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A Mathematical Approach to 
Nondeterminism in Data Types 

WIM H. HESSELINK 
University of Groningen 

The theory of abstract data types is generalized to the case of nondeterministic operations (set-valued 
functions). Since the nondeterminism of operations may be coupled, signatures are extended so that 
operations can have results in Cartesian products. Input/output behavior is used to characterize 
implementation of one model by another. It is described by means of accumulated arrows, which 
form a generalization of the term algebra. Morphisms of nondeterministic models are introduced. 
Both innovations prove to be powerful tools in the analysis of input/output behavior. Extraction 
equivalence and observable equivalence of values are investigated. Quotient models for such equiva- 
lence relations are constructed. The equivalence relations are compared with each other, with 
separation of values by means of experiments, and with the separation property that characterizes a 
terminal model. Examples are given to show that the four concepts are different. In deterministic 
models the concepts coincide. 

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and 
Theory-semantics; D.3.3 [Programming Languages]: Language Constructs-obstruct data types; 
data types and structures; F.l.l [Computation by Abstract Devices]: Models of Computation- 
automutu; F.1.2 [Computation by Abstract Devices]: Modes of Computation-alternation uml 
nodeterminism; F.3.3 [Logics and Meanings of Programs]: Studies of Program Constructs- 
type structure 

General Terms: Design, Languages, Theory 

Additional Key Words and Phrases: Abstract data type, behavioral equivalence, distinguishable, 
extraction equivalence, nondeterminism, nondeterministic data type, observable equivalence, signa- 
ture, term algebra, terminal model, value consistency 

1. INTRODUCTION 

1.1 Nondeterministic .Data Types 

This paper develops a theory of data structures in which correctness of an 
implementation can be formally verified, without imposing irrelevant restrictions 
to implementations. Proving correctness is a formal activity. Therefore we must 
be able to lift an arbitrary implementation to the formal level. In order not to be 
forced to specify all details of an implementation, we have to admit nondeter- 
minism on the formal level (cf. [2, Sect. 4.41). It is especially useful in treating 
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88 - Wim H. Hesselink 

things like memory allocation, overflow conditions, and uninitialized fields of 
structured values. 

The leading principle is to avoid premature or unnecessary design decisions. 
Therefore we have a preference for loose specifications, which admit a variety of 
nonisomorphic models (cf. [17, sect. 01). We shall define a nondeterministic data 
type (NDDT) to be a variety of nonisomorphic nondeterministic models of one 
signature. In this definition the specification is deliberately omitted, because we 
want to separate the specification from the object to be specified. 

This paper is an investigation of NDDTs, and not of specification methods. 
We aim at understanding arbitrary NDDTs, so that in the design of useful 
NDDTs one can avoid “the slings and arrows of outrageous nondeterminism.” 
We consider nondeterminism as the rule, and determinism as a property that 
may be specified (cf. [3]). References [lo] and [ 161, our main sources on NDDTs, 
are written from the point of view that the specification determines the set 
theoretic structure of the models (cf. [lo, p. 231). As a result, nondeterminism is 
treated there as an admissible exception rather than as a rule (cf. [2, p. 3281). 

This paper is a complete revision of an earlier paper [7], which was written in 
ignorance of all related work on NDDTs, multialgebras, and observable equiva- 
lence. The most drastic changes, however, are due to the referee who pointed out 
that a correctness criterion for implementations was badly needed. 

1.2 Implementation 

The main theme of this paper is the concept of implementation. In order to 
prevent misunderstanding, we must first distinguish two aspects of the general 
concept of implementation: 

(1) The uertical aspect. In this case two signatures Co and x1 are given. The 
implementation consists of a construction of a model A1 of x1 by means of a 
model A0 of Co. The values of A1 are structured values of A,. The operations 
of A1 are routines that use the operations of Ao. Hidden values of A0 can give 
rise to nondeterminism in A,. 

(2) The horizontal aspect. This aspect is based on the idea of a user of a black 
box, who specifies external values, applies operations, rearranges unknown 
internal values, and observes resulting external values. The box represents a 
given signature C. It is supposed to contain some model of C. A model A of 
C is considered as an implementation of a model B of C, if all finite sequences 
of experiments with model A in the box give results that could have been 
produced by model B. 

Henceforth in this paper, we use the term implementation exclusively in the 
horizontal sense. So it is defined in terms of experiments. In order to get a more 
applicable definition, we shall make an analysis of input/output behavior. With 
the resulting correctness criterion for implementations, it is easy to falsify but 
difficult to verify whether a model A is an implementation of a model B. For the 
latter purpose, we introduce morphisms of nondeterministic models. The exist- 
ence of a morphism M: A + B is a sufficient condition for A to implement B, 
but not a necessary condition. 
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1.3 Separation of Values 

An important aspect of implementations of abstract data types is that different 
values of the implementation can represent the same abstract value. In our 
presentation we do not have such abstract values, but nevertheless different 
values of a model may have the same observable behavior. In such a case, it can 
be useful to treat behaviorally equivalent values as if they were identical. This 
requires the construction of a quotient model. The second part of this paper 
is devoted to the theory of equivalence relations and quotients in the nondetermi- 
nistic case. It turns out that there are two adequate equivalence relations, and 
two related separation criteria. It is proved that the quotient models have the 
expected properties. 

1.4 Contents of the Paper 

The basic definitions concerning nondeterminism, signatures, models, and data 
types are collected in Section 2. As the nondeterminism of different operations 
may be coupled, signatures are extended so that operations can have results in 
Cartesian products, and given external domains are incorporated in the signature. 
In Section 3 we present an example that is a simple case of storage management. 
The axioms of this example are shown to be complete with respect to certain 
intentions of a user. 

In Section 4 we introduce accumulated arrows (a generalization of the concept 
of term algebra), and impiementation and equivalence of models (cf. (2) of 
Section 1.2). Section 5 is devoted to morphisms of nondeterministic models. 
These are more adequate than the homomorphisms of [lo]. Some simple but 
crucial examples of implementations are given. In Section 6 it turns out that our 
morphisms lead to a useful concept of terminal models. If a data type has a 
terminal model, then this model may serve as a specification for all models of 
the type. As an example we treat the data type bag, a common generalization of 
stack and queue. 

Section 7 is devoted to the theory of extraction equivalence of values (cf. [IS]). 
Equivalence relations are used to identify equivalent values. This leads to the 
concept of quotient model. In the case of extraction equivalence, the construction 
of the quotient model is new, and so is the theorem in Section 7.4, that a model 
is implementation equivalent to its quotient under extraction equivalence. The 
proof of this result is surprisingly delicate. 

The slightly stronger concept of observable equivalence (cf. [lo]), is treated in 
Section 8. In [lo] Kapur gave a recursive definition of observable equivalence, or 
rather of its negation. By a variation of Tarski’s fixed point theorem, we prove 
that the recursive equation indeed has a solution. 

Section 9 contains a discussion of inseparability and consistency of values. 
Two values are inseparable if there is no experiment that always shows 
a difference between the two. Consistency is a little bit stronger. It is proved 
in Theorem 9.1 that a model is terminal if and only if consistent values of the 
model are always equal. 

In Section 10 inseparability and consistency are compared with the two 
equivalence relations. Examples are provided to show that the set of implications 

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 1, January 1988. 



90 l Wim H. Hesselink 

derived is complete. Some readers may prefer to look at these examples earlier, 
but a full discussion of the examples requires all the preceding sections. 

1.5 Summary of the Main Results 

Here we list the main innovations of this work with respect to the papers by 
Kapur [lo] and Subrahmanyam [ 161: 

(1) The accumulated arrow (Section 4.2) is a new and powerful formalism that 
enables us to deal with operations that modify more than one argument. 

(2) We give a new formalization of the concept of implementation (Section 4.3). 
(3) Morphisms are an important new tool, especially in the study of implemen- 

tations (see Section 5). 
(4) In Sections 7-10 we provide a mathematical theory of behavior in NDDTs, 

in which the statements of [lo] and [16] have been made rigorous and have 
been extended. Comparison of their concepts leads to yet two other separation 
concepts. This sheds new light upon the notion of behavior for nondetermi- 
nistic mechanisms. 

1.6 Notations for Sets, Functions, and Case Distinctions 

A finite set X with the elements x1, . . . , x, is denoted by X = (x1, . . . , x,). The 
empty set is 0. We say that x is in X, or x E X, to indicate that x is an element 
of the set X. We say that Y is contained in X to mean that Y is a subset of X. 
The subset of X consisting of the elements x that satisfy a condition P(x) is 
denoted by (x E X ] P(x)). We use the standard sets 

BOOL = (true, false], 
NULL = (01, 

NAT = (0, 1, 2, . . .), 
INT = (. . . , -2, -1, 0, 1, 2, . . .). 

We use lambda abstraction to denote mappings 

f = hx.f(x). 

In a formalized case analysis, we use Dijkstra’s guarded expressions 

if +- 0 + fi. 

