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Nonperturbative confinement in quantum chromodynamics. I. Study of an 
approximate equation of Mandelstam 

D. Atkinson, J. K. Drohm, P. W. Johnson, a) and K. Starn 
Institute for Theoretical Physics, University of Groningen, P. 0. Box BOO, 9700 A V Groningen, The 
Netherlands 

(Received 10 April 1981; accepted for publication 12 June 1981) 

An approximated form of the Dyson-Schwinger equation for the gluon propagator in quarkless 
QCD is subjected to nonlinear functional and numerical analysis. It is found that solutions exist, 
and that these have a double pole at the origin of the square of the propagator momentum, 
together with an accumulation of soft branch points. This analytic structure is strongly suggestive 
of confinement by infrared slavery. 

PACS numbers: 11.10.Np 

I. INTRODUCTION 

Of the various ways that quarks and gluons might auto­
matically be confined in quantum chromodynamics, the hy­
pothesis that the gluon propagator has a strong singularity at 
the origin of the k 2 plane, where k is the gluon four-momen­
tum, is especially attractive. Recently Mandelstam, I work­
ing in the Landau gauge, has approximated the Dyson equa­
tion for the gluon propagator and claims that the latter 
probably behaves like k -4 as k-o. Similarly, Baker et al., 2 

using an axial gauge, make a different sequence of approxi­
mations, obtaining a much more complicated equation. 
However, again they claim the same infrared behavior for 
the gluon propagator. 

We propose to study these equations by functional and 
numerical methods in order to elucidate the infrared proper­
ties ofQCD. In this initial paper, we consider Mandelstam's 
equation in its simplest form and prove that it indeed pos­
sesses a solution with the k -4 infrared behavior. Further, 
we study the analytical structure of the propagator, away 
from the origin, by numerical means. 

Let us first clarify the sense in which a gluon propagator 
that behaves like k -4, as k-o, corresponds to a linearly 
rising potential, 

V(lxl)-lxl as Ixl-oo, (1.1) 

acting between a quark and an antiquark in their center-of­
mass system, effectively confining them. In nonrelativistic 
Born approximation, the scattering amplitude is given in 
terms of the potential by 

A (k) = - 4~ fd 3X V(x)eik.X, (1.2) 

where k is the three-momentum transfer between initial and 
final quark. For a linear potential, the amplitude is thus pro­
portional to 

- 4~ f d 3x lx leik.x, (1.3) 

which is well defined as a tempered distribution, as we now 
show. For let n ( k) be any infinitely differentiable test func-

-Ipermanent address: Illinois Institute of Technology, Chicago, IL 60616. 

tion that vanishes faster than any inverse power of I kl, as 
I kl-oo, and which satisfies in addition 

fl(O) = n '(0) =fl "(0) = fl '''(0) = O. (1.4) 

We show in Appendix A that 

- 4~ fd3Xlxlfd3kfl(k)eik.X = 2fd3kfl (k)l kl- 4 ,(1.5) 

i.e., the amplitude is proportional to I kl- 4
, as a distribution 

on our space of test functions. In the center-of-mass system, 
the square of the four momentum transfer, k 2, is equal to 
- I k1 2

, so we see that a linear potential indeed corresponds 
to a propagator that behaves like k -4 as k-o. 

In Sec. 2, we discuss the rather drastic approximations 
that Mandelstam makes; and this culminates in the deriva­
tion of a deceptively simple nonlinear Volterra equation. The 
rest of the present work is devoted to a study ofthis equation; 
but it is appropriate to ask at this point how much of QCD 
really has survived. The infrared behavior may be such a 
survivor, since the approximations are less severe for small 
momenta. Moreover, there are indications that the confining 
singularity may be specific to the vector theory, for in mass­
less QED, if one approximates the Dyson equation for the 
electron propagator by replacing the full vertex and the full 
photon propagator by their bare values, one finds in general 
that there is no singularity of the solution at k 2 = 0: the 
chiral symmetry has been broken. 3 Unfortunately, the 
branch point nearest to the origin, which should correspond 
to the point k 2 = m;, is complex, 4 and moreover its position 
is gauge-dependent. 5 Because of certain algebraic differ­
ences, the massless vector case (QCD) is quite different; and 
we find that a solution exists in which the propagator has a 
double pole at the origin, in the variable x = - k 2 (implying 
confinement), and also a branch point at x = 0, correspond­
ing to soft gluon effects. Unfortunately, these desirable prop­
erties of the solution are marred by the fact that, as in the 
spinor case, we also find unwanted complex branch points. 

