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(2+1)-dimensional QED with dynamically 
in vacuum polarization 

massive fermions 
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A. H. Hams and M. Reenders 
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We study chiral symmetry breaking in three-dimensional QED with Nf flavors of four-component 
fern&ns. A closed system of Schwinger-Dyson equations for fermion and photon propagators and 
the full fermion-photon vertex is proposed, which is consistent with the Ward-Takahashi identity. 
A simplified version of that set of equations is reduced (in the nonlocal gauge) to the equation for a 
dynamical fermion mass function, where the one-loop vacuum polarization with dynamically massive 
fermions has been taken into account. The linearized equation for the fermion mass function is 
analyzed in real space. The analytical solution is compared with the results of numerical calculations 
of the nonlinear integral equation in momentum space. 

PACS number(s): 11.30.Qc, ll.lO.Kk, 11.15.Tk, 11.30.Rd 
I. INTRODUCTION 

Quantum electrodynamics in one temporal and two 

spatial dimensions with Nf flavors of four-component 
Dirac fermions [three-dimensional QED (QEDs)] contin- 
ues to attract attention as a useful field-theoretical model 
for studying such phenomena as confinement and chiral 
symmetry breaking (xSB) which are out of the realm 
of perturbation theory. The model has properties rem- 
iniscent of QCD and other four-dimensional gauge the- 
ories. Thus it has an intrinsic dimensionful parameter 
e2, the coupling constant, that plays a role similar to the 

QCD scale A, and the effective coupling a(q) approaches 
zero at large momenta Q [l]. Studying the Schwinger- 
Dyson equation (SDE) for the fermion self-energy under 
the bare vertex approximation in the Landau gauge, Ap- 
pelquist, Nash, and Wijewardhana [Z] have shown the 
existence of a finite critical number of fermions, N,, be- 
low which the chiral symmetry is broken and fermions 
acquire a dynamical mass. In the vicinity of N,, this 
mass is exponentially small with respect to the natural 

dimensionful parameter e?, showing how a hierarchy of 
scales can occur in gauge theories. These results were 
confirmed by Dagotto et al. [3,4] in their Monte Carlo 
simulations of noncompact lattice QEDz. 

Continuum studies of xSB use the SDE which, being 
an infinite chain of equations, must be truncated in some 
way. The bare vertex approximation was criticized [5,6] 
as not being consistent with the Ward-Takahashi (WT) 
identity. An effective way to truncate the SDE is to make 
an ansatz for the vertex satisfying certain criteria [7] (for 
a review of the SDE in QED3 see [SI). While at the 

present time, the latter approach seems to be the most 
effective way to satisfy the WT identity under truncation, 
it does not shed much light on an approximation from the 

physical point of view. Ideally, one should solve the SDE 
0556s2821/96/53(4)/2227(9)/$06.00 23 
for the vertex itself, but that is quite a formidable task. 
However, in Sec. II we propose one possible truncation 
scheme consistent with the WT identity, not mentioned 

before in the literature. 
Another important point in studying the Nf depen- 

dence of xSB is that it is necessary to insert vacuum 
polarization effects into the equation for the fermion dy- 
namical mass (in quenched approximation, chiral sym- 

metry is broken for any Nf [9,10,4]). In l/Nf expansion, 
the one-loop vacuum polarization with massless fermions 
is used. However, as mentioned in 111,121, the inclusion of 
massive fermions changes drastically the infrared behav- 
ior of the model, leading to the appearance of a confining 
(logarithmic) term in the potential at large distances. To 
take into account this confining nature of the model one 
can study the coupled system of the SDE for the fermion 
self-energy, the photon polarization tensor, and the ver- 

tex (for example, to study the coupled system of equa- 
tions for them mentioned above). In this paper we choose 
another approach, replacing the fermion dynamical mass 
function in the polarization tensor by a constant dynam- 
ical mass of a fermion. While keeping the confinement 
property of the model this makes analysis much simpler. 
Because this approximation just corresponds to using the 
bare vertex, in order to overcome the inconsistency with 
the WT identity (or, at least, minimize its violation), 
we selected a nonlocal gauge 113,141 to keep the fermion 
wave function Z(p) z 1. 