2. DEFINITIONS FOR NONDETERMINISTIC DATA TYPES 
In this section we present our basic definitions. Since they are not completely 
standard, we start with an informal discussion. We fix our concepts for maps 
and nondeterministic operations. After laying down some conventions, we give 
the formal definitions, followed by a comparison with definitions in related work. 

2.1 Introduction to Models, Signatures, and Data Types 
Let A be an implementation of a data structure, say, of a stack of integers. It 
associates with each of the sorts stack and integer a set of values: stackA, the 
set of the possible states of the stack; and integerA, the set of the implemented 
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integers. It also associates with each of the symbols newstack, push, and pop 
an operation 

newstackA : NULL + stackA, 
pushA : integerA x stackA + stackA, 
POP A stackA + integerA X stackA. 

The mathematical prescription A that associates with a symbol x or f a set zA or 
an operation f” is called a model. We allow Cartesian products as domains and 
as codomains of the operations. The functionalities of an operation f are described 
by strings of sorts, the domain and codomain strings dam(f) and cod(f). 

It is useful to be able to express the fact that certain domains are given. For 
example, in the stack of integers the set of the implemented integers is usually 
given. In that case we say that integer is an external sort with a fixed external 
domain, say, INT, and all models A are supposed to satisfy integerA = INT. 
The formal structure consisting of the sorts, the arrow symbols, the domain and 
codomain designators, and the external sorts and domains is collected in the 
concept of signature. 

Usually, one does not want to consider all models of a given signature, but 
only those that satisfy certain rules. At this stage, however, we do not want to 
specify the language of the permissible rules. We accept every class of models of 
a signature as a genuine data type. 

2.2 Maps and Operations (Nondeterminism) 

We use the terms map, mapping, and function synonymously. We introduce a 
formal symbol error, which is not an element of any of the sets we start with. 
By a partial map f: X --* Y, we mean an ordinary map f: X + Y+, where Y+ is 
the disjoint union Y U (error). (Since Y is not considered as a cpo (cf. [15]), we 
do not use the term bottom. The symbol undefined, however, could be used just 
as well.) 

Informally speaking, an operation f: X + Y is a device that attaches nonde- 
terministically to an element x E X some resulting element y E Y or the result 
error. So f is specified by associating with each element x E X the set of the 
possible results. This set is denoted by f(x). It is a nonempty subset of Y+. 

Definition. An operation f: X + Y is defined to be a map f: X + Q(Y), where 
Q(Y) is the set of the nonempty subsets of Y+. For convenience, we define 
f(error) = (error) for every operation f. So error is propagated (cf. [5]), and 
the operation can be viewed as a map X+ --) Q(Y). If A is a subset of X+, we use 
f(A) to denote the union of the sets f (r) with x E A. If A is nonempty, so is f (A). 

An operation f: X + Y is said to be deterministic if for every element x E X 
the set f(x) contains precisely one element, possibly the element error. An 
operation f: X + Y is said to be total if error is not in f(x) for any element 
x E x. 

Every partial map g: X + Y can be identified with a unique deterministic 
operation f: X+ Y by putting f (.1c) = (g(x)). Conversely, a deterministic operation 
determines a partial map. The ordinary mappings f: X+ Y correspond bijectively 
to the operations that are both deterministic and total. 
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Remark. It is an important decision to require that the result sets f(x) are 
nonempty for every operation f. This condition is equivalent to the law of the 
excluded miracle (cf. [3]). It is the only liveness condition we impose. 

2.3 Notations for Strings and Cartesian Products 

If 5’ is a set of symbols (sorts), then S* denotes the set of all finite strings of 
elements of S. The empty string is denoted by c. Concatenation of strings is 
denoted by means of the infix operator +. If A is a prescription that assigns to 
every element s E S a set s*, and if p = s1 . . . s, is a string in S*, then we write 
p* to denote the Cartesian product set 

p* = s-;’ x * * - x St. 

So, the set p* consists of the elements x = (x1, . . . , x,) with Xi E s$. The 
Cartesian product of an empty string of sets is (by convention) the one-point set 
NULL = (0). So, we always have C* = NULL. 

2.4 Signature, Model, Value, and Type 

Definition. A signature C = (S, F, dom, cod, E, K) consists of a set S of sorts, a 
set F of arrow symbols, two mappings dom, cod: F + S*, a subset E of S, and a 
prescription K that assigns to every element s E E a set sK. The elements of E 
are called the external sorts, and the sets sK are called the external domains. We 
say that f: p + 9 is an arrow of C to indicate that f is in F and that dam(f) = p 
and cod(f) = q in S*. 

In examples, a signature is given as follows: In the denotation of the set S, 
every external sort is followed by the symbol := and the external domain sK. So 
e := ABC means e E E and e K = ABC. In the denotation of F, we write the 
arrows and not only the arrow symbols. In this way the data E, K, dom, and cod 
are incorporated in the denotations of S and F. For an example, see Section 3.1. 

Definition. A model A of C is specified by associating with every sort s E S a 
set s* such that s* = sK whenever s is in E, and associating with every arrow 
f: p -9 q of C an operation f*: p* + q*. Note that p and q are strings, so that p* 
and q* are Cartesian products (cf. Section 2.3). A value of a model A is defined 
to be a pair (x, p) with p E S* and x E p*. Usually, the value (x, p) is identified 
with the element 3~. One has to be careful, however, if the sets s* are not disjoint. 

A string of sorts p is said to be external if p consists of external sorts. It is 
called internal otherwise. A value x E p* is said to be external (internal) if p is 
external (internal). 

A nondeterministic data typk (NDDT) is defined to be a pair (C, T), where 2 
is a signature and T is a class of models of 2. 

2.5 Comparison with Definitions in Related Work 

Data types used in practice frequently have procedures with more than one 
output parameter. In almost all theoretical work on abstract data types, only one 
output parameter is permitted. One of our results is that this restriction is not 
essential. Formally speaking, let a signature C be called focused if the codomain 
string cod(f) of every arrow f has length one. In [ 10, p. 261, it is argued that a 
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reduction to a focused signature is always possible, either by modeling an 
operation with results in a Cartesian product as a number of separate operations 
or by introducing the Cartesian product as a new type. In the nondeterministic 
case, the first alternative is not satisfactory, as it does not allow coupling between 
the nondeterministic choices (cf. [8, 1.3.31). The second alternative is theoreti- 
cally sound, but has the disadvantage of introducing new sorts, new arrows, and 
new axioms. Therefore we have chosen to work with not necessarily focused 
signatures. For convenience, we have incorporated external sorts and domains 
in the signature. These correspond to the visible sorts of [4] and the global 
sorts of [16]. 

Let a model A of 2 be called deterministic (total) if all its operations are 
deterministic (total). The C-algebras of [17] are deterministic models of focused 
signatures. The data types of [16] are total models of focused signatures. In fact, 
[lo] and [16] are our only sources with nondeterministic models. The concept of 
multialgebra (cf. [ 131) corresponds to a nondeterministic, total model of a focused 
signature with only one sort. As a step toward the admittance of error, [6] 
admits operations f such that the set of results f(x) may be empty. However, this 
does not allow a nondeterministic choice between error (for example, overflow) 
and a meaningful value (see also [8, pp. l-121). 

As for our definition of types, we refer to the introduction of [17] for arguments 
leading to the admittance of a wide class of axioms and a variety of nonisomorphic 
models. In fact, we go further: We put no conditions on the class T of an NDDT. 
Consequently, we have all the freedom to introduce hidden or auxiliary functions 
in the axioms that determine a data type. For an example see Section 6.4. 

3. AN EXAMPLE OF NONDETERMINISTIC STORAGE MANAGEMENT 

In this section we show that our formalism is sufficiently rich for an elegant 
formalization of a simple case of storage management. We specify an NDDT 
pointer table, which models a table of pointers to items, such that every item can 
get a unique position in the table. One may think of a lexicographic tree or a 
hash table (cf. the programs 4.5 and 4.8 of [18]). I n most applications the position 
in the table is also used to attach certain attributes to the items. This extension, 
however, gives no extra complications. 

The example shows that our extension of the usual definitions is not empty. 
In fact, the signature is not focused, and many relevant models are not total and 
not deterministic. In [8, l-3.21 a similar example is given, attributed to L. Morris. 
The class T of the acceptable models is characterized by axioms. We show that 
the axioms are complete with respect to certain formalized intentions of the user. 

3.1 The Data-Type Pointer Table 

Let ITEM be a given set of values (the items). The signature C is given by 

S = ( item := ITEM, table, pointer ), 
F = (create : & + table, 

key : pointer table + item, 
position : item table + pointer table ). 
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The data-type pointer table is the pair (C, T), where T is the class of the models 
A of C that satisfy the following axioms: 

(1) The operation keyA: pointerA X tableA + ITEM is deterministic (so it may 
be considered as a partial map (cf. Section 2.2)). 

(2) Let t E createA( Then t # error, and keyA(p, t) = error for every 
element p E pointerA. 

