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For functions g(z) satisfying a slowly varying condition in the complex plane, we
find asymptotics for the Taylor coefficients of the function

f (z)= g(z) (1&z)&:

when :>0. As applications we find asymptotics for the number of permutations
with cycle lengths all lying in a given set S, and for the number having unique cycle
lengths. � 1997 Academic Press

1. INTRODUCTION

Often the asymptotics of a function's Taylor coefficients can be deter-
mined by the behavior of the function near its singularities of smallest
modulus. Information of these asymptotics is useful in probability, com-
binatorics and theoretical computer science. We briefly state three theorems
that obtain such asymptotic information before presenting our results.
More detailed information on all three is given in [6].
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The first result is sometimes known as Darboux's theorem. It states that if

f (z)= g(z) (1&z)&:,

for : � [0, &1, &2, &3, . . .], and if g(z) has a radius of convergence larger
than 1, then the Taylor coefficients fn of f (z)=� fn zn have asymptotic
behavior

fntg(1) n:&1�1(:)

To apply Darboux's theorem, the function f (z) must therefore be analyti-
cally continuable across its circle of convergence.

The Tauberian theorem of Hardy, Littlewood and Karamata, described
in [?], implies asymptotics for the Taylor coefficients of functions satisfying

f (z)=h((1&z)&1) (1&z)&:, (1)

where h(z) is a slowly varying function and :�0. A function h(x) defined
on (0, �) and never 0 is said to be slowly varying if

lim
x � �

h(*x)�h(x)=1 (2)

for all *>0. Under these conditions

:
n

k=0

fktn:h(n)�1(:).

If in addition :>0 and the Taylor coefficients fn are positive and
monotonic for large n, then

fntn:&1h(n)�1(:). (3)

The condition of monotonicity on fn can be difficult to check in practice.
The singularity analysis of Flajolet and Odlyzko in [4] gets results when

: � [0, &1, &2, &3, ...]. Their results imply the asymptotics (3) for func-
tions satisfying (1) where z � 1 within a domain in the complex plane of
a certain sort that does not intersect the segment [1, �). Their slowly
varying condition on h(z) when restricted to the real line amounts to

lim
x � �

h(x log 2x)�h(x)=1. (4)

Singularity analysis theorems require the function f (z) to be continuable
across its circle of convergence when :�1.

Our main result, Theorem 2, considers functions of the form

f (z)= g(z)(1&z)&:
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with :>0. Under certain conditions on g(z), not including analytic
continuation across its domain of convergence, the Taylor coefficients fn of
f (z) have asymptotics

fntn:&1g(1&n&1)�1(:).

In particular, we show that if h(z) satisfies a slowly varying condition on
the complex plane which restricted to the real axis gives the slowly varying
condition (2), and not the more restrictive (4), and g(z)=h((1&z)&1),
then asymptotics (3) hold. We are able to get new results for the
asymptotic number of permutations with cycle lengths restricted to a given
set S. We also derive the asymptotics, first found by Greene and Knuth, for
the number of permutations having unique cycle lengths. Our conditions
on g(z) are related to a definition of slowly varying functions due to
Vuilleumier.

2. SLOWLY VARYING FUNCTIONS

The notion of slowly varying function we use is stated in Definition 1. It
is essentially taken from [8], though we impose a weaker mode of con-
vergence on zh$(z)�h(z).

Definition 1. A function h(z) is said to be slowly varying if h(z) is
analytic and non-zero in the half plane H#[z : Re z>1�2], and if

zh$(z)�h(z) � 0

as z � � with in H.

Theorem 1 character characterizes slowly varying functions. In par-
ticular, functions which are slowly varying under Definition 1 satisfy condi-
tion (2) when restricted to the real line.

Theorem 1. Let h(z) be analytic and have no zeroes in the half plane H.
The following two statements are equivalent:

(1) h(z) is slowly varying.

(2) There exists a function _ : (r, �) � R+ for some r�1�2 such that
_ is continuous, _(x) a 0 as x � +�, and such that for all *>1 and z # H

} log
h(*z)
h(z) }�_( |z| ) log *. (5)

In particular, h(*z)�h(z) � 1 as z � � within H for all *>0.
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Moreover, (1) and (2) imply that for all z1 , z2 # H with |z2 |�|z1 |

} log
h(z2)
h(z1) }�_( |z1 | ) \log } z2

z1 }+ } arg \z2

z1+}+ .