In Sec. III we reconsider the analysis of linearized 
SDE for a fermion mass function, converting it into a 
SchrGdinger-like equation in real Euclidean space with 
an effective potential. For the vacuum polarization with 

massless fermions, this potential behaves as -X/r2 at 
large T (X = 32/37rzNr). From the theory of the 
Schr6dinger equation for such kinds of potentials, it is 
known that it has an infinite number of bound states if 
2227 01996 The American Physical Society 



2228 V. P. GUSYNIN, A. H. HAMS, AND M. REENDERS 
X > l/4 (iVr < N, = 128/37?). However, a finite number 
of bound states might exist for X < l/4 as well. We prove 

that for the potential under consideration, there are no 
bound states for X < l/4, which means that the critical 
number N, does indeed correspond to the appearance of 

an infinite number of bound states. 
In the case of massive fern&ns, the vacuum polariza- 

tion leads to a Coulomb tail in an effective potential at 
large T, however, as we show in Sec. IV, this does not 
alter the exponential-type behavior of a dynamical mass 
near the critical N,. This is, of course, in agreement with 

bifurcation analysis (see, for example, [15,16]). The main 
difference between a vacuum polarization with massive 
or with massless fermions lies in an overall scaling fac- 
tor, which is larger for massive fermion loops in vacuum 
polarization. From the physical point of view, it means 
that chiral symmetry breaking takes place essentially at 
intermediate distances l/a < T < l/m (a = e’Nf/S) 
and is not influenced much by large distances, where the 
confinement property of the model exhibits itself. This 
situation is similar to that in QCD4 [17,18], where the 
chiral symmetry-breaking scale is also different from the 
scale of confinement. 

The real space approach allows us to get a good ana- 
lytical solution, fitting nicely computer calculations when 

Nf is close to N,. In Sec. V we return to momentum 
space to analyze the nonlinear SDE for a fermion dynam- 
ical mass function. We give the results of computer calcu- 
lations of the dynamical mass function, which show very 
convincingly how a new energy scale (mass of a fermion) 
appears that is much smaller than the natural scale (e”) 

of the model. This might be important for a better un- 
derstanding of a hierarchy of scales in unified theories. 

II. TRUNCATION OF SCHWINGER-DYSON 
EQUATIONS 

In QED3 the Schwinger-Dyson equatioti for the 
fermion propagator in Minkowski space is given by 

S’(P) =2;- GM 
J 

d3k+S(k +p)r”(k +P>P) 

xD,,(k), (1) 

and the SDE for the photon propagator is 

D,%I) = Da;:(q) +&w(q), 

where 

(2) 
FIG. 1. Truncated system of Schwinger-Dyson equations. 

y“S(k)JY”(k, k - q) 

1 
xS(k -9) 

1 
(3) 

In Eqs. (1) and (3) r”(k,p) is the dressed fermion-photon 
vertex which should satisfy the Ward-Takahashi identity 

(k -p),r”(k,p) = S-‘(k) -S-‘(p). (4) 

Equations (1) and (3) for the full fermion and photon 
propagators should be solved together with the equation 
for the full vertex function l?‘(k,p): 

x [S(k + dWk + q,p + dS(p + dldc 
x Kcd,aa(~ + q,k + q>q), (5) 

which in its turn contains an unknown kernel K(p, k, q) 
(fermion-antifermion scattering amplitude), and so on. 
Because the system of the SDE is in fact an infinite chain 
of integral equations for n-point Green’s functions, we are 
forced to use some truncation scheme, which we require 
to be consistent with the WT identity. One can verify 
that if we take the bare vertex approximation (ru = 7~‘) 

in Eq. (1) and use the ladder approximation for the ker- 

nel K(p, k, 9): 

