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Abstract

Rationale: Smoking and inflammation contribute to the pathogenesis of chronic obstructive pulmonary disease (COPD),
which involves changes in extracellular matrix. This is thought to contribute to airway remodeling and airflow obstruction.
We have previously observed that long-term treatment with inhaled corticosteroids can not only reduce bronchial
inflammation, but can also attenuate lung function decline in moderate-severe COPD. We hypothesized that inhaled
corticosteroids and current smoking modulate bronchial extracellular matrix components in COPD.

Objective: To compare major extracellular matrix components (elastic fibers; proteoglycans [versican, decorin]; collagens
type I and III) in bronchial biopsies 1) after 30-months inhaled steroids treatment or placebo; and 2) between current and ex-
smokers with COPD.

Methods: We included 64 moderate-severe, steroid-naive COPD patients (24/40 (ex)-smokers, 6267 years, 46 (31–54)
packyears, post-bronchodilator forced expiratory volume in one second (FEV1) 6269% predicted) at baseline in this
randomized, controlled trial. 19 and 13 patients received 30-months treatment with fluticasone or placebo, respectively.
Bronchial biopsies collected at baseline and after 30 months were studied using (immuno)histochemistry to evaluate
extracellular matrix content. Percentage and density of stained area were calculated by digital image analysis.

Results: 30-Months inhaled steroids increased the percentage stained area of versican (9.6% [CI 0.9 to 18.3%]; p = 0.03) and
collagen III (20.6% [CI 3.8 to 37.4%]; p = 0.02) compared to placebo. Increased collagen I staining density correlated with
increased post-bronchodilator FEV1 after inhaled steroids treatment (Rs = 0.45, p = 0.04). There were no differences between
smokers and ex-smokers with COPD in percentages and densities for all extracellular matrix proteins.

Conclusions: These data show that long-term inhaled corticosteroids treatment partially changes the composition of
extracellular matrix in moderate-severe COPD. This is associated with increased lung function, suggesting that long-term
inhaled steroids modulate airway remodeling thereby potentially preventing airway collapse in COPD. Smoking status is not
associated with bronchial extracellular matrix proteins.
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Introduction

Chronic Obstructive Pulmonary Disease (COPD) is character-

ized by an abnormal inflammatory response and structural

alterations of the bronchial wall and parenchyma [1]. This

pulmonary remodeling has been linked to airflow limitation in

COPD [2,3]. Changes in the extracellular matrix (ECM),

produced by (myo)fibroblasts, epithelial cells and airway smooth

muscle cells, contribute to this remodeling process and alter airway

mechanics and dynamics [4,5]. The ECM consists of three major

components: elastic fibers, proteoglycans and collagens, which are

involved in cell migration, proliferation, adhesion, water balance

and regulation of inflammatory mediators [4].

The composition of the pulmonary ECM is different in subjects

with and without COPD. Fewer elastic fibers are found in small

airways and alveoli of COPD patients than in healthy controls

[6,7]. Furthermore, versican, a large proteoglycan is more

abundant, while the small proteoglycan decorin is reduced in

small airways in COPD compared to healthy subjects [8–10].

Collagens are the main component of the ECM, and collagen

composition differs between COPD patients and healthy controls

as shown by the observation that collagen type I is lower in the

large and small airways [11] and collagen type III expression is

lower in the small airways of COPD patients than in healthy

controls [3].

Since smoking is a risk factor for COPD, this may also influence

ECM composition. Indeed, cigarette smoke has been shown to

induce secretion of several profibrotic growth factors, including

transforming growth factor-beta (TGF-b), both in human lung

fibroblasts and in lung tissue of COPD patients [12,13]. Rodent

models exposed to cigarette smoke had less lung elastic fibers, but

more collagens than sham-smoked animals [14]. Others even

reported an increased elastic fibers gene expression in lung tissue

of severe COPD patients [15]. Smoke exposure decreased

proteoglycan expression as demonstrated by a study with

pulmonary fibroblasts from moderate and very severe COPD

patients [16].

