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We call an element A of the n × n copositive cone Cn irreducible

with respect to the nonnegative coneN n if it cannot be written as a

nontrivial sum A = C + N of a copositive matrix C and an elemen-

twise nonnegative matrix N (note that our concept of irreducibility

differs from the standard one normally studied in matrix theory).

This property was studied by Baumert [2] who gave a characterisa-

tion of irreducible matrices. We demonstrate here that Baumert’s

characterisation is incorrect and give a correct version of his the-

orem which establishes a necessary and sufficient condition for a

copositive matrix to be irreducible. For the case of 5 × 5 copositive

matrices we give a complete characterisation of all irreducible ma-

trices. We show that those irreducible matrices in C5 which are not

positive semidefinite can be parameterized in a semi-trigonometric

way. Finally, we prove that every 5 × 5 copositive matrix which is

not the sum of a nonnegative and a semidefinite matrix can be ex-

pressed as the sum of a nonnegative matrix with zero diagonal and

a single irreducible matrix.

© 2013 Published by Elsevier Inc.

1. Introduction

A real symmetric n×nmatrix A is called copositive if xTAx � 0 for all x ∈ R
n+. The set of copositive

matrices forms a convex cone, the copositive cone Cn. This matrix cone has attracted a lot of interest

recently because of its relation to combinatorial optimisation problems, for instance the maximum

clique problem from graph theory. Indeed, it has turned out that many combinatorial problems can be

formulated as linear problems over this convex matrix cone, for surveys see [8,11]. This is remarkable
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since it provides a convex formulationofmanyNP-hardproblems.All thedifficultyof the combinatorial

problem is moved into the cone constraint. Unsurprisingly, verifying copositivity of a given matrix is

a co-NP-complete problem [15].

In this paper, we study the structure of Cn, in particular in relation to the cone Sn+ of n × n real

symmetric positive semidefinite matrices and the cone N n of n × n real symmetric nonnegative

matrices. It is easy to see from the definition that if A ∈ Sn+ or A ∈ N n, then A must be copositive.

Hence both Sn+ ⊆ Cn and N n ⊆ Cn hold, and consequently we have Sn+ + N n ⊆ Cn. It is a classical

result by Diananda [6, Theorem 2], see also [14], that Sn+ + N n = Cn if and only if n � 4.

From an optimisation viewpoint, optimising over the cone Sn+ + N n is easy and can be done by

standard algorithms like interior point methods, whereas optimising over Cn is hard. Therefore, the

cone Cn for n � 5 is of special interest.

In this note we investigate the structure of Cn for n � 5, where we have Sn+ +N n �= Cn. Matrices in

Cn \ (Sn+ +N n) have been studied by Johnson and Reams [13] who baptised thosematrices exceptional

matrices. An example of an exceptional matrix is the Horn matrix [9]

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 1 1 −1

−1 1 −1 1 1

1 −1 1 −1 1

1 1 −1 1 −1

−1 1 1 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ C5 \ (S5+ + N 5). (1)

Thereare still anumberof openproblemsconcerning the coneCn, thebiggest onebeing thequestion
of characterising its extreme rays. Only partial answers are known to this question: the extremal rays

of Cn which are semidefinite or nonnegative have been given by Hall and Newman [9]. Attempts to go

further in this direction have been made by Baumert [2–4], Baston [1], and Ycart [16], but only last

year the 5 × 5 case has been settled with a full characterisation of the extremal rays of C5 being given

by Hildebrand [10].

In this note we consider a weaker concept than extremality, namely that of irreducibility with

respect to the cone N n of nonnegative matrices. This property has been utilized and recognized as

being more convenient than extremality already in the early work on copositive matrices [6,9,4]. In

particular, it was studied by Baumert [2] who gave a characterisation of irreducible matrices.

In this paper, we demonstrate that Baumert’s characterisation is incorrect and give a correct ver-

sion of his theorem which establishes a necessary and sufficient condition for a copositive matrix to

be irreducible. For the case of 5 × 5 copositive matrices we give a complete characterisation of all

irreducible matrices. We show that those irreducible matrices in C5 which are not positive semidefi-

nite can be parameterized in a semi-trigonometric way. Finally, we prove that every 5 × 5 copositive

matrix which is not the sum of a nonnegative and a semidefinite matrix can be expressed as the sum

of a nonnegative matrix with zero diagonal and a single irreducible matrix.

The last result can be seen as a dual statement to [5, Corollary 2], where it was shown that in

the 5 × 5 case any doubly nonnegative matrix which is not completely positive (such matrices are

called “bad matrices” in [5]) can be written as the sum of a completely positive matrix and a single

“extremely bad” matrix (i.e., a matrix which is extremal for the doubly nonnegative cone, but not

completely positive).

1.1. Notation

We shall denote vectors in bold, lowercase and for a vector u we let ui denote its ith entry. We let

ei be the unit vector with ith element equal to one and all other elements equal to 0. For simplicity we

shall also denote eij = ei + ej for i �= j. We denote by 1 = (1, . . . , 1)T the all-ones vector, and by 0

the zero vector.

For a vector u ∈ R
n+ we define its support as



P.J.C. Dickinson et al. / Linear Algebra and its Applications 439 (2013) 1605–1626 1607

supp(u) := {i ∈ {1, . . . , n} | ui > 0}.
For a setM ⊆ R

n+ we shall define its support as

supp(M) := {supp(u) | u ∈ M}.
We shall denote matrices in uppercase and for an n × nmatrix A, let aij be its (i, j)-th entry. For an

n× nmatrix A and a vector u, the k-th element of the vector Auwill be denoted by (Au)k . For a subset
I ⊆ {1, . . . , n} we denote by AI the principal submatrix of A whose elements have row and column

indices in I , i.e., AI := (aij)i,j∈I . Similarly for a vector v ∈ R
n we denote the subvector uI := (ui)i∈I .

For i, j = 1, . . . , n, we denote the following generators of the extreme rays of the nonnegative

cone N n by

Eij :=
{
eie

T
i if i = j

eie
T
j + eje

T
i otherwise.

We call a nonzero vector u ∈ R
n+ a zero of a copositive matrix A ∈ Cn if uTAu = 0. We denote the

set of zeros of A by

VA := {u ∈ R
n+ \ {0} | uTAu = 0}.

This notation is similar to that used by Dickinson in [7], except we will exclude the vector 0 from the

set.

Let Aut(Rn+) be the automorphism group of the nonnegative orthant. It is generated by all n × n

permutationmatrices and by all n× n diagonal matrices with strictly positive diagonal elements. This

group generates a group Gn of automorphisms of Cn by A �→ GAGT,G ∈ Aut(Rn+). Wheneverwe speak

of orbits of elements in Cn, we mean orbits with respect to the action of Gn.

Definition 1.1. For a matrix A ∈ Cn and a setM contained in the space of symmetric matrices, we say

that A is M-irreducible if there do not exist γ > 0 andM ∈ M \ {0} such that A − γM ∈ Cn.

Note that this definition differs from the concept of an irreducible matrix that is normally used in

matrix theory.Wewill synonymouslyuse theexpressionsof beingM-irreducible andbeing irreducible

with respect toM. For simplicity we speak about irreducibility with respect to M when M = {M}.
In our paper, we shall be concerned with the cases

M = N n, M = Ñ n, and M = {Eij},
where Ñ n := {N ∈ N n | diag(N) = 0}. The A∗(n; 0)-property defined in [6, p. 17] or, equivalently,

the A∗(n)-property1 defined in [3, Def. 2.1] are then equivalent to being irreducible with respect to

N n.

It is easy to see that an irreducible matrix necessarily is in the boundary of Cn. Also note that if

a matrix A �∈ N n is on an extreme ray of Cn, then A must be N n-irreducible. Indeed, assume the

contrary. Then there exist γ > 0 and 0 �= N ∈ N n such that A−γN =: B ∈ Cn. But then A = B+γN,

contradicting extremality.