K(P + q, k + q> &,6o = ~h:@&)r (6) 

we get a closed system of the SDE consistent with the 
WT identity (4) [Eqs. (2) and (3) remain unaltered], see 
Fig. 1. Indeed, let us multiply Eq. (5) with the kernel 
(6) by (k - p),, then taking into account Eq. (1) (with 
ru = yy), we write 
I 

i -6 = S-‘(k) - S-‘(p) + gM &y@S(q + k)y”D,,(q) - & 
J J 

hY’S(q + pW’D,w(q), (7) 

M 

which allows us to reduce Eq. (5) to 
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(k -p),r’(kp) - S-‘(k) + S-‘(P) = gM 
s 

d3q$S(k + q) 

[ 
(k - p),P(k + q>p + q) - S-‘(k + q) 

+P(P + 4) 1 S(P + qW’Dx&d. (8) 
It is evident now that Eq. (8) has a solution satisfying 
the WT identity (4). Because of the Ward-Takahashi 
identity, the vacuum polarization tensor Eq. (3) has the 
form 

Q”(q) = (-LhIyq2 + 4d?“)n(42)> (9) 

where II is the vacuum polarization (we recall that 

we use four-component spinors). 
The general form for the full fermion propagator can 

be expressed as 

where 2 is the fermion wave function and M is the mass 
function. Then the equation for the mass function is 

M(p2) it? 

J 

M(k’)Z(k’) 

Z(P”) @Y M 
d3k +YDwdk -P) k2 _ M2(k2) 7 

(11) 

and for the fermion wave function 

The general tensor structure of the vertex contains eight 
scalar functions 171; thus, together with the functions 
Z(p’), M(p’), and II(p2), we can write down a cou- 
pled system of integral equations for 11 unknown scalar 
functions. Perhaps, this is the simplest truncated set of 
the SDE consistent with the WT identity. We empha- 

size that such a truncation scheme can be used also in 
four-dimensional QED with one (though important) dif- 
ference: because of the superficial linear divergence of 
the electron self-energy we should take a photon momen- 
tum as tin integration variable in order to avoid shifting 
variables. Certainly, this scheme does not satisfy the 
i.equirement of multiplicative renormalizability, but that 
property is a feature of the whole theory rather than of 
any approximation scheme. 

Now, it is well known that Z is a gauge-dependent 
function, and we can use the freedom of choosing a conve- 
nient gauge to make the function Z(p”) = 1. To achieve 
this we use a nonlocal gauge-fixing procedure [13,14]. 
The photon propagator in a general nonlocal-covariant 
gauge is defined as [19] 
D,,(q) = -grv + y ( > 1 1 

? 1+ II(?) 
- ((qy!& 

q4 ’ 

(13) 

with [(q’) being a function of momentum q rather than 
a constant. Simmons [13] proved that a suitable form for 

w 

2 ca 2 = - 2 1+ m*) q2 s 1 +d;(+ (14) 

0 

With this gauge function [(q2), the right-hand side of Eq. 
(12) vanishes when averaged over the direction of k. 

For Eq. (ll), we obtain, in the Euclidean formulation, 

2 2 
M(p2) = (211)3 E d3k k2 yj,$) $ J 

(15) 

where q“ = k’ -pp. 
The system of Eqs. (2), (3), (5), (6), and (15) ,is still 

far too complicated for an analytical study, and we post- 
pone the full investigation of it to the future. Here, we 
note only that the mass function M(p’) is connected to 
scalar functions from the vertex through the vacuum po- 
larization II( If we assume that this connection is 
not crucial, we can take the one-loop approximation for 
the vacuum polarization, replacing the vertex r” by the 
bare vertex yy, and the running mass function M(p’) by 
its value M(0). This approximation, though keeping the 

transversality condition for II,,(q), leads to violation of 
the WT identity (4); however, in the nonlocal gauge, the 
WT identity is still approximately satisfied. 

