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Abstract

While a clear relation has been established between ACT-R
and activity in fMRI, little is known about whether ACT-R
has also correlates in EEG activity. Because of its superior
temporal resolution compared to fMRI, EEG could potentially
be used to adjudicate between model versions that differ in
time courses of module activation, even while generating qual-
itatively similar patterns of behavioural data. On the other
hand, ACT-R could form a much-needed source for hypothe-
ses about interactions between brain areas (synchronization) in
EEG data. I discuss a method to find such a mapping between
ACT-R and EEG buffers, and apply it to data from an atten-
tional blink experiment (Martens et al., 2006). I show prelim-
inary EEG correlates of ACT-R modules and discuss broader
implications of this approach for both cognitive neuroscience
and cognitive modeling with ACT-R.
Keywords: EEG; ACT-R; attentional blink; oscillations

Introduction
There is a growing interest in using neural activity to help
in constraining cognitive models and for cognitive models to
help understand the brain. One of the models for which this
brain-to-model mapping has worked very well is the ACT-R
cognitive architecture (Anderson, Fincham, Qin, & Stocco,
2008). Multiple experiments have verified this mapping, and
conversely, the mapping of ACT-R to fMRI (functional mag-
netic resonance imaging) has given rise to interesting neural
predictions.

Despite the success of the mapping between ACT-R and
fMRI, there has not been a comparable mapping between
ACT-R and EEG (electroencephalography) data. EEG differs
from fMRI in that it has a much higher temporal resolution
(on the order of milliseconds) compared to the supra-second
resolution of fMRI. This increase in temporal resolution of
EEG compared to fMRI is countered by a decrease in spatial
resolution. While fMRI is very well-suited to answer ques-
tions about what parts of the brain are associated with the dif-
ferent ACT-R modules, EEG could answer questions about
differences in their time courses of activation. This is inter-
esting because candidate cognitive models could differ in the
time course of activation of various buffers, but this may not
yield to observable differences in behaviour. An example of
this concerns the question of how long the retrieval buffer
takes to turn off after activation. Varying the retrieval buffer’s
decay time does not lead to qualitatively different predictions
for behaviour in most experiments. Nevertheless, these mod-
els could potentially still be distinguished with a tool like
EEG, which has a very high temporal resolution.

While EEG is most conventionally analyzed in terms of
event-related potentials, i.e., the average electric field mea-
sured in an electrode in response to a certain event, another

way is to examine electrical activity in different frequency
bands that need to necessarily be time-locked to an event. It
has been proposed that such oscillatory activity can be used
to communicate and bind information across different parts
of the brain (e.g., Singer, 1993). To have a more comprehen-
sive grasp of EEG activity, we will consider both oscillatory
and non-oscillatory EEG in our work.

Although a no mapping has been made between EEG ac-
tivity and all ACT-R modules, some authors have proposed
electrophysiological correlates for the production system that
forms the core of ACT-R. For example, Zylberberg, Dehaene,
Roelfsema, and Sigman (2011) propose that the ACT-R pro-
duction system is similar to the Global Neural Workspace
hypothesis in that the cognitive system selects productions
serially from a set of sensory, memory, and motor options.
Selection is mediated by mutual inhibition between neurons
that increase in activation until a threshold is reached. No-
tably, “production selection resembles single decision mak-
ing” (Zylberberg et al., 2011). A lot is known about the neural
correlates of making a single decision between multiple alter-
natives which provides hypotheses for the neural correlates
of production selection (“deciding” between productions). I
have previously proposed that evidence accumulation is asso-
ciated with power of oscillatory activity in the 4–9 Hz theta
band in EEG (van Vugt, Simen, & Cohen, 2011) and cross-
ing a threshold with the Lateralized Readiness Potential (an
EEG potential consisting of the imbalance between the left
and right-hemisphere central electrodes C3 and C4 that is
thought to arise from motor cortex, see Figure 1; Simen, van
Vugt, Balci, Freestone, & Polk, 2010; van Vugt, Simen, Nys-
trom, Holmes, & Cohen, submitted). Simen et al. (2010) also
proposed that production selection would be associated with
the Lateralized Readiness Potential.