Observe that being Ñ n-irreducible is a weaker condition than beingN n-irreducible. It is also trivial

to see that A ∈ Cn is irreducible with respect toN n if and only if it is irreducible with respect to Eij for

all i, j = 1, . . . , n, whilst A is irreducible with respect to Ñ n if and only if it is irreducible with respect

to Eij for all i �= j.

1 This notation is also used in [6], but without definition.
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2. Irreducible copositive matrices

In this section we shall show that the following theorem from Baumert’s thesis [2] about irre-

ducibility with respect to Eij is incorrect, and we shall give a corrected version of this theorem.

Assertion 2.1 (Incorrect Theorem 3.3 of [2]). For i, j = 1, . . . , n we have that a matrix A ∈ Cn is

irreducible with respect to Eij if and only if there exists a vector u ∈ VA such that uiuj > 0.

It is trivial to see that the reverse implication holds, as for such a u and any γ > 0 we have that

uT(A − γ Eij)u = −2γ uiuj < 0. However the following matrix is a counterexample to the forward

implication:

A =

⎛⎜⎜⎜⎝
1 0 0

0 1 −1

0 −1 1

⎞⎟⎟⎟⎠ .

As A is positive semidefinite we have that xTAx = 0 if and only if Ax = 0 and from this we get that

VA = {λe23 | λ > 0}. Therefore, according to Baumert’s theorem, A should be irreducible only with

respect to E23, and hence A should not be irreducible with respect to, say, E12. In other words, there

should exist a γ > 0 such that A − γ E12 is copositive. However, for any γ > 0 we have

⎛⎜⎜⎜⎝
γ

1

1

⎞⎟⎟⎟⎠
T ⎛⎜⎜⎜⎝

1 −γ 0

−γ 1 −1

0 −1 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
γ

1

1

⎞⎟⎟⎟⎠ = −γ 2 < 0,

which demonstrates that A is also irreducible with respect to E12, contradicting Baumert’s theorem.

As [2, Theorem 3.3] is incorrect, 2 also other results from Baumert’s thesis [2] which are proved

using this result must be treated with care. Fortunately this error has not entered into Baumert’s

papers [3,4], which as far as we can tell are correct. In our paper we do use results from Baumert’s

papers, and tomake sure that this error could not have had an effect,we checked that theywere correct

from first principles.

For easy reference in the remainder of the paper, we reference the property used in Baumert’s

incorrect theorem as follows:

Property 2.2. For each pair i, j of indices such that i �= j, there exists a zero u of A such that uiuj > 0.

Our next aim is to present a corrected version of this theorem. Before doing so, however, we first

discuss a couple of properties related to the set of zeros.

Lemma 2.3 (p. 200 of [3]). Let A ∈ Cn and u ∈ VA. Then Au � 0.

2 The proof of Theorem 3.3 of [2] contains two errors, each of which leads to counterexamples. One error is the omission of the

multiples of E11 in the classification making up the inductive base on page 12 of Baumert’s thesis [2]. (Note that for the 2 × 2 case,

the matrix E11 also provides a counterexample to Baumert’s assertion.) The other error, being located in the induction step for case 3

on page 14, is more subtle. Generally, in order for an induction step to be applicable, the problem in question has to be reduced to an

instance of the same problem of strictly smaller size. In the proof this is to be ensured by the fact that the copositive formQ2 depends

on a strictly smaller number of variables than the original form Q , in particular, because Q2 does no more depend on the variable x2.

However, since irreducibility with respect to E12 is studied, dependence on x2 has nevertheless to be formally included. Therefore,

the induction step is applicable only if either the support of the zero u is strictly bigger than {2}, or the support of Qu is nonempty.

Both conditions may simultaneously fail to be satisfied, however.
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Lemma 2.4. Let A ∈ Cn and u ∈ VA. Then the principal submatrix Asupp(u) is positive semidefinite.

Proof. Clearly, u is a zero of A if and only if usupp(u) is a zero of Asupp(u). Moreover, usupp(u) > 0.

Therefore, by [6, Lemma 1], we have that (usupp(u))
TAsupp(u)(usupp(u)) = 0 implies that Asupp(u) is

positive semidefinite. �

Lemma 2.5. Let A ∈ Cn and u, v ∈ VA such that supp(u) ⊆ supp(v). Then we have that (Au)i = 0 for

all i ∈ supp(v).

Proof. This comes trivially from the previous lemma and recalling that for arbitrary P ∈ Sm+ and

v ∈ R
m we have that vTPv = 0 if and only if Pv = 0. �

Note that applying the previous lemma for u = v gives us that for A ∈ Cn and u ∈ VA we have

(Au)i = 0 for all i ∈ supp(u).
We now present the main theorem of this section, which is a corrected version of Baumert’s

theorem.

Theorem 2.6. Let A ∈ Cn, n � 2, and let 1 � i, j � n. Then the following conditions are equivalent.

(i) A is irreducible with respect to Eij,

(ii) there exists u ∈ VA such that (Au)i = (Au)j = 0 and ui + uj > 0.

Proof. The special case when i = j is proven in [3, Theorem 3.4], so from now on we shall consider

i �= j. For ε > 0, we will abbreviate Aε := A − εEij .

We first show (ii) ⇒ (i). Assume that there exists such a u ∈ VA. Fix ε > 0 and let δ > 0. Then

u + δeij � 0 and

(u + δeij)
TAε(u + δeij) = uTAu + 2δeTij Au + δ2(aii + 2aij + ajj) − 2ε(ui + δ)(uj + δ)

= −2εuiuj − 2εδ(ui + uj) + O(δ2).

Since uiuj � 0 and ui+uj > 0, this term is negative for δ > 0 small enough. Hence Aε is not copositive

and A satisfies condition (i).

Let us now show (i) ⇒ (ii) by induction over n. For n = 2, it can be seen that copositive matrices

satisfying condition (i) are of the form

⎛⎝ a2 −ab

−ab b2

⎞⎠ with a, b � 0.

If a = b = 0, then any u ∈ R
n+ \ {0} satisfies condition (ii). Alternatively, if a + b > 0, then the zero

u = (b, a)T satisfies condition (ii).

Now assume that the assertion holds for n̂ < n, and let A ∈ Cn satisfy condition (i). For every ε > 0,

consider the optimisation problem

min
{
1
2
vTAεv | v ∈ R

n+, 1Tv = 1
}
. (2)

By condition (i) the optimal value of this problem is negative, and it is attained by compactness of the

feasible set. Let v be a minimizer of the problem. Having only linear constraints, the problem fulfils a

constraint qualification, and therefore it follows from the Karush–Kuhn–Tucker optimality conditions

that there exist Lagrange multipliers λ ∈ R
n+ and μ ∈ R such that vTλ = 0 and Aεv − λ + μ1 = 0,

or equivalently,
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Aεv = λ − μ1. (3)

Multiplying with vT and observing vTλ = 0 and vT1 = 1, we obtain −μ = vTAεv < 0. We also

have vTAv − 2εvivj = vTAεv < 0, which by vTAv � 0 yields vi > 0, vj > 0. Therefore λi = λj = 0,

and

(Aεv)i = (Aεv)j = −μ < 0. (4)

Now let εk → 0, let vk ∈ R
n+ be aminimizer of problem (2) for ε = εk , and let λk = (λk

1, . . . , λ
k
n),

μk be the corresponding Lagrange multipliers. By possibly choosing a subsequence, we can assume

w.l.o.g. that vk → v∗ ∈ R
n+ \ {0}. Then 0 � limk→∞ vk

T
Aεkv

k = v∗T
Av∗ � 0, and hence by

Lemma 2.3 Av∗ � 0. Since limk→∞ Aεkv
k = Av∗ � 0, we get from (4) that (Av∗)i = (Av∗)j = 0. If

v∗
i + v∗

j > 0, then v∗ verifies condition (ii). Hence assume that v∗
i = v∗

j = 0 and consider two cases:

Case 1: Suppose there exists an index l such that (Av∗)l > 0. Then i �= l �= j. From (3) we obtain

(Aεkv
k)l = λk

l −μk < λk
l for all k. By limk→∞(Aεkv

k)l = (Av∗)l > 0wemust have λk
l > 0 for k large

enough, and hence (λk)Tvk = 0 implies vkl = 0 for those k. This implies that

0 > (vk)T(A − εkEij)v
k = (v̂

k
)T(Â − εkÊij)v̂

k
,

where Â (resp. Êij) are the principal submatrices of A (resp. Eij) obtained by crossing out row and

column l, and v̂
k
is obtained from vk by crossing out row l. This means that Â is irreducible with

respect to Êij . By the induction hypothesis, there exists a zero û of Â satisfying condition (ii). The

sought zero u of A can then be obtained by inserting a ‘0’ in û at position l, which concludes the proof

for this case.