In Sec. 2, we summarize Mandelstam's method of ob­
taining his gluon equation, and we convert it into a nonlinear 
Volterra equation. This equation is not suited to an applica­
tion of the Banach theorem, because of cancellations for 
small k that are hard to handle, so in Sec. 3 we deduce a new 
integral equation, by way of a nonlinear differential equa-
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tion, that is so suited; and in Sec. 4 we elaborate a proof of the 
local uniqueness of an analytic solution of the propagator 
equation in a cardioid region around the origin of the k 2 

plane. In Sec. 5, we outline a program for the Qumerical 
integration, by a fourth-order Runge-Kutta routine, of the 
nonlinear differential equation of Sec. 3, which has been used 
to continue out of the domain of the complex plane for which 
the existence proof is valid. Six complex branch points have 
been found close to the origin, and there may be more. In 
Appendices A and B we collect some technical details, while 
Appendix C is devoted to a further approximation of the 
Mandelstam equation, in which the kernel is replaced by its 
average value. This is a gross simplification; but the advan­
tage is that the averaged equation is explicitly soluble, and 
this is of great help in testing the computer programs. 

II. MANDELSTAM'S METHOD 

In Ref. 1, Mandelstam considers a Dyson equation for 
the gluon propagator, in QCD without quarks, in which the 
four-gluon vertices are thrown away. Further, the three­
gluon vertex is replaced by its bare value; and simultaneous­
ly one, but not both, of the internal gluon propagators is 
replaced by its bare value. This rather arbitrary procedure is 
justified on the grounds that if the propagator behaves like 
k -4, as hoped, then the full three-gluon vertex behaves like 
k 2, and therefore the replacement of the full by the bare 

vertex should be matched by the softening of the k -4 behav­
ior of one full propagator to the k - 2 behavior of a bare 
propagator. Clearly this simplification is drastic, and it is 
uncertain whether the physical import of the Dyson equa­
tion has been fundamentally altered. The contribution of the 
ghost field is expected to be fairly small, and is in the first 
instance neglected, although it can be included without too 
much trouble. 

The mutilated Dyson equation is depicted in Fig. 1. It is 
assumed that the full gluon propagator can be written in the 
form 

D ,ab (k) = F( _ k 2)D ab (k) 
FIlV FJ.tv , (2.1) 

where Fis an unknown function of the scalar - k 2, and 
where 

{jab 

D~~v(k)=i[-gl'v+kl'kJk2] . (2.2) 
k 2 + IE 

is the bare propagator in the Landau gauge. Here /-l, v are 
Lorentz indices and a, bare SU(3) color superscripts. The 
Dyson equation is then 

D' -1(k)=D -I(k)_£ 
F F (211')4 

X Jd 4k' r( k,k' - k, - k')D;"( k') 

Xr(k',k-k',-k)DF(k'-k), (2.3) 

FIG. I. Approximate Dyson equation for the gluon propagator. The wavy 
lines with a black dot are full. the others bare gluon propagators. 
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where Lorentz and color indices have been omitted, where r 
is the bare three-gluon vertex, and where g is the SU(3) cou­
pling constant. After a Wick rotation has been performed, 
the angular integrations can be done, and Mandelstam finds 

G i oo 

[F(x)] - 1= 1 - - dy KI(x,y)F(y), 
x 0 

(2.4) 

wherex = - k 2,y = - k '2, and where Gis proportionalto 
g2, the constant of proportionality being unimportant. In 
(2.4) the kernel is 

( y 7 y2) 
KI(x,y) = IS+ 25---- 8(x-y) 

x 2 x 2 

(
X 7 X2) + 25 - - - - 8 (y - x). 
y 2 y2 

(2.5) 

One can rewrite (2.4) in the form 

[F(X)]-I = 1 + B _ G (X dY(25L_~y2)F(Y) 
x x Jo x 2 x 2 

G 100 
( x 7 X2) -- dy 25---- F(y), 

x X y 2 y2 
(2.6) 

where 

B = - ISG i oo 

dyF(y). (2.7) 

This integral needs both infrared and ultraviolet cutoffs, 
which we do not write explicitly. Now is it possible that the 
propagator (2.1) behaves like k -4 as k--+O, i.e., that F (x) 
behaves like X-I as x_O? Let us write, following 
Mandelstam, 

F(x) = A Ix + FI(x), (2.S) 
where F I (x) is to be less singular than a pole as x--+O (in fact, it 
will tum out to be bounded). We substitute (2.8) into (2.6) and 
perform the integrals over the pole term: 

__ x __ = 1 + ~[B __ 9_3 AG] 
A +xFI(x) X 2 

_!l.. (X dY(25 L _ ~ y2)FI( y) 
x Jo x 2 x 2 

_ G (00 dY(25.!...- _ ~ X
2
)F

I
(y). 

xL y 2y2 
(2.9) 

Now if FI(x) is well behaved at the origin, the pole term on 
the right hand side of (2.9) must vanish, i.e., A is given by 

A = 2B193G. 