(3) Let keyA(p, t) = keyA(q, t), where p, q E pointerA and t E tableA. Then 
p = q or keyA(p, t) = error. 

(4) Let (p, tI) be in positionA(r, to). Then we have 

(a) keyA(p, tl) = X; and 
(b) keyA(q, tl) = keyA(q, to) whenever q #p or keyA(q, to) # error. 

Remark. The operation positionA is always permitted to yield error, which 
means overflow. On the present level of abstraction, we do not want to specify 
acceptable overflow conditions. Note that the assumption in axiom 4 implies that 
no error has been delivered. 

3.2 Intuitive Completeness 

It is not obvious that all our implicit assumptions about tables of pointers to 
items are implied by the above axioms. As long as the assumptions are implicit, 
such a thing cannot be verified. Therefore we formalize the intended interpreta- 
tion of the elements t of the sets tableA. The interpretation oft is defined to be 
the operation 

h: pointerA + ITEM with h(p) = keyAh t). 

Axiom 1 requires that h is a partial function. Axiom 2 says that the operation 
createA always yields a table t that is interpreted as the function h with an 
empty domain of definition. Axiom 3 says that the interpretation h of any 
table t must be injective on its domain of definition (so that it is a bijection 
between the occurring pointers and the occurring items). As for axiom 4, let 
(p, tl) be in positionA(x, to), and let & and hl be the interpretations of to and tl, 
respectively. Let 

Vi = (q E pointerA I hi(q) # error] 

be the domain of definition of hi. Axiom 4 says that VI is the union of V. and 
(p), that hl (p) = X, and that hl and ho agree on the set Vo. 

This shows that the interpretation h of every table t that can be constructed 
is determined inductively, apart from the choices of the new pointer values. So 
the axioms are complete with respect to the intended interpretations of the 
tables. 

3.3 Special Mathematical Models 
The analysis of Section 3.2 suggests certain special models in which the tables t 
coincide with their interpretations h as defined in Section 3.2. We construct 
these models as follows: Let P be an arbitrary set, let H be the set of the partial 
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mappings h: P + ITEM that are injective on their domain of definition 

V = (p E P 1 h(p) # error], 
and let ho E H be the partial map with the empty domain of definition. The 
model C of C is defined by 

pointerA = P, 
tableA = H, 

createA = (ho), 
keyA = A(P, h) - h(p), 

positionA = X(x, h) . (error) 
U {(P, h) E P x HI WP) = x 

A ((q Z P V h(q) Z error) * k(q) = h(q))l. 

It is easy to see that C belongs to class T. The operation createA is deterministic. 
The operation positionA is as nondeterministic as possible. If pointer was 
an external sort with external domain P, then model C was terminal (cf. 
Section 6.3). Since sort pointer is internal, however, class T does not have a 
terminal model. A proof of this fact falls outside the scope of this paper. 

4. ACCUMULATED ARROWS, IMPLEMENTATIONS, 
AND EQUIVALENCE OF MODELS 

In an earlier version of this paper [7], it was suggested that an implementation 
of one model by another model was the same as a homomorphic relationship. 
This suggestion is not true, as emphasized strongly by one of the referees. Here 
we give a formal definition of implementation in terms of input/output behavior. 

4.1 Input/Output Behavior of Models 

Let A be a model of a given signature C. A user of model A has the disposal of a 
black box that contains the model. He commands the model by means of the 
signature. He only knows the names of the operations and their functionalities, 
and the external values. He uses the model by specifying external values, applying 
operations, rearranging unknown internal values, and observing external values 
that are delivered and errors that occur. 

In order to describe this input/output behavior we need a generalization of the 
concept of term algebra (cf. [17]), or the derived signature (cf. [4, p. 2691). The 
usual term algebra is not satisfactory for two reasons: First, our signature is not 
necessarily focused (cf. Section 2.5). This fact adds a considerable complexity. 
The second reason is the nondeterminism: A copy of a result of an operation 
may differ from another result of the same operation with the same argu- 
ments. Therefore we start from scratch. The set of arrows F of the signature 
2 is extended to a set of accumulated arrows. To every model A and every 
accumulated arrow f: p 4 q, we associate an accumulated operation f”: pA + qA. 
The input/output behavior of A is determined by the effects of the accumulated 
operations on the external values. 

Note the following difference of our approach with other approaches. Even if 
one starts with a focused signature (cf. Section 2.5), the codomain string q of an 
accumulated arrow f: p + q can be arbitrarily long. Therefore accumulated 
operations can deliver results of arbitrary complexity. 
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4.2 Accumulated Arrows and Accumulated Operations 

Definition. The accumulated arrows of the signature C, and the accumulated 
operations of the model A of C are defined inductively in three steps: 

Step 1. Every arrow f: p 4 q of C is an accumulated arrow. The corresponding 
accumulated operation f”: p* + q* is the given operation f* of model A. 

Step 2. Partial composition. Let f: p +- q + r and g: r + s + t be accumulated 
arrows, where + stands for concatenation (cf. Section 2.3). Then we have an 
accumulated arrow 

Mrlf): P + s -+ 4 + t. 

The corresponding accumulated operation 

(g[r]f)“: p* X sA + q* X t* 

is given as follows: A pair (u, u) E qA x t* is an element of the set (g[r] f)*(x, y) 
if and only if there exists z E r* such that (u, z) is in f*(x) and u is in g*(z, y). 
The set (g[rJf)“(x, y) contains the element error, if and only if f”(x) contains 
error, or f*(x) contains a pair (w, z) such that g*(z, y) contains error. 

Step 3. Rearrangement. Let p and q be strings of sorts, say, p = p1 . . - pm and 
q = q1 . . . qn. Let a mapping b: (1 -. . n) + (1 - - - m) be given such that 
Pb(i) =qiforallindicesiE (1 --. n). Then we have an accumulated arrow 

(qlbb): P + 9. 

The corresponding accumulated operation 

(qlbb)*: P* ---, q* 

is the mapping (cf. Section 2.2) that is defined by 

(qlb[p)*h --- GJ = (~1 .-. ~nh) with yi = Xb(i). 

Remarks 

(1) If in Step 2 the strings q and s are empty, then (g[r] f) stands for the ordinary 
composition. If r = E (cf. Section 2.3), then (g[c]f) stands for the natural 
operation between the Cartesian products. 

(2) Rearrangement unifies three kinds of transactions, namely, permutation of 
variables, copying of variables that are needed more than once, and forgetting 
of variables that are no longer needed. If the order of the variables does not 
allow a partial composition, one can first apply a rearrangement. 

4.3 The Concept of Implementation 

Let A and B be models of 2. If f: p ---) q is an accumulated arrow between external 
strings p and q, the sets p* andp’ are both equal to the set pK, which is a product 
of external domains. Similarly, q* and qB are equal to qK. Therefore we may 
compare the operations 

f”, f”: pK + qK. 
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Definition. Model A is said to be an implementation of B if f*(x) is a subset of 
f’(x) for every accumulated arrow f: p + q between external strings and every 
value x E pK. 

This definition differs completely from the definitions in [lo] or [16], so it 
deserves a justification. Assume that a user has a black box, which contains a 
model of 2 that is specified as the model B. Assume that the implementer of the 
box has provided a model A. The user has no grounds to complain as long as 
every accumulated operation with an arrow f: p + q between external domains 
pK and qK, applied to a value x E pK, yields some value y E fB(n). The box can 
deliver every element y E fA(x). So it is guaranteed that the user cannot complain 
if and only if f*(x) is a subset of fB(x) in every such case. 

Here, as one of the referees remarked, we assume that every possible value is 
acceptable under all circumstances. In particular, we do not want to guarantee 
that every possible value will eventually occur. So fairness requirements are 
excluded. In fact, we only consider finite calculations. Compare (2) of Section 1.2 
and Section 4.5. 

4.4 Implementation Equivalence 

Definition. Two models A and B of C are said to be implementation equivalent 
if either model is an implementation of the other model (cf. Section 4.3) Equiv- 
alently, A is implementation equivalent to B if and only if fA = f” for every 
accumulated arrow f: p + q between external strings. 

Remark. This concept of equivalence can be characterized as behavioral equiv- 
alence with respect to inputs and outputs of observable sorts (cf. [14, 2.41). It 
may happen, however, that implementation-equivalent models have different 
observable behavior (cf. remark (2) of Section 5.4). 

4.5 An Example of Unbounded Iteration 

Accumulated arrows between external strings may be considered as finite pro- 
grams without control structures. One could argue that control structures should 
be admitted. Admission of conditional expressions or bounded iterations is 
harmless; as in Section 4.3 and 4.4, we consider arbitrarily complex accumulated 
arrows. Admission of unbounded iteration in the formalism of Section 4.2 would 
give a different theory. This is shown in the following example: Let C be the 
signature of the shaking urn of Booleans, with 

S = ( urn, boo1 := BOOL ), 
F = ( fill : E + urn, 

shake : urn +- urn, 
draw : urn +- boo1 ). 