Proof. Defining |(z) as

|(z)=zh$(z)�h(z),

and solving for h(z) gives

h(z)=C exp \|
z

z0

|(u)
u

du+
for some z0 # H and C{0.

Suppose that h(z) is slowly varying and that |z2|> |z1| . Let _(x) be
defined by

_(x)= sup

|y|�x
y # H

||(y)| .

From Definition 1, limx � � _(x)=0. We calculate

} log
h(z2)
h(z1) }= } |

z2

z1

|(u)
u

du }
�_( |z1 | ) |

z2

z1 }
du
u }

=_( |z1 | ) |
z2�z1

1 } du
u }

�_( |z1 | ) \|
|z2�z1|

1

du
u

+|
z2�z1

|z2�z1| }
du
u }+

=_( |z1 | ) \log } z2

z1 }+ } arg \z2

z1+}+ ,

where in the last integral we integrate over the circle |u|=|z2 �z1| .
Conversely, if h(z) satisfies (5), then

||(z)|= } zh$(z)
h(z) }

= } z
h(z)

lim
r a 0

h((1+r) z)&h(z)
rz }
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= } limr a 0

1
r

log
h((1+r) z)

h(z) }
�_( |z| ) lim

r a 0

1
r

log(1+r)

=_( |z| ). K

The class of slowly varying functions includes log z, log log z, and
exp(- log z) for appropriate definitions of log z, i.e. those that make the
functions analytic on H. An example of a slowly varying function that does
not satisfy (4) is exp(log z�log log z).

Notice that a function h(z) is slowly varying on the half plane H if and
only if the function

g(z)=h((1&z)&1)

is analytic and non-zero on the unit disc [z # C : |z|<1] and

g$(z)(1&z)
g(z)

� 0

as z � 1 within the unit disc.
Lemma 1 gets bounds needed for the proof of Theorem 2. Its proof is

similar to that of Theorem 1 with h(z)= g((1&z)&1).

Lemma 1. Given 0<a<b<2 and 0<\<1, let

U(a, b, \)=[z # C : a�|1&z|�b, |z|�\]

and define

{= sup
z # U(a, b, \) }

g$(z)(1&z)
g(z) } .

If z1 , z2 # U(a, b, \) with |1&z1 |�|1&z2 |, and {<�, then

} log
g(z2)
g(z1) }�{ \log } 1&z1

1&z2 }+ }arg
1&z1

1&z2 }+ .

3. A DARBOUX-TYPE THEOREM

Theorem 2 is our main result; applications are given in Section 4. It can
sometimes be applied even when g$(z) is unbounded on [z # C : |z|<1].
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Theorem 2. Let g(z) be analytic on the disc [z # C : |z|<1] and suppose

f (z)= g(z)(1&z)&:

for some :>0. Suppose there exists sequences \n , %n in R+ such that \n<1,
n(1&\n) � 0, and n&1<%n<2, n%n � �, and with the following properties:

(1) If Un=[z # C : |z|�\n , n&1�|1&z|�%n], then

{n# sup
z # Un

} g$(z)(1&z)
g(z) }� 0 as n � �.

(2) If 1n is the part of the circle |z|=\n where |1&z|�%n , then

|
1n

| f $(z) dz|= f (1&n&1) o(1) as n � �.

If the assumptions are satisfied, then the nth Taylor coefficient fn of f
satisfies

fnt g(1&n&1) n:&1�1(:), n � �.

Proof. Our proof uses estimates of Cauchy's integral formula. For any
simple counter-clockwise curve # about 0, the nth Taylor coefficient of an
analytic function f (z) is given by the integral

fn=
1

2?i |#

f (z)
zn+1 dz. (6)

From (6) comes the equation

fn

g(1&n&1)
=

1
2?i |#

(1&z)&:

zn+1 dz+
1

2?i |# \
g(z)

g(1&n&1)
&1+ (1&z)&:

zn+1 dz.

The first integral equals

1
2?i |#

(1&z)&:

zn+1 dz=(&1)n \&:
n +t

n:&1

1(:)
.

For some k>0 to be determined later we define the sequence

dn=|1&\n eik�n| .
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To prove the theorem it suffices to show that

lim
n � �

n1&: |
#(n) \

g(z)
g(1&n&1)

&1+ (1&z)&:

zn+1 dz=0, (7)

where #(n) is the circle [z # C : |z|=\n] indented by the part of the circle
[z : |z&1|=dn] in its interior, and where #(n) is traversed in the positive
sense.

