

 University of Groningen

A Mathematical Approach to Nondeterminism in Data Types
Hesselink, Wim H.

Published in:
Acm transactions on programming languages and systems

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1988

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Hesselink, W. H. (1988). A Mathematical Approach to Nondeterminism in Data Types. Acm transactions on
programming languages and systems, 10(1), 87-117.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-11-2019

https://www.rug.nl/research/portal/en/publications/a-mathematical-approach-to-nondeterminism-in-data-types(3f12fe20-505f-4770-88eb-9e95ae1364c5).html

A Mathematical Approach to
Nondeterminism in Data Types

WIM H. HESSELINK
University of Groningen

The theory of abstract data types is generalized to the case of nondeterministic operations (set-valued
functions). Since the nondeterminism of operations may be coupled, signatures are extended so that
operations can have results in Cartesian products. Input/output behavior is used to characterize
implementation of one model by another. It is described by means of accumulated arrows, which
form a generalization of the term algebra. Morphisms of nondeterministic models are introduced.
Both innovations prove to be powerful tools in the analysis of input/output behavior. Extraction
equivalence and observable equivalence of values are investigated. Quotient models for such equiva-
lence relations are constructed. The equivalence relations are compared with each other, with
separation of values by means of experiments, and with the separation property that characterizes a
terminal model. Examples are given to show that the four concepts are different. In deterministic
models the concepts coincide.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and
Theory-semantics; D.3.3 [Programming Languages]: Language Constructs-obstruct data types;
data types and structures; F.l.l [Computation by Abstract Devices]: Models of Computation-
automutu; F.1.2 [Computation by Abstract Devices]: Modes of Computation-alternation uml
nodeterminism; F.3.3 [Logics and Meanings of Programs]: Studies of Program Constructs-
type structure

General Terms: Design, Languages, Theory

Additional Key Words and Phrases: Abstract data type, behavioral equivalence, distinguishable,
extraction equivalence, nondeterminism, nondeterministic data type, observable equivalence, signa-
ture, term algebra, terminal model, value consistency

1. INTRODUCTION

1.1 Nondeterministic .Data Types

This paper develops a theory of data structures in which correctness of an
implementation can be formally verified, without imposing irrelevant restrictions
to implementations. Proving correctness is a formal activity. Therefore we must
be able to lift an arbitrary implementation to the formal level. In order not to be
forced to specify all details of an implementation, we have to admit nondeter-
minism on the formal level (cf. [2, Sect. 4.41). It is especially useful in treating

Author’s address: University of Groningen, Department of Mathematics and Computing Science,
P.O. Box 800,970OAV Groningen, The Netherlands.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1988 ACM 0164-0925/88/0100-0087 $01.50

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988, Pages 137-117.

88 - Wim H. Hesselink

things like memory allocation, overflow conditions, and uninitialized fields of
structured values.

The leading principle is to avoid premature or unnecessary design decisions.
Therefore we have a preference for loose specifications, which admit a variety of
nonisomorphic models (cf. [17, sect. 01). We shall define a nondeterministic data
type (NDDT) to be a variety of nonisomorphic nondeterministic models of one
signature. In this definition the specification is deliberately omitted, because we
want to separate the specification from the object to be specified.

This paper is an investigation of NDDTs, and not of specification methods.
We aim at understanding arbitrary NDDTs, so that in the design of useful
NDDTs one can avoid “the slings and arrows of outrageous nondeterminism.”
We consider nondeterminism as the rule, and determinism as a property that
may be specified (cf. [3]). References [lo] and [161, our main sources on NDDTs,
are written from the point of view that the specification determines the set
theoretic structure of the models (cf. [lo, p. 231). As a result, nondeterminism is
treated there as an admissible exception rather than as a rule (cf. [2, p. 3281).

This paper is a complete revision of an earlier paper [7], which was written in
ignorance of all related work on NDDTs, multialgebras, and observable equiva-
lence. The most drastic changes, however, are due to the referee who pointed out
that a correctness criterion for implementations was badly needed.

1.2 Implementation

The main theme of this paper is the concept of implementation. In order to
prevent misunderstanding, we must first distinguish two aspects of the general
concept of implementation:

(1) The uertical aspect. In this case two signatures Co and x1 are given. The
implementation consists of a construction of a model A1 of x1 by means of a
model A0 of Co. The values of A1 are structured values of A,. The operations
of A1 are routines that use the operations of Ao. Hidden values of A0 can give
rise to nondeterminism in A,.

(2) The horizontal aspect. This aspect is based on the idea of a user of a black
box, who specifies external values, applies operations, rearranges unknown
internal values, and observes resulting external values. The box represents a
given signature C. It is supposed to contain some model of C. A model A of
C is considered as an implementation of a model B of C, if all finite sequences
of experiments with model A in the box give results that could have been
produced by model B.

Henceforth in this paper, we use the term implementation exclusively in the
horizontal sense. So it is defined in terms of experiments. In order to get a more
applicable definition, we shall make an analysis of input/output behavior. With
the resulting correctness criterion for implementations, it is easy to falsify but
difficult to verify whether a model A is an implementation of a model B. For the
latter purpose, we introduce morphisms of nondeterministic models. The exist-
ence of a morphism M: A + B is a sufficient condition for A to implement B,
but not a necessary condition.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Nondeterminism in Data Types l 89

1.3 Separation of Values

An important aspect of implementations of abstract data types is that different
values of the implementation can represent the same abstract value. In our
presentation we do not have such abstract values, but nevertheless different
values of a model may have the same observable behavior. In such a case, it can
be useful to treat behaviorally equivalent values as if they were identical. This
requires the construction of a quotient model. The second part of this paper
is devoted to the theory of equivalence relations and quotients in the nondetermi-
nistic case. It turns out that there are two adequate equivalence relations, and
two related separation criteria. It is proved that the quotient models have the
expected properties.

1.4 Contents of the Paper

The basic definitions concerning nondeterminism, signatures, models, and data
types are collected in Section 2. As the nondeterminism of different operations
may be coupled, signatures are extended so that operations can have results in
Cartesian products, and given external domains are incorporated in the signature.
In Section 3 we present an example that is a simple case of storage management.
The axioms of this example are shown to be complete with respect to certain
intentions of a user.

In Section 4 we introduce accumulated arrows (a generalization of the concept
of term algebra), and impiementation and equivalence of models (cf. (2) of
Section 1.2). Section 5 is devoted to morphisms of nondeterministic models.
These are more adequate than the homomorphisms of [lo]. Some simple but
crucial examples of implementations are given. In Section 6 it turns out that our
morphisms lead to a useful concept of terminal models. If a data type has a
terminal model, then this model may serve as a specification for all models of
the type. As an example we treat the data type bag, a common generalization of
stack and queue.

Section 7 is devoted to the theory of extraction equivalence of values (cf. [IS]).
Equivalence relations are used to identify equivalent values. This leads to the
concept of quotient model. In the case of extraction equivalence, the construction
of the quotient model is new, and so is the theorem in Section 7.4, that a model
is implementation equivalent to its quotient under extraction equivalence. The
proof of this result is surprisingly delicate.

The slightly stronger concept of observable equivalence (cf. [lo]), is treated in
Section 8. In [lo] Kapur gave a recursive definition of observable equivalence, or
rather of its negation. By a variation of Tarski’s fixed point theorem, we prove
that the recursive equation indeed has a solution.

Section 9 contains a discussion of inseparability and consistency of values.
Two values are inseparable if there is no experiment that always shows
a difference between the two. Consistency is a little bit stronger. It is proved
in Theorem 9.1 that a model is terminal if and only if consistent values of the
model are always equal.

In Section 10 inseparability and consistency are compared with the two
equivalence relations. Examples are provided to show that the set of implications

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

90 l Wim H. Hesselink

derived is complete. Some readers may prefer to look at these examples earlier,
but a full discussion of the examples requires all the preceding sections.

1.5 Summary of the Main Results

Here we list the main innovations of this work with respect to the papers by
Kapur [lo] and Subrahmanyam [161:

(1) The accumulated arrow (Section 4.2) is a new and powerful formalism that
enables us to deal with operations that modify more than one argument.

(2) We give a new formalization of the concept of implementation (Section 4.3).
(3) Morphisms are an important new tool, especially in the study of implemen-

tations (see Section 5).
(4) In Sections 7-10 we provide a mathematical theory of behavior in NDDTs,

in which the statements of [lo] and [16] have been made rigorous and have
been extended. Comparison of their concepts leads to yet two other separation
concepts. This sheds new light upon the notion of behavior for nondetermi-
nistic mechanisms.

1.6 Notations for Sets, Functions, and Case Distinctions

A finite set X with the elements x1, . . . , x, is denoted by X = (x1, . . . , x,). The
empty set is 0. We say that x is in X, or x E X, to indicate that x is an element
of the set X. We say that Y is contained in X to mean that Y is a subset of X.
The subset of X consisting of the elements x that satisfy a condition P(x) is
denoted by (x E X] P(x)). We use the standard sets

BOOL = (true, false],
NULL = (01,

NAT = (0, 1, 2, . . .),
INT = (. . . , -2, -1, 0, 1, 2, . . .).

We use lambda abstraction to denote mappings

f = hx.f(x).