Although generally (neutrophil dominated) inflammation in

COPD is considered to be resistant to steroids treatment, we

recently observed that long-term inhaled corticosteroids (ICS)

treatment partially decreased bronchial inflammation (CD3+,

CD4+, CD8+ and mast cells) -without effects on neutrophils- and

attenuated lung function decline in moderate-severe COPD

patients participating in the GLUCOLD (Groningen Leiden

Universities Corticosteroids in Obstructive Lung Disease) study

[17]. ICS may affect ECM through various mechanisms, including

modulation of inflammation by profibrotic mediators and target-

ing ECM genes directly. This may explain differences in the effects

of steroids that are observed in in vivo and in vitro studies. Whereas

steroid treatment of asthmatics did not change elastic fibers and

collagens in bronchial biopsies [18], steroids did inhibit serum-

induced proteoglycan production in fetal lung fibroblasts [19]. In

contrast to asthma, to the authors’ knowledge, effects of ICS on

ECM composition in COPD patients have not been described.

We hypothesized that inhaled steroids treatment modulates

bronchial ECM components in COPD. In addition, we hypoth-

esized that current smoking affects bronchial ECM.

Materials and Methods

Subjects and Study Design
The current study is a substudy of the GLUCOLD (Groningen

Leiden Universities Corticosteroids in Obstructive Lung Disease)

study, a double-blind, placebo-controlled randomized trial in

which 114 moderate-severe COPD steroid-naive patients were

included [17]. The protocol for this trial and supporting

CONSORT checklist are available as supporting information;

see Checklist S1 and Protocol S1. Clinically stable subjects

participating in the GLUCOLD study were aged 45–75 years,

smoked $10 packyears, were current or ex-smokers with $one

month of smoking cessation and were allowed to use short-acting

bronchodilators. Exclusion criteria were asthma and ICS use in

the previous 6 months. Patients were randomly assigned to receive

one of four treatments for 30 months: 1) fluticasone propionate

500 mg bid; 2) fluticasone/salmeterol 500/50 mg bid; 3) fluticasone

500 mg bid (6 months) and followed by placebo (24 months); or 4)

placebo bid. Diskus dry-powder inhalers (GlaxoSmithKline, Zeist,

The Netherlands), were used for inhalation of the study

medication and placebo, and both had equal appearance. For

the current study we used tissue and data of group 1 and 4.

Spirometry, reversibility to salbutamol and airway hyperreson-

siveness (PC20) were determined according to international

guidelines [20,21]. Approval of the medical ethics committees of

both centers was obtained: all subjects provided written informed

consent [17].

Bronchoscopy and Bronchial Biopsies
A fiberoptic bronchoscopy was performed at baseline and after

30 months according to standardized protocols [22]. Six bronchial

biopsies per patient per visit were collected at the 3rd–5th bronchial

level, one with the best morphology being used. Tissue of 64 out of

114 patients was available due to use in previous studies

[17,22,23].

(Immuno)Histochemical Stainings
Processing and analysis of bronchial biopsies was performed in

line with the recommendations of the ATS/ERS task force [24] by

using an internal reference parameter in the analysis. We did not

take specific precautions to orientate the samples during processing

to assure that the orientation of the biopsies is randomized [24].

However, since biopsies tend to curl after sampling, a random

orientation of the tissue structures is favored during embedding

[25]. Sections of 4 mm thickness of paraffin-embedded bronchial

biopsies were used for histochemistry (elastic fibers) and immuno-

histochemistry for proteoglycans and collagens. Elastic fibers were

stained according to Weigert’s protocol [26]. Versican, decorin,

collagen I and III antibodies were used after appropriate antigen

retrieval, followed by horseradish peroxidase-conjugated anti-

mouse or anti-rabbit EnVision system (DAKO, Glostrup, Den-

mark) and the chromogen NovaRed (Vector, Burlingame, CA).

Images of stained biopsies are presented in figure 1, and additional

information on the stainings is provided in table S1 in file S1.

