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N O R T H  - H O H J t ~  

Analytic System Problems and 
J-Lossless Coprime Factorization for Infinite-Dimensional 
Linear Systems 

Ruth Curtain and Michael Green  

Department of Mathematics 
University of Groningen 
9700 AV Groningen, The Netherlands 

Submitted by M. L. J. Hautus 

ABSTRACT 

This paper extends the coprime factorization approach to the synthesis of inter- 
nally stabilizing controllers satisfying an It~-norm bound to a class of systems with 
irrational transfer matrices. Using the coprime factorization description, the I-I~-con- 
trol problem can be reduced to two stable analytic system problems. Such problems 
have solutions if and only if a certain J-lossless factorization exists. The full H~- 
synthesis problem is shown to be equivalent to the solution of two nested J-lossless 
factorizations. If the irrational transfer matrix has a state-space realization, then the 
known state-space formulas for the tt~-control problem may be recovered using the 
relationship between J-lossless factorizations and solutions of Riccati equations. 
However, the results derived here are valid for a larger class of infinite-dimensional 
systems. © Elsevier Science Inc., 1997 

1. I N T R O D U C T I O N  

This pape r  uses a copr ime factorization approach to the synthesis o f  
internally stabilizing controllers satisfying an Ho~-norm bound. This reveals 
the p rob lem to be  a stable analytic problem,  which motivates our considera- 
tion of  a general  class of  analytic system problems of  the following type: 
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Given G ~ I-I~, find all Q1, Q2 ~ It~ such that 

1c,1 IIRII  < 

These problems were first motivated and discussed in Helton et al. [41]. 
Helton first introduced these problems. They cover a very wide class of 
problems, for example, the Nehari problem (Gll = I, G21 = 0, Gz2 = I), the 
model matching problem (G21 = 0, G2z = I), and H~-control problems 
(G ~ H~o). Such problems have been solved by various techniques, such as 
the operator-theoretic ones in Ball and Helton [6], Flamm and Mitter [27], 
and Foias and Tannenbaum [28-32]; interpolation, factorization approaches 
in Ball, Helton, and Verma [7] and Ball and Cohen [5]; J-spectral factoriza- 
tion methods in Green [39] and Green, Glover, Limebeer, and Doyle [40]; 
and direct state-space methods in Doyle et al. [25], Glover [36], Glover and 
Doyle [37], and van Keulen [44]. 

Each of these approaches has its own merits, and each offers different 
insights into analytic system problems. The approach we take here is the one 
taken in Green [39], where he showed that the general analytic system 
problem is equivalent to a J-spectral factorization problem, and in the special 
case that G is stable, it is equivalent to the existence of an invertible matrix 
W ~ I-Lo such that GW -1 is J-lossless. In Green et al. [40] the authors 
showed that the latter is equivalent to the existence of a stabilizing, nonnega- 
tive solution to a nonstandard algebraic Riccati equation and so rederived the 
known state-space solution [25, 37] to the I-I~-control problem. One advan- 
tage of this approach is that, at the transfer-matrix level, it gives a solution to 
both the discrete-time and the continuous-time case for finite-dimensional 
systems. 

In this paper, we shall show that this approach extends to a large class of 
infinite-dimensional systems. The stable analytic problem is solved for trans- 
fer matrices with an impulse response h satisfying foe~tlh(t)l dt < ~. The 
underlying reason for this choice for the class of infinite-dimensional systems 
is that there is a well-developed theory of Wiener-Hopf factorization and for 
the Nehari problem for the Wiener algebra [systems with an impulse re- 
sponse satisfying f~_Jh(t)l dt < ~]; see for example Gohberg et al. [38] and 
Ball and Helton [3, 4]. The reason for the further restriction on the impulse 
response is that we also appeal to coprime-factorization results from BGK 
[10, 11], and the stable Wiener algebra with LI(0, oo)-integrable impulse 
responses does not have satisfactory coprime-factorization properties. 

We remark that our class does not permit feedthrough delay terms like 
e -s, and so it does not include the work in [27-32]. On the other hand, our 
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class does include systems with a state-space realization (A, B, C, D), where 
A is the infinitesimal generator of a C0-semigrou P, and B and C are allowed 
to be unbounded to a certain degree. For example, the Pritchard-Salamon 
class studied in Curtain and Ran [19] is included, and this class allows for very 
general delay systems and many systems generated by partial differential 
equations. For an explicit realization of systems with impulse responses 
satisfying foe~tlh(t)l dt < ~, see BGK [10]. 

An important application of these results on J-lossless coprime factoriza- 
tion is to H~-optimal control problems, and this was carried out for the 
rational case in Green [39] and [40], enabling state-space formulas for the 
stabilizing controllers to be obtained. The key to this step was the relationship 
between J-lossless factorization and the nonnegative, stabilizing solutions to 
certain Riccati equations. This has been extended to the infinite-dimensional 
case for bounded realizations in Curtain and Rodriguez [22] and for the 
Pritchard-Salamon class in Weiss [48]. This means that one can follow the 
approach in Green [39, Section 6] to obtain the full state-space solution to the 
lt~-optimal control problem for infinite-dimensional systems with bounded 
input and output operators. Since the steps are all algebraic and a straightfor- 
ward generalization of those in Green [39, Section 6], we have chosen not to 
rederive these formulas, but to refer to the alternative derivations in van 
Keulen [44]. 

However, obtaining Riccati-equation solutions is not the motivation of this 
paper. Rather, our results are of interest because they present a completely 
different approach which applies to a larger class of systems than the 
Pritchard-Salamon class. For example, they include the class of systems 
described by parabolic differential equations with Dirichlet boundary control 
(see Curtain and Ichikawa [18]). Although some special H®-optimal control 
problems have been recently solved for such systems (see McMillan and 
Triggiani [45, 46]), the general measurement case has not been resolved. 
Indeed, a close observation of the two candidate Riccati equations for this 
case shows that it is unlikely that both will be well posed for parabolic 
systems with point observation and Dirichlet boundary control. On the other 
hand, our results are valid for such systems. 

The main justification for the coprime factorization approaches is that 
there are many transfer matrices for which the J-spectral factorization 
problem cannot be translated into well-posed Riccati equations. So the 
challenging problem which remains is to develop techniques for solving 
J-factorization problems in the frequency domain without resorting to Riccati 
equations. 

Since this paper basically generalizes the proofs in Green [39] to a larger 
class of systems, we have omitted proofs which are straightforward extensions. 
Of course, extensions to infinite dimensions can be subtle or even false, so for 
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the more  discerning reader  we have p repa red  an internal report  [23] which 
includes all the details. 

2. N O T A T I O N  A N D  P R E L I M I N A R I E S  

~ ( A )  denotes the maximum singular value of  the matrix A and the 
matrix norm. 

C + =  {s ~ C I s  + ~ > 0} u {oo}. 
j R  = {s ~ C Is + ~ = O} U {oo}. 
L p×q -----  {F : j R  ~ CP×qlIIFII~ = e s s s u p ~ R  ~(F(jto)) < oo}. 
H p × q is the space of  bounded  holomorphic  functions from C + to C p × q 

with the norm IIFIL = sups~c+ ~'(F(s)) < oo. 
H ~  ×q is the space of  holomorphic  functions F :C+ ~ C pxq such that 

oo 

Ilfll~ = sup f ~-2(F(s +jo~))  doJ < oo. 
s E C +  ~ - - ~  

H p × P is a Banach algebra with identity, and F ~ H p x p is invertible over  
l i  p x p if  and only if 

inf{det F(s)ls ~ -~--+ } > 0. (2.1)  

) 
M ~ ( s )  : =  [ M ( - ~ ) ] * .  

Finally, 

Ip 0 ] 
:= for real T > 0. (2.2)  JPq('Y) 0 - 'y2lq 

A constant matrix A is said to be  J-uni tary if 

A*JA = J. 