In a formalized case analysis, we use Dijkstra’s guarded expressions

if +- 0 + fi.

2. DEFINITIONS FOR NONDETERMINISTIC DATA TYPES
In this section we present our basic definitions. Since they are not completely
standard, we start with an informal discussion. We fix our concepts for maps
and nondeterministic operations. After laying down some conventions, we give
the formal definitions, followed by a comparison with definitions in related work.

2.1 Introduction to Models, Signatures, and Data Types
Let A be an implementation of a data structure, say, of a stack of integers. It
associates with each of the sorts stack and integer a set of values: stackA, the
set of the possible states of the stack; and integerA, the set of the implemented
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Nondeterminism in Data Types 91

integers. It also associates with each of the symbols newstack, push, and pop
an operation

newstackA : NULL + stackA,
pushA : integerA x stackA + stackA,
POP A stackA + integerA X stackA.

The mathematical prescription A that associates with a symbol x or f a set zA or
an operation f” is called a model. We allow Cartesian products as domains and
as codomains of the operations. The functionalities of an operation f are described
by strings of sorts, the domain and codomain strings dam(f) and cod(f).

It is useful to be able to express the fact that certain domains are given. For
example, in the stack of integers the set of the implemented integers is usually
given. In that case we say that integer is an external sort with a fixed external
domain, say, INT, and all models A are supposed to satisfy integerA = INT.
The formal structure consisting of the sorts, the arrow symbols, the domain and
codomain designators, and the external sorts and domains is collected in the
concept of signature.

Usually, one does not want to consider all models of a given signature, but
only those that satisfy certain rules. At this stage, however, we do not want to
specify the language of the permissible rules. We accept every class of models of
a signature as a genuine data type.

2.2 Maps and Operations (Nondeterminism)

We use the terms map, mapping, and function synonymously. We introduce a
formal symbol error, which is not an element of any of the sets we start with.
By a partial map f: X --* Y, we mean an ordinary map f: X + Y+, where Y+ is
the disjoint union Y U (error). (Since Y is not considered as a cpo (cf. [15]), we
do not use the term bottom. The symbol undefined, however, could be used just
as well.)

Informally speaking, an operation f: X + Y is a device that attaches nonde-
terministically to an element x E X some resulting element y E Y or the result
error. So f is specified by associating with each element x E X the set of the
possible results. This set is denoted by f(x). It is a nonempty subset of Y+.

Definition. An operation f: X + Y is defined to be a map f: X + Q(Y), where
Q(Y) is the set of the nonempty subsets of Y+. For convenience, we define
f(error) = (error) for every operation f. So error is propagated (cf. [5]), and
the operation can be viewed as a map X+ --) Q(Y). If A is a subset of X+, we use
f(A) to denote the union of the sets f (r) with x E A. If A is nonempty, so is f (A).

An operation f: X + Y is said to be deterministic if for every element x E X
the set f(x) contains precisely one element, possibly the element error. An
operation f: X + Y is said to be total if error is not in f(x) for any element
x E x.

Every partial map g: X + Y can be identified with a unique deterministic
operation f: X+ Y by putting f (.1c) = (g(x)). Conversely, a deterministic operation
determines a partial map. The ordinary mappings f: X+ Y correspond bijectively
to the operations that are both deterministic and total.

ACM ‘kmsactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

92 * Wim H. Hesselink

Remark. It is an important decision to require that the result sets f(x) are
nonempty for every operation f. This condition is equivalent to the law of the
excluded miracle (cf. [3]). It is the only liveness condition we impose.

2.3 Notations for Strings and Cartesian Products

If 5’ is a set of symbols (sorts), then S* denotes the set of all finite strings of
elements of S. The empty string is denoted by c. Concatenation of strings is
denoted by means of the infix operator +. If A is a prescription that assigns to
every element s E S a set s*, and if p = s1 . . . s, is a string in S*, then we write
p* to denote the Cartesian product set

p* = s-;’ x * * - x St.

So, the set p* consists of the elements x = (x1, . . . , x,) with Xi E s$. The
Cartesian product of an empty string of sets is (by convention) the one-point set
NULL = (0). So, we always have C* = NULL.

2.4 Signature, Model, Value, and Type

Definition. A signature C = (S, F, dom, cod, E, K) consists of a set S of sorts, a
set F of arrow symbols, two mappings dom, cod: F + S*, a subset E of S, and a
prescription K that assigns to every element s E E a set sK. The elements of E
are called the external sorts, and the sets sK are called the external domains. We
say that f: p + 9 is an arrow of C to indicate that f is in F and that dam(f) = p
and cod(f) = q in S*.

In examples, a signature is given as follows: In the denotation of the set S,
every external sort is followed by the symbol := and the external domain sK. So
e := ABC means e E E and e K = ABC. In the denotation of F, we write the
arrows and not only the arrow symbols. In this way the data E, K, dom, and cod
are incorporated in the denotations of S and F. For an example, see Section 3.1.

Definition. A model A of C is specified by associating with every sort s E S a
set s* such that s* = sK whenever s is in E, and associating with every arrow
f: p -9 q of C an operation f*: p* + q*. Note that p and q are strings, so that p*
and q* are Cartesian products (cf. Section 2.3). A value of a model A is defined
to be a pair (x, p) with p E S* and x E p*. Usually, the value (x, p) is identified
with the element 3~. One has to be careful, however, if the sets s* are not disjoint.

A string of sorts p is said to be external if p consists of external sorts. It is
called internal otherwise. A value x E p* is said to be external (internal) if p is
external (internal).

A nondeterministic data typk (NDDT) is defined to be a pair (C, T), where 2
is a signature and T is a class of models of 2.

2.5 Comparison with Definitions in Related Work

Data types used in practice frequently have procedures with more than one
output parameter. In almost all theoretical work on abstract data types, only one
output parameter is permitted. One of our results is that this restriction is not
essential. Formally speaking, let a signature C be called focused if the codomain
string cod(f) of every arrow f has length one. In [10, p. 261, it is argued that a
ACM Transactions on Programming Languages and Systems, Vol. 10, No. I, January 1988.

Nondeterminism in Data Types l 93

reduction to a focused signature is always possible, either by modeling an
operation with results in a Cartesian product as a number of separate operations
or by introducing the Cartesian product as a new type. In the nondeterministic
case, the first alternative is not satisfactory, as it does not allow coupling between
the nondeterministic choices (cf. [8, 1.3.31). The second alternative is theoreti-
cally sound, but has the disadvantage of introducing new sorts, new arrows, and
new axioms. Therefore we have chosen to work with not necessarily focused
signatures. For convenience, we have incorporated external sorts and domains
in the signature. These correspond to the visible sorts of [4] and the global
sorts of [16].

Let a model A of 2 be called deterministic (total) if all its operations are
deterministic (total). The C-algebras of [17] are deterministic models of focused
signatures. The data types of [16] are total models of focused signatures. In fact,
[lo] and [16] are our only sources with nondeterministic models. The concept of
multialgebra (cf. [131) corresponds to a nondeterministic, total model of a focused
signature with only one sort. As a step toward the admittance of error, [6]
admits operations f such that the set of results f(x) may be empty. However, this
does not allow a nondeterministic choice between error (for example, overflow)
and a meaningful value (see also [8, pp. l-121).

As for our definition of types, we refer to the introduction of [17] for arguments
leading to the admittance of a wide class of axioms and a variety of nonisomorphic
models. In fact, we go further: We put no conditions on the class T of an NDDT.
Consequently, we have all the freedom to introduce hidden or auxiliary functions
in the axioms that determine a data type. For an example see Section 6.4.

3. AN EXAMPLE OF NONDETERMINISTIC STORAGE MANAGEMENT

In this section we show that our formalism is sufficiently rich for an elegant
formalization of a simple case of storage management. We specify an NDDT
pointer table, which models a table of pointers to items, such that every item can
get a unique position in the table. One may think of a lexicographic tree or a
hash table (cf. the programs 4.5 and 4.8 of [18]). I n most applications the position
in the table is also used to attach certain attributes to the items. This extension,
however, gives no extra complications.

The example shows that our extension of the usual definitions is not empty.
In fact, the signature is not focused, and many relevant models are not total and
not deterministic. In [8, l-3.21 a similar example is given, attributed to L. Morris.
The class T of the acceptable models is characterized by axioms. We show that
the axioms are complete with respect to certain formalized intentions of the user.

3.1 The Data-Type Pointer Table

Let ITEM be a given set of values (the items). The signature C is given by

S = (item := ITEM, table, pointer),
F = (create : & + table,

key : pointer table + item,
position : item table + pointer table).

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

94 l Wim H. Hesselink

The data-type pointer table is the pair (C, T), where T is the class of the models
A of C that satisfy the following axioms:

(1) The operation keyA: pointerA X tableA + ITEM is deterministic (so it may
be considered as a partial map (cf. Section 2.2)).

(2) Let t E createA(Then t # error, and keyA(p, t) = error for every
element p E pointerA.

(3) Let keyA(p, t) = keyA(q, t), where p, q E pointerA and t E tableA. Then
p = q or keyA(p, t) = error.

(4) Let (p, tI) be in positionA(r, to). Then we have

(a) keyA(p, tl) = X; and
(b) keyA(q, tl) = keyA(q, to) whenever q #p or keyA(q, to) # error.