The limit (7) will be derived by bounding the integral on sub-paths of
#(n). For a fixed integer k>0 to be determined later, the sub-paths are
defined to be

#1(n)=[z : |z&1|=dn , &k�n�arg z�k�n],

#2(n)=[z : |z|=\n , k�n�arg z�%n],

#3(n)=[z : |z|=\n, %n�arg z�2?&%n],

#4(n)=[z : |z|=\n , 2?&%n�arg z�2?&k�n].

We will show how to obtain (7) for the first three sub-paths only; the
estimates for #4(n) are similar to those for #2(n).

We will need upper and lower bounds for |1&\n eit | for k�n�t�?.
Since |1&eit |=2 sin (t�2) # [2t�?, t], if 0�t�? we have

|1&\n eit |�|1&eit |+|eit(1&\n)|�t(1+t&1(1&\n))

and

|1&\n eit |�|1&eit |&|eit(1&\n)|�t \2
?

&t&1(1&\n)+ . (8)

Here

sup
k�n�t�?

t&1(1&\n)�n(1&\n)�k � 0.

Bound on the Integral over #1

From (8) there is a positive constant C such that

dn�Cn&1.

We now estimate that

sup
z # #1(n)

|z|&n&1=(1&dn)&n&1=O(1)
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and that

|1&z|&:�d &:
n =O(n:),

and bound the path length of #1(n) by ?n&1. From Lemma 1, we have for
z # #1(n) the bound

} log
g(z)

g(1&n&1) }�{n (log |n(1&z)|+|arg(1&z)| ).

Thus

log
g(z)

g(1&n&1)
� 0 as n � �

and therefore

lim
n � �

n1&: |
#1(n) \

g(z)
g(1&n&1)

&1+ (1&z)&:

zn+1 dz=0.

Bound on the Integral over #2

It suffices to prove that given =>0, k can be chosen such that

lim sup
n � � } n |

%n

k�n

f (\n eit)
f (1&n&1)

(\n eit)&n i dt }<= (9)

and

lim sup
n � � } n1&: |

%n

k�n
(1&\n eit)&: (\n eit)&n i dt }<=.

As the function g(z)#1 is slowly varying, it is enough to show (9).
Integration by parts gives

n |
%n

k�n

f (\n eit)
f (1&n&1)

(\n eit)&n i dt=&
f (\n ei%n)

f (1&n&1)
(\n ei%n)&n

+
f (\n eik�n)
f (1&n&1)

(\n eik�n)&n

+|
%n

k�n

f $(\neit)
f (1&n&1)

(\n eit)&n+1 i dt,
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where the derivative f $(\n eit) is taken with respect to \n eit. We will obtain
estimates that imply (9) over #3 .

Using Lemma 1 and (8), if k�n�t�%n we obtain

} f (\n eit)
f (1&n&1) }= } g(\n eit)

g(1&n&1)
(n(1&\n eit))&: }

�e?{n \nt \2
?

&t&1(1&\n)++
&:+{n

. (10)

Hence,

lim
n � � } f (\n ei%n)

f (1&n&1) }=0

and

lim sup
n � � } f (\n eik�n)

f (1&n&1) }=O(k-:). (11)

For the third term, we estimate

} t f $(\n eit)
f (\n eit)

= } t \ g$(\n eit)
g(\n eit)

+
:

1&\n eit+}
�({n+:) t |1&\n eit| &1

�({n+:) \2
?

&k&1n(1&\n)+
&1

and using (10)

lim sup
n � � |

%n

k�n }
f $(\n eit)

f (1&n&1) } i dt=lim sup
n � � |

%n

k�n }
f $(\n eit)
f (\n eit) } }

f (\n eit)
f (1&n&1) } dt

=lim sup
n � �

O(n&:+{n) } |
%n

k�n
t&:+{n&1 dt }

=lim sup
n � �

O(k&:+{n)

=O(k&:). (12)

By choosing k large enough we deduce (9) from (11) and (12).
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Bound on the Integral over #3

Integrating by parts, we get

n |
2?&%n

%n

f (\n eit)
f (1&n&1)

(\n eit)&n i dt=&
f (\n ei(2?&%n))

f (1&n&1)
(\n e&i%n)&n

+
f (\n ei%n)

f (1&n&1)
(\n ei%n)&n

&|
2?&%n

%n

f $(\n eit)
f (1&n&1)

(\n eit)&n+1 i dt.