J-Lossless Matrix Functions 
A part i t ioned matrix M ~ H~ +m)×(q+m) is called J-lossless if 

M(s)*Jlm(Y)M(s) <~Jqm(Y) on C+,  

M(jt°)*Jtm(T)M(jt°) = J q m ( ' / )  for t o g  R. 
(2.3) 

M is called conjugate J-lossless if M(s)* is J-lossless. 
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Notice that a J-lossless matrix need not be square; it is tall (l ~> q), and it 
is assumed to be partitioned so that the 2, 2 corner is square. 

Linear Fractional Maps 
If  P is a meromorphic function on C+ with values in C (l+ra)×(p+q) and K 

is a meromorphic function on C+ with values in C q×m, then the linear 
fractional map 5~(P, K) is defined by 

o-~( P, K)  = Pn + P12K( I - P2zK)-I  P2, • (2.4) 

Algebras of Transfer Functions 
We shall be concerned with several distinct classes of irrational transfer 

functions° First we define two classes of stable transfer functions via their 
impulse responses: 

[ f~( t )  + f 0 3 ( t ) ,  t i> 0, 
~¢ = f :  ~ -* C l f ( t )  = t 0, t < 0, 

where fo ~ C and fo IL( t ) ld t  < oo , (2.5) 

where ^ denotes the Laplace transform, which is defined on C---~-. 5g and 
are commutative algebras with identity. Let 

• ~'_= [ f : ~  ~ C I f ( t )  = [ f . ( t )  + f o B ( t ) ,  t >1 O, 
t -  to ,  t < o ,  

where f0 ~ C and fo e~qfa(t)ldt < ~ for some s > 0 , (2.7) 

We remark that the symbols ,~  and ~ _  are often used to denote a larger 
algebra with infinitely many delay terms, but that class is not appropriate 
here, 
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Transfer functions in ,~ and ~ _  have the following useful properties (see 
Callier and Desoer [12-14]): 

f E  ~ is holomorphie on C+ and continuous on jR; (2.9) 

f ~ ,~_ is holomorphic on C + ; (2.1o) 

, s~_c , .~cH=  and Ilfll=<fO+folL(t)ldt; (2.11) 

f ~ ( o r  ~ _ )  is invertible over ~(or  ,~_) iff (2,1) holds (2.12) 
(i.e., iff it is invertible over H~); 

f ~  has the limit )Co at infinite, i.e., ( I f ( s )  - f0111sl >/p, 
s ~ C + }  ~ 0 a s  p -~ oo. 

(2.13) 

Our class of unstable irrational systems is the algebra of fractions 

where ~= is the subclass of transfer functions in ~_ with the property that 
they are bounded away from zero at infinity. In view of the property (2.13), 

~ is the subset of ~ with a nonzero limit at oo (the elements of ~ _  that 
are nonzero at infinity), and f ~ ~q~ has only finitely many unstable poles in 
C+. 

For theoretical reasons, we also need to consider the larger class of 
unstable transfer functions, the Wiener algebra, 

L ^ , e ~ }  (2.14) ¢ :  :1i=,4 + ~ , w h e r e j ~  )~~ . 

is a Banach algebra under pointwise addition, multiplication, and scalar 
multiplication, and 

f ( j t o )  is bounded and continuous for to ~ R; (2.15) 

f E 7~" is invertible over 7~" if and only if 

f ( j t o )  * O, to ~ ~ U {oo}; (2.16) 
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f(jto) is bounded and continuous for oJ ~ R; and 

f has a well-defined limit at infinity. (2.17) 

Although f may be defined outside jR ,  this is not important for its 
properties as a member of ~W. However, for certain applications the following 
subalgebra in which the functions are defined and holomorphic on a strip a 
surrounding j R  is important: 

~ _ =  ( f ~  L = ] f = j ~  + j~,  where f l ,  j~~ ~ .~_  ).  (2.18) 

For more properties of 7 f  see Gohberg et al. [38, Chapter XII]. 

Classes of Transfer Matrices 
We use the notation ~ P  x q for the class of p × q matrices with entries in 

~ ,  and similarly for ~p_x q, ~q~p x q, and 7fP x q. Where the size of the matrix is 
unimportant we use ~¢'5a¢ to denote a matrix of any size with entries in .,¢'5~, 
and similarly for .g¢I-I~, .KCL~, ¢~tr~, etc. 

We summarize the relevant properties of transfer matrices in ~ ,  ~¢Lq~, 
and atvgf from Callier and Desoer [12-14] and Gohberg et al. [38, Chapters 
XII, XXIX, XXX]. 

G ~ p x p  is invertible over ~P_ xp if and only i fde t  G is 

invertible over .~_ if and only if G is invertible over 
H pxp [see (2.12)]; 

(2.19a) 

G ~.jtv~q~ has the representation G = G 1 + G2, where 

G 1 ~ r ~ _  and G 2 is a strictly proper rational transfer 
matrix with all its poles in C+; G has the well-defined 
limit Gl(OO) at infinity, the constant part of G1; 

(2.19b) 

G E..~ pXp i s  invertible o v e r  ~P×P if and only if G(oo) is (2.19c) 
a nonsingular matrix; 

M, N ~.4t'5~ are right-coprime over ¢jtv.a~_ if there exist 
X, 19 ~-Jtv.~_ such that )CM - 19N = I in C . ,  

(2.20) 
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or equivalently, / has full column rank for every s ~ C+ (similarly for 

left-eoprime); 

G ~.J¢¢~.~ possesses a right-coprime factorization (r.c.f.) 

G =  N M  -1 over ~ / ~  , where N, M, )~, 17 ~jKz~_, M is 
square, and M(~) is nonsingular, (2.20) holds, and M 
can always be chosen to be rational [a similar statement 
holds for left-coprime factorizations (1.c.f.)]; 

(2.21) 

G ~.~¢~ possesses a doubly coprime factorization G = 

I~1-11~ = N M - 1  over .¢ t '~ ,  where 

,0 
X, 17, X, g, M, N, i~1, ~ ~.d~_, ~ and M are square, 

M(~), M(~) are nonsingular, and M and M can always 
be chosen to be rational; 

(2.22) 

A square matrix G ~ ' T f  is invertible over .J~'Tf if and (2.23) 
only if det G(j to )  v~ 0 for to ~ ~ U {~}; 

A square matrix G ~ " ~ _  is invertible over .Jt¢~_ if (2.24) 
and only if det G(j to) 4:0 for to ~ ~ tO {~}. 

We remark that our class of unstable transfer functions will be ~ / ~  and 
the stable class is ~¢,'~_. The prime motivation for this choice is the coprime 
factorization property (2.21) which allows us to carry out an algebraic control 
synthesis approach just as in the rational case. 

Matrix Extension Results 
A useful technique used in algebraic control synthesis is to complement 

the block matrix [ A B ] which is left-invertible over some algebra to form a 
square matrix 
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which is invertible over the algebra• While this always holds for rational 
transfer matrices, it does not hold over the classes .de.~t ' or .deI-I=. Another 
reason for working over .ar~_ is that this class does have this property (see 
Vidyasagar [47, Chapter 8]). 

LEMMA 2.1. Suppose that [ A B] is right-invertible over Jt '~_, where 
we have partitioned so that B is square and B(oo) is nonsingular. Then there 

• e ^ C D ^ extstC, D .¢Ydg_sueh tha t [A  B]isinvertibleover.4C'sa¢_. 

Proof. G(s) = B-1A ~.Jt '~,  and A, B is a left-coprime factorization. 
From Callier and Desoer [14, Corollary 2.4] we may conclude that there exist 

C, D such that [ C D ] is invertible over ¢g¢~_. II 

The following matrix extension result will be needed in Section 4. 

LEMMA 2.2. consider the isometric operator B ~ L m×p, where m > p, 
and B(jto)*B(jto) = I p  for  almost all to ~ R. There exists a unitary exten- 
sion operator U = [ B B ± ] ~ L~ ×m such that 

U(j to)*U(j to)  = U(j to)U(j to)* = I m. 