Remark. The operation positionA is always permitted to yield error, which
means overflow. On the present level of abstraction, we do not want to specify
acceptable overflow conditions. Note that the assumption in axiom 4 implies that
no error has been delivered.

3.2 Intuitive Completeness

It is not obvious that all our implicit assumptions about tables of pointers to
items are implied by the above axioms. As long as the assumptions are implicit,
such a thing cannot be verified. Therefore we formalize the intended interpreta-
tion of the elements t of the sets tableA. The interpretation oft is defined to be
the operation

h: pointerA + ITEM with h(p) = keyAh t).

Axiom 1 requires that h is a partial function. Axiom 2 says that the operation
createA always yields a table t that is interpreted as the function h with an
empty domain of definition. Axiom 3 says that the interpretation h of any
table t must be injective on its domain of definition (so that it is a bijection
between the occurring pointers and the occurring items). As for axiom 4, let
(p, tl) be in positionA(x, to), and let & and hl be the interpretations of to and tl,
respectively. Let

Vi = (q E pointerA I hi(q) # error]

be the domain of definition of hi. Axiom 4 says that VI is the union of V. and
(p), that hl (p) = X, and that hl and ho agree on the set Vo.

This shows that the interpretation h of every table t that can be constructed
is determined inductively, apart from the choices of the new pointer values. So
the axioms are complete with respect to the intended interpretations of the
tables.

3.3 Special Mathematical Models
The analysis of Section 3.2 suggests certain special models in which the tables t
coincide with their interpretations h as defined in Section 3.2. We construct
these models as follows: Let P be an arbitrary set, let H be the set of the partial
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Nondeterminism in Data Types l 95

mappings h: P + ITEM that are injective on their domain of definition

V = (p E P 1 h(p) # error],
and let ho E H be the partial map with the empty domain of definition. The
model C of C is defined by

pointerA = P,
tableA = H,

createA = (ho),
keyA = A(P, h) - h(p),

positionA = X(x, h) . (error)
U {(P, h) E P x HI WP) = x

A ((q Z P V h(q) Z error) * k(q) = h(q))l.

It is easy to see that C belongs to class T. The operation createA is deterministic.
The operation positionA is as nondeterministic as possible. If pointer was
an external sort with external domain P, then model C was terminal (cf.
Section 6.3). Since sort pointer is internal, however, class T does not have a
terminal model. A proof of this fact falls outside the scope of this paper.

4. ACCUMULATED ARROWS, IMPLEMENTATIONS,
AND EQUIVALENCE OF MODELS

In an earlier version of this paper [7], it was suggested that an implementation
of one model by another model was the same as a homomorphic relationship.
This suggestion is not true, as emphasized strongly by one of the referees. Here
we give a formal definition of implementation in terms of input/output behavior.

4.1 Input/Output Behavior of Models

Let A be a model of a given signature C. A user of model A has the disposal of a
black box that contains the model. He commands the model by means of the
signature. He only knows the names of the operations and their functionalities,
and the external values. He uses the model by specifying external values, applying
operations, rearranging unknown internal values, and observing external values
that are delivered and errors that occur.

In order to describe this input/output behavior we need a generalization of the
concept of term algebra (cf. [17]), or the derived signature (cf. [4, p. 2691). The
usual term algebra is not satisfactory for two reasons: First, our signature is not
necessarily focused (cf. Section 2.5). This fact adds a considerable complexity.
The second reason is the nondeterminism: A copy of a result of an operation
may differ from another result of the same operation with the same argu-
ments. Therefore we start from scratch. The set of arrows F of the signature
2 is extended to a set of accumulated arrows. To every model A and every
accumulated arrow f: p 4 q, we associate an accumulated operation f”: pA + qA.
The input/output behavior of A is determined by the effects of the accumulated
operations on the external values.

Note the following difference of our approach with other approaches. Even if
one starts with a focused signature (cf. Section 2.5), the codomain string q of an
accumulated arrow f: p + q can be arbitrarily long. Therefore accumulated
operations can deliver results of arbitrary complexity.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

96 - Wim H. Hesselink

4.2 Accumulated Arrows and Accumulated Operations

Definition. The accumulated arrows of the signature C, and the accumulated
operations of the model A of C are defined inductively in three steps:

Step 1. Every arrow f: p 4 q of C is an accumulated arrow. The corresponding
accumulated operation f”: p* + q* is the given operation f* of model A.

Step 2. Partial composition. Let f: p +- q + r and g: r + s + t be accumulated
arrows, where + stands for concatenation (cf. Section 2.3). Then we have an
accumulated arrow

Mrlf): P + s -+ 4 + t.

The corresponding accumulated operation

(g[r]f)“: p* X sA + q* X t*

is given as follows: A pair (u, u) E qA x t* is an element of the set (g[r] f)*(x, y)
if and only if there exists z E r* such that (u, z) is in f*(x) and u is in g*(z, y).
The set (g[rJf)“(x, y) contains the element error, if and only if f”(x) contains
error, or f*(x) contains a pair (w, z) such that g*(z, y) contains error.

Step 3. Rearrangement. Let p and q be strings of sorts, say, p = p1 . . - pm and
q = q1 . . . qn. Let a mapping b: (1 -. . n) + (1 - - - m) be given such that
Pb(i) =qiforallindicesiE (1 --. n). Then we have an accumulated arrow

(qlbb): P + 9.

The corresponding accumulated operation

(qlbb)*: P* ---, q*

is the mapping (cf. Section 2.2) that is defined by

(qlb[p)*h --- GJ = (~1 .-. ~nh) with yi = Xb(i).

Remarks

(1) If in Step 2 the strings q and s are empty, then (g[r] f) stands for the ordinary
composition. If r = E (cf. Section 2.3), then (g[c]f) stands for the natural
operation between the Cartesian products.

(2) Rearrangement unifies three kinds of transactions, namely, permutation of
variables, copying of variables that are needed more than once, and forgetting
of variables that are no longer needed. If the order of the variables does not
allow a partial composition, one can first apply a rearrangement.

4.3 The Concept of Implementation

Let A and B be models of 2. If f: p ---) q is an accumulated arrow between external
strings p and q, the sets p* andp’ are both equal to the set pK, which is a product
of external domains. Similarly, q* and qB are equal to qK. Therefore we may
compare the operations

f”, f”: pK + qK.
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Nondeterminism in Data Types l 97

Definition. Model A is said to be an implementation of B if f*(x) is a subset of
f’(x) for every accumulated arrow f: p + q between external strings and every
value x E pK.

This definition differs completely from the definitions in [lo] or [16], so it
deserves a justification. Assume that a user has a black box, which contains a
model of 2 that is specified as the model B. Assume that the implementer of the
box has provided a model A. The user has no grounds to complain as long as
every accumulated operation with an arrow f: p + q between external domains
pK and qK, applied to a value x E pK, yields some value y E fB(n). The box can
deliver every element y E fA(x). So it is guaranteed that the user cannot complain
if and only if f*(x) is a subset of fB(x) in every such case.

Here, as one of the referees remarked, we assume that every possible value is
acceptable under all circumstances. In particular, we do not want to guarantee
that every possible value will eventually occur. So fairness requirements are
excluded. In fact, we only consider finite calculations. Compare (2) of Section 1.2
and Section 4.5.

4.4 Implementation Equivalence

Definition. Two models A and B of C are said to be implementation equivalent
if either model is an implementation of the other model (cf. Section 4.3) Equiv-
alently, A is implementation equivalent to B if and only if fA = f” for every
accumulated arrow f: p + q between external strings.

Remark. This concept of equivalence can be characterized as behavioral equiv-
alence with respect to inputs and outputs of observable sorts (cf. [14, 2.41). It
may happen, however, that implementation-equivalent models have different
observable behavior (cf. remark (2) of Section 5.4).

4.5 An Example of Unbounded Iteration

Accumulated arrows between external strings may be considered as finite pro-
grams without control structures. One could argue that control structures should
be admitted. Admission of conditional expressions or bounded iterations is
harmless; as in Section 4.3 and 4.4, we consider arbitrarily complex accumulated
arrows. Admission of unbounded iteration in the formalism of Section 4.2 would
give a different theory. This is shown in the following example: Let C be the
signature of the shaking urn of Booleans, with

S = (urn, boo1 := BOOL),
F = (fill : E + urn,

shake : urn +- urn,
draw : urn +- boo1).

Let A and B be the models of C given by

urnA = NAT, urnB = NAT,
fillA = NAT, fillB(0) = NAT,
shakeA = Xn.(i IO I i I n], shakeB = Xn.(i 1 i = 0 V i < n],
drawA = Xn.{(n > O)], drawB = Xn.((n > 0)).

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

98 l Wim H. Hesselink

One verifies that A and B are implementation equivalent (cf. Section 4.4). A
crucial difference between the models A and B is shown by the following program:

P = 1 [n := fill(O) ;
do draw(n) + n := shake(n) od;
draw(n)] I.

When applied to model A, program P need not terminate. This means that
delivery of a result is postponed indefinitely (not that error is yielded). When
applied to model B, however, the program will terminate and yield the value
false.

