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Abstract

Infiltration of leukocytes is a major pathological event in white matter lesion formation in the brain of multiple sclerosis (MS)
patients. In grey matter lesions, less infiltration of these cells occur, but microglial activation is present. Thus far, the
interaction of b-integrins with extracellular matrix proteins, e.g. fibronectin, is considered to be of importance for the influx
of immune cells. Recent in vitro studies indicate a possible role for the enzyme tissue Transglutaminase (TG2) in mediating
cell adhesion and migration. In the present study we questioned whether TG2 is present in white and grey matter lesions
observed in the marmoset model for MS. To this end, immunohistochemical studies were performed. We observed that TG2,
expressed by infiltrating monocytes in white matter lesions co-expressed b1-integrin and is located in close apposition to
deposited fibronectin. These data suggest an important role for TG2 in the adhesion and migration of infiltrating monocytes
during white matter lesion formation. Moreover, in grey matter lesions, TG2 is mainly present in microglial cells together
with some b1-integrin, whereas fibronectin is absent in these lesions. These data imply an alternative role for microglial-
derived TG2 in grey matter lesions, e.g. cell proliferation. Further research should clarify the functional role of TG2 in
monocytes or microglial cells in MS lesion formation.
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Introduction

Multiple Sclerosis (MS) is a chronic, inflammatory demyelinat-

ing disease of the human central nervous system (CNS), affecting

mostly young adults in the prime of their lives [1]. Its clinical

manifestation is characterized mainly by motor and sensory

deficits, and most commonly has a relapsing-remitting course

[2,3]. Although there is a debate on the immunological versus

neurodegenerative origin of MS [4–6], it is well-established that

the entry of leukocytes into the CNS is an important event in the

pathophysiology of MS [7,8], in addition to glial cell activation [9–

12]. In active white matter MS lesions, a disturbance of the blood-

brain barrier function permits this influx of immunomodulatory

cells, contributing to inflammation, demyelination and axonal

damage evoking neurological deficits [13,14]. In grey matter

lesions, the influx of immunomodulatory cells is rather limited,

whereas activated microglial cells are present like in white matter

lesions but to a lesser extent [15–22].

During MS white matter lesion formation, basement mem-

branes, i.e. thin layers of connective tissue lining the perivascular

space, and the brain parenchyma express various types of

extracellular matrix (ECM) protein deposits, such as fibronectin

(FN), an important ECM protein in MS lesions [23–25]. ECM

proteins are generally important because they play a role in the

recruitment of inflammatory cells by interacting with integrins

expressed on activated leukocytes [26–28]. This interaction occurs

via the recognition site amino acid motif Arg-Gly-Asp (RGD) that

can be found within FN [29] and many other matrix proteins [30].

Of the integrins, a5b1-integrin is the major cell surface integrin

interacting with the RGD-cell binding site on FN, facilitating cell

adhesion [31]. Of additional interest in this process is the

multifunctional Ca2+-dependent enzyme tissue Transglutaminase

(TG2). TG2 is expressed in the cytoplasm or surface of a wide

variety of cells, and can be deposited in the ECM [32]. This

enzyme, when activated, is able to bind and cross-link several

ECM proteins, though its interaction with FN is best characterized

[33]. More recently, it has become clear that various b-integrins

can interact with TG2, forming b-integrin-TG2 complexes on the

cell surface [34–36]. Consequently, TG2 is referred to as an
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integrin-binding coreceptor for FN [37]. In this manner, TG2 can

contribute to cell-matrix interactions such as cell adhesion and

possibly other b-integrin-dependent functions including cell

spreading and migration of e.g. monocytes [38–40] that likely

are of importance during MS lesion formation. In the present

study, we therefore question whether TG2 is present in various

lesion types in experimental autoimmune encephalomyelitis (EAE)

in the common marmoset. This experimental animal model

mimics relevant clinical symptoms and relevant inflammatory,

glial, and demyelinating white and grey matter pathology

associated with relapsing-remitting MS [5,41] which is uncommon

in rodent models for MS [42,43]. To this end, we studied the

presence of immunoreactive TG2 in white and grey matter lesions

of marmosets suffering from EAE, identified the cell types

expressing TG2, and related those to FN and b1-integrin

expression.