Proof (provided by N. Young of the University of Lancaster). Denote 
B = [B 1 . . . . .  Bp], so that Bk(jto) e C m for all to. Then Bl(jto) . . . . .  Bp(jto) 
is an orthonormal set of vectors in C m for almost all to ~ •. The problem is 
solved if we can find an F ~ L m× 1 such that Bl(jto) . . . . .  Bp(jto), F(jto) are 
linearly independent for almost all to e •. For then we can define the 
Gram-Schmidt construction 

where 

Bp+l( jw ) = 
H( j to )  

I] H( jw) I Ic  m' 

H(j to )  = F ( j t o )  - 
P 

~' {Bk(jto)* F( j to )}Bk( j to ) .  
k = l  
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Clearly Bp+ 1 • Lmx I and 

[ B( j to ) ,  Bp+ l (J to)]*  [ B( j to ) ,  Bp+ l ( J to)]  = Ip+ 1" 

Continuing this process to obtain B 1 = [ Bp + 1 . . . . .  B m ] provides the unitary 
extension U = [B B±]. It remains to construct an F ~ L m×l such that 
Bl(jto) . . . . .  Bp(jO~) and F(jto) are linearly independent  for almost all to ~ R. 

Let e I . . . . .  er, be the standard or thonormal  basis of  C m, and let S k be 
the set o f  to ~ R such that e k, Bl ( j to ) . . . ,  Bp(jto) are linearly independent .  

Expressing the condition to ~ S k in terms of  certain determinants in the 
components  of  the Bi(jto) being nonzero shows that S k is measurable. 

Every to ~ R is in some S k, k = 1 . . . .  , m, for otherwise there would exist 
an to such that Bl(jto) . . . . .  Bp(jto) span a space which containts all 
e I . . . . .  em, i.e. they span m, contradicting p < m. Hence we may define 
F ~ L m× 1 by 

F ( j t o )  = 

i I if to • $1, 
e 2 if t o •  S z \ S 1 ,  

m if to • S m \ ( S  1 U S 2 U "'" U Sm_l).  

F has the required linear independence property. 

Wiener-Hopf Factorization Results 
We need certain factorization results for square, normalized transfer 

matrices with elements in 7 f  or in ~ _ ,  i.e., ~(oo) = I. 
A right canonical Wiener-Hopffactorization of  • ~ ~ n × n  snch that 

~(oo)  = I is 

(P(j(o) = M ( j w ) N ( j t o ) ,  (o • ~ ,  (2.25) 

where N and M ~ are invertible o v e r  s~ n×n, and N(~)  =- M(oo) = I. 
A spectralfactorization of  • • 7~ "×" which satisfies ~ ( j t o )  = ~( j to )*  

and ~(oo) = I is 

~ ( j t o )  = N(j to)*  N( j to ) ,  to ~ ~,  (2.26) 

where N is  invertible o v e r  ~q~n× n and N(~)  = I. 
We  collect various properties of  such factorizations in the following 

theorem. 
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THEOREM 2.3. 

(i) A right canonical Wiener-Hopf factorzation (2.25) of • ~ 7 ~  × n 
with dp(~) = I is unique, i f  it exists. 

(ii) (I) ~ ~ × ~  satisfying ~( j to )  = (P(jto)* and ~ ( ~ )  = I posssesses a 
spectral factorization (2.26) if  

det (I)(jto) ~: 0 fo r  to ~ R u {~}. (2.27) 

Moreover, it is unique up to multiplication by a constant unitary matrix. 
(iii) I f  cO ~ ~_×n with ~ ( ~ )  = I has a right-canonical Wiener-nopf 

factorization (2.25), then N and M ~ have extensions to invertible elements of 

(iv) I f  cO ~ ~_×" satisfies the conditions in (ii), then N extends to an 
invertible element of  ~¢"_× ~. 

Proof. (i): See Gohberg et al. [38, Chapter XXX.9, Theorem 9.2]. 
(ii), (iv): See Callier and Winkin [15, 16]. 
(iii): See BGK [10]. 

Nehari Theorem 
We recall that the Hankel operator with symbol R ~ L p × q is defined by 

FRf = 1tAR f_  

for f ~ I-I~, where A R is the multiplication operator on L p× q induced by R, 
f _ ( s )  = f ( - s ) ,  and 7r is the orthogonal projection from L~ to It~0. 

The following version of the Nehari theorem is a special case of the more 
general results in Ball and Helton [3, 4]; it is the continuous-time analogue of 
the result in Section 4 of [2]. We restrict our attention to two cases: firstly, 
when the transfer functions are in the Wiener algebra ~ '~ ' ,  and secondly, 
when they are in the subalgebra .d'7~_. 

THEOREM 2.4. Suppose that R ( - s )  E?:~ p×q, and denote its associated 
Hankel operator by I n. Then the following statements are equivalent: 

(i) one has 

IIFRI/ < ~; (2.28) 
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= (o11(s) 
O(s) 021(s) 

such that all solutions of Q ~ ~p × q of 

IIR + QIL ~< ~/ 

are parametrized by 

(ii) there exists Q ~ ~p x q such that 

IIR + pll~ < 3'; 

(iii) there exists a matrix function 19 ~ ~(p+q)x(p+q) 

1912( s) ) 
o22(s) 

Q(s) + R(s)  = (Oll(S)H(s) + 012(s))(Ozl(s)H(s ) + 022(s))  -1, 

where H E3~ p×q and IIHIL ~ 1. 

The matrix function 19 is any which satisfies 

[ ] ['0 ,°] Ip 0 19(s) = for 19~ (s) 0 -T'2lq - Iq  

~)221 E 3~ p × p and 

O(s)HzP +q = H~'+q. 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

s ~ j ~ ,  (2.33) 

In the sequel it proves more convenient to introduce another matrix 
function W which replaces 19. 

Moreover, 19 and 19-1 ~ ~/~p+q)×(p+q), and for any H ~ P × q  satisfying 
IIHI[~ ~< 1, there hold Q + R ~ ~/P×q and (021H + 022) -1 ~ q × q .  

(2.34) 
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LEMMA 2.5. Under the assumptions of  Theorem 2.4, there exists a matrix 
function 19 ~ ~'(P+q)×(P+q) satisfying (2.33) and (2.34) i f  and only if there 
exists a W E ~ (p +q)× (p + q) such that W -1  and W~ l ~¢~'~qC and the following 
holds for  s =joa, o2 E ~: 

(: 0][,: 0 
P~ Iq --'y2lq Iq = W ~Jpq( 'y)W. ( 2 . 3 5 )  

In this case 

I L 'p°] O(s)  = n ( s )  W ( s ) -  1 1 . (2.36) 
Iq 0 -~ I9 

Proof.  

(1) From Theorem 2.4, 0 -1 ~ T f  and with ® defined by (2.36), it is 
straightforward to verify the equivalence of the factorizations (2.35) and 
(2.33). 

(2) Let us now interpret (2.34) in terms of properties of W. With O given 
by (2.36), (2.34) becomes 

w - l ( s ) n ~ + q  = ri~÷~, 

and this holds if and only~ if W and W -1 E I-I[ (p+q)×(p+q) .  But from (2.36), it 
follows that W -1 ~ ¢ ' 7 f .  So W , W  -1 are stable elements of the Wiener 
algebra ~¢'7f" and hence they are in ~¢~. Hence the property (2.34) for ® is 
equivalent to the property that W and W -1 E ~  (p+q)×(p+q) 

(3) We now show that O~21 ~ p X p  if and only if W~ 1 E ~  p×p. Note 
that 

W ( s )  -1 = 

1 
O l l  -- RO21 -- - - ( O 1 2  -- RO22 ) ,y 

1 
021 - _ 022 -y 
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which shows that (W-l)z~ = - ( 1 / y ) O 2 2 .  Now a well-known result from 
matrix algebra (Kailath [43, p. 656]) is that W~-I l = ( W - 1 ) H -  

(W-  l)lz( W -  1)~21(W- 1)21. Thus W~ 1 ~ ~ P  × P if O~21 ~ ,~P x p. The converse 
follows on exchanging the roles of O and W (see [23] for details). • 

A direct consequence of this lemma is an alternative formulation of 
solutions to the Nehari problem (c.f. Curtain and Zwart [24, Theorem 3.5]). 