In this study, we look for the electrophysiological corre-
lates of a larger set of ACT-R modules in an attentional blink
task, for which a well-established ACT-R model exists (Taat-
gen, Juvina, Schipper, Borst, & Martens, 2009). In an atten-
tional blink task (Luck, Vogel, & Shapiro, 1996) participants
see a very rapid stream of visual stimuli, and have to detect
what letters were presented in this stream of digits. The main
finding of interest in this task is that while participants can
see two letters if they occur far apart or in direct succession,
they often fail to see the second letter if it is separated from
the first by one or two intervening digits. It is as if attention
blinks after seeing the first letter. ACT-R accounts for the
attentional blink phenomenon by assuming there is an over-
exertion of control. If, when a target is recognized in the
stream of stimuli, a control rule is triggered in the production



Figure 1: Example module activation probabilities for the ACT-R model of the attentional blink (lag 3, correct trials). Blue:
imaginal module. Red: visual module. Green: retrieval module. Cyan: production module. These module activations were
used to create the ACT-R regressors that were correlated with the EEG data.

module that suspends target detection, then this can create an
attentional blink because the imaginal buffer is not open for
receiving another target to consolidate during the “suspend
target detection” time.

There have been two main findings in EEG studies of the
attentional blink: an increase in the P3 event-related compo-
nent (the P3 is a positive potential occurring approximately
500 ms after a stimulus onset at parietal electrode sites), and
a decrease in gamma oscillation synchronization. The in-
crease in the P3 has also been associated with an increase
in 4–9 Hz theta oscillation reset, and has been thought to re-
flect over-investment of attentional resources in the first tar-
get stimulus (Slagter et al., 2007), This phenomenon may be
similar to the over-exertion of control posited by the ACT-
R model, and may be associated with the imaginal module.
The decrease in gamma synchronization was predicted by the
Global Neural Workspace model by Dehaene, Sergent, and
Changeux (2003), which as discussed above, shares concep-
tual commonalities with ACT-R. Gamma oscillations are pe-
riodic activity observable in the EEG at a frequency of 28–
90 Hz. Gamma oscillations have been associated with many
things, including visual attention and consciousness (Varela,
Lachaux, Rodriguez, & Martinerie, 2001). According to
Dehaene’s model, when gamma synchronization decreases,
it makes the visual stimulus less accessible to conscious-
ness (Gaillard et al., 2009), and hence the participant will
frequently fail to report that s/he has seen the stimulus. In
terms of ACT-R, this may reflect an inability of the visual
stimuli to enter the imaginal buffer.

My goal is to examine whether we can find neural cor-
relates of ACT-R during the attentional blink in EEG data.
Guided by the above observations, I predict that activation of
the imaginal module, which is crucial for the attentional blink
effect, is correlated with 4–9 Hz theta oscillations and the P3
EEG component. I further predict that the gamma synchro-
nization decrease that is also associated with the attentional
blink reflects a disconnection between the visual module and

the retrieval module, such that items entering the visual mod-
ule cannot be compared to memory (chunk activation from
items in the visual buffer cannot spread to chunks in declar-
ative memory during a retrieval request). Nevertheless, in
testing these hypotheses, I will look at all frequency bands
because there exist other plausible hypotheses and the field is
relatively unexplored.

Methods
Task: I used existing data from an attentional blink
task (Martens, Munneke, Smid, & Johnson, 2006) to study
the electrophysiological correlates of ACT-R. In this task,
participants see a very rapid stream of visual stimuli, pre-
sented for 90 ms each. Their task is to report whether there
are letters present in the stream, and if so, which letters those
are. The data reported here are from the 14 blinkers in the
study by Martens et al. These EEG data were collected at
the University of Groningen with a 64-channel EEG system
(Twente Medical Systems, Enschede, The Netherlands) and a
sample rate of 250 Hz.