Let A and B be the models of C given by 

urnA = NAT, urnB = NAT, 
fillA = NAT, fillB(0) = NAT, 
shakeA = Xn.(i IO I i I n], shakeB = Xn.(i 1 i = 0 V i < n], 
drawA = Xn.{(n > O)], drawB = Xn.((n > 0)). 
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One verifies that A and B are implementation equivalent (cf. Section 4.4). A 
crucial difference between the models A and B is shown by the following program: 

P = 1 [ n := fill(O) ; 
do draw(n) + n := shake(n) od; 
draw(n) ] I. 

When applied to model A, program P need not terminate. This means that 
delivery of a result is postponed indefinitely (not that error is yielded). When 
applied to model B, however, the program will terminate and yield the value 
false. 

However, if a user accepts a black box with the specification B, then the user 
accepts arbitrarily long delay. So, if the box is equipped with model A, the user 
will never have proof that the box does not function as specified. Therefore we 
feel justified to consider A as an implementation of B. 

5. MORPHISMS OF MODELS AND SUBMODELS 

In general, the only direct way to prove that model A is an implementation of 
model B is by supplying a systematic interpretation M, which assigns to every 
value x E sA a corresponding value y E P. Consequently, if p is a string, an 
element x E pA has an image element y E pE. If f: p + q is an arrow, the set 
of results r(x) in qA is to be mapped into the set of results fB(y). Since users 
have complete access to external domains, the interpretation has to be the 
identity on the external domains. Such systematic interpretations will be 
called morphisms of models. We shall prove that the existence of a morphism of 
models M: A + B is a sufficient (but not necessary) condition for A to be an 
implementation of B. 

5.1 Specialization, Image, and Composition of Operations 

Definition. Let f, g: X ---, Y be operations. We say that f is a specialization of g 
(notation f << g) if f (x) is a subset of g(x) for every element x E X. One might 
say that g is more nondeterministic than f (cf. [16]). 

The composition of operations f: X + Y and g: Y -+ Z is defined as the 
operation g 0 f: X + 2 with g 0 f(x) = g( f(x)). Note that f(x) is a nonempty 
subset of Y+, so that g( f (x)) is a nonempty subset of Z+ by Section 2.2. Since 
maps are special cases of operations (cf. Section 2.2), the composition also makes 
sense in the case that for g is a map. If both f and g are maps, the composition 
of the maps f and g is the map corresponding to the composition of the operations 
f and g. So no ambiguity can arise. 

5.2 Morphisms of Models 

Let A and B be models of a given signature 2. Let M be a prescription that 
assigns to every sort s E S a map s”: sA +- P. If p = s1 - + . s, is a string of sorts, 
we define the map between the Cartesian products (cf. Section 2.3), given by 

P%l --* Gn) = (Y1 -*a Ym) with yi = SM(Xi)* 
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Definition. The prescription M is said to be a morphism of models M: A + B 
if it satisfies the following two conditions: 

(1) Ifs is an external sort, then s”: sK ---) sK is the identity map of the external 
domain sK. 

(2) If f: p +- q is an arrow of C, then we have a specialization of compositions 
(cf. Section 5.1) 

4 M 0 f” << f” 0 pM: pA + qB, 

where the operations are shown in the following diagram: 

PA 
fA ,qA 

If x E pA is a value of A, the value p”(x) E pB is called the M-image of x in B. 

The morphism of models M: A + B is said to be strict if in the above condition 
(2) we always have an equality qM 0 f” = f” 0 p”. A model A is said to be a 
submodel of B if sA is a subset of sB for every sort s and if the system of inclusion 
maps sA + sB defines a morphism of models A + B. It is called a strict submodel 
if the inclusion morphism A + B is strict. 

Remarks. Strict morphisms are called homomorphisms in [6] and [lo, p. 2281. 
Morphisms correspond to the weak homomorphisms mentioned in [6]. The 
comparison of models with the same domains in [lo, p. 941 is a special kind of 
morphism or submodel relationship. We stress morphisms rather than strict 
morphisms, as they form a more powerful tool to prove implementation or 
equivalence of models. See remark (1) of Section 5.4 and the proof of the theorem 
in Section 7.4. The class of models of a given signature, with morphisms of 
models as defined here, forms a category (cf. [ll]). 

5.3 Reachable Values, the Term-Generated Submodel 

Definition. Let A be a model of C. A value x E pA is said to be reachable if 
there is an accumulated arrow f: r + p from an external string r, and an external 
value w E rK, such that x is in r(w). The term-generated submodel B of A is 
defined as follows. Ifs is a sort, the subset sB consists of the reachable values of 
sA. If f: p + q is an arrow and x is in pB (cf. Section 2.3), then $(x) is defined as 
the set fA(x). In fact, one verifies that r(x) is contained in qB (note that p and q 
are strings of sorts). It follows that B is a strict submodel of A (cf. Section 5.2). 

LEMMA. Let M: A + B be a morphism of models, and let f: p + q be an 
accumulated arrow (cf. Section 4.2). Then we have 

(a) qM 0 f” <<f” 0 p”: pA + qB; 
(b) if f is a rearrangement arrow, then qM 0 fA = f” 0 p”; and 
(c) if morphism M is strict, then qM 0 fA = f” 0 p”. 

SKETCH OF PROOF. Part (b) is easy. The proofs of (a) and (c) consist of 
straightforward inductions on the complexity of the accumulated arrow f. 

THEOREM. Let M: A + B be a morphism of models of C. 
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(a) Then A i-s an implementation of B. 
(b) If the morphism M is strict, then A and B are implementation equivalent. 

PROOF. Let f: p + q be an accumulated arrow between external strings. Then 
pA = pK, q’ = qK, and pM and qM are the respective identity maps. By the above 
lemma, we have 

f” << f”: pK + qK, 

with equality f” = fB in case (b). q 

5.4 Examples of Implementations 

Let the signature C be given by 

S = ( urn, boo1 := BOOL ), 
F = ( fill : E +- urn, 

draw : urn + boo1 ). 

Let A be the model of C defined by 

urnA = BOOL, 
fill”(O) = BOOL, 
draw A = hv.if v + BOOLO TV -+ (false) fi. 

Let B and C be the submodels of A given by 

urnB = (true), fillB(0) = {true], drawB = Xv BOOL- 
urnC = BOOL, fill’(O) = BOOL, drawC = Xv:(v]. ’ 

Since they are submodels of A, models B and C are implementations of A (cf. (a) 
of the Theorem in Section 5.3). We show that A and B are not implementations 
of C. In fact, let copy be the rearrangement arrow 

copy = (urn urn]b[urn): urn +- urn urn 

induced by the map b: (1,2] + (1) with b = Xi.1. We form the partial compositions 
(cf. Section 4.2) 

f2 = (copy[urn]fill) : + urn urn, 
dz = (draw[E]draw) : urn&urn + boo1 bool, 
e2 = (dz[urn urn]fi) : e + boo1 bool. 

The accumulated arrow e2 is between external strings. It distinguishes the models 
A and B from C. In fact, the operations 

e?, ef, eg: NULL + BOOL X BOOL 

satisfy 

et(O) = e:(O) = BOOL x BOOL e:(O) = ((v, v) 1 v E BOOL]. 

This proves that A and B are not implementations of C. 
Models A and B are implementation equivalent. In fact, since B is a submodel 

of A, it remains to be seen that A is an implementation of B. This is done by 
constructing a morphism M: A + B. By condition (1) of Section 5.2, a morphism 
M: A + B is determined by the map between the internal domains 

urn? urnA + urnB. 
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Since urnB = (true], we have to define urnM = Xu.true. Condition (2) of 
Section 5 remains to be verified. There are two arrows to consider. One verifies 
that the arrow symbol fill leads to the equality of operations 

urnM 0 fillA = fillB 0 e”: NULL + {true). 

Similarly, if the identity map of BOOL is denoted by id, the symbol draw leads 
to the specialization 

id 0 drawA +z drawB 0 urn”: urnA + BOOL. 

This shows that M: A + B is a morphism of models. Therefore the models A 
and B are implementation equivalent. 

Remarks 

(1) Although A and B are implementation equivalent, B is not a strict submodel 
of A, and the morphism of models M is not strict. So, the implication in (b) 
of the theorem in Section 5.3 cannot be reversed. 

(2) Under the fairness assumptions, models A and B can be distinguished by 
observations. Let us assume that, in every set of sufficiently many experi- 
ments, all possible results of an operation will be found. Then a user can 
discover that the model A has a certain value u E urnA with drawA = 
(false], whereas B does not have such a value. 

(3) Models A and B can be transformed in process graphs (cf. [l]) in the following 
way: 

A: 

I 

filJ 

fill I 
% false 

draw 

I draw 
true 

B: *fill 

I 

dq false 
draw 

true 

It is easy to verify that the two graphs are not bisimilar (cf. [l, 1.2.2.11). In 
fact, bisimilarity is more closely related to observable equivalence of models, 
a concept that we do not formally define in this paper. 