THEOREM 2.6. Suppose that R ( - s )  ~5~ pxq and there exists a W 
• 9~ (p+q)×(p+q) such that W -1 E ~  (p+q)×(p+q) and W~ 1 E.gJ pxq satisfy 

[, 0] [ip ] 
= w-jpq( )w P~ Iq Jpq(Y) 0 Iq for s = joa, o2 ~ ~. 

(2.37) 

Then the set of matrices Q E ~  p×q such that IIQ + all~ ~ y for Y > IIFRII is 
parametrized by 

] Q = Q1Q21' Q2 Iq , 

where U E ~  p×q satisfies IIuIl~ ~ y. 
Moreover, Q~ 1 ~ ~ p  × p. 

Proof. See [23]. • 

Since J-spectral factorizations are not unique, it is important to show that 
the properties that W is invertible over .Jf¢~ and W~ 1 E.jtr~ are shared by 
all J-spectral factorizations. 

LEMMA 2.7. Suppose that W is invertible over ¢ft'~. Then 

(i) y , y - 1  ~.lt'Ja~ satisfy Y - J Y  = w ~ J W  on s =jto, to ~ R, i f  and 
only i f  Y = AW,  where A is a constant, J-unitary matrix. ( j  denotes Jpq(T).) 
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(ii) If 

f o r  s = j~o, o~ ~ R, and R ~ , W ,  W -  ~, Y, Y - ~ ~.¢[~,  then Y ~  ~ ' ~  i f  and 
only i f  W ~  ~ ~ ' ~ ¢ .  

Proof. (i): I f  Y satisfies Y ~JY = w ~ j w  on s =j~o, then 

JYW -1 = (Y ~ ) - l w  ~J  on s =jo~. 

The  right-hand side is holomorphic on Re s < 0, and the left-hand side is 
holomorphic on Re s > 0. As elements of  the Wiener  algebra ¢~Y~" they are 
equal (the two-sided Laplace transform is unique), and so they must be both 
equal to a constant matrix. A = YW-1 is constant, and it satisfies A*JA = J. 

(ii): (2.35) implies that W I ? W  n - T 2 W 2 ~ W z l  = I on s =j~o, and 
W, W~ 1 ec~Y~ c~YI-Io~ shows that IIW21W/-~ll~ < 1/3~. Let  A = YW -1, and 
recall from (i) that A*JA = J and so A -  ~ = j -  ~A*J and A J-  ~A* = J-  ~. The 
(1, 1) block of  this yields 

A n A~I - 7-2A12 A~2 = I, 

and so A n is nonsingular and IIA~-llAx211 < 3'- Now A12, W21, W~ 1 ~.~ '~ c 
~rI-I~, and there holds IIA~l~A12W21W~II® < 1. This shows that I + 
A~lA12W21W~ 1 is invertible over ¢~YI-I~ and hence over .~Y~ [see (2.19)]. Its 
inverse is W n ( A n W  n + A12Wzl)-lAn, and so Yn = A n W n  + A12W21 is 
invertible over ~¢'J~'. • 

We now examine the consequences of  assuming that R ( - s )  ~ / t '~_ ,  a 
smoother  class of  transfer matrices. 

LEMMa 2.8. Suppose that R ( - s )  ~dYs¢ . 

(i) In Lemma 2.5, W, W -1, W~ 1 ~.¢t'~_. 
(ii) In Theorem 2 . 4 0  n,  O12 ~.J¢'~;~ , 021,022 ~.~Y,a~_, and for any 

n ~ p _ x p  satisfying Ilnll~ ~< 1, there holds (021H + 022)-1^ E3~q Xq. 
(iii) In Theorem 2.6, Q21 ~ ~q_x q, provided that U ~ ~¢p_x q. 
(iv) Lemma 2.7 holds with ~/t'~ replaced by ~ '~_ .  
(v) Moreover, (2.34) and (2.35) hold on a strip surrounding the imagi- 

nary axis. 
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Proof. (i): In Lemma 2.5 we established the existence of a J-spectral 
factorization 

G(j~o)* JG(j~o) = w ( j w ) *  JW(jco), 

where 

I v R ] 
G =  0 Iq 

Since W, W -1 ~ ¢ , ~ ,  w e  m a y  conclude that W(~) exists and is invertible. 
Define the matrix ~ e~t'Tf_ by 

0 = W(~)  -* G" JCW(~)  - 1j_l 

Then 

*(j6o) = W(~)  -*W - ( joJ)JW(jo~)W(~) -1j_ 1, 

and this is a right canonical Wiener-Hopf factorization of ~ ,  identifying 
N = JWW(~)-1j -1  and M ~ = WW(~) -1. By Theorem 2.3(i) and (ii i) i t  
follows that W has an extension to ~K¢~¢'_, and by (2.19) W -1, W(11 e~¢~¢ . 

(ii): On,  ®12 ~.497f_ and O21, O21 ~ t ' ~ _  follow from (i) and (2.36) in 

Lemma 2.5. Next, 021H + 022 ~ ¢ ' ~ ,  and it is invertible over ~ /H~  and 

thus also over e ~ , ' , ~  [see (2.19a)]. 
(iii): This follows from (ii), since Q2 = 3"(021H + 022)'~ 
(iv): This follows because ~ t¢~  is a subalgebra of I¢5¢ [see (2.7)]• 
(v): This follows by analytic continuation, since W, W - , R, R ~ , Y, Y ~ 

are holomorphic on [ - ~  +jto, ~ +j to]  for some ~ > 0. • 

In other words, Theorems 2.4 and 2.6 can be modified by replacing ~ by 
~ _  and ~¢" by 7f_. Finally, it is easy to verify that Theorems 2.4 and 2.6 
remain true for R ( - s )  ~ ~"P×q. We state this as a corollary. 

COROLLARY 2,9. Suppose that R ( - s )  ~ 7~p×q and there exists a W 
~Q~(P+q)×(P+q) such that W -1 and W~t I E ~  (p+q)×(p+q) and ~q×q respec- 
tively satisfy (2.37). Then the set of all matrices Q ~ p x q  such that 
IIQ + RIL ~< 3' for 3" > IIFRII is parametrized by (2.38). 
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Proof. 

(1) First we show that Theo rem 2.4 remains the same for R ~ 7~ pXp. 
Decompose  R = R u + R s, where  R u , R~ ~:~pXq. Then  R u + R~ + Q = 
Ru + Qs, where  Q~ = Q + Rs ~ ~ P  × q and R~  ~ ~ P  × q. So applying Theo-  
rem 2.4 to R~, we obtain all solutions Q~ to IIR~ + Q,I[o~ = IIR + Q[Io~ < 3, 
a s  

Ps = -Ru + (Oll/4 + 012)(02 U + 02 ) -1. 

So all Q E J  p×q satisfying IIn + QIL < r are given by 

Q = Q,~ - R s = - R  + ( 0 1 1 H  + (912)(O21H + 022 ) 1. 

(2) Next we note that  the proofs of  L e m m a  2.5 and Theo rem 2.6 are 
essentially algebraic and are valid for a general  R ~ 7f/-p × q. • 

Finally, we remark that using L e m m a  2.8 it follows that if we take 
R ~ ~"P×q, then Corollary 2.9 holds with W ,  W -1 ~¢~_P+q)×(P+q), W l l  1 
~q_xq, and U, Q ~ j p x q .  

3. S T A B I L I Z A T I O N  T H E O R Y  

In this section, we develop an implicit characterization of  stabilizing 
controllers K ~¢Kc'~q~ for the plant P ~¢K~'~', just as in Green  [39] for the 
rational case. Most of  the arguments  are algebraic and apply equally well to 
any algebra of  transfer  matrices with a copr ime factorization property.  
Comple te  proofs are given in Curtain and Green  [23]. 