However, if a user accepts a black box with the specification B, then the user
accepts arbitrarily long delay. So, if the box is equipped with model A, the user
will never have proof that the box does not function as specified. Therefore we
feel justified to consider A as an implementation of B.

5. MORPHISMS OF MODELS AND SUBMODELS

In general, the only direct way to prove that model A is an implementation of
model B is by supplying a systematic interpretation M, which assigns to every
value x E sA a corresponding value y E P. Consequently, if p is a string, an
element x E pA has an image element y E pE. If f: p + q is an arrow, the set
of results r(x) in qA is to be mapped into the set of results fB(y). Since users
have complete access to external domains, the interpretation has to be the
identity on the external domains. Such systematic interpretations will be
called morphisms of models. We shall prove that the existence of a morphism of
models M: A + B is a sufficient (but not necessary) condition for A to be an
implementation of B.

5.1 Specialization, Image, and Composition of Operations

Definition. Let f, g: X ---, Y be operations. We say that f is a specialization of g
(notation f << g) if f (x) is a subset of g(x) for every element x E X. One might
say that g is more nondeterministic than f (cf. [16]).

The composition of operations f: X + Y and g: Y -+ Z is defined as the
operation g 0 f: X + 2 with g 0 f(x) = g(f(x)). Note that f(x) is a nonempty
subset of Y+, so that g(f (x)) is a nonempty subset of Z+ by Section 2.2. Since
maps are special cases of operations (cf. Section 2.2), the composition also makes
sense in the case that for g is a map. If both f and g are maps, the composition
of the maps f and g is the map corresponding to the composition of the operations
f and g. So no ambiguity can arise.

5.2 Morphisms of Models

Let A and B be models of a given signature 2. Let M be a prescription that
assigns to every sort s E S a map s”: sA +- P. If p = s1 - + . s, is a string of sorts,
we define the map between the Cartesian products (cf. Section 2.3), given by

P%l --* Gn) = (Y1 -*a Ym) with yi = SM(Xi)*

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Nondeterminism in Data Types l 99

Definition. The prescription M is said to be a morphism of models M: A + B
if it satisfies the following two conditions:

(1) Ifs is an external sort, then s”: sK ---) sK is the identity map of the external
domain sK.

(2) If f: p +- q is an arrow of C, then we have a specialization of compositions
(cf. Section 5.1)

4 M 0 f” << f” 0 pM: pA + qB,

where the operations are shown in the following diagram:

PA
fA ,qA

If x E pA is a value of A, the value p”(x) E pB is called the M-image of x in B.

The morphism of models M: A + B is said to be strict if in the above condition
(2) we always have an equality qM 0 f” = f” 0 p”. A model A is said to be a
submodel of B if sA is a subset of sB for every sort s and if the system of inclusion
maps sA + sB defines a morphism of models A + B. It is called a strict submodel
if the inclusion morphism A + B is strict.

Remarks. Strict morphisms are called homomorphisms in [6] and [lo, p. 2281.
Morphisms correspond to the weak homomorphisms mentioned in [6]. The
comparison of models with the same domains in [lo, p. 941 is a special kind of
morphism or submodel relationship. We stress morphisms rather than strict
morphisms, as they form a more powerful tool to prove implementation or
equivalence of models. See remark (1) of Section 5.4 and the proof of the theorem
in Section 7.4. The class of models of a given signature, with morphisms of
models as defined here, forms a category (cf. [ll]).

5.3 Reachable Values, the Term-Generated Submodel

Definition. Let A be a model of C. A value x E pA is said to be reachable if
there is an accumulated arrow f: r + p from an external string r, and an external
value w E rK, such that x is in r(w). The term-generated submodel B of A is
defined as follows. Ifs is a sort, the subset sB consists of the reachable values of
sA. If f: p + q is an arrow and x is in pB (cf. Section 2.3), then $(x) is defined as
the set fA(x). In fact, one verifies that r(x) is contained in qB (note that p and q
are strings of sorts). It follows that B is a strict submodel of A (cf. Section 5.2).

LEMMA. Let M: A + B be a morphism of models, and let f: p + q be an
accumulated arrow (cf. Section 4.2). Then we have

(a) qM 0 f” <<f” 0 p”: pA + qB;
(b) if f is a rearrangement arrow, then qM 0 fA = f” 0 p”; and
(c) if morphism M is strict, then qM 0 fA = f” 0 p”.

SKETCH OF PROOF. Part (b) is easy. The proofs of (a) and (c) consist of
straightforward inductions on the complexity of the accumulated arrow f.

THEOREM. Let M: A + B be a morphism of models of C.
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

100 l Wim H. Hesselink

(a) Then A i-s an implementation of B.
(b) If the morphism M is strict, then A and B are implementation equivalent.

PROOF. Let f: p + q be an accumulated arrow between external strings. Then
pA = pK, q’ = qK, and pM and qM are the respective identity maps. By the above
lemma, we have

f” << f”: pK + qK,

with equality f” = fB in case (b). q

5.4 Examples of Implementations

Let the signature C be given by

S = (urn, boo1 := BOOL),
F = (fill : E +- urn,

draw : urn + boo1).

Let A be the model of C defined by

urnA = BOOL,
fill”(O) = BOOL,
draw A = hv.if v + BOOLO TV -+ (false) fi.

Let B and C be the submodels of A given by

urnB = (true), fillB(0) = {true], drawB = Xv BOOL-
urnC = BOOL, fill’(O) = BOOL, drawC = Xv:(v]. ’

Since they are submodels of A, models B and C are implementations of A (cf. (a)
of the Theorem in Section 5.3). We show that A and B are not implementations
of C. In fact, let copy be the rearrangement arrow

copy = (urn urn]b[urn): urn +- urn urn

induced by the map b: (1,2] + (1) with b = Xi.1. We form the partial compositions
(cf. Section 4.2)

f2 = (copy[urn]fill) : + urn urn,
dz = (draw[E]draw) : urn&urn + boo1 bool,
e2 = (dz[urn urn]fi) : e + boo1 bool.

The accumulated arrow e2 is between external strings. It distinguishes the models
A and B from C. In fact, the operations

e?, ef, eg: NULL + BOOL X BOOL

satisfy

et(O) = e:(O) = BOOL x BOOL e:(O) = ((v, v) 1 v E BOOL].

This proves that A and B are not implementations of C.
Models A and B are implementation equivalent. In fact, since B is a submodel

of A, it remains to be seen that A is an implementation of B. This is done by
constructing a morphism M: A + B. By condition (1) of Section 5.2, a morphism
M: A + B is determined by the map between the internal domains

urn? urnA + urnB.
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Nondeterminism in Data Types 101

Since urnB = (true], we have to define urnM = Xu.true. Condition (2) of
Section 5 remains to be verified. There are two arrows to consider. One verifies
that the arrow symbol fill leads to the equality of operations

urnM 0 fillA = fillB 0 e”: NULL + {true).

Similarly, if the identity map of BOOL is denoted by id, the symbol draw leads
to the specialization

id 0 drawA +z drawB 0 urn”: urnA + BOOL.

This shows that M: A + B is a morphism of models. Therefore the models A
and B are implementation equivalent.

Remarks

(1) Although A and B are implementation equivalent, B is not a strict submodel
of A, and the morphism of models M is not strict. So, the implication in (b)
of the theorem in Section 5.3 cannot be reversed.

(2) Under the fairness assumptions, models A and B can be distinguished by
observations. Let us assume that, in every set of sufficiently many experi-
ments, all possible results of an operation will be found. Then a user can
discover that the model A has a certain value u E urnA with drawA =
(false], whereas B does not have such a value.

(3) Models A and B can be transformed in process graphs (cf. [l]) in the following
way:

A:

I

filJ

fill I
% false

draw

I draw
true

B: *fill

I

dq false
draw

true

It is easy to verify that the two graphs are not bisimilar (cf. [l, 1.2.2.11). In
fact, bisimilarity is more closely related to observable equivalence of models,
a concept that we do not formally define in this paper.

(4) If, for reasons of memory sharing, users are forbidden to copy internal values,
then the model C cannot be distinguished from A and B. This argument
leads to a different theory, where the rearrangement maps b of Step 3 of
Section 4.2 have to be injective.

5.5 Equivalent Implementations without a Morphism

We construct two deterministic models of the data-type pointer table of
Section 3. We forbid overflow by adding the following axiom:

Axiom The operation position is total (cf. Section 2.2).

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

102 l Wim H. Hesselink

Assume that the set ITEM is countable, so that we may choose an injective
mapping

hash: ITEM + NAT.

It is easy to specify a model A of a pointer table without overflow, which has
pointerA = NAT and which models a hash table with hash function hash. We
can also specify a model B with pointe@ = NAT, which models a stack
implementation based on an infinite array of items indexed by the set NAT. The
models A and B are implementation equivalent. In fact, one can show that all
models of a pointer table without overflow are implementation equivalent.
However, there does not exist a morphism of models between A and B because
there is no adequate correspondence between the sets pointerA and pointerB.

If C is the model of Section 3.3, based on the set P = NAT, then we have
unique morphisms M: A + C and N: B + C that induce the identity maps on
the set NAT. So the two deterministic models can be compared by means of the
nondeterministic model C.