Thus the vacuum polarization in the one-loop approx- 
imation takes the form (with the Euclidean momentum 

d 

II(q2) = s 2m+i-4m2 

Q 
=ct=* (&)I , (16) 

where in our case we take rn c M(p2 = 0). Taking 
massless fermion loops in vacuum polarization, we find 

Nf2 
WA=;, cr=-, 8 
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III. COORDINATE SPACE FORMULATION 

First we study Eq. (15) in the linearized form, i.e., 

M(P’) = AE d3k k:$ q: 
J 

2 2 ~- 1 + WC -km , 1 
(18) 

where we have replaced M(k2) in the denominator by 
rn = M(0). In terms of the coordinate space function 

4(r) c J g -pJ e+, 

the equivalent of Eq. (18) is 

(lg) 

+ <(q2) tw. 1 
(20) 

Performing a shift of integration variable, p -+ p + k, we 
find a Schriidinger-like equation for the function J/J(T): 

1-v + V(r)]vqr) = -m%(r), (21) 
where the potential V(T) is defined as 

0 
In order to simplify (22), for both the massless and mas- 
sive case, we approximate the vacuum polarization by 

(23) 

where p = wn, m being some fitting constant, and a = 
Nfe2/8. Th e massless vacuum polarization corresponds 
to putting 0 = 0, while the value D = 3x/4 corresponds 
to approximating both infrared and ultraviolet behaviors 
of the exact one-loop expression for II( The above 
approximation allows us to perform the integration in 
<(q’) analytically, i.e., with (23) 

92 
J 

dv 

o 1 +Wu) 
~q~-2aq+2a(a+P)ln(1+-&). 

(24) 

With a = 1, i.e., e2 = S/Nf, the potential can be ex- 
pressed as 
(25) 

The last expression can be rewritten in a more convenient form: 

V(?) =-LA?- - 
rNyB+ 

+%(I++)]. (26) 

We can get rid of the oscillatory behavior of the sine by performing a contour rotation in the lower right quadrant of 

the complex plane of z. So 

qT)= -433 - 16 
s 

1 
rN,rl+fl SNfT yz + 

(l+p) arctan y 
y3 l+P 1 (27) 

0 
Let us consider first the case of vacuum polarization by 
massless fermions, i.e., rn = 0, which coincides precisely 
with the approximation used by Appelquist, Nash, and 
Wijewardhana [2] in momentum space. The potential 
(27) takes the form 

+1 arctany 
Y3 1 

(28) 
This potential behaves at large distances, as 

> (29) 

whereas at small distances. it has Coulomb-like behavior: 

(30) 

From the theory of the SchrGdinger equation for such 
kinds of potential, it is known [20,21] that there is an 
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infinite number of bound states if X1 > l/4 (Nf < N, = 
128/3??). However, a finite number of bound states 
might exist for X1 < l/4 as well. Let us show that for the 
potential under consideration, there is no bound state at 
all for X1 < l/4. Indeed, one can prove the inequality 

V(T) > -$ s w-Yr) > -3, dy y2 + 1 v-2 (31) 

0 

Since the SchrGdinger equation 

has no bound state for X1 < i [20], it is evident from the 
inequality (31) that the SchrGdinger equation (21) with 
the potential V(r) (28) has none either. Thus, we have 
proved that the critical number of fermion% 

NC = 2 x 4.32304, (33) 

does indeed correspond to the appearance of an infinite 
number of bound states in an effective SchrGdinger equa- 
tion in T space, if we consider the vacuum polarization by 
massless fermions. The critical number of fermions (33) 
coincides with the result obtained by Nash in a different 
way [22] and that was claimed as being gauge invariant 
to leading order in the l/N, expansion. 