First we recall the definition of  internal stability of  the configuration in 
Figure 1. 

DEFINITION 3.1. Consider  P ~(l*m)X(p+q) and K E~q~ qx ' '  as in Fig- 
ure 1, i.e. 

We say (P ,  K )  is well posed if the nine transfer  matrices from w, v l, v 2 to 
z, y, u are in Jt'~q~. (P ,  K )  is internally stable if it is well posed and if these 
nine transfer  matrices are in eft'oat_. In this case we say that K stabilizes P. 
We  say P is stabilizable if such a K exists. 
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P 

K I_ 
I- 

Z 

u#-z~k v, 

FIG. 1. Internal stability for (P, K). 

We shall use the following implicit parametrization of all stabilizing 
controllers in the sequel. 

LEMMA 3.2. Suppose that P ~ ( t+m)×(v+q )  is stabilizable and has a 
right-coprime factorization 

p = NM -1 [, 0] 
with M = M21 Mz 2 . 

Then K ~ ¢ t ' ~  stabilizes V if and only i f  K = I(~lI(a, where 

N21 -N22] 

Q, K1, K2 E~c~Q~-, and I( 2 is square with I(~(oo) nonsingular. 
In this case, 

Q ). (3.3) 

The obvious dual result follows. 
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COROLLARY 3.3. Suppose that P E~ (l+m)×(p+q) is stabilizable and that 
P has a le~-coprime factorization 

where 
i(lz 2 " 

Then K ~d le~  stabilizes P if  and only if K = KI K~ 1, where 

Im --]Q22 ]~22 ' 
(3.4) 

Q, K1, K 2 ~ ¢ ' ~ _ ,  and K z is square with K2(~) nonsingular. 
In this case, 

[ ~gi'(e' K) II] = [[l ~][gl l  I1] 
N21 0 " 

(3.5) 

The above parametrizations of stabilizing controllers are implicit, in 
contrast to the more usual Youla parametrization (see Vidyasagar [47]). The 
advantage of this implicit parametrization is that it can be used to decompose 
the H~ controller synthesis as a two-stage procedure, where each stage 
involves the solution of a stable analytic system problem of the type consid- 
ered in Section 4. 

This synthesis is carried out in Section 5, and the solution of stable 
analytic system problems is considered in the next section. 

4. STABLE ANALYTIC SYSTEMS 

For the H® problem we need to obtain solutions to a class of analytic 
system problems of the following type. For a given real number T > 0 and 
given Gll , G12, G21 , G2~ ~.J¢'5¢" consider 

The problem is to find the set of all R ~.Jf '~_ such that IIRIL < ~/ and 
there exist Pl ,  Q2 ~-J¢'~- satisfying (4.1). 
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If G22 is square and det G22(oo) 4= 0, we show that (4.1) can be reduced 
to an equivalent model matching problem of the type 

[71=[ 0 , I J[Q2]" (4.2) 

Then using the factorization results from Theorem 2.3, we reduce the 
solution of (4.2) to that of the Nehari problem of the type 

0 ,  

Solutions for such problems in terms of J-spectral faetorizations are summa- 
rized in Section 2 (see Theorems 2.4, 2.6, Lemmas 2.5, 2.7, and Corollary 
2.9). Finally, we reformulate the solutions to (4.1) in terms of a J-lossless 
condition which are suitable for the I-Is control synthesis in Section 5. 

First we give conditions under which (4.1) can be reduced to the model 
matching form (4.2). 

LEMMA 4.1. Consider the analytic system problem (4.1) for a G ~ ' s ~ _ ,  
where G2e is square and det Gz2(m) ~ 0. The problem of finding R ~ t ' ~ _ ,  
QI and Q2 E~-e'2g_ is equivalent to the nu~del nuztching problem 

for certain 6~1 , G~e ~¢'~c~_ and M, M ' E . ~  . 

Proof. From (4.1) we see that the analytic system problem has a solution 
if and only if [G21 G22] is right-invertible over ~t 'd_. Since G2z is square and 
nonsingular at infinity, then by Lemma 2.1 there exist A, B ~ t ' z g  such 
that 

A B ] M 1 . 
M = G21 G.22 and ~M/s~ 
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Writing now 

proves the lamina. • 

We remark that this lemma does not necessarily hold if we only seek 
Q1, Q2 ~¢~'~ (or ¢K"Ho~), since Lamina 2.1 on the existence of a complement 
to [G21 G22] relies on the existence of left and right factorizations. These are 
not guaranteed in M",a ) or ¢K"H~. 

We now solve the model matching problem (4.2). 

THEOREM 4.2. Suppose that 

G =  0 Iq 

is left-invertible over 7~  l+q)× (P +q). The following are equivalent statements: 

(i) There exists a Q ~ J p  × q such that 

IIA + BQIL < ~, (4.5) 

(ii) There exists 
W~ l ~ p x p ,  and 

a W ~ - ~  (p+q)×(p+q) such that W -~ ~ P + q ) × ¢ P + q )  

G~Jlq(T)G = W ~Jpq(T)W on s =jco, to ~ ff~. (4.6) 

Furtherrru)re, if  such a W exists', the set of all Q ~ P × q  satisfying IIA + 
BQII~ <~ T is given by 

1 
whenever U ~ P × q  satisfies IIUIL ~ ~. The latter implies that Q~ I ~ q × q .  

Proof. G is left-invertible if and only if B is. This holds if and only if 
detB - B(jo2) --/: 0 for to ~ N U {o0}. So applying Theorem 2.3(ii) to S = B - 
B, we obtain the spectral faetorization of B ~ B  = S = B(~ Bo, where 
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B0, Bo I E,,~',~. Let  B i 
2.2 there  exists a unitary extension [ Bi B .  ]. So we have 

RUTH CURTAIN AND MICHAEL GREEN 

= BB ° 1, and note that Bi- B i = Ip. Now by L e m m a  

and 

Let  

where  R = [ B i B ± ] ~ A and we have used the fact that [ B i B ± ] is unitary. 
Thus 

[IA+BQII~<3'  ~ IIR211~<3' 

( RI + BoQ)~ ( RI + BoQ) + R~ Rz < 3"2Iq on s=joJ .  

d o = 3 " 2 I q - R ~ R 2 = 3 " 2 I q - A - [ I I - B ( B ~ B ) - I B ~ ] A .  (4.8)  

Then  do ~ J t ' T f  satisfies dO* = do and 

do(j~o)>0 for o J ~ R u { ~ }  ~ IIR211~<3". 

So by Theo rem 2.3(ii), there exists T ~ t ' ~  such that T -1 ~ M ~  and 

3"2T*T = do on s = j t o  

if and only if IIR211~ < 3". 
Summarizing,  we have shown the following: there  exists a Q ~ - ~ :  II A 

+BQII= < 3' if and only if there  exist T, (~ ~ .~¢~  such that  T -1 ~ ' ~  and 

ilal T 1 + plloo < 3', where  

3"2T~T= T 2 I q - A ~ [ I - B ( B ~ B ) - I B ~ ] A  , O = B o Q T  -1 

I 11 [B III '~ Rz + < 3", 
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Observe that R1T -1 ~ ,  and so by Corollary 2.9 we obtain: there  exists a 
Q ~.~¢'.a$ such that II A + BQIL < 3' if and only if there exist T, X ~ ' ~  
such that X -1, T - l ,  X~-l 1 ~.*¢'~ and 

lip o} [ip 1 1] (R,T_I)~ Jpq(r) = x - j p q ( r ) x  Iq 0 rl q 

on s = j w ,  w ~  R. (4.9)  

Now R 1 = ( B o ) - I B  ~ A and 

01[  ° G - J l q ( ~ ) G  = A~ n n o l  Iq][ 0 - - *  tq 

['o ] [ ]i: 0 ol = Iq Jpq(T)  0 Iq ' 