6. TERMINAL MODELS AND SPECIFICATIONS: THE DATA-TYPE BAG

6.1 Complete Determination or a Universal Model

The concept of sufficient completeness of an axiomatization (cf. [5]) has the
following analogue in our model-theoretic situation: A nondeterministic data
type (C, T) can be called completely determined if all models A in T are
implementation equivalent, and if for every model A in T and every accumulated
arrow f: p --j q between external strings the operation fA: pA -+ qA is deterministic.

Although this leaves room for unobservable nondeterminism, we prefer not to
strive for complete determination. In fact, we prefer a situation where T contains
one “universal” model B such that all models A E T are implementations of B.
Then the model B may serve as a specification of any model in T (cf. [9]).

It is an important question of programming methodology how to design and
specify relevant classes T. In our experience it helps to look for the existence of
a nice universal model B. As soon as B is determined, we prefer to have the class
T as wide as feasible.

Definition. The liberal class L(B) is defined to consist of all models A that
admit some morphism of models M: A +- B.

In some cases, the class L(B) turns out to have a nice axiomatization. In
principle, the class of all implementations A of B is more important, but usually
this class is not tractable. The concept of universality suggested above is tech-
nically inconvenient. It lacks uniqueness. In order to express uniqueness, we
introduce isomorphisms of models. Then we introduce terminality of models, as
a technical version of universality. This concept will be illustrated in the data-
type bag. For comparison we also discuss initial models, which leave no room for
nondeterminism.

6.2 lsomorphisms of Models

Definition. A morphism of models M: A + B is called an isomorphism if there
is a morphism N: B + A such that the compositions N 0 M and M 0 N are the
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Nondeterminism in Data Types l 103

respective identity morphisms of A and B. Models A and B are said to be
isomorphic if there exists an isomorphism M: A + B. It is easy to prove that a
morphism of models M: A += B is an isomorphism if and only if M is strict and
all maps s”: sA + sB with s E S are bijective (cf. [7, 2.61).

6.3 Terminal Models and Initial Models

Definition. Let (C, 2’) be an NDDT. A model B E T is said to be terminal
in T if for every model A E T there is precisely one morphism of models M:
A + B. A model C E T is said to be initial in T if for every model A E T there is
precisely one morphism N: C +- A. It is well known that, if T has a terminal
model B, then this model B is unique up to isomorphism, and similarly for an
initial model C (cf. [7, 10.11).

Remarks. Since all models in T are implementations of B, the model B is
universal in the sense of Section 6.1. Some NDDTs have no terminal model. For
example, the pointer table of Section 3 does not have a terminal model. This is
proved by means of the mathematical models of Section 3.3.

On the other hand, all models of Tare implemented by C. So, model C may be
useful, if it exists, but leaves no freedom to the implementer. It is a “universal
implementation.” In fact, if class T contains all submodels of its models, it can
be proved that an initial model in T is term generated and deterministic.

6.4 The Nondeterministic Data-Type Bag

Nondeterminism enables us to make a common generalization of stacks, queues,
and priority queues. We call it bag. Let ITEM be a given external domain. The
signature C is defined by

S = (item := ITEM, bag),
F = (create : E + bag,

push : item bag + bag,
POP : bag + item bag).

The class T consists of the models A of C that satisfy the following axioms:

(1) If u E createA(then u # error and popA = (error).
(2) There is an auxiliary function count: ITEM X bagA + NAT, such that

every element u E bagA satisfies the following conditions:

(a) The set] u] = (X E ITEM 1 count(x, u) > 0) is finite.
(b) If error E pop”(u) then] u] is empty.

(c) If (x, w) E popA(then

count(x, u) = count& w) + 1, and
count(y, u) = count(y, w) for every y # 1~.

(d) If w E pushA& u) is not error, then

count& w) = count& u) + 1, and
count(y, w) = count(y, u) for every y # X.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

104 l Wim H. Hesselink

6.5 The “Universal Bag”

The data type bag has a terminal model B, such that the type is the liberal class
L(B). The idea of the construction is that the states of the bag are characterized
by the function count. We let H be the set of the functions f: ITEM --, NAT
such that the support set

IfI =(xEITEM]~(x)>O)

is finite. Functions f, g in Hare added in the obvious way. They can be subtracted
in H if the difference is everywhere nonnegative. We use the Kronecker delta
function 6: ITEM + H given by

6 = Xx.(Ay.(if x = y + 1 0 x # y +- 0 fi)).

Let B be the model of C with bag = H and the operations

createB(0) = (Xx.0),
pushB(x, f) = (error, f + 6(x)],

pop”(f) = if 1 f 1 = 0 -9 (error}
pi Ifl #@+kf-~b))IXE Ifll

The model B belongs to the class T. In fact, one uses the function count =
Mx, f).f (xl.

THEOREM. The model B is a terminal model of the class T of Section 6.4. The
class T is equal to the liberal class L(B).

Comment. The proof is straightforward. It is important as an illustration of
the concept of morphism of models. It is left out for reasons of limitations
of space.

7. EXTRACTION EQUIVALENCE OF VALUES

In practical implementations of data types, it is often the case that an abstract
value has more than one concrete representation. This happens, for example, in
the array implementation of a stack, where the array values beyond the stack
pointer are neglected. One may adopt the viewpoint that values are equal if they
have the same externally observable properties. For other purposes, however, it
may be better to consider such values as different but equivalent values. In this
way, one may arrive at the notion of behavioral equivalence. Surprisingly, there
are two different formalizations of this notion. In this section we investigate the
notion of extraction equivalence (cf. [16, p. 1531). In [lo] a finer relation is
introduced, under the name of observable equivalence. We come back to that
relation in Section 8.

The main purpose of an equivalence relation is that it enables us to treat
equivalent values as if they were identical. So, we want to form a quotient model
and to prove that this quotient model is implementation equivalent to the original
model. This step is not taken in [16]. In this section we develop the adequate
theory and give the delicate points of the proof.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Nondeterminism in Data Types - 105

7.1 Relations on a Model

Recall that a (binary) relation R on a set X is a subset of the Cartesian product
set X X X. The relation R is said to be the identity relation if R consists of the
pairs (x, 3~) with x: E X. The relation R is said to be an equivalence relation if it
satisfies the following conditions:

(1) If x E X, then (3c, x) E R.

(2) If (x, y) E R, then (y, x) E R.

(3) If (x, y) and (y, z) are in R, then (3c, z) is in R.

An equivalence relation R on a set X induces a partition of X in equivalence
classes

x/R = (Y E XI b, Y) E RI.

We have x/R = y/R if and only if (x, y) E R. The set of the equivalence classes
is denoted by

X/R = (x/R 1 x E X).

Definition. Let A be a model of a signature C. A relation R on model A is
defined to be a prescription that assigns to every sort s a relation sR on the
set sA. The relation is said to be internal if sR is the identity relation on .P
whenever s is an external sort. The relation is said to be an equivalence relation
if it is internal and sR is an equivalence relation on sA for every sort s.

If R is a relation on a model A, and p is a string of sorts, say, p = s1 . . . s,,
then two values x, y in pA are said to be R-related if for every index i in
(1 *a* m) the pair of the ith components (xi, yi) is in sf. The element error is
said to be R-related to itself, and not to any value of A. Two subsets X and Y of
(pA)’ are said to be R-related if every element of X is R-related to some element
of Y and vice versa.

7.2 Extraction Equivalence of Values: Extractable Models

Definition. Let A be a model of C, and let s be a sort. Values x, y in sA are said
to be extraction equivalent if for every accumulated arrow f: s + p + q to an
external string q and for every value z E pA we have the equality of sets

fA”(x, 2) = fA(Y, 2).

Clearly, extraction equivalence is an equivalence relation on model A. Model A
is said to be extractable if extraction-equivalent values are always identical.

Remark. Extraction equivalence as defined here is a variation of [16, p. 1511.
Our accumulated arrows have the possibility to copy internal values and to
deliver a string of external values. It is necessary to allow internal probing
parameters as the value z in the above definition, in order to obtain results as
the lemma below and as the theorem in Section 7.4.

LEMMA. Let R be the extraction-equivalence relation on a model A. Let f :p ---, q
be an accumulated arrow to an external string q. If x, y in pA are R-related, then
r(x) = fA(Y)-

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

106 l Wim H. Hesselink

PROOF. Assume that p = s1 . . . sn. Let xi and yi be the respective components
of x and y in the domain sf . For every index i, we have (xi, yi) E s”. By n
applications of the definition, we get

fAb> = fA(Yl, x2, *a., %A = a** = fA(Yl, .f .,yn-1, X") = fA(Y).

Here we use rearrangement to justify the replacement of the ith component
instead of the first component. In each case the n - 1 other components are used
as probing parameters. Cl

7.3 Construction of the Quotient Model A/R

Let R be an equivalence relation on a model A. We construct the quotient
model A/R as follows: For every sort s, we let sAjR = sA/sR be the set of the
sR-equivalence classes in sA (cf. Section 7.1). If s is an external sort, then sR is
the identity relation on 8. So, in that case we may identify

sAjH = SK/identity = sK.