The first two terms on then right hand were bounded in the argument for
#2 , and the second condition of the theorem bounds the third term.
Another argument using integration by parts and (8) that is omitted here
shows

n1&: |
#3(n)

(1&z)&: z&n&1 dz=o(1)

and so (7) holds for #3(n). This completes the proof of Theorem 2. K

4. APPLICATIONS

We present five corollaries of Theorem 2.

Corollary 1. If h(z) is a slowly varying function defined on H (cf.
Def. 1) for which h(z) and |(z)=zh$(z)�h(z) are bounded in absolute value
on H, then for :>0 the Taylor coefficients fn of the function

f (z)=h((1&z)&1)(1&z)&:

have asymptotics

fntn:&1h(n)�1(:).

Proof. If %n=n-; for some ; # (0, 1) and \n is any sequence such that
\n A 1 and n(1&\n) � 0, then the first condition of Theorem 2 is satisfied
because h(z) is slowly varying.

To show the second condition, we calculate

f $(z)=(|((1&z)&1)+:) h((1&z)&1)(1&z)&:&1,
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implying

1
f (1&n&1) |1n

| f $(z) dz|=
O(1)

h(n)n: |
?

n&;
t&:&1 dt

=
O(1)

h(n)n:(1&;) .

Theorem 1 shows that h(x) is slowly varying on the real line. A property
of slowly varying functions h(x) on the real line (see Proposition 1.3.6 on
page 16 of [?], for example) is that for any }>0,

lim
n � �

h(n)n}=�.

Hence, the second condition of Theorem 2 is satisfied. K

The next corollaries show that Theorem 2 can be used in some cases
where g$(z) is not bounded.

Corollary 2. Let g(z) be analytic and non-zero in 2#[z # C : |z|<1]
and suppose there exists a constant q # (0, 1) such that

sup
|z|=\ }

g$(z)
g(z) }=O(1) (1&\)&q as \ A 1.

Let f (z)= g(z)(1&z)&: where :>0. Under these conditions g(z)
approaches a limit + as z � 1 within 2 non-tangentially and the nth Taylor
coefficient of f satisfies

fnt
+n:&1

1(:)
.

The condition that z � 1 within 2 non-tangentially means that z is con-
tained in a sector given by

|arg(1&z)|�
?
2

&=

for some =>0.

Proof. As |z| A 1 we have

} log
g(z)
g(0) }=O(1) |

|z|

0
(1&\)&q d\

=O(1),
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and it follows that | g(z)| and | g(z)|&1 are bounded on 2. Therefore

g$(z)=O(1)(1&|z| )&q as |z| A 1

and g(z) approaches a limit + as z � 1 non-tangentially in 2.
We will apply Theorem 2 with \n=1&(n log n)&1 and %n=n&; for

some ; # (q, 1) which satisfies ;>(q&:)�(1&:) if :<1. The first condi-
tion of Theorem 2 is satisfied because {n=O(1)(1&\n)&q %n=o(1). To
check the second condition, we use the estimate

f $(z)=g$(z)(1&z)&:+:g(z)(1&z)&:&1

=O(1)(1&|z| )&q (1&z)&:+O(1)(1&z)&:&1.

Therefore,

1
f (1&n&1) |1n

| f $(z) dz|=O(1)n&:((n log n)q (n&;(1&:) log n+1)+n:;)

=o(1),

since q&:&;(1&:)<0, proving the second condition. K

In Corollary 3 we use a simple estimate to apply Corollary 2 to the num-
ber of permutations on n letters having unique cycle lengths. This example
is treated in [5] by a somewhat complicated argument that involves verify-
ing the conditions of a Tauberian theorem. A drawback of our method is
that we do not obtain the higher order asymptotics found in [5].

The probability a random permutation on n letters has cycles of distinct
lengths is given by the n th Taylor coefficient fn of f (z), where

f (z)= `
�

i=1
\1+

zi

i + (13)

The number of permutations on n letters having distinct cycle lengths is
then n!fn . One may rewrite (13) as

f (z)=(1+z) exp(,(z))(1&z)&1,

where ,(z) is defined as

,(z)=&z+ :
�

j=2

(&1) j&1

j
:
�

k=2

z jk

k j .
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Corollary 3. The number un of permutations on n letters having unique
cycle lengths satisfies

unte&#n!,

where # is Euler's constant.

Proof. From the previous remarks fn=gn+gn&1 , where gn is the n th
Taylor coefficienty of

g(z)=exp(,(z))(1&z)&1.

