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Abstract 

High resolution electron microscopy experiments are presented for a plasma-sputter-deposited Si film with a high Kr 
concentration. The amorphous layer deposited shows an oscillating Kr concentration. The Kr resides in very small 
agglomerates of size < 1 nm. Bending measurements show that the pressure in the Kr agglomerates is very high, 
3.9 GPa. Hardness measurements show that this pressure is limited by the fracture stress of the deposited film. 

1. Introduction 

In previous publications [1-3] we reported a study 
on the incorporation of Kr  in thin K r - S i  films, pro- 
duced by Kr plasma sputter deposition. These layers 
were characterized by a variety of  techniques, including 
positron beam analysis, Raman  spectroscopy, energy- 
dispersive X-ray spectroscopy (in cross-secton and 
in plane geometry), cross-sectional scanning electron 
microscopy and M6ssbauer spectroscopy. The results 
clearly indicate that ion-assisted growth leads to a 
strong reduction in open volume, and that the Kr  
resides in very small clusters. This article adds new 
information on the K r - S i  films obtained by high reso- 
lution electron microscopy ( H R E M )  and by measure- 
ments of  the planar stress and the microhardness of  the 
films. 

2. Experimental details 

Thin K r - S i  films were produced by sputtering of  Si 
in a low pressure Kr  plasma, in a similar way to that 
described in ref. 4. K r - S i  films with an area of  14 nm 
diameter were deposited on a Si (100)  wafer 250 ~tm 
thick and of 20 mm diameter at a temperature of  583 K 
and a substrate bias of  - 5 0  V, using a Si target at a 
potential of  - 1 . 5  kV. The Si flux Jsi at the substrate 
was roughly constant at 4 × 1015 cm -2 s -1, while the Kr  
flux JKr at the substrate could be varied between 
4 x 1014 and 4 × 1016cm-2 s-I  by varying the duty cy- 
cle (DC) of  the pulsation of the substrate potential 
between 1 and 100% at 0.5 Hz. For  the experiments 

described here, two samples were made. For  the bend- 
ing experiments a layer of  21.2 ~tm was deposited with 
Jsi = 5.9 × 1015 cm-2 s- l ,  JKr =2 .5  × 1016cm-2 s -1 and 
a DC of 50%, resulting in a local Kr  concentration 
CKr = 5.0 at.%, whereas for the H R E M  experiments 
a layer of  4.9~tm was deposited with Js~= 3.4 × 
101015cm-2 s i, J K r =  1.3 × 10t6cm-2 s -I  and a DC of 
30%, resulting in CKr = 4.8 at.%. The later sample was 
prepared for cross-sectional H R E M  by cleaving the 
wafer into 2 mm × 1 mm × 0.5 mm chips. These chips 
were glued together with the thin layers facing each 
other. Next, the sample was mechanically polished to a 
thickness of  10 lam and ion beam thinned to electron 
transparency. H R E M  observations were done using a 
JEOL 4000 Ex/II  electron microscope operated at 
400 kV. The study was focused on the incorporation of 
Kr  in the amorphous Si layer and not on the defects 
formed in the Si substrate. 

3. Results and discussion 

Figure 1 shows a high resolution electron micrograph 
of the substrate in the (110)  orientation together with 
the thin film. The f i lm-substrate  interface is sharp; 
there is no sign of polycrystalline growth in the region 
close to the substrate, contrary to what was suggested 
in refs. 2 and 3. Instead of clusters or bubbles of  Kr  
atoms, a regular sequence of dark and bright bands is 
observed in the amorphous layer. These bands are 
interpreted as sublayers with alternating high and low 
average electron scattering power. I f  an image is made 
with a small objective aperture, regions in which elec- 
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Fig. 1. High resolution image of the Si substrate (left) in the (110) 
orientation, together with the amorphous layer of Si and Kr (right). 
In the amorphous layer, one can see sublayers (arrowed) with alter- 
nating dark and bright contrast, having a period of 1.3(1) nm. 

trons are scattered as larger angles show up darker than 
the surrounding parts. It is indeed observed that the 
difference in contrast between the dark and bright 
bands decreases with increasing objective aperture. 
Since Kr has a higher electron scattering factor than Si, 
the dark and bright bands may be interpreted as layers 
with alternating high and low Kr concentrations. The 
period of  these sublayers is measured as 1.3(1) nm. The 
formation of  sublayers can be understood as resulting 
from the processing of the material; Si is continuously 
sputtered at a rate of  0.65(10) n m s  -1, while Kr is 
injected with a DC of  30% at 0.5 Hz. This indeed leads 
to a period of  about 1.3 nm. Inert-gas desorption exper- 
iments on Ar and Kr in amorphous Si (a-Si) have 
shown that there is no thermal mobility at all at 
temperatures below the crystallization temperature 
( ~ 800 K) [5]. Some irradiation-induced mobility may 
have occurred which might have led to an extra spread 
of  about 0.6 nm on top of  the straggling of 0.4 nm 
expected for 50eV Kr implantation [3]. This small 
mobility explains the observation of  an oscillating Kr 
concentration. 