Let the sR-equivalence class of a value x be denoted by .?(x) = x/sR in sAIR. Then
we have a system of maps s”: sA + sAIR. For every string of sorts p, we get an
induced map p”:pA dpAjR (cf. Sections 2.3 and 5.2). Let f: p + q be an arrow
of C. Then we define the operation

f”/“: P.WR + qNR by fA’R(y) = U bM 0 fAb> Ip”b) = ~1.

One verifies that A/R is a model of C (it is called the quotient model), and that
M: A + A/R is a morphism of models, the quotient morphism.

Remark. This construction already occurs in [13]. In our situation, however,
we admit error, we have many sorts, and we have fixed external domains. For
future reference we characterize the quotient model by the following universal
property. We omit the proof, which is standard (cf. [7, 8.61).

PROPOSITION. Let R be an equivalence relation on a model A. Let M:
A + A/R be the quotient morphism. Let N: A + B be a morphism of models, such
that every pair of R-related values of A has the same N-image in B. Then there is
precisely one morphism of models H: A/R + B with N = H 0 M.

7.4 Associativity of Partial Compositions: An Auxiliary Result

Consider accumulated arrows

f CPO -+ q0 + rl + r2,

g : r2 + p1 + q1 + r0,

h: ro+rl+p2+q2.

Using implicit rearrangements we define the partial compositions

Mr21f) :p0 + p1 -+ q0 + q1 + r0 + rl,
(hhk):rl + r2 + PI + PZ -+ 41 + 42,

and the triple compositions

k = Wo + r&hlf)):p~ + PI + PZ -+ qo + 91 + 42,

m = ((W&)[rl + r2lf) :PO + PI + PZ -+ 40 + a + a.
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Nondeterminism in Data Types l 107

We claim that for every model A of C the operations kA and mA are equal. In
fact,letx=(3CO,X1,X2)withXiEp4,andy=(y,,y,,y,)withyiEq4.Thenyis
an element of kA(x) (and also of mA(x)) if and only if there exists z = (20, 21, 22)
with zi E r” such that

(Yo, 21, 22) E fA(xd A (Yl, 20) E gA(z2, Xl) A y2 E hAbrJ, 21, x2).

The occurrences of error in kA(x) and m”(x) are also equal. This proves
that kA = mA.

THEOREM. Let R be extraction equivalence on a model A, and let M: A +- A/R
be the quotient morphism to the quotient model A/R.

(a) If f: p -+ q is an accumulated arrow to an external string q, then fAiR 0 pM =
fA:pA + qK.

(b) The models A and A/R are implementation equivalent. The model A/R is
extractable.

PROOF

(a) Since M is a morphism of models and q is an external string, we have the
specialization

f” = qM 0 f” << fAIR 0 pM: pA + qK.

So it remains to be seen that fAIR 0 pM << fA. This is done by induction
on the complexity of the accumulated arrow f. By (b) of the lemma in
Section 5.3, rearrangements inside f are harmless. Therefore, by Section 7.4,
we may assume that

f = (Wkh PO + PI + qo + 41,

where g: p. + q. + r is an ordinary arrow and h: r + p1 + q1 is an accumulated
arrow. By induction we may assume that

hAjR 0 (r + pl)M = hA: rA x p;’ +- qf.

LetxEpAandvEfA’Ro p““(x). We have to show that v is in r(x). Write
x = (x0, x1) and v = (~0, ~1) with xi E pf and vi E qf. Put u = (uo, ul) with
Ui = PM&), so that u E fAIR(u). By the definition of partial composition,
there exists w E rA’R such that (vo, w) E gAIR(uo) and v1 E hA’R(w, ul). Since
g is an ordinary arrow of C, the set gAIR(uo) is the union of the M-images of
the sets gA(x’) with pf(x’) = u. (cf. Section 7.3). Therefore there exists
x’ E p$’ and (y, z) E gA(x’) such that the M-images of x’, y, z are ~0, vo, w,
respectively. Since q. is an external string, we have y = vo. The induction
hypothesis implies that

hA’R(w, ul) = hA(z, xl).

Therefore u1 is in hA(z, x1). This proves that u is in fA(x’, x1). Having the
same M-image h, the elements x’ and x0 of p$’ are R-related. So it follows
from the lemma in Section 7.2 that fA(x’, x1) = fA(xo, x1). This proves that v
is in r(x), as required. The error occurrences are left to the reader.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

108 l Wim H. Hesselink

(b) If f: p + q is an accumulated arrow between external strings p and q, then
part (a) implies that fAiR = .A f . This proves that A and A/R are implementation
equivalent. Let s be a sort, and let u, u E sAIR be extraction equivalent.
Choose X, y E sA with M-images u, u, respectively. Using part (a) one proves
that x and y are extraction equivalent. This implies that

u = P(n) = P(y) = u. 0

7.5 The Extractable, Term-Generated Subquotient

Every model A is implementation equivalent to an extractable and term-
generated model. For example, let B be the term-generated submodel of A, and
let R denote implementation equivalence on B. Then B/R is extractable and term
generated. By the theorems in Sections 5.3 and 7.4, it is implementation equiv-
alent to A. Being a quotient of a submodel, it is called a subquotient.

8. OBSERVABLE EQUIVALENCE OF VALUES

As stated in Section 7, the idea of behavioral equivalence has two different
formalizations. In this section we investigate observable equivalence as intro-
duced in [lo]. The definition of [lo] is indirect and based on mutual recursion.
Under an unnecessary hypothesis, the existence of a quotient model is proved. It
is postulated that this quotient has the same observable behavior as the original
model.

Here we reformulate the definition. We prove that the recursive equation has
a solution. It follows from Section 7.3 that a quotient exists. It turns out to be
rather easy to show that observable equivalence implies extraction equivalence,
and that the quotient model is implementation equivalent to the original model.

Note that observable equivalence closely resembles observation congruence as
introduced by Milner for CCS in [12, 7.31. In the example in Section 10.1.2, it is
shown that observable equivalence may differ from extraction equivalence.
Roughly speaking, extraction equivalence only looks at direct outputs, whereas
observable equivalence also uses previously obtained knowledge about internal
values.

8.1 Kapur’s Definition of Observable Equivalence

In [10, p. 891, two values of a model A are said to be observably equivalent if they
are not distinguishable. The latter concept is defined by mutual recursion, as
follows:

(a) If s is a sort, values x, y E sA are distinguishable ifs is external and x # y, or
if there exists an accumulated arrow f: s + p + q and a value z E pA such
that the sets fA(x, z) and fA(y, z) are distinguishable.

(b) If q is a string of sorts, say, q = s1 . . . s,, then values u, v E (qA)’ are
distinguishable if either element is error and the other element is not, or if
there is an index i E (1 . . . n) such that the components ui and ui are
distinguishable in sf . Subsets U and V of (qA)’ are distinguishable if either
set contains an element w that is distinguishable from all elements of the
other set.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Nondeterminism in Data Types l 109

Remarks

(1) We have rephrased the definition of loc.cit. in our terms. The use of accu-
mulated arrows is inessential, but convenient. It allows the assumption that
in (a) the critical values X, y are in the first component. A probing parameter
z is clearly necessary, but I cannot decide whether Zoc.cit. [lo] allows it.

(2) The observability can be rather impractical. If the operations of A have
unbounded nondeterminism, it may require transfinite induction to distin-
guish distinguishable values.

8.2 Definition and Construction of Observable Equivalence

We transform the definition in Section 8.1 into a direct definition of observable
equivalence itself. In order to express the negations of (a) and (b), we introduce
the concept of the derived relation:

Definition. If R is an internal relation on a model A, the derived relation DR
is defined as follows: Ifs is a sort, then sDR consists of the pairs (x, y) E sA x sA
such that for every accumulated arrow f: s + p 3 q and every value z E pA the
subsets fA(x, z) and fA(y, z) of (qA)+ are R-related (cf. Section 7.1).

One verifies that DR is an internal relation and that DR is contained in R. If
R is an equivalence relation on A, then so is DR. In Section 8.1 the sets of
distinguishable pairs of values are the smallest sets such that conditions (a) and
(b) hold. Therefore the sets of observably equivalent pairs are the largest sets
such that the negations of (a) and (b) hold. Rephrasing this we get that the
observable equivalence relation should be the largest internal relation R that
satisfies R = DR.

In order to prove that indeed this equation has a unique largest solution, we
consider the collection 9 of all equivalence relations Q on A such that Q contains
every internal relation R ’ on A with R ’ = DR ‘. The collection 9 is nonempty.
In fact, let P be the internal relation such that sp is the identity relation on sK
for every external sort s, and that sp = sA x sA otherwise. Then P is an equivalence
relation on A, which contains all internal relations on A. So P is in a.

Now we define R as the intersection of all members Q of 9. As every member
Q is an equivalence relation that contains all solutions R’, the intersection R is
also an equivalence relation that contains all solutions R’. It follows that R
is in a,. By the definition of D, we get that DR is in @, so that R is contained
in DR. This implies that R = DR. As R contains all solutions, it is the largest
solution. Moreover, R is an equivalence relation.

Definition. Therefore we define observable equivalence to be relation R.

8.3 Congruences

Definition. An equivalence relation R on a model A is said to be a congruence
(cf. [lo, p. 271) (or an ideal, cf. [13, p. 3291) if for every arrow f: p -+ q and every
pair of R-related values X, y E pA the sets r(x) and fA(y) are R-related in (qA)’
(cf. Section 7.1).