A constant behavior of FI (x) as x-a would be inconsis­
tent with (2.9), since the first term under the second integral 
would yield Inx, which could not be cancelled; and likewise a 
linear behavior, FI(x) -x, is inconsistent, for now the second 
term under the second integral gives an insupportable Inx. 
Mandelstam shows that these inconsistencies are removed if 
FI(x) _xa

, where a = - 1 + (31/6) 1/2:::::: 1.273. He further 
suggests, as a reasonable first approximation, the dropping 
of the "! terms" in (2.9). The equation then becomes 

(2.10) 
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and now a behavior F 1(x)-x asx---..() is no longer impossible, 
since the offending second term under the second integral in 
(2.9) has been thrown away. In this paper, we shall study the 
approximate equation (2.10) exclusively: it is hoped that the 
behavior x instead of x 1.273 is not too serious an error. In a 
future work, we propose to return to the full equation (2.9): 
the analysis can be completed, but it is appreciably more 
complicated. 

The approximate equation (2.10) can be rewritten 

___ x:...-_ = 1 _ C + 25 Q.Lx 

dY( ~ - L )Fl( Y), 
A +XFl(X) x 0 Y x 

(2.11) 

where 

(2.12) 

For consistency as x---..(), we must impose C = 1; but since 
the integral in (2.12) needs an ultraviolet cutoff, this imposi­
tion can be regarded as a renormalization condition. Fur­
ther, if we make the scaling transformations 

x-+5AG 1I2X, y-+5AG I12y, Fl(X)-+~ G - 112Pl(X), 
(2.13) 

then Eq. (2.11) takes on the pleasing form 

Xl LX (x y) ---= dy --- F 1(y), 
1 +xF1(x) 0 Y X 

(2.14) 

in which there are no divergences left, in which the unknown 
constant A, and even the coupling G, have disappeared. 

III. APPROXIMATE GLUON PROPAGATOR 

We first rewrite the approximate equation (2.14) in 
terms of the new unknown function, 

G (x) = F 1(x)l[x + X2Pl(X)] , 

so that 

G(x)=--- dy I_L 1 1 LX ( 2) G(y) 
x 2 x 3 0 x 2 1 _ y 2G ( y) . 

(3.1) 

(3.2) 

Unfortunately, this equation is poorly suited either to nu­
merical iteration or to an existence proof via the Banach 
theorem. For example, G (0) is finite, but this is a result of 
delicate cancellation: 

G (x) - - - - dy 1 - L [G (0) + 0 (y)] 1 lLx 

( 2) 
x--o x 2 x 3 

0 x 2 

= :2(1 - ~ G (0)) + 0 ( ~ ), (3.3) 

so that we must require 

G(O) =~. (3.4) 

By pushing this analysis further, one can show that G '(0) 
must vanish, that G "(0) = - 27, and so on. In fact, in Sec. 5, 
we shall obtain an asymptotic (but divergent) series for G (x) 
in the variable x 2

• 

To construct an integral equation that does not involve 
cancellations, we differentiate x 3G (x), and then X3 [X3G (x)]', 
in order to obtain, from (3.2), the nonlinear differential 
equation 
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x 4G" + 9x3G' + (15x 2 + 2)G = 3 - 2x2G 2/(1 - x 2G). 
(3.5) 

It is possible to resolve this equation in terms of the solution 
of the homogeneous linear differential equation [i.e., the left­
hand side of(3.5) equal to zero]; but this route involves Bessel 
functions and their estimation in terms of simpler functions. 
It is more straightforward to observe that the functions 

g ± (x) = x -7/2 exp( ± i2 1/2/X) (3.6) 

solve the homogeneous equation 

x 4
g ± " + 9x3

g ± '+ (¥x 2 + 2)g ± = O. (3.7) 

This is almost like the left-hand side of(3.5), excepting only 
that the coefficient of x 2g ± is not quite correct! However, by 
adding ix2G to both sides of (3.5), we obtain 

x 4G " + 9x3G ' + ( ¥x2 + 2) G 

= 3 + ~x2G - 2x2G 2/(1 - x 2G). (3.8) 

This equation can be resolved in terms of g ± by the method 
of variation of parameters. The linear term ix2G on the right­
hand side of (3.8) will not give trouble for small x, thanks to 
the factor x 2

• We find 

G(x)=2-
112

x-
712 

fdy sin[2
112

( ~ -;)] 
X { _ 3y 312 _ iY712G (y) + 2y7l2G 2( y) }. (3.9) 

1- y 2G(y) 

It can easily be checked that this is the correct solution of the 
differential equation: additional multiples of g + or g _ would 
be inconsistent with (3.4), and thus with (3,2). 