The maximum size of  the agglomerates can also be 
inferred from HREM. The contrast will wash out if the 
average size of  the agglomerates is larger than about 
1 nm. This in agreement with the anomalous bond 
angle distortion observed by Raman spectroscopy and 
the very high Debye temperature (OD > 250 K) of  the 
incorporated Kr observed by M6ssbauer spectroscopy 
[3], which also indicates the formation of very small Kr 
agglomerates. Preliminary results of  atomistic calcula- 
tions indicate that OD > 200 K might be explained by 
assuming such a structure for Kr in a-Si. 

The bending of  the sample was monitored with an 
optical microscope. The sample shows a maximum 
bending of 160 lam at the centre, which corresponds to 
a curvature radius R of 253 mm. The stress in the film 
was calculated from the well-known Stoney equation 

[6] relating the substrate bending to a biaxial in-plane 
stress: 

E s ts 2 
(1) 

1 --  v 6 R t f  

where E s and v are Young's modulus and Poisson's ratio 
respectively for the Si substrate, t is the thickness, R is 
the effective substrate radius of curvature, and the 
subscripts s and f refer to substrate and film respectively. 
It is assumed that a plane-strain situation exists and that 
the bending can be described as a linear elastic event 
without inelastic deformations. Further, all other ele- 
ments in the stress tensor are assumed to be zero, 
including a possible shear stress at the sbustrate-film 
interface and a stress normal to the plane of the 
substrate-film. Although near the edge of the film a 
substantial change in the stress state might occur and 
localized normal and shear stresses are important 
for adhesion, these components of the stress tensor 
are neglected. Under these assumptions (using the 
elastic constants c1~ = 165.7 GPa, c44 = 79.6 GPa and 
v=0 .215 ,  E s = 2 # ( l + v ) = 1 6 5 . 2 G P a  [7]), eqn. (1) 
yields a planar biaxial stress axx = a y y  = a = 0.34 GPa. 
A more accurate formula relating the substrate bending 
to a planar stress has been proposed [8]; however, in the 
present case the stress calculated by the original Stoney 
equation turns out to be only 7% too high. 

Wolfer [9] has derived an expression for the stress in 
a film containing a high concentration of pressurized 
bubbles. In our case the Kr atoms are probably dis- 
tributed in the form of  individual atoms or small clus- 
ters. This is not a serious problem, however, because 
Wolfer's expression remains correct if the word "bub- 
ble" is interpreted as an inclusion producing a local 
stress field at its surroudings. The stress field produced 
by such a "bubble" is, apart from a shear tensor, given 
by a hydrostatic stress a . ,  which for R < r < c is given 
by 

/~S (p - p ) ~ S  
- -  + ( 2 )  

aH -- 1 -- S 1 -- aS 

where p is the pressure inside a bubble of radius R, fi is 
the average pressure of  the bubbles in the material, S is 
the volume fraction of  the bubbles, r is the length of 
the radius vector with origin in the bubble centre, 
rc = R / S  ~/3 is the linear size of the volume containing 
on the average one bubble and ~ is a function of  shear 
and bulk modulus. Noordhuis and De Hosson [10] use 
these expressions for their analysis of  the nucleation of  
martensite in Ne-implanted type 304 stainless steel. An 
important factor in the relation between the bubble 
pressure and the film stress forms the volume fraction S 
of the bubbles, which in our case, using a molar volume 
of 20cm -3 mol -~ for Kr at pressures of the order of 
GPa [l 1], amounts approximately to S = 8%. Follow- 
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ing the expressions given by Wolfer and applying/5 = p, 
we find that an average hydrostatic pressure /5 = 
3.9 GPa is necessary to produce a hydrostatic stress an 
equal to 0.34 GPa. This presure is very high and is 
usually only observed for inert gases in high melting 
temperature materials [ 12]. 