Long-Term Steroids and Airway Remodeling in COPD
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Digital Image Analysis
Tissue samples were analyzed in a blinded manner by

independent observers, unaware of the subjects’ clinical data

(LK, JS). Total biopsy images were acquired using a color camera

(2006 magnification) and analyzed with image analysis software

(CellD, Olympus, Zoeterwoude, The Netherlands). The lamina

propria was selected per biopsy (minimum area 0.09 mm2). The

percentage stained area for a specific ECM component was

calculated dividing the stained area by the total selected area

(volume fraction; used as an internal reference parameter; [24]).

Staining intensity was further analyzed by densitometry (weighted

mean per biopsy) and presented as gray value (black: gray

value = 0; white: gray value = 255). Only immunohistochemical

stainings can represent density, therefore density was not

calculated for elastic fibers. Additional information on digital

image analysis is provided in file S1.

Statistical Analysis
Only biopsies from compliant subjects using $70% of the

prescribed dose were analyzed (per-protocol analysis). Means with

standard deviations (SD) and 95% confidence intervals (CI) or

medians with interquartile range (IQR) are presented. Differences

between smokers and ex-smokers were explored using Mann-

Whitney tests. Paired and independent t-tests were used for

evaluating the effect of ICS on ECM proteins within and between

treatments, respectively. Correlations were analyzed using Spear-

man correlation coefficient (Rs). Statistical analysis was performed

Figure 1. Examples of (immuno)histochemical stainings. The same bronchial biopsy section is shown for the histochemical staining for elastic
fibers (A) and the immunohistochemical stainings for versican (B), decorin (C), collagen type I (D) and collagen type III (E). Original magnification
2006.
doi:10.1371/journal.pone.0063430.g001

Table 1. Patient characteristics at baseline.

Smokers
(n = 40) Ex-smokers (n = 24)

Placebo
(n = 13) Fluticasone (n = 19)

Males [n (%)] 37 (92.5) 23 (95.8) 12 (92.3) 17 (89.5)

Age (years) 60.9 (7.2) 65.1 (6.6)* 62.5 (7.9) 62.0 (7.4)

Current/ex-smoker (n) 9/4 11/8

Packyears 46.8 (30.9–55.0) 37.5 (32.1–52.5) 42.0 (28.4–58.0) 44.9 (31.2–51.0)

Smoking cessation (years) 5.5 (1.3–10.0) 0.0 (0.0–1.5) 0.0 (0.0–5.0)

FEV1 post-bronchodilator (l) 2.05 (0.44) 1.94 (0.46) 1.95 (0.61) 2.03 (0.42)

FEV1 post-bronchodilator (%pred) 63.0 (8.7) 59.6 (9.9) 59.9 (9.8) 62.5 (9.5)

FEV1/IVC% post-bronchodilator 48.7 (8.9) 44.2 (8.9) 44.3 (9.5) 47.7 (8.6)

Geometric mean methacholine PC20 (mg/ml) 0.76 (2.9) 0.39 (3.0) 0.67 (1.9) 0.41 (2.4)

Patient characteristics for current smokers and ex-smokers with COPD and groups treated with placebo and fluticasone (only compliant patients). Bronchial biopsies
were available at baseline of 64 (elastic fibers), 56 (versican), 61 (decorin), 61 (collagen I) and 64 (collagen III) patients. After 30 months, bronchial biopsies of 32
compliant patients were available, tissue from 29 (elastic fibers), 26 (versican), 27 (decorin), 28 (collagen I) and 28 (collagen III) patients had sufficient surface area for
analysis ($0.09 mm2) (fluticasone and placebo groups combined). Data are presented as mean (SD) or median (IQR), unless otherwise stated. Methacholine PC20:
provocative concentration of methacholine that causes a 20% decrease in FEV1, expressed as mean doubling doses. Part of the data have been published previously
[17,22,27].
*p,0.05 compared to current smokers (two tailed unpaired t-tests).
doi:10.1371/journal.pone.0063430.t001

Long-Term Steroids and Airway Remodeling in COPD
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with SPSS 17.0 software (SPSS Inc., Chicago, IL). Significance

was inferred at P#0.05.