(4) If, for reasons of memory sharing, users are forbidden to copy internal values, 
then the model C cannot be distinguished from A and B. This argument 
leads to a different theory, where the rearrangement maps b of Step 3 of 
Section 4.2 have to be injective. 

5.5 Equivalent Implementations without a Morphism 

We construct two deterministic models of the data-type pointer table of 
Section 3. We forbid overflow by adding the following axiom: 

Axiom The operation position is total (cf. Section 2.2). 
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Assume that the set ITEM is countable, so that we may choose an injective 
mapping 

hash: ITEM + NAT. 

It is easy to specify a model A of a pointer table without overflow, which has 
pointerA = NAT and which models a hash table with hash function hash. We 
can also specify a model B with pointe@ = NAT, which models a stack 
implementation based on an infinite array of items indexed by the set NAT. The 
models A and B are implementation equivalent. In fact, one can show that all 
models of a pointer table without overflow are implementation equivalent. 
However, there does not exist a morphism of models between A and B because 
there is no adequate correspondence between the sets pointerA and pointerB. 

If C is the model of Section 3.3, based on the set P = NAT, then we have 
unique morphisms M: A + C and N: B + C that induce the identity maps on 
the set NAT. So the two deterministic models can be compared by means of the 
nondeterministic model C. 

6. TERMINAL MODELS AND SPECIFICATIONS: THE DATA-TYPE BAG 

6.1 Complete Determination or a Universal Model 

The concept of sufficient completeness of an axiomatization (cf. [5]) has the 
following analogue in our model-theoretic situation: A nondeterministic data 
type (C, T) can be called completely determined if all models A in T are 
implementation equivalent, and if for every model A in T and every accumulated 
arrow f: p --j q between external strings the operation fA: pA -+ qA is deterministic. 

Although this leaves room for unobservable nondeterminism, we prefer not to 
strive for complete determination. In fact, we prefer a situation where T contains 
one “universal” model B such that all models A E T are implementations of B. 
Then the model B may serve as a specification of any model in T (cf. [9]). 

It is an important question of programming methodology how to design and 
specify relevant classes T. In our experience it helps to look for the existence of 
a nice universal model B. As soon as B is determined, we prefer to have the class 
T as wide as feasible. 

Definition. The liberal class L(B) is defined to consist of all models A that 
admit some morphism of models M: A +- B. 

In some cases, the class L(B) turns out to have a nice axiomatization. In 
principle, the class of all implementations A of B is more important, but usually 
this class is not tractable. The concept of universality suggested above is tech- 
nically inconvenient. It lacks uniqueness. In order to express uniqueness, we 
introduce isomorphisms of models. Then we introduce terminality of models, as 
a technical version of universality. This concept will be illustrated in the data- 
type bag. For comparison we also discuss initial models, which leave no room for 
nondeterminism. 

6.2 lsomorphisms of Models 

Definition. A morphism of models M: A + B is called an isomorphism if there 
is a morphism N: B + A such that the compositions N 0 M and M 0 N are the 
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respective identity morphisms of A and B. Models A and B are said to be 
isomorphic if there exists an isomorphism M: A + B. It is easy to prove that a 
morphism of models M: A += B is an isomorphism if and only if M is strict and 
all maps s”: sA + sB with s E S are bijective (cf. [7, 2.61). 

6.3 Terminal Models and Initial Models 

Definition. Let (C, 2’) be an NDDT. A model B E T is said to be terminal 
in T if for every model A E T there is precisely one morphism of models M: 
A + B. A model C E T is said to be initial in T if for every model A E T there is 
precisely one morphism N: C +- A. It is well known that, if T has a terminal 
model B, then this model B is unique up to isomorphism, and similarly for an 
initial model C (cf. [7, 10.11). 

Remarks. Since all models in T are implementations of B, the model B is 
universal in the sense of Section 6.1. Some NDDTs have no terminal model. For 
example, the pointer table of Section 3 does not have a terminal model. This is 
proved by means of the mathematical models of Section 3.3. 

On the other hand, all models of Tare implemented by C. So, model C may be 
useful, if it exists, but leaves no freedom to the implementer. It is a “universal 
implementation.” In fact, if class T contains all submodels of its models, it can 
be proved that an initial model in T is term generated and deterministic. 

6.4 The Nondeterministic Data-Type Bag 

Nondeterminism enables us to make a common generalization of stacks, queues, 
and priority queues. We call it bag. Let ITEM be a given external domain. The 
signature C is defined by 

S = ( item := ITEM, bag ), 
F = ( create : E + bag, 

push : item bag + bag, 
POP : bag + item bag ). 

The class T consists of the models A of C that satisfy the following axioms: 

(1) If u E createA( then u # error and popA = (error). 
(2) There is an auxiliary function count: ITEM X bagA + NAT, such that 

every element u E bagA satisfies the following conditions: 

(a) The set ] u ] = (X E ITEM 1 count(x, u) > 0) is finite. 
(b) If error E pop”(u) then ] u ] is empty. 

(c) If (x, w) E popA( then 

count(x, u) = count& w) + 1, and 
count(y, u) = count(y, w) for every y # 1~. 

(d) If w E pushA& u) is not error, then 

count& w) = count& u) + 1, and 
count(y, w) = count(y, u) for every y # X. 
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6.5 The “Universal Bag” 

The data type bag has a terminal model B, such that the type is the liberal class 
L(B). The idea of the construction is that the states of the bag are characterized 
by the function count. We let H be the set of the functions f: ITEM --, NAT 
such that the support set 

IfI =(xEITEM]~(x)>O) 

is finite. Functions f, g in Hare added in the obvious way. They can be subtracted 
in H if the difference is everywhere nonnegative. We use the Kronecker delta 
function 6: ITEM + H given by 

6 = Xx.(Ay.(if x = y + 1 0 x # y +- 0 fi)). 

Let B be the model of C with bag = H and the operations 

createB(0) = (Xx.0), 
pushB(x, f) = (error, f + 6(x)], 

pop”(f) = if 1 f 1 = 0 -9 (error} 
pi Ifl #@+kf-~b))IXE Ifll 

The model B belongs to the class T. In fact, one uses the function count = 
Mx, f ).f (xl. 

THEOREM. The model B is a terminal model of the class T of Section 6.4. The 
class T is equal to the liberal class L(B). 

Comment. The proof is straightforward. It is important as an illustration of 
the concept of morphism of models. It is left out for reasons of limitations 
of space. 

7. EXTRACTION EQUIVALENCE OF VALUES 

In practical implementations of data types, it is often the case that an abstract 
value has more than one concrete representation. This happens, for example, in 
the array implementation of a stack, where the array values beyond the stack 
pointer are neglected. One may adopt the viewpoint that values are equal if they 
have the same externally observable properties. For other purposes, however, it 
may be better to consider such values as different but equivalent values. In this 
way, one may arrive at the notion of behavioral equivalence. Surprisingly, there 
are two different formalizations of this notion. In this section we investigate the 
notion of extraction equivalence (cf. [16, p. 1531). In [lo] a finer relation is 
introduced, under the name of observable equivalence. We come back to that 
relation in Section 8. 

The main purpose of an equivalence relation is that it enables us to treat 
equivalent values as if they were identical. So, we want to form a quotient model 
and to prove that this quotient model is implementation equivalent to the original 
model. This step is not taken in [16]. In this section we develop the adequate 
theory and give the delicate points of the proof. 
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7.1 Relations on a Model 

Recall that a (binary) relation R on a set X is a subset of the Cartesian product 
set X X X. The relation R is said to be the identity relation if R consists of the 
pairs (x, 3~) with x: E X. The relation R is said to be an equivalence relation if it 
satisfies the following conditions: 

(1) If x E X, then (3c, x) E R. 

(2) If (x, y) E R, then (y, x) E R. 

(3) If (x, y) and (y, z) are in R, then (3c, z) is in R. 

An equivalence relation R on a set X induces a partition of X in equivalence 
classes 

x/R = (Y E XI b, Y) E RI. 

We have x/R = y/R if and only if (x, y) E R. The set of the equivalence classes 
is denoted by 

X/R = (x/R 1 x E X). 

Definition. Let A be a model of a signature C. A relation R on model A is 
defined to be a prescription that assigns to every sort s a relation sR on the 
set sA. The relation is said to be internal if sR is the identity relation on .P 
whenever s is an external sort. The relation is said to be an equivalence relation 
if it is internal and sR is an equivalence relation on sA for every sort s. 

If R is a relation on a model A, and p is a string of sorts, say, p = s1 . . . s,, 
then two values x, y in pA are said to be R-related if for every index i in 
(1 *a* m) the pair of the ith components (xi, yi) is in sf. The element error is 
said to be R-related to itself, and not to any value of A. Two subsets X and Y of 
(pA)’ are said to be R-related if every element of X is R-related to some element 
of Y and vice versa. 