(4.10) 

and so we see that with 

~X[~o ;] 
(4.10) is equivalent to (4.6). B 0 and T are both invertible over At'~, and so W 
has exactly the same properties as X. Thus it remains to show that the 
existence of  a spectral factorization of  • follows from (4.6), Equation (4.8) 
shows that • E.d'g¢', and to see that ~ ( j o ) ) >  0 for eo ~ ~ U {oc} we 
examine the following from (4.10) and (4.6): 

I'o 01:[ 0] 
- o  - A -  B( Bo Bo) -~ Iq 
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where  Y , Y  x ~ ¢ 7 ~  and Yll I ~.ft'3~. This shows that for x ~ C p, y ~ C q, 
to ~ R we have Ilxll 2 - ( y, dp( j to )y )  = IlYH(jto)x + yl2(j~o)yll 2 - 

T2llY21(jto)x + Y2e(jto)yil 2, and since y ~ l  ~ A ¢ ~  c~¢'I-Io~, we may choose 
x = - Y n l ( j t o ) Y 1 2 ( j t o ) y  for any to ~ N. So for all y ~ C q and all o~ ~ N 
there  holds 

< y,*(jto)y> =liY  (jto)Yl2(jto)yl[ 2 

+  211Y22(jto) y - v  (jto)Y ?(jto)Yl (jto) y II 

This shows that q~(jw) = 0 ~ Y12(jto)^= O = Y22(jto). But the latter would 
contradict  the invertibility of  Y in ~ ¢ / ' .  So q~(jto) > 0 for all to ~ R, and 
~ ( j  oo) > 0 can be argned similarly. 

The  parametr izat ion (4.7) follows from Corollary 2.9 and (2.38), since 

BoQT -1 = i~ = d [ 0 2 1  , 
[O1] 

and so Q = B o l O I O ; 1 T  = Q,Qyz 1 with 

From Corollary 2.9 we know that Q2-1 ~ f fq  × q and so Q2-1 ~ ~ q  × q 

Following the remarks after Corollary 2.9, we can deduce the following 
alternative version of  Theo rem 4.2. 

COROLLARY 4.3. Suppose that in Theorem 4.2 G ES~ (l+q)×(p+q) is left 
invertible over ~l+q)x(p+q).  Then (i) and (ii) remain equivalent on replac- 
ing ~ by ~ _ ,  and (4.6) holds on the strip I R e s l <  c for  some ~ > 0. 
Moreover, p ~ l  ~ 5~q× q i f  U ~ ~p_× q. 

We now give a solution of  the general analytic system problem (4.1) in 
terms of  J-spectral  factorizations. 
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THEOREM 4.4. Consider the analytic system problem (4.1) for G 
3~l+m)×(q+m) where Gz2 is square and det G22(oo) ~ 0. I f  G is left-invertible 
over .~'~_, then there exist Q1, Q2 ~Jt'~_ and an R ~.¢t'~_ with Ilnll~ < 3' 
satisfying (4.1) if and only if there exists a W ~¢ft'~_ such that 

G~Jtm(Y)G = W ~ J q m ( y ) W  for IRes l<  ~, (4.11) 

where W, W -~ E3~¢(q+m)×(q+m) and (GW-~)22 is invertible over ~m_Xm. In 
this case, all solutions R to (4.1) are generated by 

= c w  - 1  (4.12) R = R1R~ 1, Re lm 

for U E?-~q ×m satisfying IIUIL ~ ~/, where W is any solution to (4.11), and 
R~I ~ ~mXm. 

Proof. This follows from Lemma 4.1 as in Green [39, Theorem 3.1]. For 
a detailed proof see Curtain and Green [23, Theorem 4.5]. • 

In order to reinterpret the J-spectral factorization condition (4.6) as a 
J-lossless condition, we need the following lemma. 

LEMMA 4.5. Suppose that X ~ .~ l+m)×(q+m) .  Then X~21 ~ _ × "  and 
X ~Jtm(y)X = Jmq(Y) for IRe s[ < ~ for some e > 0 if and only if X if 
J-lossless. 

Proof. See Curtain and Rodriguez [22, Lemma 3.2] or Curtain and 
Green [23, Lemma 4.6]. • 

COROLLARY 4.6. Consider the analytic system problem (4.1) for G 
,g~c(l+m)×(q+m), where G22 is square and det G22(oo) 4= 0. I f  G is left-invertible 
over ~ t '~  , then there exist Q1, Q2 ~.¢t'~_ and an n ~.¢t'~_ with IFRII~ < 3' 
satisfying (4.1) if and only if there exists a W such that W, W -1 ~ t ' ~ _  and 
GW -1 is J-lossless. In this case, the solutions to (4.1) with flRrr~ <<. 3' are 
generated by 

= G W  -1 (4.13) R = R  1R~I, R2 Im , 
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where U ~ , ~ _ ,  IIuIl~ ~ ~, and W is such that W , W  -1 E.~s~_ and 
GW -~ is J-lossless, R e and R~ ~ are in A1"5~_ and all Q1, Q2 ~At'~_ are 
generated by 

1[ 'm  414, 

where U ~At'~_ satisfies IIUIl~ ~ ~. 

Proof. Apply Theorem 4.4 to obtain a solution of (4.1) with Q1, Q2 ~ 

.J¢'~_, R ~.g,'7~_, R~ 1 ~ ' ~ _ ,  where II all~^< ~ if and only if there exists a 
W G~ ' f f_  such that W -1, (GW-1)~21 ~t'5~'_ and 

G~Jzm(T)G = W ~ J q m ( y ) W  for [Res l<  e. 

Thus 

(CW-1)~Jlm(Y)  GW-1 =Jqm(Y) for IResl < ~. (4.15) 

l_~mma 4.5 shows that (4.15) and (GW-1)z21 ~Jt '~_ hold if and only if 
GW -1 is J-lossless. 

Equation (4.13) and R~ 1 ~.,K,'~_ follow from Theorem 4.4. 
From (4.1) we obtain 

and with (4.13), we obtain (4.14), since G is left-invertible. 

We remark that another version of this theorem holds assuming that G21 
is square and det G21(~)~ 0. It can be deduced from Corollary 4.6 by 
swapping columns. Of course, then the off-diagonal blocks of W will be 
square. 

Notice that although we have proved that R~ -1 ~¢¢t'~_, this will not be 
true for the inverse of Q2 = [(W-1)21U + (W-I)22]R21 in general. In the 
applications to control, the candidate for the controller will be Q1 Q21, and so 
it is important to derive conditions under which Q2(~) is nonsingular. In this 
direction, we have the following technical lemmas, whose proof should be the 
same as in the finite-dimensional case (see Lemmas 3.6, 3.7 in Green [39]). 
Unfortunately, the proof of Lemma 3.6 in [39] is incorrect, so we include a 
correct proof here. 
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LEMMA 4.7. Suppose that Z, Z -1 ~.~'J~_. Then there exists a constant 
matrix U such that U*U < ~2I and 

is nonsingular i f  and only i f  there exist Y, Y -  ] ~.J[~_ such that YJ- ~ Y * = 
z j - 1 z  * and det Yz~(o0) 4: 0. 

Proof. I f  Y exists, then by Lemma 2.7, Y = ZA, where AJ-1A * = j - I  
or equivalently A*JA = J and A -  ~ = J -  1A*J. The (1, 1) block of  A*JA = J 
yields 

A* 1 All - T2A~I A22 = I ,  

and A u is invertible with 

~ / 2  A - * A *  ~ ] l  nZl A21 A u  1 = I - A~*A~-l 1. 

_ 2 A - * ~ *  I ~ t  U = y zai] za21 to obtain UU* < T2I. Now 

(4.16) 

,]yA 

, _ 2 * ] 
A1U ~/ A21 

= 4 ,  + 
- - ~ 1 1 2 " ' 1 1  ~ 1 2 1  

which will be nonsingular if S = Az~ - A21AlllA12 is. 
Suppose on the contrary that there exists an x :# 0 such that Sx = O. 

Then the (1, 2) block of  A*JA = J yields 

A~I A12 x = T2A*I A21 A~llAI~ x 
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and 

A12 x = T2(All l )* A*21A21AlllAI2 x 

= [ I - -  ( A l l l )  * Alll]A12 X from (4.16). 