The form (3.9) is suitable for an existence proof; but the 
argument of the sine factor makes matters somewhat awk­
ward. To simplify matters, define 

t = 21/2/X, G (t) = G (x) (3.10) 

and 

~ = 2112/y _ 2'/2/X, 

so that 

G (t) = f(t) + 5'1210£ d~ .l' (~ + t) sin~, 
o (~+t)'I12 

where 

and 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

This equation will now be used for an existence prooffor It I 
large enough, i.e., Ixl small enough, for all 
larg xl<1T -~, ~> O. 

IV. PROOF OF EXISTENCE 

Let D (p,~) be the following domain in the complex t 
plane: 

D(p,~) = ItIRet>O,ltl> p-'; 

(Ret<O,(lImtl-p-I)lIRetl> tan~l. (4.1) 

Atkinson et al. 2706 



-----------¥=---t- D (P.E) 

FIG. 2. The domain D (p,E) lies outside the comet-shaped region depicted. 

In words, it is the region outside a semicircle in the right half­
plane and above or below lines inclined at an angle E to the 
real axis (see Fig. 2). Let B be the Banach space of functions, 
/(s ), analytic in D, with norm 

III II = sup I I(s ) I· 
GED(p.E) 

(4.2) 

Let P be the mapping 

P(G's) =/(s) + S7/2 (00 d; ..!'(; + s) sin;, 
, Jo (; + S)1I/2 

(4.3) 

where I and..!' were defined in (3.13) and (3.14). It is clear 
that, if sED (p,E), for a given p > 0 and 0 < E < 17'12, then 
; + sED ( p,E) for all 0 <; < 00. Let G lie in a ball defined by 

(4.4) 

Then..!' (; + s) is analytic in S, for any fixed; in (0,00), on 
condition that the denominator in (3.14) does not vanish. 
This can be prevented for any G satisfying (4.4) by restricting 
p as follows: 

pZ < 1/2b. (4.5) 

Under this condition, the integral term in (4.3) is analytic for 
sED (p,E), since the integrand is so analytic, and the integral 
converges uniformly. Clearly /(S), the known function 
(3.13), is also analytic in this domain: in fact it is analytic in 
the plane, cut - 00 < S < 0, as we show in Appendix B. Thus 
P (G;s ) is analytic for sED ( p,E). 

We shall now show that, if one imposes further con­
straints on p and b, P maps the ball (4.4) into itself contrac­
tively. The Banach theorem then applies, and so we assert 
the existence and uniqueness of a solution of the equation 

(4.6) 

in the ball (4.4). 
When G satisfies (4.6) and p is restricted by (4.5), we see 

from (3.14) that 

I..!'(;)I<~+ 2b
2 

(4.7) 
4 1 - 2b p2 

for all ;eD (p,e). Hence 
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IP(G;s)1 <CE + ( 3: + 1 ~~;p2 )lsl
712 

(00 d; 
XJo I; + sl \1/2' (4.8) 

where C
E 

is the bound (B4) on 1 I(s) I. We change the inte­
gration variable to (j) =; lis I and define 

(4.9) 

(4.10) 

If 

(4.11) 

and 

p«b - CE) (3: + 1 ~~;p2 )D.. (4.12) 

then the right-hand side of (4.10) is not greater than b: the 
ball (4.4) has been mapped into itself. 

To demonstrate the contractivity, we differentiate 
(3.14) with respect to G (;): 

d..!'(;) 3 4G(;)[ 1 -; -2G (;)] 
dG(;) = 4' - [1 - 2; -2G(;)f . 

Since (4.5) implies that 

I; -2G(; II <b p2 <!, 
it follows that 

11 - ; -2G (; II <~. 
Hence 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

Now let G\(; land G2(s ) be any two functions in the ball (4.4). 
The mean value theorem implies 

l..!'g)-..!'2(;)I< sup I d':(;) I IGg)-G2(;II, 
0<,,< 1 dG (;) G ~ G" 

(4.17) 

where G" = J.lG) + (1 - J.l)G2. Now since the ball (4.4) is 
quintessentially convex, G" belongs to it, and we may use the 
bound (4.16) for the supremum in (4.17). By the same analy­
sis as in Eq. (4.8) et seq., it follows that 

IIP(Gtl- P(Gz) II 
<p[ ~+6bl(I-2bp2f]DEIIGI-G211. (4.18) 

The mapping is contractive if this Lipschitz coefficient is 
strictly less than unity, i.e., 

p<[ [~+ 6bl(l- 2bp2f]De l- l
• (4.19) 