The quasiclassical approach gives the following spec- 
trum of bound states, for potentials behaving at large 
distances as -X/r2 [21]: 

& = -rn: - - exp 1 (34) 

at n > 1, coinciding in fact with the result of Refs. 12,221. 
As pointed out in [2], this spectrum is closely connected 
with approximate scale invariance of QED3 at interme- 
diate distances 1 < T < l/m.’ However, the quasi- 
classical theory does not tell us anything about lower 
levels of the Schr6dinger equation. It is clear, also, that 

the proof given above breaks down in the case of mas- 

sive fermion vacuum polarization, since the potential (27) 
has a Coulomb-like tail at large distances. The latter is 
simply a reflection of the fact that including a dressed 

fermion propagator restores the confinement property of 
QED3 in the sense that a logarithmic term reappears in 
the real potential at large T [ll]. In Sec. IV we shall 
solve the SchrGdinger equation with the potential (27) 
and study the scaling properties of the dynamical mass 
near N,. 

‘We note that in QEDI, it is exactly the scale invariance of 
the ladder and/or quenched approximation which is responsi- 
ble for exponential-like behavior of a dynamical fermion mass. 
For physical explanation of this fact, see Ref. [23]. Further 
.discussion of the role of scale invariance in QED* can be found 
in Refs. [24-261. 
IV. SCALING PROPERTIES 
NEAR CRITICALITY 

In this section we study the scaling properties of the 
dynamical mass near N,, for both massless and massive 
vacuum polarizations. For large T, V(T) (27) has the form 

V(T) % -$ - +, T >> 1, (35) 

where 

In deriving this we negkxted terms fl with respect to 1, 

since we consider V(T) near NC, where rn is very small 
(and so is 0). For large T, we have thus a -l/r’ po- 
tential with a small Coulomb potential which starts to 
contribute for T 2 l/p. For small T, V(T) behaves like a 
Coulomb potential plus a constant part 

V(T) i3 -42 + iAl, T < 1. (37) 
r 

We split our problem into two regions, for large T, and 
for small T. Neglecting angular dependence, which is not 
relevant for our purpose, we obtain 

(33) 

11 = 0, T < 1, (39) 

where 71L2 = :X1 + m2. With ?/J(T) = f(r)/?, the equa- 
tions can be expressed as Whittaker equations 

d2f X1 XJ 1 
g+ 2 

( 
+g-i f=O, 

> 
I = 2mr, T > 1, (40) 

~+(&~),=o, x=2e, r<l, (41) 

where the general form of a Whittaker differential equa- 
tion is defined as [27] 

1 2 cf+ x$!k ( +z-; f=O. > (42) 

Two independent solutions of (42) are the Whittaker 

functions 

M,,,(z) = e -z’2zC’2‘qa,e; z!), (43) 

W%,b) = e -%-P(,,C;z), (44) 

where 

+., (45) 

p+’ 
2’ (46) 
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9 and CJ are confluent hypergeometric functions. The 

solution of Eq. (38) that is regular at T = ca, has the 
form 

where v = m, which vanishes when Nf + NC. 

Equation (39) has a solution of the type (43), which is 
regular at T = 0: 

&(r) = e-*“a (I - &,2;2,,) , T < 1. (48) 

Since these two different solutions represent one solution 
of our original problem (2i), we have to match them at 
some intermediate point T = ~0 - 1. A choice of TCI 
corresponding to Appelquist et al. would be ~0 = l/a = 
1. But for the time being, we keep an arbitrary matching 
point. As matching condition, we take 

(49) 

With 
(52) 

Since we consider small rn, the dependence on rn on right- 
hand side of the previous equation vanishes. We define 

(53) 

with&=c. G Now 2mro < 1, so for the Q function, 

we can use the asymptotic form for small argument, i.e., 

qa, c; z) = 
r(1 -c) 

1-0 r’(a-c+l) 
+ UC - 1) l--e 

r(a)” 
(54) 

The matching condition then reads 
1 1 (55) 

which can be rewritten as 

( > 
; +iv r(2iv) 

& -t iv) (27wF” + (; - iv) 
r(i- 2 

r c-7: iy) (2nr@ 
r($- 

= dr0 
[ 

r(2iv) 

r ($ - + +iv) 
(2mro)-i” + r ‘-TJ iv) (2rnQ)“” 

l?($- 1 (56) 
With the use of 

a2+ + ae-+ = 2/al cos(b + q, e = arg(a), 

Eq. (56) can be reduced to 

&+x(v) 
> 

= -Ye- 
2dro - 1’ 

where 

C(v) = arg 
( 

r(i + 2i~) 

r($-++iv) 
) 