Analysis: EEG data were analyzed with the EEG toolbox,
a set of Matlab scripts developed in the laboratory of Michael
Kahana (e.g, van Vugt, Schulze-Bonhage, Litt, Brandt, & Ka-
hana, 2010) and custom-written scripts. I used this toolbox to
extract data for every channel in our EEG setup. I concate-
nated the time series for each trial lengthwise into one long
time series to be correlated with the ACT-R model time se-
ries. I then used Morlet wavelets (van Vugt, Sederberg, &
Kahana, 2007) to create representations of the EEG data in
six distinct frequency bands: 2–4 Hz delta, 4–9 Hz theta, 9–
14 Hz alpha, 14–28 Hz beta, 28–48 Hz low gamma and 48–90
Hz high gamma (van Vugt et al., 2010). For this frequency-
transformed data, I used the same concatenation procedure to
create time series of the trial EEG for each standard frequency
band.

To correlate ACT-R’s predicted module dynamics to EEG
data, I created regressors (van Vugt et al., 2011). Regressors



Table 1: Predictions for the neural correlates of ACT-R modules based on the cognitive neuroscience literature. Note that the
speech module would create large artifacts in EEG activity, making it difficult to find correlates for this buffer. Reported fMRI
correlates are based on Anderson et al (2008) and Borst et al (2011).
1 Keeping track of subgoals and intentions. 2 ACC = Anterior Cingulate Cortex. 3 Storing and retrieving declarative informa-
tion. 4 Auditory perception.

Module fMRI region EEG component
Motor module Motor cortex Central beta oscillations
Vision module Fusiform gyrus Posterior gamma oscillations
Imaginal module1 Parietal cortex (Intraparietal Sulcus) Parietal theta oscillations
Goal module ACC2 Frontal theta/gamma oscillations
Retrieval module3 Lateral inferior prefrontal Hippocampal theta oscillations
Speech module Artifacts Artifacts
Aural module4 Secondary auditory cortex Central gamma oscillations
Production selection Head of caudate Lateralized Readiness Potential

are fMRI terminology for a time series of interest that is used
as the independent variable in a regression to find pieces of
neural data that correspond to these dynamics. In this case,
the data patterns of interest are ACT-R module activations (vi-
sual, production, retrieval, and imaginal). I ran the attentional
blink ACT-R model (Taatgen et al., 2009) 250-350 times (cor-
responding to the number of trials in the dataset) and com-
puted the average activation for different model conditions:
lag 3 and 8, and correct and incorrect responses. These av-
erage activations therefore reflect the probability of a module
being active. ’Lag’ refers to the number of stimuli between
the first and second target (letter) in the digit stream that the
participant has to remember. An attentional blink is likely
to occur for lag 3, but not lag 8 trials. Correct trials refer
to trials in which both targets were reported correctly. Trials
in which the first target was missed were removed from the
analysis because in that case it is not clear what the reason is
for missing the second target if that occurs.

For every trial that a participant did, I inserted the averaged
module activation for the condition corresponding to that
trial. This led to an activation time series during the whole
tasks for every ACT-R module that, after subsampling to the
EEG sample rate (250 Hz), had the same length as the EEG
data. These were the time series that I could use to regress the
EEG time series on, to obtain for every module an estimate
of how well it correlated with the different frequency bands,
and which channels were most strongly involved in this cor-
relation. Instead of using a simple multiple regression, I used
a canonical correlation analysis, which finds weights on the
regressors (electrode time series) that maximize the correla-
tion between the regressors and the ACT-R time series. Note
that only the EEG data were wavelet-transformed–the ACT-R
activation time courses were not.

Predictions: I correlated the regressors representing ACT-
R’s module dynamics not only with raw EEG, but also with
oscillatory EEG. Oscillatory activity has two advantages over
event-related raw EEG activity: the mechanisms that produce
field potential oscillations are well-understood, and because
many phenomena get lost in averaging, time-frequency de-

Table 2: Cross-correlations for the various ACT-R module
time courses, averaged across participants. The activation
time course of the imaginal module is most different from
the other modules, as would be predicted from the module
time courses in Figure 1.

