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MATHEMATICS Proceedings A 89 (1), March 24, 1986 

Local and global solutions of a differential equation on a curve 

by M. van der Put 

Mathematical Institute, University of Groningen, P.O. Box 800, 9700 A V Groningen, 
the NetherIands 

Communicated by Prof. T.A. Springer at the meeting of September 30, 1985 

INTRODUCTION 

The curve C is a non-singular projective curve defined over a complete non- 
archimedean valued field K having characteristic zero. After a finite extension 
of K the curve admits a stable reduction (see [6]) and we will assume in the 
sequel that C has already a stable reduction over K. 

On C we consider a differential equation of the form 

where A is a n x n-matrix with coefficients in the function field K(C) of C and 
where z E K(C) is transcendental over K. 

The differential equation above can be translated into a connection 

(0.2) v : w&(,),~ @ v 

in which I/ is an n-dimensional vectorspace over K(C) and where !2&,,K 
denotes the module of differentials of K(C) over K. 

The differential equation is called locally trivial (with respect to the rigid 
analytic Grothendieck topology on C) if there exists a finite affinoid 
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(0.3) covering {C,, . . . . C,} of C and for each in { 1, . . ..s} a fundamental 
matrix Fi solving (0.1). The entries of the matrix Fi are meromorphic functions 
on Cj and det (Fj) is an invertible meromorphic function on Ci. 

The aim of this paper is to answer a question, posed by 10. Baldassarri: 
Suppose that equation (0.1) is locally trivial. Does (0.1) have n independent 
solutions in K(C)? 

In the sequel we will analyse locally trivial equations. Further the differential 
Galois group of equation (0.1) is studied. 

0 1. LOCAL SYSTEMS ON C 

A local system L of dimension n on C is a sheaf of K-vectorspaces on C (with 
respect to the rigid analytic Grothendieck topology on C) such that L is locally 
isomorphic to the constant sheaf with fibre K”. 

Suppose that equation (0.1) is locally trivial. Then (0.1) gives rise to a local 
system. Indeed; on the intersections CJl Cj one writes Fj = Fi Mu. The matrix 
Mij is locally constant on CJlCj and det (Mij) is nowhere zero. The {MQ} 
form a I-cocycle on C and determine a local system. This local system is of 
course equal to the sheaf L on C given by: 

where U denotes an affinoid part of C and M(U) denotes the set of mero- 
morphic functions on U. In order to understand local systems on C we have 
to consider reductions R : C-+ Y with respect to some pure affinoid U of C. 
Using [6] and [3] Ch. V, one sees that these are pure coverings Uof C such that 
(a) L is constant on every affinoid belonging to U. 
(b) every component of the reduction R : C-+Y w.r.t. U is non-singular and 

every singular point of Y is an ordinary double point. 
For two reductions Ri: C-+ Yj w.r.t. pure coverings Ui (i= 1,2) satisfying (a) 
and (b) there exists a pure covering U3 finer than U, and U, such that U3 
satisfies again (a) and (b). 

So we find a commutative diagram 

RI c, - Y 1 

RZ 
I\! 

R3 91 

Y, - Y 
fP2 

3 

in which R3 : Cd Y3 is the reduction corresponding to U3 and where pi (i = 1,2) 
are morphisms of varieties over the residue field of K. Let Gi= G(Yi) 
(i= 1,2,3) denote the intersection graph of the components of Yj. One knows 
that the morphisms Gi (i= 1,2) are obtained by successive blowing down of 
Pi’s in Y3. In particular the fundamental group nl(G3) of the graph G3 is 
isomorphic to xl(Gi) (i= 1,2). This fundamental group is a finitely generated 
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free group rand it does not depend on the choice of the “prestable” reduction 
of C. We will call r the fundamental group of C. The group r is also the 
fundamental group of Y, a reduction of C satisfying (a) and (b), with respect 
to the Zariski-topology on Y. This leads to the following proposition. 

