
Analysis tool (IPA: www.ingenuity.com), we observe a steady

increase in precision as the number of votes required for an
edge increases (Supplementary Fig. S9), culminating at eight

votes as predicted by the model in Equation 6. The maximum

precision obtained is 0.33 for the human network and 0.09 for

the rat network. However, this could be explained by the rela-

tively few edges identified in IPA for human (69) and especially

rat (26) (the number of edges drastically decreased if a filter on

cell/tissue type was applied), as well as the lack of proper context

provided by tissue specificity and stimuli. The IPA networks as

well as the consensus networks are available as Supplementary

Material.
Overall, the fact that fewer suitable edge additions existed in

most inferred networks (Supplementary Fig. S3) indicates that

the reference network contains probably most of the true active

pathways in both species. However, as observed by the large

number of edge removals, it also contains many inactive path-

ways. In other words, the phosphoproteins represented by net-

work nodes were less responsive to some stimuli than expected

from the reference network. Furthermore, because most partici-

pants (and all top performers) used the reference network in their

models it is likely that expert/prior knowledge was critical for

optimal network construction.
The methods used by the participants to solve the challenge

were varied and included Bayesian networks, Boolean networks,

mutual information, lasso and elastic net, ANOVA and various

heuristics (more details on the individual algorithms are available

in the Supplementary Methods). It is interesting to note that

different flavors of the same method, in this case Bayesian net-

works, do not perform similarly when applied to the same prob-

lem. When designing a prediction algorithm, a multitude of

choices were made, ranging from various constants and priors

to learning criteria and regularization options, which can lead to

vastly different outcomes. This justifies efforts, such as the sbv

IMPROVER challenges or any of the other crowd-sourcing ini-

tiatives such as DREAM or CASP, to try and establish best

practices in the ever-changing field of computational biology.
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