Materials and Methods

Brain material from marmosets
For this study we obtained, with permission, brain material from

marmosets (Callithrix jacchus) suffering from EAE, that had been

involved in preclinical experiments on the refinement of the

experimental autoimmune encephalomyelitis model (see also

Table 1) [44]. The original studies were approved by the BPRC

committee on Animal Experimentation (DEC; approval numbers

483, 512, 514), and carried out in strict accordance with their

guidelines. In that study, all marmosets were housed in pairs in

spacious cages enriched with branches and toys, and with padded

shelter provided on the floor. They remained under veterinary

care and clinical scoring was performed twice daily by trained

observers, using a previously described semiquantitative scale [45].

The animals were sacrificed once their clinical signs reached the

score of 2.5, e.g. paresis. We did not perform any animal

experiments for this present study.

Histopathology
From formalin-fixed paraffin-embedded brains, coronal sections

(3–5 mm) were cut and used for immunohistochemistry. Brain

sections were deparaffinized by heating them at 56uC for 30 min.

Sections were then rinsed three times for 10 min. in clear

advantage (xylene replacement, Polyscience Inc., Warrington,

United States) and subsequently immersed for 5 min. each in

100% ethanol (twice), 96% ethanol, 90% ethanol, 70% ethanol

and demineralized water. The extent of inflammation was

evaluated by staining for hematoxylin and eosin to visualize

infiltrated cells and a staining for myeloid-related protein 14

(MRP14, BMA Biomedicals, Augst, Switzerland) was performed

to visualize macrophages [46,47]. Moreover, a Klüver Barrera

stain (Luxol Fast Blue (LFB) combined with periodic acid-Schiff

(PAS)) was performed to examine myelin and myelin degradation

products as previously described [45]. Images were taken using an

Olympus-VANOX-T lightmicroscope (Tokyo, Japan).

TG2 immunoreactivity
After deparaffination, antigen retrieval was performed by

incubating the sections in ethylenediaminetetraacetic acid (EDTA,

pH = 9.0) buffer for 30 min. in a steaming device (MultiGourmet

FS 20; Braun, Kronberg/Taunus,Germany). Subsequently, the

sections were allowed to regain room temperature (RT), washed

Table 1. Lesion types per animal.

Animal Immunization antigen Lesion type (number per type)

1 MOG34–56 IA (5) + LA (2)

2 MOG34–56 EA (2) + IA (1) + LA (2)

3 MOG34–56 LA/IA (3) + EA/LA (1)

4 MOG34–56 LA (1)

5 MOG74–96 + MOG34–56 EA/LA (1) + IA (1) + cGML (1)

6 MOG74–96 + MOG34–56 EA/LA (1) + LA/IA (1) + IA(1)

7 MOG74–96 + MOG34–56 LA/IA (1) + IA (1)

8 MOG74–96 + MOG34–56 EA/LA (1) + cGML (2)

MOG: myelin oligodendrocyte glycoprotein, EA: early active, LA: late active, IA: inactive, cGML: cortical grey matter lesion.
doi:10.1371/journal.pone.0100574.t001

Table 2. Combinations of primary and secondary antibodies used for immunoreactive labeling.

Primary antibodies (see table 3) Host Dilutions Secondary antibodies (see table 4)