Case 2: Suppose now that Av∗ = 0. Let I = supp(v∗) and let J = {1, . . . , n} \ I . Note that

i, j ∈ J and that |J | < n. By [3, Lemma 3.1] we can represent A as A = P + C, where P is positive

semidefinite, the principal submatrix PI has the same rank as P, and C is a copositive matrix whose

principal submatrix CJ contains all its nonzero elements. The property v∗T
Av∗ = 0 implies Pv∗ = 0

and v∗T
Cv∗ = 0. Moreover, Cv∗ = 0 by construction. The matrix C is irreducible with respect to Eij ,

and hence CJ is irreducible with respect to (Eij)J . By the induction hypothesis on CJ there exists a

zerowith the sought propertieswhichwe can augment to obtain a zerou of C with (Cu)i = (Cu)j = 0,

ui + uj > 0, and ul = 0 for all l ∈ I . By the rank property of P there exists a vector ũ such that ũl = ul
for all l ∈ J and Pũ = 0. Since ũl � 0 for all l ∈ J , there exists α � 0 such that w := ũ + αv∗ � 0.

Then we have Pw = 0 and wTAw = wTCw = ũ
T
Cũ = uTCu = 0 and Aw = Cw = Cũ = Cu. It

follows that (Aw)i = (Aw)j = 0, and moreoverwi +wj = ui + uj > 0. Thus A satisfies condition (ii),

which completes the proof of the theorem. �

Related to this theorem we define the following.

Definition 2.7. Let A ∈ Cn be irreducible with respect to Eij . If u ∈ VA satisfies condition (ii) in

Theorem 2.6, then we say that irreducibility with respect to Eij is associated to u, or for short, Eij is

associated to u.

As a consequence of Theorem 2.6, a matrix A ∈ Cn is irreducible with respect to Ñ n if and only if it

satisfies the following property.

Property 2.8. For each index pair (i, j) with i < j, there exists u ∈ VA such that one of the following

holds:

• uiuj > 0,
• ui > 0 and uj = (Au)j = 0,
• uj > 0 and ui = (Au)i = 0.
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Another consequence of Theorem 2.6 is that a matrix A ∈ Cn is irreducible with respect to N n if

and only if it satisfies Property 2.8 and for all i = 1, . . . , n there exists u ∈ VA with ui > 0.

Note that Property 2.8 isweaker thanProperty 2.2. In thenext sectionwe consider explicit examples

of matrices A ∈ C5 which satisfy Property 2.8, but not Property 2.2.

3. S-matrices

In this section we consider matrices of the form

S(θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − cos θ1 cos(θ1 + θ2) cos(θ4 + θ5) − cos θ5

− cos θ1 1 − cos θ2 cos(θ2 + θ3) cos(θ5 + θ1)

cos(θ1 + θ2) − cos θ2 1 − cos θ3 cos(θ3 + θ4)

cos(θ4 + θ5) cos(θ2 + θ3) − cos θ3 1 − cos θ4

− cos θ5 cos(θ5 + θ1) cos(θ3 + θ4) − cos θ4 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5)

with θ ∈ R
5+ and 1Tθ < π . Note that the Horn matrix H from (1) is of this formwith θ = 0. It is easy

to verify that H satisfies Property 2.2. The Horn matrix has been shown to be extremal for the cone of

copositive matrices C5, see [9].

The matrices S(θ) are transformed versions of the matrices T(ϕ) that were introduced by Hilde-

brand in [10] by making a trivial substitution. Observe that we study S(θ) with θ in a different range:

While Hildebrand [10] showed that an S(θ) with θ ∈ R
5++ and 1Tθ < π is extremal for C5, we

specifically consider in this section S(θ) with θ ∈ R
5+ \ (R5++ ∪ {0}) and 1Tθ < π . We show that

these provide further counterexamples to Baumert’s theorem. These matrices will also be of use later

in the paper.

Theorem 3.1. Let θ ∈ R
5+ \(R5++ ∪{0}) such that 1Tθ < π . Then thematrix S(θ) is in C5, not extremal,

not positive semidefinite, irreducible with respect to N 5, and satisfies Property 2.8, but not Property 2.2.

Proof. Without loss of generality we can always cycle the indices so we can assume that θ1 = 0. It is

then easy to verify that

S(θ) = aaT + Diag(d)H Diag(d)

where

a =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− sin( 1
2
( θ2 + θ3 + θ4 + θ5))

sin( 1
2
( θ2 + θ3 + θ4 + θ5))

− sin( 1
2
(−θ2 + θ3 + θ4 + θ5))

sin( 1
2
(−θ2 − θ3 + θ4 + θ5))

− sin( 1
2
(−θ2 − θ3 − θ4 + θ5))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, and d =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos( 1
2
( θ2 + θ3 + θ4 + θ5))

cos( 1
2
( θ2 + θ3 + θ4 + θ5))

cos( 1
2
(−θ2 + θ3 + θ4 + θ5))

cos( 1
2
(−θ2 − θ3 + θ4 + θ5))

cos( 1
2
(−θ2 − θ3 − θ4 + θ5))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We have d > 0 from which we see that S(θ) is copositive. We also have that a �= 0 from which we

see that S(θ) is not extremal. For the set of zeros of S(θ) it can be seen that
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VS(θ) = Diag(d)−1VDiag(d)−1S(θ)Diag(d)−1

= Diag(d)−1

(
V(Diag(d)−1a)(Diag(d)−1a)T ∩ VH

)
= Diag(d)−1

{
x ∈ VH

∣∣∣ xT(Diag(d)−1a) = 0
}
,

where

VH = ⋃
cyclic

permutations

conv-cone

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

1

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
\ {0},

and

Diag(d)−1a =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− tan
(
1
2
( θ2 + θ3 + θ4 + θ5)

)
tan

(
1
2
( θ2 + θ3 + θ4 + θ5)

)
− tan

(
1
2
(−θ2 + θ3 + θ4 + θ5)

)
tan

(
1
2
(−θ2 − θ3 + θ4 + θ5)

)
− tan

(
1
2
(−θ2 − θ3 − θ4 + θ5)

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

If u ∈ VS(θ) then we have that S(θ)u = Diag(d)H Diag(d)u. From this we observe that:

• If u ∈ VS(θ) such that supp(u) = {1, 2}, then supp(S(θ)u) = {4}.
• If u ∈ VS(θ) such that supp(u) = {1, 2, 3}, then supp(S(θ)u) = {4, 5}.
These results apply similarly after cyclic permutations.

For i, j ∈ {1, . . . , 5} we now say that (i, j) has Property I or Property II if and only if the following

respective conditions hold:

I. There exists u ∈ VS(θ) such that uiuj > 0.

II. There exists u ∈ VS(θ) such that ui > 0 = uj and (S(θ)u)j = 0.

Then S(θ) satisfies Property 2.2 if and only if for all i, j = 1, . . . , 5 the pair (i, j) satisfies Property I,

and S(θ) satisfies Property 2.8 if and only if for all i, j = 1, . . . , 5, i < j, at least one of (i, j) or (j, i)
satisfies at least one of properties I or II.

Without loss of generality (by considering cyclic permutations) we now have 6 cases to consider.

For each case, by looking at the structure of Diag(d)−1a and VH it is a trivial but somewhat tedious

task to find the support of the set of zeros. From this we can use the results above to check for each

(i, j) if Property I or II holds. In each case we will name the case, give the support of the set of zeros

and give a table showing for each (i, j) if Property I or II holds.