(1.1) PROPOSITION. There are natural bijections between the following three 
sets: 
(a) {Local systems on C of dimension n}/isomorphy. 
(p) {n-dimensional representations of r)/equivalence. 
(y) {Locally trivial equations (0. l)}/equivalence. 

PROOF. For a local system L on C and a reduction R : C-t Y satisfying (a) and 
(b) above R 5 is a local system on Ywith respect to the Zariski topology. Using 
that r is the fundamental group of Y one easily finds bijections (o)*(p). 

We have already produced a map (y)-+(a). For a local system L on C we find 
a n-dimensional holomorphic vectorbundle E = Oo @&, with a connection 
V : E-+Q&@E such that ker V = L. The global meromorphic sections of E 
produce then a differential equation in the form (0.2). There is still one point 
to verify, namely: 

Suppose that (d/&j -Ai (i = 1,2) induce isomorphic local systems Li 
(i= 1,2). Then we have to produce a matrix SE G&K(C)) such that 

This equation for S can be written in the form 

; S=A,S-SA2. 

This is an equation of type (0.1) and the equation is locally trivial. The corre- 
sponding local system is Horn (Lt, L,). The isomorphism Ed : L,-+L2 is a global 
section of this new local system. Further p corresponds to the S with the re- 
quired properties. This finishes the proof. 

The graph G = G(Y) has a universal covering. This can be used to construct 
the universal covering u : U+ C of C with respect to the rigid analytic topology. 
(See [5]). One can transport a local system L to U. Then u *L is the constant 
sheaf on U with fibre K”. One finds then: 

(1.2) COROLLARY. If equation (0.1) is locally trivial, then the equation has 
a fundamental matrix of solutions with entries global meromorphic functions 
on U. 

(1.3) COROLLARY. If the Jacobian variety of C has good reduction and if 
(0.1) is locally trivial, then equation (0.1) has n independent solutions in 
K(C)“. 
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Statement (1.3) follows from (1.2) since the condition “Jac(C) has good 
reduction” is equivalent to r= (1) and also to U= C. 

Equation (0.1) always admits a Picard-Vessiot extension. This is a diffe- 
rential field L>K(C) such that 
(a) there is a fundamental matrix of solutions with coefficients in L. 
(b) no proper subfield of L has property (a). 
(c) K(C) and L have the same field of constants. 
The group of differential automorphism of L over K(C) is denoted by 
DGaZ((d/dz) -A). It is an algebraic subgroup of GZ(n, K) called the differential 
Galois group. The group does not depend on the choice of the Picard-Vessiot 
extension L. (See [4].) 

(2.1) PROPOSITION. Let equation (d/k) -A of type (0.1) be locally trivial 
and let Q : r+Gl(n,K) denote the corresponding representation. The 
DGal((d/dz) -A) is the smallest algebraic subgroup of Gl(n,K) containing 
em. 

PROOF. There is a fundamental matrix F with coefficients in the field M(U) 
of meromorphic functions on the universal covering U of C. Let L CM(U) be 
the subfield generated over K(C) by the entries of F. Then L is invariant under 
d/dz since d/dz F= AF. One easily sees. that L is a Picard-Vessiot extension of 
K(C). For any y E r, the field L is invariant under the action of y on M(U) 
since y commutes with d/dz. So ,we have a mapping T+DGal(L/K)= 
= DGaf((d/dz) -A). Choose a basis el, . . . , e, of solutions of (d/dz) -A with 
coefficients in L. Then any yer induces a K-linear automorphism Q(Y) of 
Kel + . . . + Ke,,. This representation Q is equivalent to the representation con- 
structed in (1.1). Hence e(f) c DGal(L/K) c G&z, K). Let G denote the smallest 
algebraic group containing e(r). If G#DGal(L/K) then LG#K(C). However 
L’cL~(~)cM(U)~= K(C). So G= DGaZ(L/K) and the proposition is proved. 