Ab3 + b1-integrin Mouse + Rabbit 1:1000+1:1000 2+6

Ab3 + CD3 Mouse + Rabbit 1:1000+1:800 2+6

Ab3 + FN Mouse + Sheep 1:1000+1:100 2+7

Ab3 + GFAP Mouse + Rabbit 1:1000+1:2000 2+4

Ab3 + Iba-1 Mouse + Goat 1:1000+1:600 2+1

Ab3 + Olig2 Mouse + Rabbit 1:1000+1:750 2+6

Ab4 + CD20 Rabbit + Mouse 1:400+1:50 5+3

FN: fibronectin.
doi:10.1371/journal.pone.0100574.t002
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three times in Tris-buffered saline (TBS, pH 7.4), 5 min. each, and

endogenous peroxidase was blocked for 20 min. with 0.3%

hydrogen peroxidase and 0.1% sodium azide in TBS. Sections

were washed three times again with TBS for 5 min each. Non-

specific binding sites were blocked with DAKO buffer (0.05 M

Tris/HCl, 0.15 M NaCl, 0.05% Tween 20, pH 7.6, DAKO,

Glostrup, Denmark) with 10% fetal calf serum (FCS) for 30 min.

at room temperature. For TG2 staining, the sections were

subsequently incubated overnight at 4uC with mouse anti TG2

(Ab3, Neomarkers; final dilution 1:15,000) diluted in DAKO

buffer with 10% FCS. After washes in TBS, the sections were

incubated for 2 hrs at RT in biotinylated donkey anti-mouse IgG

(Jackson Laboratories; final dilution 1:500). After washes in TBS,

the sections were incubated for one hour in HRP-labeled avidin-

biotin complex (1:100; Sigma, St. Louis, USA). Sections were

washed twice with TBS and once with Tris-HCl (pH 7.6).

Peroxidase activity was visualized by adding 3,3-diaminobenzidine

(DAB, Sigma) as a substrate. Sections were washed twice with

Tris-HCl and once with running tap water. Finally, sections were

counterstained with haematoxylin and sections were washed three

times in running tap water. After dehydration in graded ethanol

solutions, the sections were cleared in xylene and coverslipped in

Entellan (Merck, Darmstadt, Germany). Images were taken using

an Olympus-VANOX-T light microscope.

Fluorescent double labeling procedures
Three different protocols were used for double labeling of TG2

with various antigens, decided by the fluorescent intensity of the

stainings. After the preincubation step as described above, the

sections for (1) double labeling of FN or the astrocyte marker glial

fibrillary acidic protein (GFAP) with TG2 were incubated with the

appropriate primary antibodies in 5% normal donkey serum in

0.5% Triton-X100 (TBS-T; pH 7.6, blocking solution) at 4uC
overnight (see Tables 2 and 3). Subsequently, the sections were

thoroughly washed in TBS, and incubated at room temperature

for 2 hrs with appropriate Alexa Fluor 488 or Alexa Fluor 546,

and Alexa Fluor 594 labeled IgG’s (see Tables 2 and 4); (2) double

labeling of the B-cell marker CD20 or the oligodendrocytes

marker Olig2 with TG2 were incubated with the appropriate

primary antibodies in 5% normal donkey serum in TBS-T at 4uC
overnight (see Tables 2 and 3). Thereafter, the sections were

thoroughly washed in TBS, and incubated at room temperature

for 2 hrs with appropriate biotinylated labeled IgG’s for CD20 or

Olig2 (see Tables 2 and 4) and concomitantly with the appropriate

Alexa Fluor 594 labeled IgG to stain for TG2. Thereafter, the

sections were washed in TBS and finally incubated for 2 hrs at

room temperature with Alexa Fluor 488 labeled-streptavidin

(1:400, Molecular Probes, Breda, the Netherlands) to detect CD20

or Olig2; (3) double labeling of b1-integrin, the monocyte/

microglia Iba-1 or the T-cell marker CD3 with TG2 were

incubated with the appropriate primary antibodies in 5% normal

donkey serum in TBS-T at 4uC overnight (see Tables 2 and 3).