Using the arguments of the lemma in Section 7.2, one can see that an
equivalence relation R on A is a congruence if and only if R = DR. It follows that

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

110 l Wim H. Hesselink

observational equivalence is a congruence and that it is the largest congruence.
The first part of this assertion is not claimed in [lo, p. 441.

The theoretical importance of congruences is based on the following fact: Let
R be an equivalence relation on A. Then the quotient morphism M: A --) A/R is
strict if and only if R is a congruence (cf. [13, Theorem l] or [lo, p. 2281).

PROPOSITION. Let A be a model, and let Q and R be extraction equivalence and
observable equivalence, respectively.

(a) R is contained in Q.
(b) If A is deterministic, then R = Q.

PROOF

(a) In terms of Section 8.2, we have Q = DP. Since P contains R, the derivation
Q contains DR = R.

(b) Let f: p + q be an arrow, and let X, y E pA be extraction equivalent. By the
determinism we have unique resulting elements fA(x> and fA(y). These
elements are easily seen to be extraction equivalent. Therefore Q is a
congruence. Since R is the largest congruence, it follows that Q = R. 0

Definition. A model A is said to be observable if observable equivalence is the
identity relation. We have the following analogue of the theorem in Section 7.4:

THEOREM. Let R be the observable-equivalence relation on A. Then A and A/R
are implementation equivalent. The model A/R is observable.

PROOF. Since R is a congruence, the quotient morphism from A to A/R is
strict. So A and A/R are implementation equivalent by (b) of the theorem
in Section 5.3. The proof of the observability of A/R is straightforward
(cf. [7, 8.41). q

9. INSEPARABLE VALUES AND CONSISTENCY

The main difficulty of the behavior of nondeterministic models is that a model
has the freedom to show its abilities, as well as to hide them. In Section 8.1 two
values are called distinguishable if the model is able to reveal a difference. It may
be, however, that the model is not forced to reveal a difference. In that case the
values may be considered as inseparable, or consistent. Actually, we choose these
two words to represent two different formalizations of the same intuitive idea.
In this section we develop the theory. Later, in Section 10.1.4, it is shown that
inseparable values need not be consistent in the technical sense.

The theoretical motivation for this section is that recent studies have shown
relationships between terminality of a model A and the possibility to separate its
internal values by observations (cf. [9, p. 1061 and [17, p. 121). Note that [9] and
[17] only consider deterministic data types. As the condition of being terminal
in an arbitrary class of models cannot imply much, we restrict ourselves to the
biggest available class, the liberal class L(A) (cf. Section 6.1). We prove that
model A is terminal in class L(A) if and only if consistent values in A are always
equal.
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Nondeterminism in Data Types l 111

9.1 Inseparability of Values

Definition. Let A be a model of C. If s is a sort, let values X, y E sA be called
inseparable if for every accumulated arrow f: s + p + q, where p and q are external
strings, and for every external value z E pK the sets fA(x, z) and fA(y, z) are not
disjoint.

It is easy to see that extraction equivalence implies inseparability. If the
model A is deterministic and term generated, then extraction equivalence and
separability are equivalent. In general, inseparability is an internal relation on A
(cf. Section 7.1), which need not be an equivalence relation. Unfortunately,
inseparability is not sufficiently strong to characterize terminality of the model
A. We need the slightly stronger concept of consistency.

9.2 Consistent Relations and Consistent Values

Definition. A relation R on A is said to be consistent if it is internal and for
every arrow f: p + q and every pair of R-related values x, y E pA there exist
elements u E f”(x) and u E f”(y) such that u, u are R-related.

Consistent relations form a generalization of congruences. In fact, if R is a
congruence, then R is a consistent equivalence relation. Conversely, if A is
a deterministic model and R is a consistent equivalence relation, then R
is a congruence.

Definition. Ifs is a sort, values x, y E sA are said to be consistent if there exists
a consistent relation R on A such that (n, y) is in sR. Clearly, observably equivalent
values are always consistent.

9.3 Another Characterization of Consistent Relations

Let B be a second model of 2, and let M, N: B + A be two morphisms of models.
Ifs is a sort, let sR be the set of the pairs (&“‘(b), sN(b)) in sA X sA with b E sB.
Since M and N induce the identity maps on the external domains, the prescription
R is an internal relation on A (cf. Section 7.1).

Definition. This relation R is called the relation spanned by the triple
(8 M, NJ.

PROPOSITION. A relation R on A is consistent if and only if it is spanned by
some tripZe (B, M, N).

PROOF. First, assume that R is spanned by the triple (B, M, N). Let f: p += q
be an arrow of C, and let x, y E pA be R-related. Assume that p = s1 . . . s,,,. Let
xi and yi be the respective components of x and y in s”. Since R is spanned by
(B, M, N), we get an element b = (bl . . . b,) E pB with x: = PM(b) and y = pN(b).
Choose an element c E fB(b). Put u = q”(c) and u = qN(c). Since M and N
are morphisms, we have u E r(x) and u E fA(y). If c # error, then u and u
are R-related. Otherwise both elements are equal to error and therefore
R-related. This proves that R is consistent.

Conversely, assume that R is consistent. We construct a model B as follows: If
s is a sort, put s B = sR Ifs is an external sort, then sB is the identity relation on .
sK, so that it can be identified with sK by means of the diagonal map Xx.(x, x). If

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

112 l Wim H. Hesselink

p is a string of sorts, the product set pB is identified with the subset of pA x pA
that consists of the R-related pairs (x, y). The element error of (pB)’ is identified
with (error, error). If f: p + q is an arrow of C and z E pB is identified with
the pair (x, y), then f’(z) is defined to consist of the elements w = (u, U) in the
product set r(x) x fA(y), such that U, IJ are R-related. By the definition of
consistency, this set $<z) is nonempty. Therefore B is a model of C. Ifs is a sort,
let s”, sN: .sB + sA be the projections on the first and the second components,
respectively. In this way we get morphisms M, N: B -+ A such that R is spanned
by the triple (B, M, N). 0

COROLLARY. If values x, y E sA are consistent, then they are inseparable.

PROOF. Choose a consistent relation R on A with (x, y) E sR. Let R be
spanned by the triple (B, M, N). Choose b E sB with x = s”(b) and y = sN(b).
Let f: s + p + q be an accumulated arrow with p and q external strings. Let
z E pK. By the lemma in Section 5.3, the nonempty set fB(b, z) is contained
in fA(x, z) and also in fA(y, z). Therefore these sets are not disjoint. 0

THEOREM 9.1. A model A of 2 is terminal in its liberal class L(A) if and only if
consistent values in A are always equal.

PROOF. Assume that A is not terminal in L(A). Then there is a model B with
two different morphisms M, N: B + A. Since M and N are different, there is a
sort s and a value b E sB such that s”(b) # sN(b). By the proposition above, these
values of A are consistent.

Conversely, assume that x, y E sA are different consistent values. By the
proposition above, there is a triple (B, M, N) and a value b E sB such
that x = s”(b) and y = sN(b). Since x # y the morphisms M and N are different.
This implies that A is not terminal in L(A). 0

Example. See the theorem in Section 6.5.

THEOREM 9.2. Let A be a model of C that is terminal in its liberal class L(A).
Let B in L(A), and let R be a consistent equivalence relation on B. Then the
quotient model B/R belongs to L(A).

PROOF. Let R be spanned by the triple (C, M, N). Since A is terminal
in L(A), we have a unique morphism P: B + A, and the two compositions
P 0 M, P 0 N: C + A are equal. It follows that every two R-equivalent values of
B have equal P-images in A. So, by the proposition in Section 7.3, there is a
unique morphism H: B/R +- A. Cl

Remark. In particular, if R is observable equivalence, the observable quotient
B/R belongs to L(A). See also the remark in Section 10.1.3.

10. COMPARISON OF SEPARATION CRITERIA

10.1 Summary of Results

In this section we review the main separation concepts of Sections 7-9. In
particular, we investigate the implication relations between these concepts.
In the cases where no implication has been derived, we give examples to show
that no implication holds.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Nondeterminism in Data Types - 113

We have four separation criteria on values x, y of a model A:

CO: LX, y are observably equivalent (cf. Section 8.1 and [lo]).

Cl: X, y are extraction equivalent (cf. Section 7.2 and [16]).

C2: X, y are consistent (cf. Section 9.2).

C3: X, y are inseparable (cf. Section 9.1).

co * Cl

a u.
c2 3 c3

These four conditions satisfy the above square of implications (cf. the proposition
in Section 8.3, Sections 9.1 and 9.2, and the corollary in Section 9.3). If model A
is deterministic and term generated, all four conditions are equivalent (by the
proposition in Section 8.3, and Section 9.2, we have that Cl implies CO and that
C3 implies Cl).

We may also consider the four conditions on A that require that the respective
relation reduces to the identity. These conditions are as follows:

DO: A is observable (cf. the second definition in Section 8.3).

Dl: A is extractable (cf. Section 7.2).

D2: A is terminal in the class L(A) (cf. Theorem 9.1).

D3: Inseparable values in A are identical.