7.2 Extraction Equivalence of Values: Extractable Models 

Definition. Let A be a model of C, and let s be a sort. Values x, y in sA are said 
to be extraction equivalent if for every accumulated arrow f: s + p + q to an 
external string q and for every value z E pA we have the equality of sets 

fA”(x, 2) = fA(Y, 2). 

Clearly, extraction equivalence is an equivalence relation on model A. Model A 
is said to be extractable if extraction-equivalent values are always identical. 

Remark. Extraction equivalence as defined here is a variation of [16, p. 1511. 
Our accumulated arrows have the possibility to copy internal values and to 
deliver a string of external values. It is necessary to allow internal probing 
parameters as the value z in the above definition, in order to obtain results as 
the lemma below and as the theorem in Section 7.4. 

LEMMA. Let R be the extraction-equivalence relation on a model A. Let f :p ---, q 
be an accumulated arrow to an external string q. If x, y in pA are R-related, then 
r(x) = fA(Y)- 
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PROOF. Assume that p = s1 . . . sn. Let xi and yi be the respective components 
of x and y in the domain sf . For every index i, we have (xi, yi) E s”. By n 
applications of the definition, we get 

fAb> = fA(Yl, x2, *a., %A = a** = fA(Yl, .f .,yn-1, X") = fA(Y). 

Here we use rearrangement to justify the replacement of the ith component 
instead of the first component. In each case the n - 1 other components are used 
as probing parameters. Cl 

7.3 Construction of the Quotient Model A/R 

Let R be an equivalence relation on a model A. We construct the quotient 
model A/R as follows: For every sort s, we let sAjR = sA/sR be the set of the 
sR-equivalence classes in sA (cf. Section 7.1). If s is an external sort, then sR is 
the identity relation on 8. So, in that case we may identify 

sAjH = SK/identity = sK. 

Let the sR-equivalence class of a value x be denoted by .?(x) = x/sR in sAIR. Then 
we have a system of maps s”: sA + sAIR. For every string of sorts p, we get an 
induced map p”:pA dpAjR (cf. Sections 2.3 and 5.2). Let f: p + q be an arrow 
of C. Then we define the operation 

f”/“: P.WR + qNR by fA’R(y) = U bM 0 fAb> Ip”b) = ~1. 

One verifies that A/R is a model of C (it is called the quotient model), and that 
M: A + A/R is a morphism of models, the quotient morphism. 

Remark. This construction already occurs in [13]. In our situation, however, 
we admit error, we have many sorts, and we have fixed external domains. For 
future reference we characterize the quotient model by the following universal 
property. We omit the proof, which is standard (cf. [7, 8.61). 

PROPOSITION. Let R be an equivalence relation on a model A. Let M: 
A + A/R be the quotient morphism. Let N: A + B be a morphism of models, such 
that every pair of R-related values of A has the same N-image in B. Then there is 
precisely one morphism of models H: A/R + B with N = H 0 M. 

7.4 Associativity of Partial Compositions: An Auxiliary Result 

Consider accumulated arrows 

f CPO -+ q0 + rl + r2, 

g : r2 + p1 + q1 + r0, 

h: ro+rl+p2+q2. 

Using implicit rearrangements we define the partial compositions 

Mr21f) :p0 + p1 -+ q0 + q1 + r0 + rl, 
(hhk):rl + r2 + PI + PZ -+ 41 + 42, 

and the triple compositions 

k = Wo + r&hlf)):p~ + PI + PZ -+ qo + 91 + 42, 

m = ((W&)[rl + r2lf) :PO + PI + PZ -+ 40 + a + a. 
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We claim that for every model A of C the operations kA and mA are equal. In 
fact,letx=(3CO,X1,X2)withXiEp4,andy=(y,,y,,y,)withyiEq4.Thenyis 
an element of kA(x) (and also of mA(x)) if and only if there exists z = (20, 21, 22) 
with zi E r” such that 

(Yo, 21, 22) E fA(xd A (Yl, 20) E gA(z2, Xl) A y2 E hAbrJ, 21, x2). 

The occurrences of error in kA(x) and m”(x) are also equal. This proves 
that kA = mA. 

THEOREM. Let R be extraction equivalence on a model A, and let M: A +- A/R 
be the quotient morphism to the quotient model A/R. 

(a) If f: p -+ q is an accumulated arrow to an external string q, then fAiR 0 pM = 
fA:pA + qK. 

(b) The models A and A/R are implementation equivalent. The model A/R is 
extractable. 

PROOF 

(a) Since M is a morphism of models and q is an external string, we have the 
specialization 

f” = qM 0 f” << fAIR 0 pM: pA + qK. 

So it remains to be seen that fAIR 0 pM << fA. This is done by induction 
on the complexity of the accumulated arrow f. By (b) of the lemma in 
Section 5.3, rearrangements inside f are harmless. Therefore, by Section 7.4, 
we may assume that 

f = (Wkh PO + PI + qo + 41, 

where g: p. + q. + r is an ordinary arrow and h: r + p1 + q1 is an accumulated 
arrow. By induction we may assume that 

hAjR 0 (r + pl)M = hA: rA x p;’ +- qf. 

LetxEpAandvEfA’Ro p““(x). We have to show that v is in r(x). Write 
x = (x0, x1) and v = (~0, ~1) with xi E pf and vi E qf. Put u = (uo, ul) with 
Ui = PM&), so that u E fAIR(u). By the definition of partial composition, 
there exists w E rA’R such that (vo, w) E gAIR(uo) and v1 E hA’R(w, ul). Since 
g is an ordinary arrow of C, the set gAIR(uo) is the union of the M-images of 
the sets gA(x’) with pf(x’) = u. (cf. Section 7.3). Therefore there exists 
x’ E p$’ and (y, z) E gA(x’) such that the M-images of x’, y, z are ~0, vo, w, 
respectively. Since q. is an external string, we have y = vo. The induction 
hypothesis implies that 

hA’R(w, ul) = hA(z, xl). 

Therefore u1 is in hA(z, x1). This proves that u is in fA(x’, x1). Having the 
same M-image h, the elements x’ and x0 of p$’ are R-related. So it follows 
from the lemma in Section 7.2 that fA(x’, x1) = fA(xo, x1). This proves that v 
is in r(x), as required. The error occurrences are left to the reader. 
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(b) If f: p + q is an accumulated arrow between external strings p and q, then 
part (a) implies that fAiR = .A f . This proves that A and A/R are implementation 
equivalent. Let s be a sort, and let u, u E sAIR be extraction equivalent. 
Choose X, y E sA with M-images u, u, respectively. Using part (a) one proves 
that x and y are extraction equivalent. This implies that 

u = P(n) = P(y) = u. 0 

7.5 The Extractable, Term-Generated Subquotient 

Every model A is implementation equivalent to an extractable and term- 
generated model. For example, let B be the term-generated submodel of A, and 
let R denote implementation equivalence on B. Then B/R is extractable and term 
generated. By the theorems in Sections 5.3 and 7.4, it is implementation equiv- 
alent to A. Being a quotient of a submodel, it is called a subquotient. 

8. OBSERVABLE EQUIVALENCE OF VALUES 

As stated in Section 7, the idea of behavioral equivalence has two different 
formalizations. In this section we investigate observable equivalence as intro- 
duced in [lo]. The definition of [lo] is indirect and based on mutual recursion. 
Under an unnecessary hypothesis, the existence of a quotient model is proved. It 
is postulated that this quotient has the same observable behavior as the original 
model. 

Here we reformulate the definition. We prove that the recursive equation has 
a solution. It follows from Section 7.3 that a quotient exists. It turns out to be 
rather easy to show that observable equivalence implies extraction equivalence, 
and that the quotient model is implementation equivalent to the original model. 

Note that observable equivalence closely resembles observation congruence as 
introduced by Milner for CCS in [12, 7.31. In the example in Section 10.1.2, it is 
shown that observable equivalence may differ from extraction equivalence. 
Roughly speaking, extraction equivalence only looks at direct outputs, whereas 
observable equivalence also uses previously obtained knowledge about internal 
values. 

8.1 Kapur’s Definition of Observable Equivalence 

In [ 10, p. 891, two values of a model A are said to be observably equivalent if they 
are not distinguishable. The latter concept is defined by mutual recursion, as 
follows: 

(a) If s is a sort, values x, y E sA are distinguishable ifs is external and x # y, or 
if there exists an accumulated arrow f: s + p + q and a value z E pA such 
that the sets fA(x, z) and fA( y, z) are distinguishable. 

(b) If q is a string of sorts, say, q = s1 . . . s,, then values u, v E (qA)’ are 
distinguishable if either element is error and the other element is not, or if 
there is an index i E (1 . . . n) such that the components ui and ui are 
distinguishable in sf . Subsets U and V of (qA)’ are distinguishable if either 
set contains an element w that is distinguishable from all elements of the 
other set. 
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Remarks 

(1) We have rephrased the definition of loc.cit. in our terms. The use of accu- 
mulated arrows is inessential, but convenient. It allows the assumption that 
in (a) the critical values X, y are in the first component. A probing parameter 
z is clearly necessary, but I cannot decide whether Zoc.cit. [lo] allows it. 