Sections were then thoroughly washed, and incubated at room

temperature for 2 hrs with the appropriate biotinylated labeled

IgG’s for b1-integrin, Iba-1 or CD3 (see Tables 2 and 4) and

concomitantly with the appropriate Alexa Fluor 594 labeled IgG

to detect TG2. Sections were washed in TBS and incubated for

one hour in ABC (1:800, ABC kit, Vectastain elite, Vector

Laboratories Inc., Burlingame, CA, USA). Sections were then

washed in TBS again and incubated with biotinylated tyramide

(1:800, gift from dr. I. Huitinga, The Netherlands Institute for

Neuroscience (NIN), Amsterdam, The Netherlands) in 0.005%

H2O2 in TBS for 20 min. Sections were washed once more in

TBS and incubated once more for 1 hr in ABC (1:800) and

washed in TBS again. The last step in this adjusted protocol was

incubation of the sections with Alexa Fluor 488 labeled-

streptavidin (1:400, Molecular Probes) for 2 hrs to detect b1-

integrin, Iba-1 or CD3. Finally, at the end of all 3 double labeling

protocols, sections were washed in TBS and mounted in

Vectashield (Vector laboratories Inc.). Immunofluorescence was

examined using a Leica confocal laser scanning microscope (Leica

TSC-SP2-AOBS; Leica Microsystems, Wetzlar, Germany). Omis-

sion of the primary antibodies served as a negative control.

Quantification of TG2 and Iba-1 positive cells
The number of TG2 and Iba-1 positive cells was quantified in

inactive white matter lesions (12 lesions, from 7 different animals)

and in early/late active lesions (8 lesions, from 6 different animals).

Table 3. Origin of primary antibodies used.

Antigen Host Manufacturer

Transglutaminase type 2 (Ab3) Mouse NeoMarkers

Transglutaminase type 2 (Ab4) Rabbit NeoMarkers

b1-integrin Rabbit Santa Cruz

CD3 (pan T-lymphocytes) Rabbit DAKO

CD20 (pan B-lymphocytes) Mouse DAKO

Fibronectin Sheep R&D systems

GFAP (astrocytes) Rabbit DAKO

Iba-1 (monocytes/macrophages/microglia) Goat Abcam

Olig2 (oligodendrocytes) Rabbit Millipore

doi:10.1371/journal.pone.0100574.t003

Table 4. Secondary antibodies used.

Number Host Target Dilution Labeled Manufacturer

1 Donkey Goat 1:800 Biotin Jackson

2 Donkey Mouse 1:400 Alexa-594 Mol. Probes

3 Goat Mouse 1:800 Biotin Jackson

4 Donkey Rabbit 1:400 Alexa-488 Mol. Probes

5 Donkey Rabbit 1:400 Alexa-594 Mol. Probes

6 Goat Rabbit 1:800 Biotin Jackson

7 Donkey Sheep 1:400 Alexa-546 Mol. Probes

doi:10.1371/journal.pone.0100574.t004
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Figure 1. Characterization of marmoset EAE lesions and TG2 immunoreactivity. The normal appearing white matter (NAWM) shows an
intact LFB myelin staining (A) and few MRP14 positive macrophages (G). Early active (EA) lesions display myelin degradation (B) and foamy
macrophages (H). Late active (LA) lesions show degradation of myelin (C) combined with less MRP14 positive macrophages (I). Inactive (IA) lesions are
characterized by an absence of both myelin staining (D) and MRP14 positive macrophages (J). The normal appearing grey matter (NAGM) shows
intact myelin fibers (E) and very few MRP14 positive macrophages (K). Cortical grey matter lesions (cGML) show an absence of myelin fibers (F) and
presence of MRP14 positive microglia (L). TG2 immunoreactivity is present in endothelium of the vessel walls in NAWM (M). Early active and late
active lesions display additional TG2 positive cells (N and O respectively). Inactive lesions show less additional TG2 immunoreactivity (P). Cortical grey
matter lesions also show additional TG2 positive cells (R) compared to the endothelial staining in normal appearing grey matter (Q). Scale bar is
20 mm.
doi:10.1371/journal.pone.0100574.g001
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Of each lesion, one representative image per 40X microscopic

field was taken with a Leica confocal laser scanning microscope.

Images were of equal sized (0.1 mm2) random sample areas. Cells

in these images were counted using Cell‘F Olympus Soft Imaging

Solutions GmbH software (Tokyo, Japan).