1. θ1 = θ2 = θ3 = θ4 = 0 and 0 < θ5 < π : We have

supp
(
VS(θ)

)
=

{
{1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 2, 3}, {2, 3, 4}, {3, 4, 5}

}
and
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j\i 1 2 3 4 5

1 I I I,II II

2 I,II I I,II I,II II

3 I,II I,II I I,II I,II

4 II I,II I,II I I,II

5 II I,II I I

2. θ1 = θ2 = θ3 = 0 and 0 < θ4, θ5 and θ4 + θ5 < π : We have

supp
(
VS(θ)

)
=

{
{1, 2}, {2, 3}, {3, 4}, {1, 2, 3}, {2, 3, 4}, {1, 4, 5}

}

and

j\i 1 2 3 4 5

1 I I I,II I I,II

2 I,II I I,II I,II II

3 I,II I,II I I,II II

4 I I,II I I I,II

5 I I I

3. θ1 = θ2 = θ4 = 0 and 0 < θ3, θ5 and θ3 + θ5 < π : We have

supp
(
VS(θ)

)
=

{
{1, 2}, {2, 3}, {4, 5}, {1, 2, 3}

}

and

j\i 1 2 3 4 5

1 I I I,II II

2 I,II I I,II II II

3 I,II I I II

4 II II I I

5 II II I I

4. θ1 = θ2 = 0 and 0 < θ3, θ4, θ5 and θ3 + θ4 + θ5 < π : We have

supp
(
VS(θ)

)
=

{
{1, 2}, {2, 3}, {1, 2, 3}, {2, 3, 4}, {1, 4, 5}

}

and
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j\i 1 2 3 4 5

1 I I I,II I I,II

2 I,II I I,II II II

3 I,II I I I,II I

4 I I I I

5 I I I I

5. θ1 = θ3 = 0 and 0 < θ2, θ4, θ5 and θ2 + θ4 + θ5 < π : We have

supp
(
VS(θ)

)
=

{
{1, 2}, {3, 4}, {1, 4, 5}

}

and

j\i 1 2 3 4 5

1 I I II I I,II

2 I I II II

3 II I I II

4 I II I I I,II

5 I I I

6. θ1 = 0 and 0 < θ2, θ3, θ4, θ5 and θ2 + θ3 + θ4 + θ5 < π : We have

supp
(
VS(θ)

)
=

{
{1, 2}, {2, 3, 4}, {3, 4, 5}, {1, 4, 5}

}

and

j\i 1 2 3 4 5

1 I I II I I,II

2 I I I,II I II

3 I I I I

4 I I I I I

5 I I I I

By analysing these results we see that in each case the matrix S(θ) satisfies Property 2.8, but not

Property 2.2. Since (i, i) always has Property I, it follows that S(θ) is irreducible with respect to N 5.

Let now (i, j) have neither Property I nor Property II. From the tables above one can see that such a

pair always exists. Let u ∈ VS(θ) be such that ui > 0. If now S(θ) ∈ S5+, then S(θ)u = 0. Therefore, if

uj > 0, then (i, j)has Property I, and ifuj = 0, then (i, j)has Property II. Thusweobtain a contradiction,

which proves that S(θ) is not positive semidefinite. This completes the proof. �
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4. Auxiliary results

We next want to study the form of irreducible matrices. We start with two trivial, but important,

lemmas.

Lemma 4.1. For n � 2, let A ∈ Cn and i ∈ {1, . . . , n} such that Aii = 0. Then A is irreducible with respect

to Ñ n if and only if aij = 0 for all j = 1, . . . , n, and A{1,...,n}\{i} is irreducible with respect to Ñ n−1.

Proof. This is trivial to see after recalling that every principle submatrix of a copositive matrix must

be copositive. �

Lemma 4.2. Let A ∈ Sn+ + N n be irreducible with respect to Ñ n. Then A ∈ Sn+.

Proof. This is trivial to see from Sn+ + N n ⊆ Cn and the fact that every element in N n which is

irreducible with respect to Ñ n is in Sn+. �

Note that for n � 4 we have Sn+ + N n = Cn, so in these cases all of the matrices which are

irreducible with respect to Ñ n must be positive semidefinite. We will however now consider order 2

and order 3 copositive matrices in more detail. Due to Lemma 4.1 we limit ourselves to cases when

all the on diagonal elements are strictly positive. By considering scaling with a diagonal matrix with

on-diagonal elements strictly positive, we can in fact limit ourselves to when all the on-diagonal

elements are equal to one.

Lemma 4.3. Let A ∈ C2 be such that diag(A) = 1. Then we have that VA ⊆ {λe12 | λ ∈ R++} and the

following are equivalent:

• A is irreducible with respect to Ñ 2,

• A =
⎛⎝ 1 −1

−1 1

⎞⎠,

• VA = {λe12 | λ ∈ R++}.
Proof. For any u ∈ R

2+ we have that uTAu = u21 + 2a12u1u2 + u22 = (u1 − u2)
2 + 2u1u2(a12 + 1).

Hence, for A to be copositive, we must have that a12 � −1. We also see that u ∈ VA if and only if

u1 = u2 > 0 and a12 = −1. Now the fact that a matrix is irreducible with respect to Ñ n if and only if

Property 2.8 holds gives us the required results. �

The following corollary of this lemma comes from the fact that all principal submatrices of a copos-

itive matrix must be copositive.

Corollary 4.4. Consider A ∈ Cn with diag A = 1 and let u ∈ VA be such that supp(u) = {i, j} for some

i, j ∈ {1, . . . , n} with i �= j. Then aij = −1 and there exists λ ∈ R++ such that u = λeij .

We nowmomentarily consider the following lemma.

Lemma 4.5. Let A ∈ Cn with diag A = 1 be irreducible with respect to Ñ n. Then aij ∈ [−1, 1] for all i, j.
Proof. ConsiderA ∈ Cn such that diag A = 1. All order 2 principle submatrices ofAmust be copositive,

which implies that aij � −1 for all i, j. Now considering work done on the copositive completion

problem [12] we see that all off-diagonal elements of A which are strictly greater than one can have

their value replaced by one and the matrix would remain copositive. Therefore if A is irreducible with

respect to Ñ n, then we must have that aij � 1 for all i, j. �
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Combining this lemma with Corollary 4.4 and noting that all order three principle submatrices of

a copositive matrix must be in C3 = S3+ + N 3 gives us the following result.

Lemma 4.6. Let A ∈ Cn be irreducible with respect to Ñ n and diag A = 1. Suppose {i, j}, {j, k} ∈
supp

(
VA

)
, where i, j, k are mutually different. Then A{i,j,k} is a rank 1 positive semidefinite matrix with

1 = aik = −aij = −ajk.

Next we consider order 3 copositive matrices specifically.

Lemma 4.7. A matrix A ∈ C3 with diag A = 1 is irreducible with respect to Ñ 3 if and only if it can be

represented in the form

A =

⎛⎜⎜⎜⎝
1 − cos ζ cos(ζ + ξ)

− cos ζ 1 − cos ξ

cos(ζ + ξ) − cos ξ 1

⎞⎟⎟⎟⎠ (6)

for some (ζ, ξ) ∈ � := {(ζ, ξ) ∈ R
2+ | ζ + ξ � π}.

We have that supp
(
VA

)
= {{1, 2, 3}} if and only if (ζ, ξ) ∈ int�. In this case the zero is proportional

to (sin ξ, sin(ζ + ξ), sin ζ )T.