(2) The observability can be rather impractical. If the operations of A have 
unbounded nondeterminism, it may require transfinite induction to distin- 
guish distinguishable values. 

8.2 Definition and Construction of Observable Equivalence 

We transform the definition in Section 8.1 into a direct definition of observable 
equivalence itself. In order to express the negations of (a) and (b), we introduce 
the concept of the derived relation: 

Definition. If R is an internal relation on a model A, the derived relation DR 
is defined as follows: Ifs is a sort, then sDR consists of the pairs (x, y) E sA x sA 
such that for every accumulated arrow f: s + p 3 q and every value z E pA the 
subsets fA(x, z) and fA( y, z) of (qA)+ are R-related (cf. Section 7.1). 

One verifies that DR is an internal relation and that DR is contained in R. If 
R is an equivalence relation on A, then so is DR. In Section 8.1 the sets of 
distinguishable pairs of values are the smallest sets such that conditions (a) and 
(b) hold. Therefore the sets of observably equivalent pairs are the largest sets 
such that the negations of (a) and (b) hold. Rephrasing this we get that the 
observable equivalence relation should be the largest internal relation R that 
satisfies R = DR. 

In order to prove that indeed this equation has a unique largest solution, we 
consider the collection 9 of all equivalence relations Q on A such that Q contains 
every internal relation R ’ on A with R ’ = DR ‘. The collection 9 is nonempty. 
In fact, let P be the internal relation such that sp is the identity relation on sK 
for every external sort s, and that sp = sA x sA otherwise. Then P is an equivalence 
relation on A, which contains all internal relations on A. So P is in a. 

Now we define R as the intersection of all members Q of 9. As every member 
Q is an equivalence relation that contains all solutions R’, the intersection R is 
also an equivalence relation that contains all solutions R’. It follows that R 
is in a,. By the definition of D, we get that DR is in @, so that R is contained 
in DR. This implies that R = DR. As R contains all solutions, it is the largest 
solution. Moreover, R is an equivalence relation. 

Definition. Therefore we define observable equivalence to be relation R. 

8.3 Congruences 

Definition. An equivalence relation R on a model A is said to be a congruence 
(cf. [lo, p. 271) (or an ideal, cf. [13, p. 3291) if for every arrow f: p -+ q and every 
pair of R-related values X, y E pA the sets r(x) and fA(y) are R-related in (qA)’ 
(cf. Section 7.1). 

Using the arguments of the lemma in Section 7.2, one can see that an 
equivalence relation R on A is a congruence if and only if R = DR. It follows that 
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observational equivalence is a congruence and that it is the largest congruence. 
The first part of this assertion is not claimed in [lo, p. 441. 

The theoretical importance of congruences is based on the following fact: Let 
R be an equivalence relation on A. Then the quotient morphism M: A --) A/R is 
strict if and only if R is a congruence (cf. [13, Theorem l] or [lo, p. 2281). 

PROPOSITION. Let A be a model, and let Q and R be extraction equivalence and 
observable equivalence, respectively. 

(a) R is contained in Q. 
(b) If A is deterministic, then R = Q. 

PROOF 

(a) In terms of Section 8.2, we have Q = DP. Since P contains R, the derivation 
Q contains DR = R. 

(b) Let f: p + q be an arrow, and let X, y E pA be extraction equivalent. By the 
determinism we have unique resulting elements fA(x> and fA(y). These 
elements are easily seen to be extraction equivalent. Therefore Q is a 
congruence. Since R is the largest congruence, it follows that Q = R. 0 

Definition. A model A is said to be observable if observable equivalence is the 
identity relation. We have the following analogue of the theorem in Section 7.4: 

THEOREM. Let R be the observable-equivalence relation on A. Then A and A/R 
are implementation equivalent. The model A/R is observable. 

PROOF. Since R is a congruence, the quotient morphism from A to A/R is 
strict. So A and A/R are implementation equivalent by (b) of the theorem 
in Section 5.3. The proof of the observability of A/R is straightforward 
(cf. [7, 8.41). q 

9. INSEPARABLE VALUES AND CONSISTENCY 

The main difficulty of the behavior of nondeterministic models is that a model 
has the freedom to show its abilities, as well as to hide them. In Section 8.1 two 
values are called distinguishable if the model is able to reveal a difference. It may 
be, however, that the model is not forced to reveal a difference. In that case the 
values may be considered as inseparable, or consistent. Actually, we choose these 
two words to represent two different formalizations of the same intuitive idea. 
In this section we develop the theory. Later, in Section 10.1.4, it is shown that 
inseparable values need not be consistent in the technical sense. 

The theoretical motivation for this section is that recent studies have shown 
relationships between terminality of a model A and the possibility to separate its 
internal values by observations (cf. [9, p. 1061 and [17, p. 121). Note that [9] and 
[17] only consider deterministic data types. As the condition of being terminal 
in an arbitrary class of models cannot imply much, we restrict ourselves to the 
biggest available class, the liberal class L(A) (cf. Section 6.1). We prove that 
model A is terminal in class L(A) if and only if consistent values in A are always 
equal. 
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9.1 Inseparability of Values 

Definition. Let A be a model of C. If s is a sort, let values X, y E sA be called 
inseparable if for every accumulated arrow f: s + p + q, where p and q are external 
strings, and for every external value z E pK the sets fA(x, z) and fA( y, z) are not 
disjoint. 

It is easy to see that extraction equivalence implies inseparability. If the 
model A is deterministic and term generated, then extraction equivalence and 
separability are equivalent. In general, inseparability is an internal relation on A 
(cf. Section 7.1), which need not be an equivalence relation. Unfortunately, 
inseparability is not sufficiently strong to characterize terminality of the model 
A. We need the slightly stronger concept of consistency. 

9.2 Consistent Relations and Consistent Values 

Definition. A relation R on A is said to be consistent if it is internal and for 
every arrow f: p + q and every pair of R-related values x, y E pA there exist 
elements u E f”(x) and u E f”(y) such that u, u are R-related. 

Consistent relations form a generalization of congruences. In fact, if R is a 
congruence, then R is a consistent equivalence relation. Conversely, if A is 
a deterministic model and R is a consistent equivalence relation, then R 
is a congruence. 

Definition. Ifs is a sort, values x, y E sA are said to be consistent if there exists 
a consistent relation R on A such that (n, y) is in sR. Clearly, observably equivalent 
values are always consistent. 

9.3 Another Characterization of Consistent Relations 

Let B be a second model of 2, and let M, N: B + A be two morphisms of models. 
Ifs is a sort, let sR be the set of the pairs (&“‘(b), sN(b)) in sA X sA with b E sB. 
Since M and N induce the identity maps on the external domains, the prescription 
R is an internal relation on A (cf. Section 7.1). 

Definition. This relation R is called the relation spanned by the triple 
(8 M, NJ. 

PROPOSITION. A relation R on A is consistent if and only if it is spanned by 
some tripZe (B, M, N). 

PROOF. First, assume that R is spanned by the triple (B, M, N). Let f: p += q 
be an arrow of C, and let x, y E pA be R-related. Assume that p = s1 . . . s,,,. Let 
xi and yi be the respective components of x and y in s”. Since R is spanned by 
(B, M, N), we get an element b = (bl . . . b,) E pB with x: = PM(b) and y = pN(b). 
Choose an element c E fB(b). Put u = q”(c) and u = qN(c). Since M and N 
are morphisms, we have u E r(x) and u E fA(y). If c # error, then u and u 
are R-related. Otherwise both elements are equal to error and therefore 
R-related. This proves that R is consistent. 

Conversely, assume that R is consistent. We construct a model B as follows: If 
s is a sort, put s B = sR Ifs is an external sort, then sB is the identity relation on . 
sK, so that it can be identified with sK by means of the diagonal map Xx.(x, x). If 
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p is a string of sorts, the product set pB is identified with the subset of pA x pA 
that consists of the R-related pairs (x, y). The element error of ( pB)’ is identified 
with (error, error). If f: p + q is an arrow of C and z E pB is identified with 
the pair (x, y), then f’(z) is defined to consist of the elements w = (u, U) in the 
product set r(x) x fA(y), such that U, IJ are R-related. By the definition of 
consistency, this set $<z) is nonempty. Therefore B is a model of C. Ifs is a sort, 
let s”, sN: .sB + sA be the projections on the first and the second components, 
respectively. In this way we get morphisms M, N: B -+ A such that R is spanned 
by the triple (B, M, N). 0 

COROLLARY. If values x, y E sA are consistent, then they are inseparable. 