Statistics
Data were analyzed by a Student’s t-test for unpaired

independent measurements by using the SPSS 15.0 for Windows

statistical program (SPSS, Inc., Chicago IL). P,0.05 was

considered to represent statistically significant differences.

Results

Characterization of marmoset EAE lesions
Normal appearing white and grey matter were defined by an

intact myelin staining and few MRP14 positive macrophages

(Fig. 1A, G and Fig. 1E, K respectively) [46]. Early active white

matter lesions were characterized by the abundant presence of

macrophages with LFB positive myelin degradation products

(Fig. 1B, H). Late active white matter lesions were identified by the

presence of macrophages containing PAS positive myelin degra-

dation and residual LFB positive myelin degradation products

together with a diminished presence of MRP14 positive macro-

phages (Fig. 1C, I). Inactive white matter lesions were identified by

the presence of some PAS positive macrophages in the absence of

LFB and MRP14 positive macrophages (Fig. 1D, J). Cortical grey

matter lesions were characterized by in the absence of myelin

staining and an increase in MRP14 positive microglial cells

(Fig. 1F, L). The number and type of EAE lesions varied between

and within animals (Table 1).

TG2 immunoreactivity is present in marmoset EAE lesions
In normal appearing white and grey matter, TG2 immunore-

activity was hardly present except in the endothelium of the vessel

walls (Fig. 1M, Q), as described before in rodent and human brain

[48–51]. In the various EAE white matter lesions types, additional

TG2 immunoreactivity was observed in cells with a rounded

morphology located mostly near blood vessels. The signal intensity

of TG2 immunoreactivity was not uniform in all positive cells,

suggesting different TG2 expression levels. Early and late active

lesions showed a considerable amount of TG2 immunoreactive

cells throughout the lesion (Fig. 1N, O). In inactive lesions less

TG2 positive cells appeared to be present (Fig. 1P). Indeed, after

quantification, the number of TG2 positive cells per white matter

sample area of 0.1 mm2 in early/late active lesions was about 3

times higher than in inactive lesions (Fig. 2A). In addition, TG2

immunoreactivity appeared in cortical grey matter lesions

(Fig. 1R). The majority of TG2 positive cells showed a small cell

body with thin, radially projecting processes.

TG2 is expressed by monocytes/microglial cells in
marmoset EAE lesions

Iba-1 positive cells were observed in all types of EAE lesions

(Fig. 3B, E, H, K). These cells showed Iba-1 immunoreactivity on

the cell surface as described previously [52,53]. TG2 immunore-

activity was mainly localized in the cytoplasm (Fig. 3A, D, G, J).

Co-labeling of Iba-1 with TG2 showed Iba-1 positive/TG2

positive cells with a rounded morphology with no clear processes

in early (Fig. 3C) and late active white matter lesions (Fig. 3F).

Note that not all Iba-1 positive cells express TG2. Based on the

morphology of the TG2 positive/Iba-1 positive cells we cannot

determine whether these are microglial cells with an amoeboid

morphology or infiltrating monocytes, although their localization

close to a blood vessel favors the latter option. After quantification,

we determined that the number of Iba-1 positive cells per white

matter sample area of 0.1 mm2 in early/late active lesions was

about 2 times higher than in inactive lesions (Fig. 2B). Addition-

ally, co-labeling of Iba-1 with TG2 seemed less apparent in

inactive EAE lesions (Fig. 3I) compared to the co-labeling

observed in the active EAE lesions, which is likely a consequence

of the reduced number of TG2 and Iba-1 positive cells (Fig 2). Co-

labeling of TG2 with Iba-1 positive cells was also found in cortical

grey matter lesions (Fig. 3L). Interestingly, besides the presence of

some TG2 positive monocyte-like cells, the morphology of the

majority of TG2/Iba-1 positive cells was largely different from

those seen in the white matter lesions, and reflected more ramified

microglial cells (Fig. 1R).