Proof. First note that a matrix A of the form (6) can be decomposed as

A =

⎛⎜⎜⎜⎝
− cos ζ

1

− cos ξ

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
− cos ζ

1

− cos ξ

⎞⎟⎟⎟⎠
T

+

⎛⎜⎜⎜⎝
sin ζ

0

− sin ξ

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

sin ζ

0

− sin ξ

⎞⎟⎟⎟⎠
T

∈ S3+ ⊂ C3. (7)

Now let us show that if A ∈ C3 with diag A = 1 is irreducible with respect to Ñ 3 then it must be

representable in the required form. From Lemma 4.5 we see that there must exist ζ, ξ ∈ [0, π ] and
a13 ∈ [−1, 1] such that

A =

⎛⎜⎜⎜⎝
1 − cos ζ a13

− cos ζ 1 − cos ξ

a13 − cos ξ 1

⎞⎟⎟⎟⎠ .

As A is irreducible with respect to Ñ 3, we must have that VA �= ∅, and thus

0 = det A = −(a13 − cos ζ cos ξ)2 + sin2 ζ sin2 ξ.

Therefore a13 = cos ζ cos ξ ± sin ζ sin ξ . For both possible values of a13 we would get that the matrix

is positive semidefinite, and thus copositive. Therefore A being irreducible with respect to Ñ 3 means

that

a13 = min{cos ζ cos ξ ± sin ζ sin ξ} = cos ζ cos ξ − sin ζ sin ξ = cos(ζ + ξ).

We are now left to show that ζ + ξ � π . Suppose for the sake of contradiction that ζ + ξ > π . We

must have that ζ, ξ > 0. Assuming ζ = ξ = π would give that A is the matrix with all entries equal

to one, which is clearly not irreducible with respect to Ñ 3. Therefore ζ + ξ < 2π and w.l.o.g. assume
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ζ ∈ (0, π). This implies that the vectors (− cos ζ, 1, − cos ξ)T and (sin ζ, 0, − sin ξ)T from (7) are

linearly independent and so we get that

∅ �= VA = R
3+ ∩

⎧⎪⎪⎪⎨⎪⎪⎪⎩x ∈ R
3

∣∣∣∣∣∣∣∣∣ 0 = xT

⎛⎜⎜⎜⎝
− cos ζ

1

− cos ξ

⎞⎟⎟⎟⎠ = xT

⎛⎜⎜⎜⎝
sin ζ

0

− sin ξ

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ \ {0}

= R
3+ ∩

⎧⎪⎪⎪⎨⎪⎪⎪⎩λ

⎛⎜⎜⎜⎝
sin ξ

sin(ζ + ξ)

sin ζ

⎞⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣ λ ∈ R \ {0}

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= ∅.

This gives us our contradiction, and so if A ∈ C3 with diag A = 1 is irreducible with respect to Ñ 3 then

it must be representable in the required form.

Next we show that anymatrix of the form (6) is irreducible with respect to Ñ 3. From the decompo-

sition (7)we see that it is positive semidefinite, andhence copositive. If ζ = 0 thenAe12 = 0 and soA is

irreducible with respect to Ñ 3 by Theorem 2.6. A similar reasoning holds for ξ = 0 and for ζ +ξ = π ,

soweare left to consider (ζ, ξ) ∈ int�. In this casewehave thatu := (sin ξ, sin(ζ +ξ), sin ζ )T ∈ VA

is a strictly positive vector, Au = 0, and so again by Theorem 2.6 we have that A is irreducible with

respect to Ñ 3.

Finally from this discussion it is trivial to prove the last result for supp
(
VA

)
= {{1, 2, 3}}. �

From the last lemma we get the following corollary.

Corollary 4.8. Let A ∈ C3 with diag A = 1 and a13 = 1 be irreducible with respect to Ñ 3. Then

a12 = a23 = −1 and hence supp
(
VA

)
= {{1, 2}, {2, 3}, {1, 2, 3}}.

The main work of the following section will be on classifying matrices in C5 which are irreducible

with respect to Ñ 5. Before we begin this, however, we will first need a few more auxiliary results.

Lemma 4.9 (Lemma 3.1 of [3]). Let A ∈ Cn and u ∈ VA such that Au = 0. Let I = supp(u). Then
A = P + C, where P ∈ Sn+ such that the rank of P equals the rank of the submatrix PI , and C ∈ Cn is such

that cij = 0 for all i, j = 1, . . . , n with j ∈ I .

This important lemma has several consequences.

Corollary 4.10 (Corollary 3.2 of [3]). Let A ∈ Cn and let u ∈ VA such that | supp(u)| = n − 1 and

Au = 0. Then A ∈ Sn+.

The following corollary comes trivially from combining Lemmas 4.2 and 4.9.

Corollary 4.11. Let A ∈ C5 be irreducible with respect to Ñ 5 and let u ∈ VA be such that Au = 0. Then

A ∈ S5+.

Next we consider the following lemma whose proof is similar to that of [6, Lemma 11].

Lemma 4.12. Let A ∈ Cn be irreducible with respect to Ñ n, and assume there is a (n − 1) × (n − 1)
submatrix B of A which is positive semidefinite. Then A ∈ Sn+.

Proof. Assume w.l.o.g. that B is the upper left subblock and partition A as
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A =
⎛⎝ B a

aT α

⎞⎠ with B ∈ Sn−1+ , a ∈ R
n−1, α ∈ R+.

Let γ � 0 be the largest number such that Ã := A − γ Enn ∈ Cn and set α̃ := α − γ . Then Ã is

irreducible with respect to Enn, and by [3, Theorem 3.4] there exists ũ ∈ R
n−1+ such that u = (ũT, 1)T

is a zero of Ã. By Lemma 2.3 we then have

Ãu =
⎛⎝ Bũ + a

aTũ + α̃

⎞⎠ � 0.

Moreover, by Lemma 2.5 we have that (Ãu)k = 0 for all k ∈ supp(u). In particular, 0 = (Ãu)n =
aTũ + α̃ and 0 = uÃu − (Ãu)n = ũ

T
Bũ + aTũ = 0. Therefore

A =
⎛⎝ B −Bũ

(−Bũ)T ũ
T
Bũ

⎞⎠ +
⎛⎝ 0 Bũ + a

(Bũ + a)T γ

⎞⎠
which is the sum of a positive semidefinite matrix and a nonnegative matrix. The proof is concluded

by Lemma 4.2. �

Combining this lemma with Lemma 4.2 and S4+ + N 4 = C4 [6, Theorem 2] gives us the following

corollary.

Corollary 4.13. Let A ∈ C5 be irreducible with respect to Ñ 5, and let some 4 × 4 submatrix B of A be

irreducible with respect to Ñ 4. Then A ∈ S5+.

Corollary 4.13 is an analogue of [4, Lemma4.4],where this assertion has been proven for irreducibil-

ity with respect to N n.

Corollary 4.14. Let A ∈ Cn be irreducible with respect to Ñ n. If there exists u ∈ VA such that | supp(u)| �
n − 1, then A ∈ Sn+.

Proof. If A has a zero with n positive components, then A is positive semidefinite by [6, Lemma 7, (i)].

If A has a zero with n− 1 positive components, then the corresponding principal submatrix is positive

semidefinite by [6, Lemma 7, (i)] and A is positive semidefinite by Lemma 4.12. �

Corollary 4.15. Let A ∈ Cn be irreducible with respect to Ñ n. If for i �= j, Eij is associated to a zero u with

| supp(u)| � n − 2 and satisfying uiuj = 0, then A ∈ Sn+.

Proof. Assume the conditions of the corollary and let I = supp(u). Define I′ = I ∪ {i, j}. Since
uiuj = 0, but ui + uj > 0, the index set I′ has at least n − 1 elements. Moreover, by Definition 2.7

for association and by Lemma 2.5, we have (Au)k = 0 for all k ∈ I′, and therefore AI′ is positive

semidefinite by Corollary 4.10. The proof is concluded by Lemma 4.12. �

We finish this section with the following corollary.

Corollary 4.16. Let A ∈ C5 \ S5+ with diag A = 1 be irreducible with respect to Ñ 5. Then every zero of A

either has exactly 2 or exactly 3 positive components. If (i, j) is such that uiuj = 0 for all u ∈ VA, then Eij
is associated to a zero ekl with k ∈ {i, j} and l �∈ {i, j}, and 0 = aik + ail = ajk + ajl.
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Proof. By Corollary 4.14, A cannot have a zero with more than 3 positive components. On the other

hand, diag A = 1 contradicts the existence of zeros with exactly one positive component.