(57) 

(56) 

(5% 
Equation (58) then gives, for rn, 

m = exp 
[ 
-T - ln(2ro) + t arctan & + $w] > 

(‘30) 

with n a positive integer. In the limit v --t 0, Eq. (60) 
takes the form 



52 (2+ l)-DIMENSIONAL QED WITH DYNAMICALLY MASSIVE. 2233 

) 
where 

2 
b=-ln(2ro)+l-2dr -2y+$ 

0 
(62) 

with $ the di-gamma function, $(z) = I?(z)/r(z), and 
where y is the Euler constant. Only the solution with 
the largest value of rn < 1 (n = 1) corresponds to the 
ground state, since it has the lowest energy. 

With the help of Mathematics, we can calculate b ex- 
plicitly for various values of the parameter g (TO = 1). 
With v = 0, 

(63) 
this gives 

massless fermion loops: r = 0, b = 2.214, 

massive fermion loops: (T =, q, b = 7.136. (64) 

Thus, we have found that for a vacuum polarization 
with massive fermions, the infrared dynamical mass rn 
obeys an exponential scaling law near the critical point 
N,, despite the presence of a Coulomb tail in the po- 

tential (27). This means that chiral symmetry breaking 
takes place essentially at intermediate distances 1 < T < 
l/m. For the massless vacuum polarization, this was first 
pointed out by Appelquist et al. [2]. The ni&in difference 
between a vacuum polarization with massive (parameter 
g # 0) or with massless fermions (u = 0) lies in the scal- 
ing factor b, which is larger in thwase of massive fermion 
loops in the vacuun polarization. We note here that 
our real space approach automatically takes into account 

the ultraviolet tail of the integral equation in momen- 
tum space to’which an attention was paid in Ref. [28]. 
Moreover, in comparison with their massless w.cuum po- 
larization calculations, our analytical solution gives the 
scaling factor b closer to exact computation of that from 
whole norilinear equation (compare our b = 2.214 with 
Kondo and Maris’ b = 3.94 1281 against exact b = 1.842). 

V. NUMERICAL CALCULATIONS 
IN MOMENTUM SPACE 

In this section we discuss the numerical calculation of 
the scaling law of the dynamical mass near criticality for 
a vacuum polarization with, respectively, massive and 

massless fermion loops. The nonlinear Schwinger-Dyson 
equation (SDE) can be written in the following way, with 
Cu=1 

M(pZ) = A- J 
kZM(k2) 

7FNf dk k2 + M2(k”) 
K(p’,k’>,), (65) 

0 

where the kernel K is given by 
with q2 = k2 + pa - 2pk cos 0. We recall the expression 
for the one-loop vacuum polarization: 

II = $ [2m + ” -q4m2 arctan (&)I (67) 

In the case of massless fermions in the vacuum polariza- 
tion, the y integration in (66) can be performed explicitly. 

It reduces to 

* 

K(p’, k’,O) = J [ de sino+ & -;+: 0 

which does not depend on the dynamical mass, so that 
it only has to be calculated once. It is convenient to 
perform the calculations on a lnp’ scale in order to see 

more details of the structure: 

l”hZ 

M(x) = 1 
112Nf J dt YV’@WY) 

Y +MYY) 
K(%Y,m), (69I” !2 

where z = p2, and y = kz = exp(t). We have introduced 

infrared and ultraviolet cutoffs, p and A, respectively, 
which should satisfy p < M(O), and A > a = 1. 