Thus A12 x = 0 and A22 x = 0. But examining the (2, 2) block of A*JA = J 
shows that Az2 is invertible and so x = 0. Hence S is nonsingular. 

Conversely, if U exists, set Y = ZA, where 

A = ( y 2 1 -  UU*) -1/2 0 yI 

0 ( y 2 1 _  U,U)  -1/2 T-1U* y I  ' 

and verify that A j-1A* = J-1 and that 

Thus Y2z(~) is nonsingular. 

Identifying Z with W - 1  , w e  obtain the following result. 

COaOLIARY 4.8. Suppose that G ~.¢t'~_ under the assumptions of 
Corollary 4.6. Suppose that in the parametrization of (4.13)-(4.14) there 
exists a U ~,¢1"s¢_ with IIUIl~ < 3' such that Q2(~) is nonsingular. Then there 
exists a W satisfying the conditions of Corollary 4.6 with the additional 
property that det(W-~)22(~) # 0. Consequently, with this choice of W, 
det Q2(~) 4 :0  for every strictly proper U ~¢g~_ (U(~) = 0). 

Proof. Apply Lemma 4.7 to Z = W -1, Y = W - l ,  noting that Q2 R2 = 
ZzlU + Z22 is nonsingular at ~. • 

Under certain conditions on G we can guarantee that W21 (or W22) is 
strictly proper. 
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--  ~¢l+m)×(q+m) -- ~-~ (respectively, G22) LEMMA 4.9. Consider G ~ ' _  , where ~21 
is strictly proper and there exists a W E d ~  ¢(q+m)×(q+m) satisfying W -1 

d J  (q+m)×(q+m) and G W  -1 is J-lossless. Then there exists another W with the 
same properties and such that in addition, W21 (respectively, W22) is strictly 
proper. 

Proof. Consider the G12(m) = 0 case. There holds 

- -  

and since W(oo) is nonsingular, [G*JG(~)] u > 0. Taking the Schur comple- 

ment, we obtain ~(oo) such that W21(~) = 0. Define W = W(oo)W(oo)-lW. 

We remark that in the case that G21 is strictly proper, we can achieve 
W21(oo) = 0. Since W is invertible, we must have W22(oo) and (W-1)2z(oo) 
nonsingular. So by Corollary 4.8 we can obtain well-posed controllers by 
choosing a strictly proper U. This applies to the model matching problem 
(4.9~). 

Finally, we quote a last technical lemma we need in Section 5. 

LEMMA 4.10. Suppose that X E2~¢(l_ +m)×(q+m) ~8 J-lossless, and define G 
and W 

I' 011 
W =  X21 X2 z , G = X W  = 1 2 . 

(i) I f  U ~,¢[~_ with IIuIl~ ~ ~, then X21U + X22 is invertible over 
Jt '~_ and (Xl l  U + X12)(X21U + X22) -1 ~,¢t'~ with H=-norm <-< y. 

(ii) I f  Q ~.¢t'~_ is such that IIGll p + G~21I= < 3', then I - X21 p is 
invertible over ~,¢[s¢_ and Q( I  - X21Q)-lx22 = ( I  - QX21)-lQXz2 

.~'~_ with H®-norm <~ y. 

Proof. This is similar to Lemma 3.4 in Green [39]. It is proved in detail 
in Lemma 4.7 in Curtain and Green [23]. • 
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5. H~o-CONTROL PROBLEMS 

In this section we synthesize the results in Section 3 on stabilizing 
controllers with the results in Section 4 on stable analytic system problems, 
The type of control problems we consider are those of finding a stabilizing 
controller K for a plant P such that the closed-loop system satisfies a norm 
constraint II~(P, K)II~ < 3'; these are termed H~-control problems in the 
literature. 

Our approach is to reduce the general I-Ion-control problem to two simpler 
ones of the output estimation type. So we first obtain solutions for the latter. 
As it happens, it is more convenient to obtain solutions to the dual distur- 
bance feedforward problem and then appeal to duality to solve the output 
estimation problem. 

THEOREM 5.1 (Disturbance feedforward problems). Consider P 
. ~ ( l  + m)× (m + q) which has a left-coprime factorization 

[ IVl2 --M~ lz ]is  left-invertible over ~ '7~.  where G = [-1V~ M22 ] 

There exists a stabilizing controller K ~ t ' ~  for P such that II~'(e, K)IL 
< ~/ if and only if P has a right-coprime factorization 

[ NH N~2 ] J-lossless and det N22(o o) g: 0. (5.1) 
P = NM-1, with [M11 M12 

In this case, all stabilizing controllers K ~.¢t'~ such that ]]o~(P, K)][o~ ~< T 
are given by K = K1K~ 1, where 

I ] K2 = [ N21 N22 Im 

for U ~ ' ~ _  with IIuIl~ ~ ~/and det K2(o0) v~ 0. 
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Proof. This follows the proof of Theorem 3.8 in Green [39], where we 
use Corollary 3.6 on the parametrization of stabilizing controllers, and Theo- 
rem 4.8 on solutions to stable analytic system problems. For a complete proof 
see Theorem 5.1 in Curtain and Green [23]. • 

While disturbance feedforward problems reduce to stable analytic system 
problems of the type (4.1), output estimation problems reduce to a trans- 
posed problem. The solution is most efficiently obtained by taking the 
transpose of Theorem 5.1. 

THEOREM 5.2 (Output estimation problems). Consider P ~ ' ~  which 
has a right-coprime factorization 

p = [0 011 
N21 N22 M21 M22 ' 

where 

N21 -N22 
G = _ M21 M22 

is right-invertible over ~¢t'~_. There exists a stabilizing controller K ~¢/Y~ 
for P such that 11~9"(e, g)ll~ < ~ i f  and only if  P has a left-coprime factoriza- 
tion e = 2~I-1~, with 

[ ] 
NZl z~21J 

conjugate J-lossless and det 2Qz~(oo) ~ 0. 
In this case, all stabilizing controllers K ~ / t ' ~  such that II~r( e, K)II~ ~< T 

are given by K = I(21I(1, where I(1, I( 2 satisfy 

for  U ~.~ '~_ with IIUII~ ~< ~ and det/(22(oo) ¢= 0. • 
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We now proceed to consider more general I-I~-control problems. First we 
show that the existence of a stabilizing controller K such that I}~r(P, K)II~ < 3~ 
implies that a certain analytic system of the model matching type (4.2) must 
have a solution, and consequently a certain J-lossless factorization must exist. 

LEMMA 5.3. Suppose that P ~ t + , o × t p + q )  has a right-coprime factor- 
ization P = YX-1 such that 

Ip 0 ] 

X = X21 X22 , 

Y22, X22 are right-coprime, and Y12 is left-invertible over ~t'~¢'. I f  there 
exists a stabilizing controller K ~ J t ' ~  for P such that 115r(e, K)II~ < ~/, then 
P has a right-coprime factorization P = NM-1 with 

Nll N12 ] 
Mll M12 ] 

J-lossless and det M21(~) ~ 0. 

Proof. This generalizes Lemma 4.1 in Green [39]. For a detailed proof 
see Lemma 5.3 in Curtain and Green [23]. • 

Using left-coprime factorizations of P, one obtains the following dual 
result. 

LEMMA 5.4. Suppose that P E,.~ (l+m)×(p+q) has a left-coprime factor- 
ization P = ~-1~  such that 

: 22 }' 
Y22, X22 are left-coprime, and Y21 is right-invertible over ~fT~_. I f  there 
exists a stabilizing controller K ~ J t ' ~  such that 11,gr(P, g)ll~ < 3', then P has 
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a left-coprimefactorization e = ffl-lN, with 

[g l  i11] 
 i2, 

conjugateJ-lossless and det/U12(oo) #: 0. 