Now if (i, j) is such that uiuj = 0 for all u ∈ VA, then by Corollary 4.15, Eij cannot be associated to a

zerowith 3positive components. Hence Eij is associated to a zerowith precisely 2positive components,

which must have the support described in the assertion of the corollary, and the condition diag A = 1

ensures it is proportional to ekl , so it can be taken equal to. Finally by Definition 2.7 for association we

have that aik + ail = ajk + ajl = 0. �

5. Classification of 5 × 5 copositive matrices

In this section we study matrices A ∈ C5 which are irreducible with respect to Ñ 5.

Let us first consider the case of A having a zero diagonal entry, say a55. Then for k = 1, . . . , 4
we have by copositivity of A that ak5 ≥ 0, and by irreducibility w.r.t. Ek5 we must have ak5 = 0.

Hence A effectively is a copositive 4×4matrix augmentedwith a zero row and column, which implies

A ∈ S5+ + N 5 by [6, Theorem 2]. By Lemma 4.2 we then have that A is positive semidefinite.

We may therefore assume that all diagonal elements of A are strictly positive. By possibly con-

jugating A with a positive definite diagonal matrix, we may assume without loss of generality that

diag A = 1. We next study irreducibility with respect to Ñ 5, first when Property 2.2 does hold, and

then when it does not.

5.1. Property 2.2

In [4] the zero patterns of irreduciblematrices in C5 which satisfy Property 2.2 have been classified.

The result is summarized in the following lemma.

Lemma 5.1 (pp. 10–15 of [4]). Let A ∈ C5 have diag A = 1 and suppose A satisfies Property 2.2. Then

either

(a) A is positive semidefinite, or

(b) A is in the orbit of the Horn matrix H, or

(c) there exists a relabeling of variables such that

{{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {3, 4, 5}} ⊆ supp
(
VA

)
,

or

(d) there exists a relabeling of variables such that

{{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {1, 4, 5}, {1, 2, 5}} = supp
(
VA

)
.

We shall now analyse this in detail and show that, in fact, case (c) is a subcase of (a), and case (d)

means that A is in the orbit of some S(θ) from (5). We start with case (c).

Lemma 5.2. Let A ∈ C5 with diag A = 1 be such that

{{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {3, 4, 5}} ⊆ supp
(
VA

)
Then A is positive semidefinite.

Proof. By Theorem 2.6 the matrix A and its submatrices A{1,2,3}, A{1,2,4}, A{1,2,5}, A{3,4,5} are irre-

ducible with respect to Ñ 5 resp. Ñ 3 and by Lemma 2.4 these submatrices are positive semidefinite.

By Lemma 4.7 we then have
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A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − cos θ1 cos(θ1 + θ2) cos(θ1 + θ3) cos(θ1 + θ4)

− cos θ1 1 − cos θ2 − cos θ3 − cos θ4

cos(θ1 + θ2) − cos θ2 1 − cos θ5 cos(θ5 + θ6)

cos(θ1 + θ3) − cos θ3 − cos θ5 1 − cos θ6

cos(θ1 + θ4) − cos θ4 cos(θ5 + θ6) − cos θ6 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with

θ ∈ R
6+, θ1 + θ2 � π, θ1 + θ3 � π, θ1 + θ4 � π, θ5 + θ6 � π.

We shall now split the remainder of this proof into three cases:

Case 1: θ1 = 0. It can be immediately seen that e12 ∈ VA and Ae12 = 0. Therefore Corollary 4.11

implies that Amust be positive semidefinite.

Case 2: θ1 = π . From the inequalities on θ we have that 0 = θ2 = θ3 = θ4. We then get that

e1k ∈ VA for k = 3, 4, 5. From considering Lemma 2.3 we see that for k,m = 3, 4, 5 we have that

0 � (Ae1k)m = a1m + akm = −1 + akm. Therefore akm � 1 for all k,m = 3, 4, 5, which by looking

at the form of A gives us a contradiction and so this case is not possible.

Case 3: 0 < θ1 < π . From the inequalities on θ we have that 0 � θ2, θ3, θ4 < π and 0 �
θ5, θ6, (θ5 + θ6) � π .

If we let u := (sin θ2, sin(θ1 + θ2), sin θ1, 0, 0)
T and v := (sin θ3, sin(θ1 + θ3), 0, sin θ1, 0)

T,
then we have that u, v ∈ VA and therefore by Lemma 2.3 Au � 0 and Av � 0. Specifically from using

standard trigonometric identities we get that

0 � (Au)4 = −2 sin θ1 cos
(
1
2
(|θ2 − θ3| + θ5)

)
cos

(
1
2
(|θ2 − θ3| − θ5)

)
.

We have 0 < θ1 < π and 0 � |θ2 − θ3| < π and 0 � θ5 � π , and combining these with

the inequalities above gives us that |θ2 − θ3| � π − θ5. Similarly by considering (Au)5 we get that

|θ2 − θ4| � θ5 + θ6 and by considering (Av)5 we see that |θ3 − θ4| � π − θ6. Adding these new

inequalities together we get

2π � |θ2 − θ3| + |θ2 − θ4| + |θ3 − θ4| = 2max{|θ2 − θ3|, |θ2 − θ4|, |θ3 − θ4|} < 2π,

a contradiction, so this case is not possible either. �

Next, we study case (d) of Lemma 5.1.

Lemma 5.3. Let A ∈ C5 with diag A = 1 be such that

{{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {1, 4, 5}, {1, 2, 5}} = supp
(
VA

)
.

Then A = S(θ) with θ ∈ R
5++ and 1Tθ < π .

Proof. By considering Lemma 4.7 and Theorem 2.6 we can immediately see that A = S(θ) with

θ ∈ R
5++ and θi + θ(i+1) mod 5 < π for all i = 1, . . . , 5. We are now left to show that 1Tθ < π .

First suppose that 1Tθ = π . Then we have
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S(θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(θ1 + θ2)

− cos θ2

1

− cos θ3

cos(θ3 + θ4)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(θ1 + θ2)

− cos θ2

1

− cos θ3

cos(θ3 + θ4)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin(θ1 + θ2)

− sin θ2

1

sin θ3

− sin(θ3 + θ4)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin(θ1 + θ2)

− sin θ2

1

sin θ3

− sin(θ3 + θ4)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

,

and from this we would get more than the required zeros, and thus 1Tθ = π is not possible.

Now suppose that 1Tθ > π . We must have that 1Tθ = 1
2

∑5
i=1(θi + θ(i+1) mod 5) < 5π

2
. As

A is copositive, any order 4 principle submatrix of A must be copositive. We can in fact consider

an arbitrary order 4 principle submatrix of A and then extend any results from this specific case to

all order 4 principle submatrices of A by cycling the indices. So consider Ã := A{1,2,3,4} and x :=
(sin θ2, sin(θ1 + θ2), sin θ1, 0)

T. Then x ∈ V Ã and therefore by Lemma 2.3 we have that Ãx � 0. In

particular, using standard trigonometric identities, we get that

0 � (Ãx)4 = 2 sin θ2 cos
(
1
2
(1Tθ)

)
cos

(
1
2
(θ1 + θ2 + θ3 − θ4 − θ5)

)
.

We have that 0 < θ2 < π which implies that sin θ2 > 0. We also have that π
2

< 1
2
(1Tθ) < 5π

4

which implies that cos
(
1
2
(1Tθ)

)
< 0. This means that cos

(
1
2
(θ1 + θ2 + θ3 − θ4 − θ5)

)
� 0 which

combinedwith the fact that−π
2

< 1
2
(θ1+θ2+θ3−θ4−θ5) < 3π

4
givesus thatθ1+θ2+θ3−θ4−θ5 �

π . We can now extend this result by cycling the indices to give us that

θi + θ(i+1) mod 5 + θ(i+2) mod 5 − θ(i+3) mod 5 − θ(i+4) mod 5 � π for all i = 1, . . . , 5.