The basic idea of our numerical calculations is that 
we solve Eq. (65) iteratively as an integral equation. 
First, we calculate the kernel K for all grid points I and 
y with some initial value for rn. Then, we iterate the 
integral equation until it has reached some convergence 
criterion. Then, we recalculate the kernel with the new 
rn = M(O), and iterate it again. This procedure we re- 
peat to the point where the complete system has con- 
verged. To obtain a satisfactory numerical procedure, 
the integrals in K are performed, using Gauss-Legendre 
quadrature, which works well since our integrands in (69) 
are sufficiently smooth. For M at the grid points I, we 
use cubic spline interpolation on a lnx scale. The t in- 
tegration is performed using Gauss-Legendre quadrature 

between the grid points z: 

i=l,...,n, (70) 

where x1 = p2, and zn = AZ. With this procedure, we 

find that for calculation near the critical point N,, we 
need at least 128 grid points for 2. We have calculated 
the mass function M(r) for a series of values of Nf near 
N,. For all cases, it appears that the infrared rn obeys 
the exponential scaling law. This has been verified using 
a least squares fit for the numerical data. We have fit- 
ted the infrared mass rn, as a function of Nf, with the 
function 
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FIG. 2. The numerical results for M(0) as function of Nf 
for massive and massless fermion loops in vacuum polariza- 
tion. 

lnm(Nf) = - 
2na 

(~/N~-l)~+‘l 
(71) 

where a, b, c, and d are the parameters to be fitted. For 
the nonlinear massless case, the least squares fitting of 
the data gives 

a = 0.9907, b = 1.720, c= 4.32312, d = 0.5018, (72) 

and, with massive fermion loops, 

a = 1.055, b= 3.494, c= 4.32315, d = 0.4893, (73) 

which is shown in Fig. 2. This fitting proves the expo- 
nential scaling law (61). To obtain values of b and com- 
pare them with the analytic calculation, we take a = 1, 
c = N, = 128/3??, d = l/2. The numerical results are 

massless fermion loops: b = 1.842, 

massive fermion loops: b = 2.955. (74) 

We also investigated the difference between a linearized 
approximation (18) and the nonlinear SDE (15). Qual- 
itatively, the linearized approximation is equivalent to 
the more realistic nonlinear equation. Quantitatively, the 
scaling factor b is a few percent smaller for the linearized 
model. 

In Fig. 3 we have plotted the dynamical fermion mass 
function Mfv’1. commuted for various values of the 
fermion number Nf. Apart from N, it has a behavior 
reminiscent to that in the quenched approximation [9,10]: 
the mass function is constant at momenta p < a and 
decreases as a3fp2 at large momenta. The mass func- 
tion changes its behavior at momentum p N a, a natural 
scale of the model. Close to critical number of fermions, 
N, 5 N,, we observe three different regions in behavior 

of M(p2): M(p=) N rn at p 5 rn, M(pz) - n~~/~/fi at 
rn 5 p < a, and M(p’) - m3fp2 at p > a. The scale 
rn is exponentially small in comparison with the intrinsic 

scale a, see Eq. (71). Figure 3 shows convincingly how 
a hierarchy of scales can occur in a theory under specific 
conditions (in our case when Nf is close to N,). This 
might be important for further understanding a hierar- 

chy of scales in unified theories. 
FIG. 3. Dynamical mass function M($) for Nf = 1.0, 2.0, 
3.0, and 4.0. 

VI. CONCLUSION AND DISCUSSION 

In the present paper, we investigated xSB in (2+1)- 
dimensional QED with Nf number of four-component 
Dirac fermions. We have pointed out one possible scheme 
for truncating an infinite chain of the SDE, which is con- 
sistent with the WT identity, and which seems to have 
been overlooked so far. Further simplification of that 
coupled system of the SDE led to studying the SDE for a 
fermion mass function where the full vacuum polarization 
with dynamically massive fermions has been taken into 
account. The latter proves to be important for keeping 
the confinement property of the model at large distances. 
The study of the linearized equation for a fermion mass 
function has been performed in real space, and that al- 
lowed us to avoid making drastic approximations in or- 
der to get analytical results. Our analytical solution fits 
nicely numerical calculations of the full nonlinear integral 
equation for the mass function. 

Further investigation of aforementioned truncated sys- 
tem of the SDE is now in progress. 
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