TG2 is not expressed in astrocytes, oligodendrocytes,
T- and B-lymphocytes

To examine whether also non-myeloid cell types expressed TG2

in various marmoset EAE white matter lesions, additional

immunofluorescent double labeling experiments were performed.

Co-labeling for TG2 and GFAP was absent, indicating that

astrocytes did not express TG2 in EAE lesions (Fig. 4A, E, I).

Similarly, Olig2 positive oligodendrocytes appeared negative for

TG2 (Fig. 4B, F, J). Moreover, TG2 immunoreactivity was neither

Figure 2. Quantification of TG2 and Iba-1 positive cells in early/
late active versus inactive white matter lesions. The number of
TG2 (A) and Iba-1 positive cells (B) per white matter sample area of
0.1 mm2 is significantly decreased in inactive lesions compared to
(early/late) active lesions. Data are shown as mean + SEM, n = 8 for
early/late active lesions, n = 12 for inactive lesions, *P,0.001.
doi:10.1371/journal.pone.0100574.g002
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present in CD3 positive T-lymphocytes (Fig. 4C, G, K) nor in

CD20 positive B-lymphocytes (Fig. 4D, H, L).

b1-integrin and FN immunoreactivity in relation to TG2
positive cells in marmoset EAE lesions

We further studied whether b1-integrin and/or FN showed co-

labeling with TG2 in marmoset EAE lesions, since TG2 has been

referred to as an integrin-binding coreceptor for FN in previous in

vitro studies [37,54]. Compared to control (Fig 5A) b1-integrin

immunoreactivity was increased in all EAE lesion types, (Fig. 5B-

D). Double labeling experiments showed the presence of b1-

integrin particularly on the cell surface of a subset of TG2 positive

cells, specifically in active white matter lesions (Fig. 5C, C9). Also

in grey matter lesions, b1-integrin was present in or on TG2

positive cells. Although not quantified, it appeared that amoeboid-

shaped cells expressed more b1-integrin than ramified microglial

cells (Fig. 5E).

FN immunoreactivity was hardly present in NAWM (Fig. 5F),

but was clearly increased in active white matter lesions and

increased to a lesser extent in inactive lesions (Fig. 5G-I). FN was

found to be partly cell-associated, but was mostly present in the

ECM in these lesions (Fig. 5G-I). Double labeling experiments for

FN and TG2 showed little co-labeling, but clearly close association

of TG2 positive monocytes with extracellular FN in the matrix was

seen most prominent in active white matter lesions (Fig. 5H, H9).

In grey matter lesions, there was little FN immunoreactivity

present (Fig. 5J).

Discussion

The present study shows appearance of TG2 immunoreactivity

in monocyte and microglial-like cells in early active white matter,

and active grey matter marmoset EAE lesions. When white matter

lesions progress to late active and inactive stages, TG2 immuno-

reactivity is still present, but in the inactive lesions it is significantly

less pronounced. In addition, in white matter lesions, TG2 positive

monocytes co-label with b1-integrin, and are in close apposition to,

mostly extracellular located, fibronectin. In grey matter lesions,

TG2 positive microglia co-label with b1-integrin, but no fibronec-

tin is present.

For this study we were able to obtain material from marmosets

suffering from EAE. This primate has high genetic similarity to

humans. Its mature immune system, shaped by life-long exposure

to environmental and latent infections, resembles the human

immune system. The MS-like disease phenotype and pathology of

marmoset EAE is therefore a useful model to investigate if certain

factors, in this case TG2, contribute to the pathogenesis of MS

[55].

In active white matter lesions, we observed the appearance of

the enzyme TG2, particularly located around blood vessels where

leukocytes infiltrate into the CNS during the EAE disease process.