The conditions for a contraction mapping are (4.5), 
(4.11), (4.12), and (4.19). They are clearly consistent, sinceifb 
is not too small, then p can certainly be made so small that 
(4.5), (4.11), and (4.12) are all satisfied. Since CE and DE [Eqs. 
(B4) and (4.9)] tend to infinity as e-o, it follows that the 
permissible values of p tend to zero in the same limit. Ac­
cordingly, one can imagine repeating the prooffor various 
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FIG. 3. Cardioid region in which the Banach theorem applies. The stars 
outside this region are the locations of branch points. as determined by the 
numerical method of Sec. 5. 

values of E, starting with E = 1T/2 and gradually allowing E to 
decrease to zero. For ever-decreasing values of E, one proves 
existence and uniqueness of an analytic solution in the corre­
sponding domain D ( p,E) of Fig. 2, but with ever-increasing 
values of the radius lip. This means that, in the original 
variable,x = 2 112/5', ofEq. (3.9), one has a proof of existence 
in the union ofthe corresponding domains, which has been 
plotted in Fig. 3. This curve has been obtained by computing 
CE and DE by a numerical integration routine, and then by 
finding the largest value of p consistent with (4.12) and 
(4.19), as b varies between C. and infinity. This was done in 
practice by rewriting the inequality (4.12) as a negative cubic 
form, and by determining numerically, for increasing values 
of b, larger than C., the real positive root. We then deter­
mined the largest value of p that was consistent with (4.19). 

The angle made by the locus of Fig. 3 to the real axis at 
the origin is zero. Equation (3.9), and thus also the original 
equation (3.2), has an analytic solution inside the cardioid of 
Fig. 3. Of course, the solution has a continuation outside the 
cardioid; but it will in general have singularities, the location 
of which we shall ascertain numerically. 

v. NUMERICAL ANALYSIS 

In order to set up a computer program to effect the 
continuation out of the contractive region of Sec. 4, we re­
turn to the differential equation (3.5), which can be rewritten 
in the form 

(1-x 2G)(x4G" + 9x3G' + lsx2G) = 3 - (2 + 3x2 )G. (5.1) 

On substituting a formal power series solution, 

G(x) = ! Gnxn, (5.2) 
n=O 

we find that the odd terms vanish, Go = 1. G2 = - ¥ and, 
for n;;.4, 

1 n - 2 2 

G n = "2 m 2:. 2 (m + 4m + 3) G m - 2 G n - m - 2 

- t(n 2 + 4n + 6)Gn _ 2 • (5.3) 

This relation allows G n to be determined recursively in 
terms of G m ,m < n. However, it is easy to show by estimates 
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GN(Xl 

2.0 

~ 
1.0 

OL-________ ~ ________ ~ ________ _U 

o 20 40 50 
N 

FIG. 4. The partial sums GN(x) for x = 0.05 and Nvalues up to 60 [see Eq. 
(5.4a)]. 

that (Gn ) -lln-o as n-oo. This means that the series (5.2) 
has a zero radius of convergence, and therefore that G (x) has 
a singularity at the origin. This is the expected branch point 
caused by soft-gluon effects. Although (5.2) is divergent for 
any x, it can be used as an asymptotic series for small x. This 
is important, since the Runge-Kutta routine cannot be used 
at the origin, due to the existence of the singularity. 

In Fig. 4, we show how the partial sum, 
N 

GN(x) = L Gnxn, (s.4a) 
n=O 

depends on N for the typical value, x = 0.05. Any value of N 
between 15 and 52 gives a stable value of GN(x) to five deci­
mal places, although the series blows up as N is further in­
creased (see Fig. 4). The derivative of (5.4a), 

N 

GN/(x) = L nGnxn - \ (s.4b) 
n=1 

was also computed. At x = 0.05, this gave four-decimal sta­
bility for Nbetween 15 and 35. In fact, we finally used the 
program for the still smaller value, x = 0.01, since this gives 
G Nand G N /, stable to more than ten significant figures, for N 
up to and beyond 50. We find 

G (0.01) = 1.498652724, 

G /(0.01) = - 0.268 912 765, 

(s.sa) 

(S.sb) 

and this was used as the initial point for the production runs 
of the Runge-Kutta routine. 

As a check on the reliability of the method, we have 
recalculated G (x) from the formula 

G (x) = ~ + 2 - I12X -7/2 f dy y712 sin[ 2112( ~ - ~ )] 

x( 189 _ ~ G( ) + 2 G
2
(y) ) 

8 4 Y 1 - y 2G(y) , 

(5.6) 

which is obtained from (3.9) by two partial integrations. The 
expression (5.6) was iterated 10 times, the initial value for 
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G (y) on the right-hand side being 3/2. The integral was per­
formed at SOOO equally spaced points between 0 and x; and 
this then allowed the integrand to be determined at the same 
points for the next iterate. A four-point finite-difference for­
mula was used to effect the quadrature. Convergence of the 
iteration was rapid, and agreement with the result of the 
asymptotic series, for small x, was good. For example, the 
routine yielded 

G (0.01) = 1.498 6S8 026, (S.7) 

which agrees to five places of decimals with (S.Sa). The value 
(S.Sa), from the series, was stable to beyond the ninth deci­
mal, and is the more accurate value. 