The key step for considering a more general H~o-control problem is to 
show that K is a stabilizing controller for P with liSt(P, g)ll~ < 3' if and only 
if K is a stabilizing controller for P+ with IIo~r(P÷, K)IL < 3", where P+ 
corresponds to an output estimation problem which we have already solved in 
Theorem 5.2. Since this step was not proved completely in Green [39, 
Theorem 4.3], we give a complete proof here. 

THEOREM 5.5. Suppose that P E ~  (l+m)x(p+q) has a right-coprime 
factorization P = NM-1 such that 

I Nll N12 ] 
Mll M12 

is J-lossless and det M21(oo) ~ 0. The following are equivalent statements: 

(i) K ~ t t ' ~  is a stabilizing controller for P such that 115~(e, K)II~ ~< 3'. 
(ii) K ~Jt'~q¢ is a stabilizing controller for P÷ ~ ~(q+m)×(p+q) such that 

[l~r(P+, g)ll® ~< 3', where P+ is given by 

[ 1[ [ ]I 11 Iq 0 0 Ip ]-1 0 Iq Ip 0 - (5.3) 

P+= N21 N22 M21 Mz2] = N22 N21 M22 M21 

(iii) Moreover, II~(P, K)IL < 3' if and only if II~'(P÷, K)II~ < 3'. 

Proof. 

(1) Since 

Nil N12 ] 
Mll M12 
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is J-lossless, by Lemma 4.5 M12 is invertible over ~tr~_. Consider a new 
factorization of P = N M - l ,  given by 

Notice that 

[, o] 
M= ~,  M--~" 

MO 2 ] - 1 (5.4) 

Applying Lemma 3.2, we see that K stabilizes P if and only if K = K-~IK1, 
where 

[~ ~2] -M~ ~2~ J [~ 11 (5.5) 

with K1, K 2 ~.d¢~_ and det g.22(~) ~ 0, and 

0 ] [ Q ] "  (5.6) 

(2) Suppose (i) holds, and let K = K$IK1 be such that K1, K 2 satisfy 
(5.5) with 115fie, g)ll= ~< 3'- Using Lemma 4.10(ii) with 

X = .  W =  G = X W =  2 2~11 
I 

from (5.4) it follows that since IIC~2 ~ GI1QII~---IL~(P, K)II~ ~< 3 j [from 
(5.6)], 1 - M~IQ is invertible over I,'5,¢_ and R = (1 - QMu)-~QM12 

.Jt'5~¢_ with norm < 31. Now premultiplying (5.5) by ( I -  QMll)  1 and 
postmultiplying it by 

yields 

-Mee Me ~ ] = [R 
I], (5.7) 
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where [K 1, K 2] = ( l  - QMll)-l[K1, K z] and R = ( I -  QMn)-lQM12. 
From the above we see that R ~ ¢ ~ _  with Ilnll~ ~< 3", K~, K z ~.~¢~_, and 
det K,z(~) :~ 0. So applying Lemma 3.5 to P+, we see that K~-1K 1 = K~-1K 1 
= K stabilizes P+ and that I I ~ e + ,  K)II~ = tlnll~ ~< 3'. 

(3) Suppose now that (ii) holds, and let K = K~IK1 stabilize P+. By 
Lemma 3.2, (5.7) holds and IL~¢(P+, K)IL = IIRII~ ~< 3'. We apply Lemma 
4.10(i) to 

NIl Nlz 1 
X = Mn M12 

as before and conclude that MI1R+ M12 is invertible over ~gff_ and 
(NllR + N12)(MllR + M12) -1 ~.J¢',~¢_ with norm < 3'. Since M~-21 
.Jt'~¢_, it follows that (I + M{21MHR) -1 ~..~'.~_ and equivalently, ( I  + 
RM~I MH)- 1 ~..¢f~_. Define 

-1  -1 [gl, K2] : (I-{-aM12 Mll) [gl, g 2 ]  

and Q = (I + RM~zIMll)-lRM~ 1 = R(MllR + M12) -1, and verify that 
(5.5) and (5.6) hold with ~I~P, K) = (NllR + N12)(MllR + M12) -1 having 
norm < 3'- So by Lemma 3.2, K stabilizes P. 

(4) We now prove (iii). Consider 

[y] =P[W] = N [ ~ ] ,  where [~1 = M - l [ w ] .  

There holds 

[z] 

and the J-lossless property of [ 
N11 N12 ] 
Mll M12 ] 

g ives  

llzll 2 - 3'211wll ~ = I la l l  2 - 3"211 ~11 ~, ( 5 . 8 )  
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Note that 

and so 
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With u = Ky, it is readily verified that 

a = 3 - ( P + ,  K)/3  and 

Now 

z = ~ e , K ) w .  

II~(e ,  K) o~112 - [ I ~ ( P ÷ ,  g ) ~ l l  2 = llzll 2 -ll~LI ~ 

= r2(llo)ll 2 - II/7112) from (5.8).  

If II~'(e, K)o)ll 2 < rZllo~ll 2, then 

II~e÷, g)~ll~ + ~2(11,oll 2 -  11/311 z) < r211o)ll 2 

and so 

IIJ+(e, K)/?II 2 ~ ~211 ~112. 

Conversely, if II~(P, K)/3112 ~ 3'211/?IL 2, then I[~r(P, K)~oll 2 ~ 3,11oJII 2. This 
proves that II~'(P+, K)II~ ~< ~ is equivalent to liar(P, K)II~ ~< ,/. • 

So under certain factorization conditions on P, we have reduced the 
H=-control problem for P to an output estimation problem solved in Theo- 
rein 5.2. This results in the solution to the general H~-control problem for 
our class of infinite-dimensional systems. 
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THEOREM 5.6. Suppose that P E~-~,~ (l+m)X(p+q) has a right-coprime 
factorization P = YX-1 and a left-coprime factorization P = ~-1~ such that 

l i p  0 1 
X = X21 X22 , 

Y22, X22 are right-coprime, and Y12 is left-invertible over Jt '~_, (5.9) 

:~ J' 
X2a, Y22 are left-coprime, and Y12 is right-invertible over ~t'~_. (5.10) 

There exists a stabilizing controller K ~t'~,~ for P such that lion(P, K)II~ < 3~ 
if and only if the following two conditions hold: P has a right-coprime 
factorization P = NM-1 with 

[ NH | J-lossless M21(~ ) O, (5.11) N12 l 
and det ¢ 

Mll M12 / 

and P+ has a left-coprime factorization P÷ = 1~1-1]V with 

[~" ~tH I conjugateJ-lossless ~: O, (5.12) 
1 

and det 
J 

where 

i,q 0][o ,p] E~,~ (l+m)X(p+q). (5.13) 
P+= N21 N22 M21 M22 

In this case, K is a stabilizing controUer for P such that II~(e, K)II~ ~< 3' /f 
and only if K = 1(~I(1, where 

[/~1' /~2] ~--- [ g Iq]~IVl~. N22 ' g f~:d~qxm (5.14) 

with IIUII~ ~ ~, and det/(2(~) ~ 0. 
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Equivalently, K = ~ (  S, U ), where 

(5.15) 

Proof. This follows the proof of Theorem 4.4 in Green [39]. For details 
see Curtain and Green [23, Theorem 5.6]. • 

We remark that in Green [39] it is shown that the assumptions (5.9) and 
(5.10) reduce to the usual rank conditions imposed for solving the standard 
I-I~ optimal-control problem using a state-space approach. For the case that 
G has a realization as a Pritchard-Salamon system, (5.9) and (5.10) will 
reduce to the so-called "invariant zeros conditions" on p. 134 in Van Keulen 
[44]. Furthermore, using the results on J-spectral factorizations in terms of 
Riccati equations from Weiss [48], one can rederive the state-space Riccati- 
equation solution given in [44]. However, this will not be possible for more 
general classes of systems, as the Riccati equations need not be well posed 
(cf. the parabolic case in [19]). 

This paper was the outcome of collaboration during the first author's visit 
to the Systems Engineering Department in Canberra, Australia at the end of 
1991. Both authors thank Nicholas Young for the proof of Lemma 2.2, and 
the reviewers for their constructive criticism. 
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