Figure 3. TG2 positive cells show co-labeling with Iba-1 in marmoset EAE lesions. Early (EA) (A-C) and late active (LA) (D-F) lesions show
mostly cytoplasmic cellular localization of immunoreactive TG2 (A, D), and cells with membrane labeled Iba-1 (B, E). TG2 positive cells co-label with
Iba-1 positive cells (C, F). Inactive (IA) (G-I) lesions show less TG2 positive cells and co-labeling with Iba-1 positive cells seems less apparent (I) Cortical
grey matter lesions (cGML) (J-L) show TG2 positive cells co-labeling with Iba-1 positive cells that have radially projecting processes (L), instead of the
more rounded morphology seen in white matter lesions (C, F). Arrows represent monocyte-like cells that are either single (top 2 rows) or double
labeled (merge), arrowheads represent microglial cells that are either single (top 2 rows) or double labeled (merge). Scale bar is 20 mm.
doi:10.1371/journal.pone.0100574.g003
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The number of these TG2 positive cells reduces when the lesions

lose activity. This reduction occurs simultaneously with the

reduction of Iba-1 positive cells in the CNS at this time [56–59].

Based on co-labeling studies, TG2 was found to be present in Iba-

1 positive infiltrating monocytes in white matter lesions in

marmoset EAE. Moreover, we recently observed major histocom-

patibility complex (MHC) II positive monocyte-like cells to express

TG2 immunoreactivity in active white matter MS lesions (unpubl.

data). Thus infiltrating monocytes seem to represent an important

source of TG2 in MS/EAE active white matter lesions within the

CNS. In grey matter lesions, TG2 appeared preferentially in

microglial cells. Microglial-derived TG2 has also been described in

gerbil hippocampal grey matter after transient ischemia [60]. This

suggests that lesioned grey matter areas express TG2 preferentially

in microglial cells. Thus far, TG2 has been shown to be expressed

by a wide variety of cell types, both in vivo and in vitro [32]. In the

Figure 4. TG2 is not expressed in astrocytes, oligodendrocytes, T-cells and B-cells. TG2 immunoreactivity (red) is not present in GFAP
(green; A, E, I), Olig2 (green; B, F, J), CD3 (green; C, G, K) or CD20 (green; D, H, L) positive cells in early (EA), late active (LA) and inactive (IA) lesions.
Scale bar is 20 mm.
doi:10.1371/journal.pone.0100574.g004
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presented marmoset EAE model, the expression of TG2 was

selectively found in myeloid cell types, as other cell markers did not

co-localize with TG2, excluding the presence of TG2 in astrocytes,

oligodendrocytes, T-cells or B-cells. In contrast, in chronic active

MS lesions, TG2 has been found in astrocytes [61], which might

reflect a pathological difference between marmoset and human

disease. Within the human CNS, TG2 was shown to be mainly

expressed by neurons under physiological [62] and pathological

conditions [63–65]. TG2 is considered to play a pathophysiolog-

ical role in aggregation of pathological/misfolded proteins,

including huntingtin, a-synuclein and b-amyloid [66–68]. In more

recent years, a role for TG2 in inflammatory processes has been

explored. Deletion of the TG2 gene in vivo resulted in an altered

immune status of mice [69] probably due to altered cytokine

regulation in macrophages [70]. Furthermore, septic shock-

mediated influx of neutrophils and cytokine production [71],

and T-cell mediated EAE was reduced [72] when the TG2 gene

was ablated. In vitro studies have elucidated the expression of TG2

in myeloid cells, including macrophages, microglia and dendritic

cells [38,73–75]. Our study is the first to demonstrate lesion-

dependent expression of TG2 in monocytes and microglial cells

during marmoset EAE. We subsequently questioned whether

monocyte-derived TG2 could contribute to the adhesion and

migration process of the infiltrating monocytes. We observed that

b1-integrin, involved in cell-cell or cell-matrix interactions, co-

localizes with TG2 in or on monocytes. This is in line with the

observation that b1-integrin plays an important role in the influx of

leukocytes, including monocytes, in the marmoset EAE model

[76]. Thus, TG2 together with b1-integrin could mediate, at least

part of, the influx of the TG2 positive monocytes into the CNS

during EAE white matter lesion formation. To do so, b1-integrin

has to interact with its ligand FN via the RGD binding motif [77].