Adding these inequalities together then gives us the contradiction that 1Tθ � 5π . �

We can now summarise the results of this subsection in to the following theorem.

Theorem 5.4. Let A ∈ C5 satisfy Property 2.2. Then either A is positive semidefinite, or A is in the orbit of

S(θ) with θ ∈ R
5++ ∪ {0} and 1Tθ < π .

5.2. Property 2.8 but not Property 2.2

In this subsection we investigate when a matrix A ∈ C5 is irreducible with respect to Ñ 5 but does

not satisfy Property 2.2, or in other words it satisfies Property 2.8 but not Property 2.2. Themain result

of this section will be to show that every such matrix must either be positive semidefinite or in the

orbit of some S(θ) described in Theorem 3.1, i.e., a matrix S(θ) as in (5) with θ ∈ R
5+ \ (R5++ ∪ {0})

and 1Tθ < π .

In order to prove this will shall assume, for the sake of contradiction, that there exists A ∈ C5 such

thatA is irreduciblewith respect to Ñ 5, Property 2.2 doesnot hold andA is neither positive semidefinite

nor in the orbit of one of the matrices enumerated in Theorem 3.1. From the comment at the start of

Section 5 we may again assume without loss of generality that diag A = 1.

By Corollary 4.16, the zeros of A have exactly 2 or 3 positive components. Both types of zeros can

be represented as edges in a graph with 5 vertices. We will represent a zero with support {i, j} by a

dashed edge between the vertices i and j, whilstwewill represent a zerowith support {1, . . . , 5}\{i, j}
by a solid edge between the vertices i and j. We have that the graph of the zeros of A must fulfil the

following conditions:
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Fig. 1. Graphs fulfilling the conditions in Subsection 5.2, used to represent the support of the set of zeros of a matrix. A dashed edge

between vertices i and j represents a zero with support {i, j}, whilst a solid edge between the vertices i and j represents a zero with

support {1, . . . , 5} \ {i, j}.

1. For every vertex i there exist vertices j, k such that i, j, k are pairwise distinct, j, k are not linked by

a dashed edge, and every solid edge having i as one of its vertices must have either j or k as its other

vertex. If for some i such vertices j, k do not exist, then the 4 × 4 submatrix obtained from A

by crossing out row and column i satisfies Property 2.2. As a consequence, it satisfies also the

weaker Property 2.8, and hence A is positive semidefinite by Theorem 2.6 and Corollary 4.13. In

particular, no three solid edges can join in a vertex, and no triangle consisting of two solid and one

dashed edge is possible.

2. There exist distinct vertices i, j, not joined by a dashed edge, such that every solid edge has at least

one of i, j as one of its vertices. If such a pair i, j does not exist, then A satisfies Property 2.2.

3. If two dashed edges join in a vertex, then the two vertices which do not intersect one of these dashed

edges are joined by a solid edge. By Lemma 4.6 the sum of the zeros represented by the dashed

edges is also a zero, represented by the solid edge.

4. If there is a dashed edge (i, j) and a solid edge (k, l) such that i, j, k, l are pairwise distinct, then

there is another dashed edge joining either i,m or j,m, where m is the remaining vertex. The solid

edge stands for a v ∈ VA with support {i, j,m}, implying that the submatrix A{i,j,m} is positive
semidefinite. But then eij and v are linearly independent kernel vectors of A{i,j,m}, and A{i,j,m} is
of rank 1. Existence of either a zero eim or ejm now easily follows.

5. There are no dashed triangles. If there were a dashed triangle on the vertices i, j, k, then the

submatrix A{i,j,k} would have all off-diagonal elements equal to −1 and could not be in C3.
6. There cannot exist pairwise distinct vertices i, j, k, l such that both (i, j) and (i, k) are dashed edges

whilst (i, l) is a solid edge. The existence of zeros eij, eik implies by Lemma 4.6 that ajk = 1. Since

A has a zero with support {j, k,m}, where m is the remaining vertex, the submatrix A{j,k,m} is
irreducible by Theorem 2.6. Existence of the zeros ejm, ekm now follows from Lemma 4.8. Now

if we consider condition 3 we get that (j, l), (k, l) and (l,m) are solid edges. Finally considering

condition 1, we get a contradiction.

7. For every two distinct vertices i, j, either there exists a dashed edgewith at least one of i, j as one of its
vertices, or there exists a solid edgewhose vertices arenot in {i, j}. If adashededgewith the specified

properties does not exist, then Eij is not associated to a zerowith exactly 2 positive components.

Hence Eij must be associated to a zero u with 3 positive components, and by Corollary 4.16 this

zero must satisfy uiuj > 0.

Applying these rules it can be found that the only graphs satisfying these conditions, up to permu-

tation of the vertices, are given in Fig. 1. These give us 14 possible cases for A to consider, whichwehave

ordered and permuted for ease of going through them. For each one we shall find a contradiction in

the form of A being positive semidefinite or A being in the orbit of some S(θ) described in Theorem 3.1,

i.e., S(θ) as in (5) with θ ∈ R
5+ \ (R5++ ∪ {0}) and 1Tθ < π .
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Before we do this however, we will first recall the following which we shall use regularly when

going through these cases.

• By Corollary 4.4 we have that if {i, j} ∈ supp
(
VA

)
with i �= j, then up to positive scalings eij is the

unique zero with this support.
• By Lemma 2.5, for u, v ∈ VA with supp(u) ⊆ supp(v) we have (Au)i = 0 for all i ∈ supp(v).
• By Corollary 4.11, there cannot exist u ∈ VA such that Au = 0.
• By Corollary 4.16, if i �= j is such that uiuj = 0 for all u ∈ VA, then Eij is associated to a zero ekl with

k ∈ {i, j} and l �∈ {i, j}.
• By Lemma 4.5 we have that aij ∈ [−1, 1] for all i = 1, . . . , 5.

We shall use these results regularly whilst going through the cases without specifically referencing

them.

(a) supp
(
VA

)
= {{3, 4, 5}, {1, 2}}:

We have (Ae12)i = 0 for i = 1, 2. For k = 3, 4, 5 we must have that E1k is associated to e12,

and thus 0 = Ae12 �= 0.

(b) supp
(
VA

)
= {{2, 3, 4}, {3, 4, 5}, {1, 2}}:

By following the same steps as in the previous case, we again get a contradiction.

(c) supp
(
VA

)
= {{1, 2}, {2, 3}, {1, 2, 3}, {3, 4, 5}}:

We have (Ae12)i = 0 for i = 1, 2, 3. We also have that both E14 and E15 must be associated to

e12, hence 0 = Ae12 �= 0.

(d) supp
(
VA

)
= {{1, 2}, {2, 3}, {1, 2, 3}, {2, 4, 5}}:

By following the same steps as in the previous case, we again get a contradiction.

(e) supp
(
VA

)
= {{1, 2}, {2, 3}, {3, 4}, {1, 2, 3}, {2, 3, 4}}:

We must have that E14 is associated to either e12 or e34. Without loss of generality, let it be

associated to e12, and so (Ae12)4 = 0. However, we must also have 0 = (Ae12)i for i = 1, 2, 3.
Finally we have that E15 must be associated to e12, implying 0 = Au12 �= 0.

(f) supp
(
VA

)
= {{1, 2}, {4, 5}}:

Without loss of generality E24 is associated to e12, implying (Ae12)4 = 0. We must have that

E13 and E34 are associated to e12 and e45 respectively, hence 0 = (Ae12)3 = (Ae45)3. We must

then have (Ae12)5 > 0, otherwise Ae12 = 0. This however implies that both E15 and E25 must

be associated to e45 and so 0 = Ae45 �= 0.