In order to apply the Runge-Kutta integration proce­
dure, the differential equation (3.S) was rewritten in the form 

G"(x) =/(x,G,G') 

=~ _ ISx
2 + 2 G (x) _ 2G 2(X) _ ~ G '(x).(S.8) 

X4 X4 x 2 [ I - x 2G (x)] x 

Given G (x) and G '(x) at x = x n ' a standard formula6 esti­
mates these functions at the next point, x = xn + I . It was 
found that satisfactory accuracy was obtained (to at least 7 
significant figures) if SOOO steps were taken between points of 
interest. Close to the origin, large cancellations occur, due to 
the denominators in (S.8); and so the first few steps must be 
cautious. In practice, we found that SOOO steps from 
x = 0.01, as given by (S.S), to x = 0.1, followed by 5000 to 
x = 1.0, preserved good accuracy. Complex excursions 
could then be made without danger from rounding errors; 
and in particular, a subroutine called LOOP continued G (x) 
around a rectangle. The initial and final values of G (x) and 
G '(x) were the same, typically to an accuracy of about 10- 10, 

unless a branch point was enclosed in the rectangle in ques­
tion, in which case the mismatch was of order 1 or more. 
Thus it was easy to distinguish between cases in which a 
branch point was, or was not, enclosed within a given rectan­
gle; and an automatic routine, in which a rectangle contain­
ing a branch point was systematically halved and subjected 
to the test, enabled branch points to be located to good accu­
racy. The method had earlier been developed4 to handle a 
similar problem in QED. 

As a check on the reliability of this program, we repeat­
ed the procedure with different real and complex values of x 
in the asymptotic series (S.4), which defined the starting 
point for the Runge-Kutta routine. For stability, the start­
ing point could not be too far from the origin, for then the 
asymptotic series was useless, nor too close to the origin, for 
then the cancellations between the various terms in (5.8) 
were too fierce. Fortunately, an intermediate region exists, 
in which stable results were obtained. An oval region around 
the origin, defined roughly by ± 0.03 in the real, and ± 0.06 
in the imaginary direction, is inaccessible to the Runge­
Kutta routine, because of large cancellations. 

In Table I, and in Fig. 3, we show the locations of six 
branch points that we have discovered in the second quad­
rant. We expect that an infinite number of them exists, accu­
mulating at the origin; but we were unable to approach the 
origin more closely, to pick up more branch points, because 
of numerical instabilities. Since the cardioid domain, in 
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TABLE I. Location of the first six branch points of G (x). 

n Rex Irnx 

1 - 0.1355 0.1110 
2 - 0.0903 0.0428 
3 - 0.0658 0.0226 
4 - 0.0514 0.0141 
5 -0.0421 0.0097 
6 - 0.0356 0.0071 

which the existence theorem of Sec. 4 works, has a horizon­
tal tangent at the origin it follows that, if an infinite number 
of branch points do accumulate at the origin, they must ap­
proach it along a curve that is asymptotic to the negative real 
axis (see Fig. 3). 

It is interesting to compare the above results with those 
of the averaged case that is treated in Appendix C. There, it is 
proved that an infinite number of branch points also accu­
mulate at the origin, but along the lines arg x = ± 31T/4. 
Apparently the averaging procedure has aggravated the situ­
ation, for first-sheet complex singularities should not be pre­
sent in a healthy theory. They are inconsistent with causal­
ity, and they spoil the Wick rotation that relates the Lorentz 
and Euclidean equations. Their occurrence must be regard­
ed as a sickness of the Mandelstam approximation; and it is 
of importance to improve the treatment of the Dyson­
Schwinger equation, in order to cure the disease. A hopeful 
sign is the fact that the equation of Sec. 3 appears to be less 
sick than that of Appendix C. Perhaps a relatively minor 
modification of the Mandelstam approximation will cause 
the complex branch points to be pushed on to a secondary 
Riemann sheet, where they can be tolerated. 
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APPENDIX A 

In this appendix, we shall prove Eq. (1.5). In polar coor­
dinates, the left-hand side of (1.5) can be written 

1 L" f II L27T . --lim rdr d 3kfl(k) coso d¢Je'lklrcoslJ 
41T ,,~oo 0 - I 0 

= lim fd3kfl(k)(~ 
,,~oo k 

2 coskA U sinkA A 2 COSU) 
- k4 - k 3 + k 2 ' 

(AI) 

where k = Ikl, and where the r, 0, and ¢J integrals have been 
performed inside the k integral, this being permissible for 
finiteA. To show that the last three terms vanish in the limit 
.,1,-+ 00, we use polar coordinates in the k variable and per­
form integrations by parts: three for the fourth term, two for 
the third term, and one for the second term. For example, 

S dfl k 100 

dk n (k) cO:~A 

=~Sdnk LOO dkSinkA~(fl(k)). (A2) 
A 0 ak k 2 
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The vanishing of n (k) and its first three derivatives at the 
origin is essential. 