Results

Patient Characteristics
At baseline, bronchial biopsies of 64 of 114 unselected

moderate-severe COPD patients [24/40 (ex-)smokers] were

included. A flow diagram of our study is presented in the figure

S1. Patient characteristics of the whole group have previously been

published [17,22,27]. 33 Patients were treated with either

fluticasone or placebo for 30 months (19/19 and 13/14 adherent

in fluticasone and placebo group, respectively). Mean post-

bronchodilator FEV1 was 62% predicted (SD 9.9%). Ex-smokers

were older at baseline compared to current smokers, as is shown in

table 1. Baseline characteristics of the entire group, groups with

available and unavailable bronchial biopsies, and the number of

available biopsies were not significantly different between both

treatment arms. During the study, six patients changed their

smoking habits (balanced among groups).

Figure 2. Percentage and density of stained area for placebo and fluticasone for all ECM proteins. Percentage (upper panel) and density
(lower panel) of stained area in bronchial biopsies is presented. Open figures: baseline percentage stained area, closed figures: percentage stained
area after 30 months. Horizontal bars represent medians.
doi:10.1371/journal.pone.0063430.g002

Figure 3. Correlation between change in post-bronchodilator
FEV1 (L) and change in density of collagen I. Both values
represent values after 30 months minus values at baseline. Closed
circles represent fluticasone treated subjects, open circles represent
placebo treated subjects.
doi:10.1371/journal.pone.0063430.g003

Long-Term Steroids and Airway Remodeling in COPD
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Inhaled Corticosteroids and Extracellular Matrix Proteins
Adjusted for baseline values, we found that ICS significantly

increased percentage versican (9.6% [CI 0.9 to 18.3%]; p = 0.03)

and collagen III (20.6% [CI 3.8 to 37.4%]; p = 0.02) compared to

placebo (figure 2); a trend was seen for the density of decorin (3.9

[CI 20.7 to 8.6]; p = 0.09) and collagen III (8.4 [CI 21.1 to 17.9];

p = 0.09). Baseline percentage and density of versican (17% [CI

3.5 to 30.6%]; p = 0.02 and 8.0 [CI 2.7 to 13.3]; p = 0.006,

respectively) and collagen III (10.7% [0.1 to 21.4%]; p = 0.03 and

7.9 [CI 0.9 to 15.0]; p = 0.05, respectively) and percentage of

decorin (2.0% [CI 0.5 to 3.5%]; p = 0.02) were significantly higher

in the placebo group than the fluticasone group. Change in

smoking status was not included into our analysis, because current

and ex-smokers with COPD had similar ECM composition. An

increase in density of collagen I was associated with improvements

in post-bronchodilator FEV1 (l) (Rs = 0.45, P = 0.037) when we

Figure 4. Percentage and density of stained area at baseline of ex-smokers and smokers with COPD. Percentage (upper panel) and
density (lower panel) of stained area in bronchial biopsies is presented. Ex-smokers are presented as open circles, current smokers as closed circles.
Horizontal bars represent medians. No significant differences were found for all studied extracellular matrix proteins (both percentage stained area
and density).
doi:10.1371/journal.pone.0063430.g004

Figure 5. Correlation between percentage collagen type I at baseline and lung function parameters. Panel A presents post-
bronchodilator FEV1 (% predicted) and panel B shows PC20 (in doubling dose).
doi:10.1371/journal.pone.0063430.g005

Long-Term Steroids and Airway Remodeling in COPD
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analyzed both fluticasone and placebo treated groups combined

(figure 3). No correlations were found for other ECM proteins and

lung function.

Smoking Status and Extracellular Matrix Proteins at
Baseline

No significant differences in percentage of the area being

positively stained and density of ECM proteins were found

between current smokers and former smokers with COPD

(figure 4). Long-term ex-smokers ($5.5 years, our median value)

had similar percentage and density of all ECM proteins compared

to short term ex-smokers (,5.5 years) and current smokers (all

P.0.05). Furthermore, no relation was found between packyears

and percentage or density of all ECM proteins.