(g) supp
(
VA

)
= {{1, 2}, {3, 4}, {1, 4, 5}}:

Without loss of generality E23 is associated to e12, implying 0 = (Ae12)3 = a13 + a23. Further,

E25 and E35 are associated to e12 and e34 respectively, implying that 0 = (Ae12)5 = a15 + a25
and 0 = (Ae34)5 = a35 + a45. We must have (Ae12)4 > 0, otherwise Ae12 = 0, and hence E24
must be associated to e34, implying 0 = (Ae34)2 = a23 + a24. From this and Lemma 4.7 we see

that

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 a13 cos(θ4 + θ5) − cos θ5

−1 1 −a13 a13 cos θ5

a13 −a13 1 −1 cos θ4

cos(θ4 + θ5) a13 −1 1 − cos θ4

− cos θ5 cos θ5 cos θ4 − cos θ4 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= S(θ)

for some θ = (0, θ2, 0, θ4, θ5),where 0 < θ2, θ4, θ5, (θ4+θ5) < π .Wenowrecall the inequal-

ity 0 < (Ae12)4 = cos(θ4 + θ5) + cos θ2 = 2 cos
(
1
2
(θ2 + θ4 + θ5)

)
cos

(
1
2
(θ4 + θ5 − θ2)

)
,

which implies π > θ2 + θ4 + θ5 = 1Tθ , and thus A is of the form S(θ) as in Theorem 3.1.
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(h) supp
(
VA

)
= {{1, 2}, {2, 3}, {1, 2, 3}, {3, 4, 5}, {1, 4, 5}}:

Without loss of generality we have that E25 is associated to e12, implying 0 = (Ae12)5 =
a15 + a25. Note that (Ae12)i = 0 for i = 1, 2, 3. Therefore (Ae12)4 > 0, and hence E24 must be

associated to e23, implying 0 = (Ae23)4 = a24 + a34. From this and Lemma 4.7 we now see that

A = S(θ) for some θ = (0, 0, θ3, θ4, θ5)
T with 0 < θ3, θ4, θ5, (θ3 + θ4), (θ4 + θ5) < π . We

recall 0 < (Ae12)4 = 2 cos
(
1
2
(θ3 + θ4 − θ5)

)
cos

(
1
2
(θ3 + θ4 + θ5)

)
from which we get that

π > θ3 + θ4 + θ5 = 1Tθ , and thus A is of the form S(θ) as in Theorem 3.1.

(i) supp
(
VA

)
= {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 2, 3}, {2, 3, 4}, {3, 4, 5}}:

We have that

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 1 a14 a15

−1 1 −1 1 a25

1 −1 1 −1 1

a14 1 −1 1 −1

a15 a25 1 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= S(θ) + δ1E14 + δ2E25

for some θ = (0, 0, 0, 0, θ5)
T and δ ∈ R

2, with 0 < θ5 � π . Moreover, 0 � (Ae45)1 = δ1
and 0 � (Ae12)5 = δ2. Therefore A can be written as the sum of the nonnegative matrix

(δ1E45 + δ2E25) and the copositive matrix S(θ) from (5). As A is irreducible we must therefore

have that δ = 0, and thus A is either positive semidefinite or of the form S(θ) as in Theorem 3.1.

(j) supp
(
VA

)
= {{1, 2}, {2, 3}, {4, 5}, {1, 2, 3}}:

Wehave that 0 = (Ae12)i = (Ae23)i for i = 1, 2, 3. If bothE14 andE15 are associated to e12 then

wewould have thatAe12 = 0. Therefore,without loss of generality 0 < (Ae12)4 = a14+a24 and

hence E14 is associated to e45, implying that 0 = (Ae45)1 = a14 + a15. Similarly, we cannot have

0 = (Ae23)4 = (Ae23)5, and hence there must be k ∈ {4, 5} such that (Ae23)k > 0. But then

E3k must be associated to e45, and 0 = (Ae45)3 = a34 + a35. Ae45 �= 0 then yields 0 < (Ae45)2
and hence E24 must be associated to e23, implying 0 = (Ae23)4 = a24 + a34. Ae23 �= 0 then

yields 0 < (Ae23)5, and hence E25 must be associated to e12, implying 0 = (Ae12)5 = a15 + a25.

Therefore

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 1 −a15 a15

−1 1 −1 −a34 −a15

1 −1 1 a34 −a34

−a15 −a34 a34 1 −1

a15 −a15 −a34 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= S(θ),

for some θ = (0, 0, θ3, 0, θ5) with 0 < θ3, θ5 � π . We now recall the inequality 0 < a14 +
a24 = 2 cos

(
1
2
(θ3 − θ5)

)
cos

(
1
2
(θ3 + θ5)

)
which implies that π > θ3 + θ5 = 1Tθ , and thus

A is of the form S(θ) as in Theorem 3.1.

(k), (l), (m), (n) supp
(
VA

)
⊇ {{1, 5}, {1, 2, 3}, {3, 4, 5}}:

By Lemma4.7we see thatA = S(θ)+δ1E14+δ2E25+δ3E24, for some θ = (θ1, θ2, θ3, θ4, 0)
T

and δ ∈ R
3 such that 0 � θ1, θ2, θ3, θ4, (θ1 + θ2), (θ3 + θ4) � π . By Lemma 2.3 we

have 0 � (Ae15)4 = δ1 and 0 � (Ae15)2 = δ2. Moreover we have that 0 � (Ae15)3 =
2 cos

(
1
2
(θ1 + θ2 − θ3 − θ4)

)
cos

(
1
2
(θ1 + θ2 + θ3 + θ4)

)
, implying that π � θ1 + θ2 + θ3 +

θ4 = 1Tθ . Also considering the copositivity of
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A{2,3,4} =
⎛⎜⎜⎝

1 − cos θ2 cos(θ2 + θ3) + δ3

− cos θ2 1 − cos θ3

cos(θ2 + θ3) + δ3 − cos θ3 1

⎞⎟⎟⎠
alongwith Lemma 4.7 and the constraint θ2 +θ3 � π yields δ3 � 0. Therefore A can bewritten

as the sum of the nonnegative matrix (δ1E14 + δ2E25 + δ3E24) and a copositive matrix in the

orbit of some S(θ) from (5). As A is irreducible we must therefore have that δ = 0, and thus A

is of the form S(θ) as in Theorem 3.1.

Summing up, we have proven the following result.

Theorem 5.5. Let A ∈ C5 be irreducible with respect to Ñ 5 and assume A does not satisfy Property 2.2.

Then either A is positive semidefinite, or A is in the orbit of S(θ)with θ ∈ R
5+\(R5++∪{0}) and 1Tθ < π .

5.3. Irreducible matrices of C5

By combining Theorems 5.4 and 5.5, we obtain the following result.

Theorem 5.6. Let A ∈ C5 be irreducible with respect to Ñ 5. Then either A is positive semidefinite, or A is

in the orbit of S(θ) given by (5) with θ ∈ R
5+ and 1Tθ < π .

As being irreducible with respect to N 5 is a stronger statement, this theorem must also hold for

irreducibility with respect to N 5. The following theorem is also clear to see.

Theorem 5.7. Let A ∈ C5 be irreducible with respect to Ñ 5, but not irreducible with respect to N 5. Then

A is positive semidefinite.

Proof. Suppose for the sake of contradiction that there exists a matrix A ∈ C5 \ S5+ such that A is

irreduciblewith respect to Ñ 5, butnot irreduciblewith respect toN 5. It canbeseen thatAcannot satisfy

Property 2.2, otherwise it would be irreducible with respect to N 5. Therefore, by Theorem 5.5 and

A /∈ S5+, we get that Amust be in the orbit of S(θ)with θ ∈ R
5+ \(R5++ ∪{0}) and 1Tθ < π . However,

by Theorem 3.1, this means that A is irreducible with respect to N 5, giving us a contradiction. �

Our results immediately yield a simple characterization of those 5 × 5 copositive matrices which

cannot be written as a sum of a positive semidefinite and a nonnegative matrix. Namely, we have the

following result which can be seen as the dual statement to [5, Corollary 2].

Corollary 5.8. Let A ∈ C5 \ (S5+ + N 5). Then A can be expressed as A = S + N for some N ∈ Ñ 5 and

S ∈ C5 in the orbit of S(θ) given by (5), where θ ∈ R
5+ and 1Tθ < π .
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