APPENDIX B 

In this appendix we shall study the function I (t ), defined 
in Eq. (3.13). We shall show that, for any E lying in (0,17"), 
I/(t)1 isboundedbyaconstantCE when largt 1<17" - E.How­
ever,au-D,soCE _ OO • Thus I/(t)1 isboundedinD(p,E), 
for any nonzero E. 

Integrating (3.13) by parts, we find 

1(1:) 3 21 1:7/2i"" d; !-
~ =2-4~ 0 (;+t)9/2 cos~. (Bl) 

We change the integration variable to 

w=;/ltl, 

so that 

(B2) 

I(t) = 2- - ~ e7iIJ/2 i"" dw cos(wlt I), (B3) 
2 4 0 (w + e'IJ)9/2 

where () = argt. Hence, if I() 1<17" - E, 

1
/(1:)1<2- ~i"" dw =C ~ 2 + 4 0 Iw _ eiEI9/2 - E' 

(B4) 

which is finite if E > O. It may easily be shown that Cn- = 3 
and Cn-/2 <~ + 2117"/16:::::5.6, i.e., I/(t)1 is bounded by 3 on 
the positive real axis and by 5.6 in the right half-plane. 

In order to examine the behavior of/(t ) on the negative 
real axis, we need to modify the expression (3.13), since this 
diverges if t is real and negative, and it then no longer repre­
sents the continuation of/(t). Integrate twice by parts the 
other way: 

I(t) = - ~ t 2 + ~ t 7/2 i OO 

d; sin;. (B5) 
5 5 0 (; + t )3/2 

This still fails to exist for t real and negative; but we dare not 
integrate once more by parts, for this would cause the inte­
gral to diverge at infinity. Instead add and subtract sint to 
sin; in (B5). The result can be written 

I(t)= -~2-~3sint +~3g(t), (B6) 

where 

( I:) I: 1/2 ("" d; [sin!- + sinl: ]. (B7) 
g ~ = ~ Jo (; + t f/2 ~ ~ 

The integral (B7) exists for t real and negative, and it effects 
the analytic continuation of/(t). Substitute 1] =; + t, for 
the moment keeping 5 real and positive: 

g(t)=t I/2 
("" d1]1 [sint(l-cos1])+costsin1]]. Js 1]3 2 

(BS) 

Now since 

LOO d i"" d 3;2 (1 - COS1]) = (217")1/2 = 3;2 sin1], 
o 1] 0 1] 

(B9) 

we may write 

g(5) = (217") 1/25 1/2[sint + cost] - gM) sint - g2(t) cos5, 
(BlO) 
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where 

(Blla) 

(Bllb) 

which are closely related to the Fresnel integrals. Scale 1] by 
setting w = 1]lt: 

i l d 
gl(t) = ~2 [1 - cos(wt)], 

o w 
(BI2a) 

g2(t) = i l 
d~2 sin(w5)· 

o w 
(BI2b) 

Now we continue t away from the real, positive axis, and 
discover that g I and g 2 are entire functions! This means that 
the only contribution to Im/(t ) for t real and negative comes 
fromthet 1/2 term in(BlO). Thus/(t)hasacut - 00 <t <0, 
and on it 

Im/(t±iO)= +~(217")1/21517/2[sint +cost]. (BI3) 

For t real and negative, it is easy to prove from (BI2) 
that 

I gl(t)I<6t 1/2, 

I g2(t)1 <4t 1/2. 

(BI4a) 

(BI4b) 

Combining these results together, we conclude that, for 5 
real and negative, 

IRe/(t)1 <~It 12 + ilt 13 + 41t 17/2, 

Ilm/(t)1 <~17"1/2It 1712. 

Hence there exists a constant C such that 

I/(t)I<C It 1712
, 

when 5 is real and negative. 