Imaginal Production Retrieval Visual
Imaginal 1.0000 0.3922 0.3057 0.3880
Production 0.3922 1.0000 0.2138 0.5046
Retrieval 0.3057 0.2138 1.0000 0.5238
Visual 0.3880 0.5046 0.5238 1.0000

composition allows for a more comprehensive and in-depth
picture of the data (Cohen, Wilmes, & van de Vijver, 2011).
It is well possible that different modules are associated with
different oscillatory frequency bands. Table 1 shows my
hypotheses about correlations between ACT-R modules and
components of EEG activity based on the EEG literature.

Results
The basic behavioural and EEG data for this task are reported
in Martens et al. (2006), who showed a classic attentional
blink effect (dip in accuracy for the second target letter when
it followed the first target letter with only 1 or 2 items in-
between). This was accompanied by an increased P3 EEG
component for blinked compared to non-blinked trials.

Figure 1 shows an example of average ACT-R module ac-
tivation on a single trial for the lag 3/correct condition. These
activation time courses were used to make regressors that
could be used to extract corresponding patterns from our EEG
data. I correlated these regressors with both the raw EEG data
and oscillatory data in the different frequency bands. Fig-
ure 2 shows the resulting correlations between each module
and EEG activity for all participants who showed evidence of
an attentional blink in the task. Note that the activations of
the visual, retrieval and production modules are highly corre-
lated (Table 2; see also Borst, Taatgen, and Rijn (2011, for
a discussion)) and are therefore expected to have very similar
neural correlates. The highest correlations occur with activity



Figure 2: Canonical correlation between ACT-R module time courses and EEG time courses for raw EEG (“EEG”), 2–4 Hz
delta (“D”), 4–9 Hz theta (“T”), 9–14 Hz alpha (“A”), 14–28 Hz beta (“B”), 28–48 Hz low gamma (“G1”) and 48–90 Hz
high gamma (“G2”) activity. Different lines reflect different participants. As expected from the correlations between module
activations, the imaginal module shows a different pattern (most prominent correlation with EEG activity in the delta band)
from the other modules (most prominent correlation with EEG activity in the theta band).

in the 4–9 Hz theta band for the visual, retrieval, and produc-
tion modules. For the imaginal module, we additionally see a
fairly high correlation with activity in the 2–4 Hz theta band
as well. Overall canonical correlations are lowest for the re-
trieval module. Interestingly, there are three participants for
whom raw EEG activity shows the highest canonical correla-
tion, while for all others oscillatory EEG shows the highest
canonical correlation. In contrast to our expectations, the dif-
ferent modules in this experiment do not exhibit correlations
with distinct frequency bands. Part of this may be due to the
relatively high correlations between module activation time
courses.

I then examined the topographies associated with the mag-
nitudes of ACT-R–EEG correlations in the different fre-
quency bands. While the correlations look quite similar
across modules and frequency bands, the topographies in Fig-
ure 3 show more variation. In this graph, I chose for each
module a frequency band based on either the magnitude of
the correlation of the EEG with the module activation in Fig-
ure 2 or based on the hypotheses in Table 1. I found that the
imaginal module correlate in the 4–9 Hz theta band was pri-
marily associated with right-lateral activation that could be

consistent with a parietal source as I expected. The produc-
tion module correlate in the 4–9 Hz theta band was found pre-
dominantly in superior channels that are in the same location
as where Lateralized Readiness Potentials are observed. The
retrieval module correlate in the 2–4 Hz delta band showed a
negative correlation in frontal channels, consistent with a cor-
relate of the retrieval module in frontal cortex (but unlike my
prediction of hippocampal theta oscillations, although those
are virtually impossible to observe on the scalp). It also
showed a positive correlation with right-lateral channels. Fi-
nally, the visual module correlate in the 28–48 Hz gamma
band had a central topography, which is quite different from
the occipital locus I expected for this module. The gamma
band correlate was also much weaker than the correlation in
the delta and theta bands, which may therefore be much more
likely correlates of this buffer.