(2.2) EXAMPLE. According to (1.1) there are only interesting examples is 
the reduction of C has a non-trivial fundamental group. For the Tate-curve 
C= K*/( q) (Oc [q/c 1) a locally trivial differential equation corresponds to a 
homomorphism e : r= (q) +Gl(n, K). So the equation is determined by a single 
matrix Q (the generator of r). If we want the differential equation to be irre- 
ducible than the matrix has the form 

with CEK*. 

The corresponding connection c7 : K(C) “-sZ’@K(C)” can be found expli- 
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citely. Namely: for a suitable basis el, . . ..e., of K(C)” the P is given by 

Ve, = w@e, 

Ve2=w@(e2+el) 

Ve,=w@(e,+e,-,) 

The differential form o has poles of order 1 at the two points u(l), U(C) of C 
with residues 1 and - 1. Here u : K*+C is again the universial covering of the 
curve C. As yet w is only determined upto, holomorphic’differentials on’ C. The 
precise choice of o can be explained with theta functions. 

Put 
0(z) = JJ (1 - q”z-‘) Jj (1 - 4%) and put e,(z) = 6&c-%). 

It>0 n>o 

Then o = dq/r,- with q = r9i/Bc. The Picard-Vessiot extensions L of K(C) can 
also by calculated. For II = 1, L = K(C)(q), note that q(qz) = cy(z). For n = 2, 
L = K(C)(q, f) where 

f= zol-;-“z+ :ol-qlnz-‘. 

We note that f(qz) -f(z) = 1. For n >2 similar, but more complicated, expres- 
sions can be found. 

In the above we have classified all differential equations on K*/(q) which 
are locally trivial. 

(2.3) EXAMPLE. C a Mumford curve of genus gg2. 
The fundamental group Tis a free group on g generators. This group has 

many representations in Gl(n, K) if n> 1. For l-dimensional representation 
Q : F+K* however one can again write down explicitely the corresponding 
differential equation c7 : K(C)--+Q’@K(C) =S2’. 

This is given by p(g) =dg+gw where w is a differential on C of the form 
dr/q where q EM(U) is a thetafunction satisfying y(q) =~(y)q for all y E r. 

(2.4) EXAMPLE. C a Mumford curve of genus g>2. Let E denote a vector- 
bundle on C of rank n and degree 0. Suppose that E is indecomposable. 
According to A. Weil and Atiyah there exists a connection V : E+l2&@E. 
(See [1.8].) This V is however not unique. If there would be a choice of V 
such that V is locally trivial then one finds a representation (using (1 .l)) 
e : r-t G&z, K) which induces the vectorbundle E. And so the padic version of 
A. Weil’s theorem on vectorbundles would have been proved. 

There seems however not much hope for the construction above since the 
condition “locally trivial” is difficult to obtain. For stable vectorbundles E of 
degree zero on C it has been proves that E is obtained from a representation 
r-+Gl(n, K). (See [2] and [7] .) 

In particular E admits a connection V which is locally trivial. 

103 



REFERENCES 

1. Atiyah, M.F. - Vectorbundles over an elliptic curve. Proc. of London Math. Sot. (3) VII 27, 
414-452 (1957). 

2. Faltings, Cl. - Semi-stable vectorbundles on Mumford curves. Invent. math. 74, 199-212 
(1983). 

3. Gerritzen, L. and M. van der Put - Schottky groups and Mumford curves. Lect. Notes in 
Math. 817, 1980. 

4. Kaplansky, I. - Differential Algebra. (Hermann, Paris, 1957). 
5. Put, M. van der - Etale coverings of a Mumford curve. Ann. Inst. Fourier 33, 1,29-52 (1983). 
6. Put, M. van der - Stable reductions of algebraic curves. Proceedings A 87 (4), 461-478 (1984). 
7. Put, M. van der and M. Reversat - Vectorbundles on a Mumford curve. (in preparation). 
8. Weil, A. - Generalisation des fonctions abeliennes. J. Math. pur. appl. 17, 47-87 (1938). 

104 