Correlations between Extracellular Matrix and Lung
Function at Baseline

Percentage collagen I correlated positively with FEV1 (%

predicted) post-bronchodilator (Rs = 0.31, P = 0.015) (figure 5, left

panel) and FEV1/IVC% (Rs = 0.38, P = 0.003). In addition,

percentage collagen type I and III correlated with PC20

(Rs = 0.33, P = 0.012; Rs = 0.37, P = 0.004, respectively) (figure 5,

right panel). Percentage collagen I, but not collagen III, was

significantly lower in GOLD stage III (n = 9) than GOLD stage II

(n = 55) (medians 5.5% and 17.7%, respectively, P = 0.01). No

significant correlations were found between lung function at

baseline and densities of all ECM proteins.

Discussion

Our results show that 30-month treatment with inhaled

corticosteroids increases the percentage stained area of versican

and collagen III, indicating that long-term treatment possibly

influences the remodeling process in the airways. Furthermore,

lung function is weakly, but positively correlated with collagen I

both at baseline and with regard to changes in FEV1 and collagen

I that occurred after treatment. In addition, we show that the

content of ECM proteins in bronchial biopsies did not significantly

differ between smokers and ex-smokers with moderate-severe

COPD.

This study shows that the content of elastic fibers, major

proteoglycans and collagens in the bronchial mucosa are similar in

current and ex-smokers with COPD. Our findings extend previous

observations, showing no difference in the percentage elastic fibers

in COPD patients and smokers without airway obstruction

[11,28]. We observed no significant difference in versican and

decorin content between current and ex-smokers with COPD,

which is in line with an in vitro study with cultured lung fibroblasts

of moderate COPD patients and control subjects. Cigarette smoke

extract (CSE) exposure of these cells did not affect versican gene

expression, but decreased decorin gene expression [16]. This

apparent difference with our findings could be explained by the

fact that smoke-exposed fibroblasts are only selectively triggered

compared to a multifactorial environment in vivo. Finally, in our

study collagen type I and III were not significantly different

between current and ex-smokers with COPD, which is similar to

recent observations in cultured fibroblasts of COPD and non-

COPD patients [29].

The percentage of versican and collagen III increased with long-

term ICS treatment compared to placebo, without significant

changes in elastic fibers, decorin and collagen I. In line with this,

ICS for four weeks or 3.5 years did not affect elastic fibers content

in bronchial biopsies of asthmatics compared to healthy controls

[18]. Notably, we found a significant increase in collagen III, but

not collagen I, after 2.5 years of ICS treatment compared to

placebo, which was associated with lung function. Previous studies

in COPD patients showed that gene expression of collagen 1a1

and collagen 3a1 in small airways and parenchyma was decreased

in association with lower FEV1 [3,30]. Thus, collagen may have

stabilizing effects on the collapsible airways in patients with

COPD, which could be further enhanced by long-term use of ICS.

Our study has various strong points. We included only steroid-

naive COPD patients, excluding possible influences of steroids on

ECM components at baseline. Both the percentage and density of

the stained area in bronchial biopsies were analyzed: the

percentage corresponds to the presence of the ECM protein,

whereas density represents the local amount of ECM protein. For

the analysis of the percentage, we used the total selected tissue area

for analysis as an internal reference parameter according to the

recommendations of the Joint ATS/ERS Task Force [24]. We

considered the possibility that part of our changes is explained by

an effect of ICS on edema. However, less edema resulting from

ICS treatment would probably have increased percentage and

density all studied ECM proteins, whereas in our study the

percentage of only some ECM proteins was affected. Furthermore,

we previously found lower numbers of selected bronchial

inflammatory cells after ICS treatment in the current study [17].

We did not find correlations between the effect of ICS treatment

on inflammatory cells and ECM components (data not shown).

There are some considerations when interpreting our results.