Discussion
I have proposed a new method to find the electrophysiologi-
cal correlates of ACT-R module activations, and shown that
different buffers show different patterns of correlation with
EEG data. Not all the predictions in Table 1 have been ver-



Imaginal Production Retrieval Visual
4–9 Hz 4–9 Hz 2–4 Hz 28–48 Hz

Figure 3: Topographical representation of electrode weights from the canonical correlation analysis for the different modules.
The choice of frequency band was guided by the canonical correlation observed in Figure 2. Plotted are the magnitudes of the
canonical correlation weights across the brain for the canonical correlation at the respective frequency and with the respective
module. Positive weights are red and negative weights are blue.

ified. The data reported here support the idea that the imag-
inal module is associated with parietal theta oscillations, but
do not support the mappings for visual and retrieval mod-
ules. The visual module seems to instead be correlated more
strongly with frontal gamma oscillations, just like the re-
trieval module. Interestingly, this mapping of the retrieval
module is fairly consistent with fMRI-based localization. The
association of the production module with central theta os-
cillations could be consistent with an association with Lat-
eralized Readiness Potentials, but this should be tested more
explicitly. What further remains to be done is applying the
same methods to different tasks and to optimize artifact de-
tection methods. In particular, it is important to look at tasks
in which the production, retrieval and visual module are not
as highly correlated as they are in the attentional blink task
discussed here, such that their neural correlates can be pulled
apart. Only this will allow us to make claims about the elec-
trophysiological correlates of ACT-R’s various resources.

Areas that warrant further investigation are modeling in-
dividual differences and examination of the neural correlates
of module interaction. Individual differences could solidify
our confidence in the mapping between modules and EEG ac-
tivity. If individual differences are modeled in ACT-R (e.g.,
Lovett, Daily, & Reder, 2000) and if those individual differ-
ences correlate with individual differences in those partici-
pants’ electrophysiology, then this makes the EEG–ACT-R-
module relation more specific (see van Vugt et al., 2011, for
an application of this approach to perceptual decision mak-
ing). In other words, if individual differences covary with
dynamics of the neural ACT-R modules, that could greatly
increase our confidence in the accuracy of our mapping of
ACT-R to electrophysiological brain activity.

Once the electrophysiological correlates of ACT-R have
been determined, a large area of new research is opened up.
An advantage of the fact that ACT-R consists of multiple
modules is that their interaction provides a principled way to
look for patterns of synchronization in EEG activity. If syn-
chronization reflects information transfer between the mod-
ules (Buzsáki, 2006; Singer, 1993), then increases of syn-
chronization should occur in specific frequency bands and
between specific sets of electrodes that correspond to the re-

predicted theta
phase reset for storing A

Figure 4: Predictions for neural correlates of interaction be-
tween modules in the Attentional Blink task (adapted from
Taatgen et al., 2009). At the time of storing the letter “A” in
the imaginal buffer, there should be phase reset (observable
in the phase histogram) and subsequent synchronization in
the theta/alpha band between the channels corresponding to
the production and imaginal modules. These sets of channels
were based on Figure 3.

spective modules. For the modules in Figure 4, for example,
I predict that after every stimulus presentation, there should
first be increased synchronization between the neural corre-
lates of the visual module and the production module, and
then between the production and declarative module (panel
a). When a target is stored successfully, but not when it is
not, there should be increased synchronization between the
production and the imaginal module (panel c).

I believe that relating ACT-R to EEG activity is a fruitful
endeavor that could eventually also have interesting impli-
cations for ACT-R modeling. For example, there might be
subtle differences in module activation that may not lead to
observable differences in behavior. If we could observe mod-
ule activation time courses in EEG, this could potentially al-



low us to distinguish between these different ACT-R models.
While fMRI has had tremendous success in defining brain re-
gions associated with different ACT-R modules, it does not
have the temporal resolution on millisecond-scale to compare
different time courses of module activation. EEG could fill
this gap. Moreover, EEG is much better suited to capture
brief interactions between ACT-R modules, which would be
too short for fMRI to detect.

In conclusion, I have outlined methods to study the neu-
ral correlates of ACT-R in electrophysiological data. I have
also shown how they work in the case of an attentional blink
task, and how different ACT-R modules can be associated
with specific frequency bands and topographies observable
in EEG data. I argue that these methods can lead to a wealth
of understanding on how the time courses of ACT-R mod-
els develop over time. Moreover, they could provide neuro-
scientists with directly-testable hypotheses about interaction
between different neural populations.
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