(B15a) 

(BI5b) 

(BI6) 

In (B4) we showed that I I(t) I is bounded by a constant 
when I argt 1<17" - E; and in (B 16) we have a power bound on 
the negative real axis. In fact we can use the Phnigmen­
Lindeloftheorem to extend the bound (BI6) to the wedge 
17" - E < I argt I < 17". In order to do this, we need to be sure that 
I/(t)1 does not behave too badly as It 1-00 in this wedge. At 
first sight the trigonometric functions in (B6) and (BI2) look 
sick for large, complex t, and indeed they are, but they must 
cancel, because if we go back to (B5) and substitute 

I I 1- t 
--=--+ , 
;+t ;+1 (;+t)(;+I) 

(BI7) 

we find 

1(1=')- 21='2 41:7/2 (00 ds 
~ - - ~ + ~ Jo (s + 5 )112 

X [ sinS + 2(1 _ 5)( cos5 _ sins )], 
s + I ; + I (s + 1)2 

(BIS) 

after an integration by parts. This integral exists in the whole 
cut t plane, and it is easy to obtain the crude upper bound 

1/(5)i<CI51 5
, (BI9) 

where Cis some constant. This isa poor bound, and it is only 
needed to make sure that the Phnigmen-Lindelof theorem 
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really applies in the wedge 17' - € < I argS' 1<17', so that actual­
ly (BI9) can be tightened to (BI6) in the wedge. 

The above fulsome treatment of/(S' ) was motivated by 
the fact that this function may be regarded as the zeroth 
approximation to G (S' ), and thus to the Mande1stam gluon 
propagator itself. 

APPENDIXC 

Here we shall approximate the integral equation (3.2) 
still further by replacing the kernel (I - y2/X2

) by its average 
value, namely f. By a simultaneous rescaling of x, y, and G, 
this multiplicative factor can be removed [cf. Eq. (2.13) et 
seq.]. The result is 

_~_~ (Xd Giy) (CI) 
G (x) - x2 x3 Jo y I _ y2G iy)' 

and it is interesting to study this averaged equation, since it 
turns out to be explicitly soluble. A similar averaging in the 
QED case4 was shown to have minor quantitative, but not 
qualitative, effects on the solution. 

From (CI) we deduce the differential equation 

~ [x3G(x)] = I _ G(x) 
dx 1 - x 2G(x) 

which is greatly simplified if we substitute 

tP(x) = x - l/x - x 3G (x), 

for then 

dx 
-= 1 +xtP, 
dtP 

(C2) 

(C3) 

(C4) 

which is a linear equation for x as a function of tP, with the 
solution 

x(tP) = i oc 

dw exp[wtP - ~W2]. (C5) 

This is the relevant solution of (C4), since it corresponds to 
the boundary condition x-o through positive values as 
tP-- - 00, which is consistent with (C3) and (CI). Evidently 
x is an entire function of tP, and hence the only singularities 
of tP as a function of x are the points where 

dx =0. 
dtP 

(C6) 

These points can be evaluated numerically, and the work has 
already been done, for 

x(tP) = (17'/2)I12w( - ir Il2tP), (C7) 

where 

w(z) = e - z,( I + 217'- 1
/
2i f dt et

'), (C8) 

and its derivative have been tabulated in the literature. 7 Us­
ing these results, we find that tP(x), and therefore G (x), have 
an infinite number of first-sheet branch points that accumu­
late at the origin along the asymptotes argx = ± 317'/4 (see 
Fig. 5). 

The differential equation (C2), together with an asymp­
totic series like that of Sec. 5, have been used for testing the 
Runge-Kutta program: the first few of the branch points 
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FIG. 5. Some of the branch points in the upper half-plane for the averaged 
equation ICI). which have been numbered. starting from the one most dis­
tant from the origin. The branch points accumulate at the origin along the 
line argx = 317/4. 

shown in Fig. 5 are picked up without difficulty.H 
Although an existence proof along the lines of that giv­

en in Sec. 4 is strictly superfluous, since (C5) gives a represen­
tation of the solution, albeit in inverse form, it is nevertheless 
instructive. Without giving all the details, 9 we quote the ana­
logs of Eqs. (3.12)-(3.14): 

G(S')=f(S')-S'3 (00 dt e-s'-llIZ)"..r(t+S'), 
Jo (t + S-)2 

(C9) 

where 

(ClO) 

and 

(CII) 

where S- = l/x, etc. An existence proof can be completed for 
Ixl small (i.e., IS- I large) only if largxl <317'14 - €, instead of 
I argx I < 17' - €, as was possible in Sec. 4. The reason is that 

f(S') blows upas IS' I~oo when rr;;, largS' I:> 3rr/4. In fact, one 
can show easily thatf(S') is bounded if ReS';;' 0, and also that 

f( - S-) = f(S-) - (17'12)1/2S-3eI I/2),;', (Cl2) 

from which the results follow. The failure of the prooffor 
I argS- I;;, 3rr 1 4 - € is of course due to the existence of the 
branch points of Fig. 5. 

It is interesting that Eq. (3.2) is "softer" than is Eq. (CI), 
in the sense that the accumulation of branch points has been 
pushed in the former, as compared with the latter equation, 
from largS- I = 317'/4 to largs- I = rr. 
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