Matched bronchial biopsies both at baseline and follow-up were

available from approximately half of our COPD patients, because

part of the tissue was no longer available. This could have

negatively affected the power of our study. Still, the number of

available biopsies was similar among both groups. Furthermore,

since one biopsy per patient per visit was studied, we cannot

exclude that local heterogeneity of ECM proteins has affected our

results. To minimize selection bias, we only selected biopsies with

the largest lamina propria. Lung tissue specimens from healthy or

never-smokers were not available, but comparisons with these

groups were beyond the objectives of this study. Furthermore,

features of remodeling in COPD are different between large and

small airways, nevertheless we evaluated the ECM in the central

airways only [2] and important correlations with lung function

could still be observed. Finally, despite treatment randomization,

we accidentally found that the percentage and densities of

versican, decorin and collagen III at baseline were significantly

higher in the placebo than the fluticasone group. Not withstanding

this, when still adjusted for the baseline values, we observed effect

of ICS therapy. Taken together, we do not believe that the above

limitations largely affected our results.

How can we explain that smoking has no effect on ECM?

Exposure of cultured pulmonary fibroblasts of moderate and very

severe COPD patients to CSE resulted in downregulation of

decorin, but not versican and collagen type I and III expression

[16,29]. In addition, collagen I and tropoelastin were dose-

dependently inhibited by CSE in rat fetal lung fibroblasts [31].

Mice with long-term exposure to cigarette smoke showed a

decrease in elastic fibers and collagen type III, without significant

effect on collagen I [32]. We could only partially confirm these

in vitro and animal studies. Inflammation and remodeling in the

lung in vivo are simultaneous and complex ongoing processes and

may not be mimicked by studies in isolated fibroblasts and inbred

animals kept under specific conditions. Furthermore, after

smoking cessation bronchial inflammation (at least) partially

persists [22], which is in line with our finding of similar ECM

composition between smokers and ex-smokers.

Long-Term Steroids and Airway Remodeling in COPD
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We showed a positive correlation between the content of

collagen and lung function after treatment with inhaled steroids.

However, the current opinion of remodeling is that airway wall

thickening is strongly associated with progression of COPD [2],

suggesting that increased ECM deposition is related to a decreased

lung function. How can we explain this apparent contradiction? In

COPD, an imbalance between proteases and anti-proteases is

present, as shown by an excess of matrix metalloproteinases

(MMP) and a relative shortage of tissue inhibitor of metallopro-

teinases (TIMP) [33]. MMP degrade both collagens and proteo-

glycans [2,33,34]. Dexamethasone can reduce MMP-9 and

increase TIMP-1 release from alveolar macrophages of COPD

patients [35], which may result in a decreased capacity to degrade

ECM. This is in line with our observation that ICS increase

collagen and versican. Also the observation from Annoni et al [11],

showing that patients with COPD have lower collagen I densities

in their airways, is in line with the speculation that an increase in

collagen I induced by ICS could stabilize the airways. Further-

more, the observed positive correlation between collagen with lung

function and PC20 before and after long-term ICS therapy also

suggests that increased airway wall fibrosis is actually preventing

both airway collapse and attenuating airway smooth muscle

contractions in COPD. Besides airway remodeling, emphysema

might also influence airway collapse, which could contribute to the

airflow obstruction. Unfortunately, no data were collected to

quantify the extent of emphysema in our cohort of COPD

patients.

Although smoking cessation shows positive clinical effects [1],

smoking status was not significantly correlated with our studied

ECM components. Treatment with ICS increased the percentage

versican and collagen III. We found positive correlations between

ECM proteins and several lung function parameters at baseline

and after treatment with ICS. Therefore, our data may implicate

that steroids alter airway structure by increasing ECM content in

COPD which is associated with preserved lung function. This

suggests that increased presence ECM proteins do not by

themselves lead to detrimental consequences, but instead can

prevent airway collapse.

In conclusion, we showed that treatment for 30 months with

inhaled corticosteroids increased the relative content of versican

and collagen III in the large airways of patients with moderate to

severe COPD. Our data suggest that steroids not only prevent

bronchial inflammation but possibly also alter airway structure by

increasing specific ECM proteins in COPD that are associated

with improvements in lung function. Further studies are needed to

confirm these findings in other studies, and to understand the

possible implications of these findings for current treatment

strategies and for the development of future, targeted anti-

remodeling medication in COPD.
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