It is not hard to show ,(1)=&log 2&#, where # is Euler's constant. If
g(z)=exp(,(z)) satisfies the condition of Corollary 2, then the result will
follow. We estimate

sup
|z|=\ }

g$(z)
g(z) }= sup

|z|=\
|,$(z)|

=1+ sup
|z|=\ } :

�

j=2

:
�

k=2

(&1) j&1

k j&1 z jk&1 }
�1+ sup

|z|=\ } :
�

k=2

z2k&1

k }+ :
�

k=2

:
�

j=3

k1& j

=1+ sup
|z|=\ }

1
z

log
1

1&z2&z }+ :
�

k=2

1
k(k&1)

=2+O \log
1

1&\+
=O(1)(1&\)&q

for any q # (0, 1). K

For :�1 weaker conditions may be used than in Corollary 2:

Corollary 4. The conclusion of Corollary 2 remains valid if :�1 and
if the condition on sup | g$(z)�g(z)| is replaced by

sup
|z|=\ }

g$(z)
g(z) }=O(1)

1
1&\ \log

1
1&\+

&1&=

as \ A 1.

Proof. The existence of + is shown as in the proof of Corollary 2. We
prove the conditions of Theorem 2 are satisfied with \n=1&(n log n)&1.
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The first condition follows easily. As for the second condition of
Theorem 2, letting

�(\) := sup
|z|=\ }

g$(z)
g(z) } ,

for z # 2 we estimate

| f $(z)|=| g$(z)(1&z)&:+:g(z)(1&z)&:&1|

=O(1) �( |z| ) |1&z|&:+O(1) |1&z| &:&1,

and therefore,

1
f (1&n&1) |1n

| f $(z) dz|=O(1)n&: |
?

%n

(�(\n)+%&1)%&: d%

=O(1)(n%n)&:(�(\n)%n log(%&1
n )+1)

=o(1). K

Corollary 4 can be used to obtain the asymptotic behavior of the number
of permutations having all cycle lengths restricted to some set S/Z+. Let
pn (S) be the number of such permutations on n letters. If fn=pn (S)�n! and
f (z)=�n fn zn, then with

g(z)=exp \& :
j � S

z j� j+
we have

f (z)= `
j # S

exp(z j� j)

=(1&z)&1 `
j � S

exp(&z j� j)

=(1&z)&1 exp \& :
j � S

z j� j+
=(1&z)&1 g(z).

Let t(m)=|[1, 2, 3, ..., m]"S|. Bender [1] uses the Hardy, Littlewood and
Karamata Tauberian theorem to show that if t(m)�m � 1&\ # [0, 1] as
m � �, then

f0+ f1+ f2+ } } } + fntng(1&n&1)�1(\+1).
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The sequence fn can be shown to be monotonic, and the second part of
the Hardy, Littlewood and Karamata Tauberian applied, only for special
cases.

We will get asymptotics for pn (S) when t(m)=O(m(log m)&2&=) in
Corollary 5. The remarks after the folowing theorem of Szego� [7] show
that under this assumption on t(m) the function g(z) in general has no
analytic continuation outside 2. Hence Darboux's theorem and singularity
analysis seem not to be applicable to this problem.

Theorem 3. If f (z) has a Taylor expansion around 0 with only a finite
number of different Taylor coefficients, then either the unit circle is the
natural boundary of f (z) (so f cannot be continued outside this circle), f (z)
is a polynomial divided by (1&zk) for some integer k, or f (z) is a polyno-
mial.

Applying Theorem 3 to g$(z)�g(z) shows that 2 is a natural boundary for
g(z) unless g$(z)�g(z) is a polynomial or a polynomial divided by (1&zk)
for some integer k. In the first case Z+"S is finite and in the second t(m)�m
would converge to some positive number as m � �, violating our assump-
tion on the growth of t(m).

Corollary 5. If S�Z+ is such that t(m)=O(m(log m)&2&=) for some
=>0, then the number of permutations with cycle lengths restricted to S is
asymptotically

pn (S)texp \& :
j � S

j&1+ n!

Proof. For any m�1, the function �(\) is bounded by

�(\)� :
j � S

\ j&1

�t(m)+ :
�

j=m+1

\ j&1

=t(m)+
\m

1&\
.

Choosing m=m(\) for which

mt
1

1&\
log

1
1&\

,
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we have

�(\)=O(1)
1

1&\ \log
1

1&\+
&1&=

.

Now apply Corollary 4. K
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