Clearly, these conditions satisfy the square of implications with the inverse
directions:

DOeD

t T
D2+D3

In order to show that there are not more implications than obtained, we shall
give four examples:

(10.1.1) Dl + D2: an extractable model A that is not terminal in L(A);
(10.1.2) DO 4 (Dl or D2): an observable model A, not extractable and not

terminal in L(A);
(10.1.3) D2 & Dl: a not extractable model A, terminal in L(A); and

(10.1.4) (Dl and D2) ~4 D3: an extractable model A, terminal in L(A), with
different inseparable values.

All examples consist of a term-generated model based on a focused signature
and involving a high degree of nondeterminism. They also show that there do
not exist more implications between the separation conditions CO, Cl, C2,
and C3.

1011.1 An Extractable Model A that Is Not Terminal in L(A). We use the
signature C and the model A of Section 5.4. The two values of urnA are not
extraction equivalent, but they are consistent. Therefore A is extractable, and
not terminal in L(A). The model C of Section 3.3 is a more extensive example.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

114 l Wim H. Hesselink

10.1.2 An Observable Model A, Not Extractable, and Not Terminal in L(A). We
use a variation of Section 5.4:

S = (chaos, urn, boo1 := BOOL],
F = { prepare : E + chaos,

fill : chaos + urn,
draw : urn +- boo1 1.

The model A is defined by

chaoS4 = prepareA = urnA = BOOL,
fillA = Xu.(u, true),

drawA = Xv.{ u, false}.

We have the following diagram:

prepare fill draw
c:e + chaos + urn + boo1

A:0 + true +- true + true
L 7 L

false + false + false

The two elements of urnA can be distinguished. Therefore the elements of
chaosA can be distinguished. This shows that A is observable. The two elements
of chaosA are extraction equivalent. So A is not extractable. The elements of
urnA and also of chaosA are consistent. So A is not terminal in L(A).

10.1.3 A Not Extractable Model A, Terminal in L(A). The signature is a
variation of the one of Section 10.1.2. The drawing operator has an extra integer
parameter.

S = (chaos, urn, int := INT, boo1 := BOOLJ,
F = (prepare : c + chaos,

fill : chaos + urn,
draw : urn int + boo1).

The model A is specified by

chaosA = BOOL,
prepareA = BOOL,

urnA = BOOL x INT,
fillA = Xu.(u} x INT,

drawA = X((u, m), n). if m > n +- BOOL
ilm=n j(u)
Om<n +-(7)
fi.

The two elements of chaosA are extraction equivalent. In fact, given an accu-
mulated arrow f: chaos + p + q where q is an external string, and a value
z E pA, the fill operation can always choose a sufficiently large second component
m so that the draw operation has all freedom. On the other hand, consistent
values are identical. In fact, let R be a consistent relation on A. Then R-related

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Nondeterminism in Data Types l 115

values in urnA are identical, and therefore the same holds in chaosA. It follows
that A is terminal in L(A).

Remark. If Q is the extraction equivalence on this model A, then the quotient
model A/Q does not belong to the liberal class L(A). Compare with Theorem 9.2.

10.1.4 An Extractable Model B, Terminal in L(B), with Different Inseparable
Values. We use the signature of Section 10.1.3, and a model B that has the same
domains as the model A of Section 10.1.3 and also the same operations prepare
and fill. The only modification is

drawB = X((u, m), n).if m = n + (u)
0 m # n + (error}
fi.

It is easily verified that B is extractable and that every consistent relation on B
is contained in the identity relation. So B is terminal in L(B). The two elements
of chaosB are inseparable, since every accumulated arrow that distinguishes
these two values has error as a common result.

10.2 Bounded Nondeterminism

The examples in Sections 10.1.3 and 10.1.4 make essential use of unbounded
nondeterminism. I have not been able to decide whether similar examples exist
with only bounded nondeterminism.

11. CONCLUDING REMARKS

11 .l Results

We have shown that, if one is prepared to separate a data type from its syntactic
specification, nondeterminism can be described adequately and rigorously by
means of the calculus of sets and set-valued mappings. We obtained a very
general semantical formalism, which can probably be restricted in many different
ways, depending on the application at hand.

One of the results is that data types whose operations modify more than one
argument or return multiple values need not be excluded from theoretical
investigation. In fact, the calculus of accumulated arrows has nothing to do with
nondeterminism, but may be useful in general (i.e., also in the special case of
deterministic data types).

We introduced morphisms in order to compare different models of the same
signature. A morphism enables us to relate the values from the models in a
systematic way. This is necessary for discussion of equivalence relations, degrees
of nondeterminism, and universality properties of models. Morphisms can be
used to prove that one model implements another model, but a morphic relation-
ship is not necessary for an implementation. The correctness criterion for
implementations (Section 4.3) leads to a preference for extraction equivalence
over the more usual observable equivalence. In fact, extraction equivalence is the
coarser relation, but nevertheless leads to an implementation equivalent quotient
model (cf. the theorem in Section 7.4).

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

116 l Wim H. Hesselink

11.2 Suggestions

We have specified two useful NDDTs (in Sections 3.1 and 6.4), but although [7]
and [lo] give indications, a systematic investigation of specification methods for
NDDTs remains a subject of future research.

In order to deal with hierarchical nondeterministic data types, one could extend
our concept of signature to include external operations. Then an extractable
model of one signature could provide the external domains and operations of a
new signature.

It may be useful to construct accumulated arrows with arbitrary control
structures (cf. Section 4.5). That would enable formal descriptions of vertical
implementations (cf. (1) of Section 1.2).

It seems that our theory can be applied to concurrency. In fact, partial
composition of accumulated arrows might have been designed for that very
purpose. One may want to withdraw the condition of Section 2.2 that the result
sets of an operation are nonempty. That would require reexamination of our
proofs, but most of the results would remain valid.

REFERENCES
1. BERGSTRA, J. A., AND KLOP, J. W. Algebra of communicating processes. In Proceedings of the

CWZ Symposium on Mathematics and Computer Science (Amsterdam, Oct. 6-7,1986). Centre for
Mathematics and Computer Science, Amsterdam, 1986, pp. 89-138.

2. BERZTISS, A. T., AND THA~E, S. Specification and implementation of abstract data types.
In Advances in Computers, vol. 22. M. C. Yovits, Ed. Academic Press, New York, 1983, pp.
295-353.

3. DIJKSTRA, E. W. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N.J., 1976.
4. GOGUEN, J., AND MESEGUER, J. Universal realization, persistent interconnection and imple-

mentation of abstract modules. In Automata, Languages and Programming (ZCALP 82). Lecture
Notes in Computer Science, vol. 140, M. Nielson and E. M. Schmidt, Eds. Springer-Verlag, New
York, pp. 265-281.

5. GUTTAG, J. V., AND HORNING, J. J. The algebraic specification of abstract data types. In
Programming Methodology, D. Gries, Ed. Springer-Verlag, New York, pp. 282-308.

6. HANSOUL, G. E. A subdirect decomposition theorem for multialgebras. Algebra universalis 16
(1983), 275-281.

7. HESSELINK, W. H. A theory of non-deterministic data structures. Computing Science Notes,
Rep. CS 8503, Dept. of Mathematics and Computer Science, Groningen State Univ., Groningen,
1985.

8. JONES, C. B. Development methods for computer programs including a notion of interference.
Ph.D. dissertation, Rep. PRG 25, Oxford Univ., 1981.

9. KAMIN, S. Final data types and their specification. ACM Trans. Program. Lung. Syst. 5, 1
(Jan. 1983), 97-123.

10. KAPUR, D. Towards a theory for abstract data types. Ph.D. thesis, Tech. Rep. MIT/LCS/TR-
237, MIT, Cambridge, Mass., 1980.

11. MACLANE, S. Categories for the Working Mathematician. Springer-Verlag, New York, 1971.
12. MILNER, R. A Calculus of Communicating Systems, LNCS 92. Springer-Verlag, New York,

1980.
13. PICKETT H. E. Homomorphisms and subalgebras of multislgebras. Pac. J. Math. 212, (1967),

327-342.

14. SANELLA, D., AND WIRSING, M. A kernel language for algebraic specification and implemen-
tation (extended abstract). In Foundations of Computation Theory. Lecture Notes in Computer
Science, vol. 158, M. Karpinski, Ed. Springer-Verlag, New York, 1983, pp. 413-427.

15. STOY, J. E. Denotational Semantics: The Scott-Strachey Approach to Pmgramming Language
Theory. MIT Press, Cambridge, Mass., 1977.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

Nondeterminism in Data Types - 117

16. SUBRAHMANYAM, P. A. Nondeterminism in abstract data types. In Automata, Languages and
Programming. Lecture Notes in Computer Science, vol. 115, S. Even and 0. Kariv, Eds. Springer-
Verlag, New York, 1981, pp. 148-164.

17. WIRSING, M., PEPPER, P., PARTSCH, H., DOSCH, W., AND BROY, M. On hierarchies of abstract
data types. Acta In/I 20 (1983), l-33.

18. WIRTH, N. Algorithms + Data Structures = Programs. Prentice-Hall, Englewood Cliffs, N.J.,
1976.

Received January 1986; revised October 1986; accepted December 1986

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988.