PROOF. Choose a consistent relation R on A with (x, y) E sR. Let R be 
spanned by the triple (B, M, N). Choose b E sB with x = s”(b) and y = sN(b). 
Let f: s + p + q be an accumulated arrow with p and q external strings. Let 
z E pK. By the lemma in Section 5.3, the nonempty set fB(b, z) is contained 
in fA(x, z) and also in fA(y, z). Therefore these sets are not disjoint. 0 

THEOREM 9.1. A model A of 2 is terminal in its liberal class L(A) if and only if 
consistent values in A are always equal. 

PROOF. Assume that A is not terminal in L(A). Then there is a model B with 
two different morphisms M, N: B + A. Since M and N are different, there is a 
sort s and a value b E sB such that s”(b) # sN(b). By the proposition above, these 
values of A are consistent. 

Conversely, assume that x, y E sA are different consistent values. By the 
proposition above, there is a triple (B, M, N) and a value b E sB such 
that x = s”(b) and y = sN(b). Since x # y the morphisms M and N are different. 
This implies that A is not terminal in L(A). 0 

Example. See the theorem in Section 6.5. 

THEOREM 9.2. Let A be a model of C that is terminal in its liberal class L(A). 
Let B in L(A), and let R be a consistent equivalence relation on B. Then the 
quotient model B/R belongs to L(A). 

PROOF. Let R be spanned by the triple (C, M, N). Since A is terminal 
in L(A), we have a unique morphism P: B + A, and the two compositions 
P 0 M, P 0 N: C + A are equal. It follows that every two R-equivalent values of 
B have equal P-images in A. So, by the proposition in Section 7.3, there is a 
unique morphism H: B/R +- A. Cl 

Remark. In particular, if R is observable equivalence, the observable quotient 
B/R belongs to L(A). See also the remark in Section 10.1.3. 

10. COMPARISON OF SEPARATION CRITERIA 

10.1 Summary of Results 

In this section we review the main separation concepts of Sections 7-9. In 
particular, we investigate the implication relations between these concepts. 
In the cases where no implication has been derived, we give examples to show 
that no implication holds. 
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We have four separation criteria on values x, y of a model A: 

CO: LX, y are observably equivalent (cf. Section 8.1 and [lo]). 

Cl: X, y are extraction equivalent (cf. Section 7.2 and [16]). 

C2: X, y are consistent (cf. Section 9.2). 

C3: X, y are inseparable (cf. Section 9.1). 

co * Cl 

a u. 
c2 3 c3 

These four conditions satisfy the above square of implications (cf. the proposition 
in Section 8.3, Sections 9.1 and 9.2, and the corollary in Section 9.3). If model A 
is deterministic and term generated, all four conditions are equivalent (by the 
proposition in Section 8.3, and Section 9.2, we have that Cl implies CO and that 
C3 implies Cl). 

We may also consider the four conditions on A that require that the respective 
relation reduces to the identity. These conditions are as follows: 

DO: A is observable (cf. the second definition in Section 8.3). 

Dl: A is extractable (cf. Section 7.2). 

D2: A is terminal in the class L(A) (cf. Theorem 9.1). 

D3: Inseparable values in A are identical. 

Clearly, these conditions satisfy the square of implications with the inverse 
directions: 

DOeD 

t T 
D2+D3 

In order to show that there are not more implications than obtained, we shall 
give four examples: 

(10.1.1) Dl + D2: an extractable model A that is not terminal in L(A); 
(10.1.2) DO 4 (Dl or D2): an observable model A, not extractable and not 

terminal in L(A); 
(10.1.3) D2 & Dl: a not extractable model A, terminal in L(A); and 

(10.1.4) (Dl and D2) ~4 D3: an extractable model A, terminal in L(A), with 
different inseparable values. 

All examples consist of a term-generated model based on a focused signature 
and involving a high degree of nondeterminism. They also show that there do 
not exist more implications between the separation conditions CO, Cl, C2, 
and C3. 

1011.1 An Extractable Model A that Is Not Terminal in L(A). We use the 
signature C and the model A of Section 5.4. The two values of urnA are not 
extraction equivalent, but they are consistent. Therefore A is extractable, and 
not terminal in L(A). The model C of Section 3.3 is a more extensive example. 
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10.1.2 An Observable Model A, Not Extractable, and Not Terminal in L(A). We 
use a variation of Section 5.4: 

S = ( chaos, urn, boo1 := BOOL], 
F = { prepare : E + chaos, 

fill : chaos + urn, 
draw : urn +- boo1 1. 

The model A is defined by 

chaoS4 = prepareA = urnA = BOOL, 
fillA = Xu.(u, true), 

drawA = Xv.{ u, false}. 

We have the following diagram: 

prepare fill draw 
c:e + chaos + urn + boo1 

A:0 + true +- true + true 
L 7 L 

false + false + false 

The two elements of urnA can be distinguished. Therefore the elements of 
chaosA can be distinguished. This shows that A is observable. The two elements 
of chaosA are extraction equivalent. So A is not extractable. The elements of 
urnA and also of chaosA are consistent. So A is not terminal in L(A). 

10.1.3 A Not Extractable Model A, Terminal in L(A). The signature is a 
variation of the one of Section 10.1.2. The drawing operator has an extra integer 
parameter. 

S = ( chaos, urn, int := INT, boo1 := BOOLJ, 
F = ( prepare : c + chaos, 

fill : chaos + urn, 
draw : urn int + boo1 ). 

The model A is specified by 

chaosA = BOOL, 
prepareA = BOOL, 

urnA = BOOL x INT, 
fillA = Xu.(u} x INT, 

drawA = X((u, m), n). if m > n +- BOOL 
ilm=n j(u) 
Om<n +-(7) 
fi. 

The two elements of chaosA are extraction equivalent. In fact, given an accu- 
mulated arrow f: chaos + p + q where q is an external string, and a value 
z E pA, the fill operation can always choose a sufficiently large second component 
m so that the draw operation has all freedom. On the other hand, consistent 
values are identical. In fact, let R be a consistent relation on A. Then R-related 
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values in urnA are identical, and therefore the same holds in chaosA. It follows 
that A is terminal in L(A). 

Remark. If Q is the extraction equivalence on this model A, then the quotient 
model A/Q does not belong to the liberal class L(A). Compare with Theorem 9.2. 

10.1.4 An Extractable Model B, Terminal in L(B), with Different Inseparable 
Values. We use the signature of Section 10.1.3, and a model B that has the same 
domains as the model A of Section 10.1.3 and also the same operations prepare 
and fill. The only modification is 

drawB = X((u, m), n).if m = n + (u) 
0 m # n + (error} 
fi. 

It is easily verified that B is extractable and that every consistent relation on B 
is contained in the identity relation. So B is terminal in L(B). The two elements 
of chaosB are inseparable, since every accumulated arrow that distinguishes 
these two values has error as a common result. 

10.2 Bounded Nondeterminism 

The examples in Sections 10.1.3 and 10.1.4 make essential use of unbounded 
nondeterminism. I have not been able to decide whether similar examples exist 
with only bounded nondeterminism. 

11. CONCLUDING REMARKS 

11 .l Results 

We have shown that, if one is prepared to separate a data type from its syntactic 
specification, nondeterminism can be described adequately and rigorously by 
means of the calculus of sets and set-valued mappings. We obtained a very 
general semantical formalism, which can probably be restricted in many different 
ways, depending on the application at hand. 

One of the results is that data types whose operations modify more than one 
argument or return multiple values need not be excluded from theoretical 
investigation. In fact, the calculus of accumulated arrows has nothing to do with 
nondeterminism, but may be useful in general (i.e., also in the special case of 
deterministic data types). 

We introduced morphisms in order to compare different models of the same 
signature. A morphism enables us to relate the values from the models in a 
systematic way. This is necessary for discussion of equivalence relations, degrees 
of nondeterminism, and universality properties of models. Morphisms can be 
used to prove that one model implements another model, but a morphic relation- 
ship is not necessary for an implementation. The correctness criterion for 
implementations (Section 4.3) leads to a preference for extraction equivalence 
over the more usual observable equivalence. In fact, extraction equivalence is the 
coarser relation, but nevertheless leads to an implementation equivalent quotient 
model (cf. the theorem in Section 7.4). 
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11.2 Suggestions 

We have specified two useful NDDTs (in Sections 3.1 and 6.4), but although [7] 
and [lo] give indications, a systematic investigation of specification methods for 
NDDTs remains a subject of future research. 

In order to deal with hierarchical nondeterministic data types, one could extend 
our concept of signature to include external operations. Then an extractable 
model of one signature could provide the external domains and operations of a 
new signature. 

It may be useful to construct accumulated arrows with arbitrary control 
structures (cf. Section 4.5). That would enable formal descriptions of vertical 
implementations (cf. (1) of Section 1.2). 

It seems that our theory can be applied to concurrency. In fact, partial 
composition of accumulated arrows might have been designed for that very 
purpose. One may want to withdraw the condition of Section 2.2 that the result 
sets of an operation are nonempty. That would require reexamination of our 
proofs, but most of the results would remain valid. 
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