It is of  interest to see whether the high hydrostatic 
pressure can be related to the maximum stress that the 
solid can take before fracture will occur. Therefore 
microhardness measurements were carried out, result- 
ing in a Vickers hardness value of 1159 kgfmm -2. This 
corresponds to a yield stress of the a-Si films of 
ava=  3.86GPa and may be written in terms of the 
shear modulus pC=c44 of cyrstalline Si (c-Si) as 
av a =0.048p c. This value is in agreement with the 
following consideration. Regard an amorphous mate- 
rial as consisting of an irregular disclination network 
[13, 14]. In contrast with a dislocation network the 
elastic energy stored in a disclination network would 
increase with increasing distance from a particular 
disclination, leading to a positive or negative curvature 
of the material. In order to compensate for this, assume 
that the network consists of positive and negative discli- 
nations with a density p and a certain average distance 
l = l i p  ~/2 apart. Since radial distribution functions of 
amorphous materials in real space usually extends up to 
the fifth nearest neighbours with a certain correlation, 
the separation between the two disclinations in our 
supposed network is about 5b, where b represent the 
magnitude of the Burgers vector. This implies a high 
disclination density of about 3 x 1017 m - 2 .  The yield 
stress of an amorphous material is now described as 
cutting of the disclination network by dislocations, i.e. 
it is related to opposing the line tension T as in the 
crystalline c a s e :  o ' v  a = 2T/b l ,  where T = #~b 2 ln( l /b) /4rt  
[15]. Assuming that l = 5b, we find that a v a :  0.051/~ c, 
i.e. about one twentieth of the shear modulus of c-Si. 
Indeed this is close to the experimentally determined 
value. This simple model ignores any self-energy of 
dislocations as well as splitting of disclinations. Fur- 
ther, b is taken to be constant although the physical 
picture will in fact suggest fluctuations in b due to the 
disclinations. 

The question is whether we can make an estimate of  
the shear modulus /~a of a-Si. A first-order approxima- 
tion is to equate the theoretical yield stress and shear 
modulus of c-Si: avc =/~c. Adopting this also for amor- 
phous material, we can write av ~ = ]~a = 2~]2c. However, 
this is a lower bound value. Description of  the local 
stress-displacement profile corresponding to an ideal 
fracture event by Frenkel [16] predicts, when applied 
to a-Si, a maximum theoretical stress o ' y a ~  2~a/rta 
0.4# ~, where 2 is the interatomic distance and a the 
planar spacing. Taking 2 ~ a, this yields/~a~ 0.1#L At 
any rate the fracture stress will be greatly reduced by 

the lower elastic moduli in the amorphous case. In this 
sense it is quite instrumental to look at the Griffith 
fracture stress aF for brittle materials at which sponta- 
neous fracture will occur when the magnitude of the 
crack extension and crack-resistant forces are equal 
[17]: 

a~ 1/2 
= (3) 

where 3~ is the surface energy per unit area and d 
represents the diameter of the crack. If  we take the 
fracture stress equal to the earlier found pressure in the 
"bubble",  av = P  = 3.9 GPa, y = 1.2 J m -2 and the pro- 
posed reduction in the elastic constants, the largest 
stable crack diameter, i.e. size of  the Kr inclusions, is 
ranging between 0.8 and 1.6 nm. In this analysis it is 
assumed that not extensive plastic deformation occurs 
upon crack propagation and that the surface free en- 
ergy of a-Si is identical with the surface free energy of 
c-Si. 

4. Conclusions 

Thin K r - S i  films were produced by pulsed sputter 
deposition, yielding a Kr concentration of about 5 at.%. 
H R E M  experiments show that the film grown has an 
amorphous structure bearing an oscillating Kr concen- 
tration with period 1.3 nm, in accordance with the 
pulsation used for deposition. The maximum size of the 
Kr agglomerates is estimated to be 1 nm. The bending 
of the films was measured, yielding a curvature radius 
R = 253 nm, which corresponds to a planar biaxial 
stress of 0.34 GPa. The pressure of the Kr agglomerates 
was derived to be 3.9 GPa. The yield stress in the film 
was measured to be 3.86 GPa, i.e. about one twentieth 
of the shear modulus of c-Si. If  we take a reasonable 
value for the shear modulus of a-Si, the size of the Kr 
agglomerates can be estimated on the basis of  the 
Griffith fracture criterion, yielding 0.8-1.6 nm. Thus it 
is likely that the Kr pressure is limited by the fracture 
stress of  a-Si. 
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