Alternatively, direct interaction of TG2 with FN can occur

because TG2 has a high affinity for FN [49]. In our study, we

observed co-labeling of TG2 expressing monocytes with b1-

integrin and we found TG2 positive cells to be in close association

with extracellular FN. These in vivo data indicate that both

options of interaction of monocytes with FN are possible, and

support the idea that TG2 can act as a b-integrin co-receptor for

binding to FN [36,37] and thereby contribute to the influx of

monocytes into the CNS during EAE lesion formation. Indeed,

downregulation of cell surface TG2 decreased the adhesion of

monocytes onto FN and markedly reduced their migration in vitro

[54]. Recently, interaction of monocytes with FN has been shown

to determine the differentiation potential of these cells [78]. It is

well known that TG2 is highly upregulated when monocytes

differentiate into macrophages [79], and thus the observed

association of TG2/b1-integrin positive monocytes with extracel-

lular FN may also suggest a role in local differentiation into e.g.

dendritic cells or microglial cells of importance for regulating the

local neuroinflammatory response. In contrast, in the grey matter

lesions, FN is hardly present, indicative for less FN production, but

could also implicate less damage to the blood-brain-barrier that

allows plasma fibronectin to enter the CNS [23]. Although

imaging of grey matter lesions remains a challenge, improved

MRI and PET obtained imaging data thus far indicate the

presence of demyelination and activated microglial cells in grey

matter areas, but no clear cell infiltration [80–82]. Moreover, post-

mortem studies show the presence of activated microglial cells in

grey matter lesions, but a relative paucity in the influx of

Figure 5. b1-integrin and fibronectin immunoreactivity show
co-presence with TG2 positive cells in marmoset EAE lesions.
b1-integrin (A) and fibronectin (FN) (F) immunoreactivity (green) is
found in normal appearing white matter (NAWM) near TG2 (red) in the
endothelium of the vessel walls. b1-integrin (green; B, C, C9, D) appears
in early (EA), late (LA) active lesions and inactive (IA) white matter
lesions on the cell surface of a subset of TG2 (red) positive cells. b1-
integrin also shows some co-localization with TG2 positive cells in
cortical grey matter lesions (cGML) (E, E9). Arrows represent TG2/b1-
integrin double labeled cells. FN (green; G, H, H9, I) appears clearly in the
extracellular matrix but also shows co-labeling with a subset of TG2
(red) positive cells in early and late active lesions. Hardly any FN
immunoreactivity is present in grey matter lesions (J). Arrows represent
TG2/FN double labeled cells. Scale bar is 20 mm. Inserts in figures C9, E9

and H9 represent higher magnifications in which the close association
of TG2 positive cells with b1-integrin or FN (C9, E9 or H9, respectively) can
be appreciated. Scale bars in the inserts are 10 mm.
doi:10.1371/journal.pone.0100574.g005
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leukocytes [18,83–85]. These data suggest that TG2 expressed by

microglial cells in active grey matter lesions is probably not

implicated in immune cell infiltration or migration. Of interest is

that integrin expression has been demonstrated on microglial cells

in MS lesions [86], and subsequent in vitro studies revealed a role

for b1-integrin in microglial cell proliferation [87]. Indeed, in MS

lesions, microglial and monocyte proliferation have been observed

[88]. We thus propose that the TG2/b1-integrin positive

microglial cells in the grey matter lesions are or have been prone

to proliferation.

In conclusion, the observed appearance of immunoreactive

TG2 in monocytes in active white matter lesions during marmoset

EAE, in combination with its co-expression with b1-integrin and

close association to extracellular FN, strongly suggests an

important role for TG2 in the adhesion, migration and/or

differentiation of infiltrating monocytes during EAE, and possibly

MS. The appearance of TG2 in microglial cells in grey matter

lesions together with b1-integrin, suggests an alternative role, e.g.

microglial proliferation. Our novel observations on TG2 expres-

sion in white and grey matter lesions in a highly relevant animal

model for MS are of interest in better understanding the possible

functional implications TG2 may have in the pathogenesis of

white and grey matter lesions in MS.
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