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ABSTRACT
The accurate and precise removal of 21-cm foregrounds from Epoch of Reionization (EoR)
redshifted 21-cm emission data is essential if we are to gain insight into an unexplored cos-
mological era. We apply a non-parametric technique, Generalized Morphological Component
Analysis (GMCA), to simulated Low Frequency Array (LOFAR)-EoR data and show that it has
the ability to clean the foregrounds with high accuracy. We recover the 21-cm 1D, 2D and 3D
power spectra with high accuracy across an impressive range of frequencies and scales. We
show that GMCA preserves the 21-cm phase information, especially when the smallest spatial
scale data is discarded. While it has been shown that LOFAR-EoR image recovery is theoreti-
cally possible using image smoothing, we add that wavelet decomposition is an efficient way of
recovering 21-cm signal maps to the same or greater order of accuracy with more flexibility. By
comparing the GMCA output residual maps (equal to the noise, 21-cm signal and any foreground
fitting errors) with the 21-cm maps at one frequency and discarding the smaller wavelet scale
information, we find a correlation coefficient of 0.689, compared to 0.588 for the equivalently
smoothed image. Considering only the pixels in a central patch covering 50 per cent of the
total map area, these coefficients improve to 0.905 and 0.605, respectively, and we conclude
that wavelet decomposition is a significantly more powerful method to denoise reconstructed
21-cm maps than smoothing.

Key words: methods: statistical – cosmology: theory – dark ages, reionization, first stars –
diffuse radiation.

1 IN T RO D U C T I O N

When the first ionizing sources appeared 400 Myr after the big
bang, the Universe emerged from the ‘Dark Ages’ and began to be
reionized. This Epoch of Reionization (EoR) is on the verge of being
directly observed for the first time, with a new generation of radio
telescopes beginning to see first light [e.g. Low Frequency Array
(LOFAR)1 (van Haarlem et al., in preparation), Giant Metrewave

� E-mail: eow@star.ucl.ac.uk
1 http://www.lofar.org/

Radio Telescope (GMRT),2 Murchison Widefield Array (MWA),3

Precision Array to Probe the Epoch of Reionization (PAPER),4 21
Centimetre Array (21CMA)5].

The vast majority of EoR observations will take advantage of the
21-cm spectral line – produced by a spin flip in neutral hydrogen
(van de Hulst 1945; Ewen & Purcell 1951; Muller & Oort 1951).
This 21-cm radiation can be observed interferometrically at radio
wavelengths as a deviation from the brightness temperature of the

2 http://gmrt.ncra.tifr.res.in/
3 http://www.mwatelescope.org/
4 http://astro.berkeley.edu/dbacker/eor/
5 http://21cma.bao.ac.cn/
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cosmic microwave background (CMB; Field 1958, 1959; Madau,
Meiksin & Rees 1997; Shaver et al. 1999).

Observationally, the 21-cm signal will be accompanied by sys-
tematic effects due to the ionosphere and instrument response, sys-
tem noise, extragalactic foregrounds and Galactic foregrounds (e.g.
Jelić et al. 2008, 2010), the latter of which are orders of magnitude
larger than the 21-cm signal we wish to detect. The foregrounds
must be accurately and precisely removed from the observed data
as any error at this stage has the ability to strongly affect the EoR
21-cm signal. Foreground removal and the implications for 21-cm
cosmology have been extensively researched over the past decade
(e.g. Di Matteo et al. 2002; Oh & Mack 2003; Di Matteo, Ciardi &
Miniati 2004; Morales & Hewitt 2004; Zaldarriaga, Furlanetto &
Hernquist 2004; Santos, Cooray & Knox 2005; Bowman, Morales
& Hewitt 2006; McQuinn et al. 2006; Wang et al. 2006; Gleser,
Nusser & Benson 2008; Jelić et al. 2008; Harker et al. 2009, 2010;
Liu, Tegmark & Zaldarriaga 2009a; Liu et al. 2009b; Liu & Tegmark
2011, 2012; Mao 2012; Petrovic & Oh 2011; Chapman et al. 2012;
Cho, Lazarian & Timbie 2012). This paper concentrates on the
spectral fitting of the foregrounds and assumes that bright sources
have been accurately removed, for example via a flux cut (Di Mat-
teo et al. 2004). This is a safe assumption since, as recently shown
by Trott, Wayth & Tingay (2012), the residuals from the bright
source subtraction are expected to be smaller than the thermal noise
contribution and so are not a limiting factor.

In our first paper, Chapman et al. (2012), we introduced a method
to successfully remove the foregrounds while making only minimal
assumptions. By introducing another similarly successful method,
we acknowledge the possibility that different methods will be well
suited for the extraction of different information from the data and
that there is an advantage in having several foreground cleaning
methods to apply the data independently to confirm a statistical de-
tection. In this paper we implement another non-parametric method,
the sparsity-based blind source separation (BSS) technique Gener-
alized Morphological Component Analysis (GMCA). GMCA provides
a complete basis set for foreground removal as opposed to a polyno-
mial fitting method which is not a complete set unless we describe it
with a polynomial of the order of the number of frequencies. Poly-
nomial methods rarely utilize orders larger than five and so most
polynomial fitting methods may leave the foregrounds incompletely
described compared to GMCA.

In Section 2 we summarize the various foreground removal
pipelines which have been introduced in the literature so far and
then go on to detail the method that we utilize, GMCA. In Section
3 we introduce our data cube and the methods used to produce it
before presenting the statistical results in Section 4. In Section 5 we
explore the possibility of recovering images of reionization before
we set out our conclusions in Section 6.

2 FO R E G RO U N D R E M OVA L T E C H N I QU E S

The statistical detection of the 21-cm reionization signal depends
on an accurate and robust method for removing the foregrounds
from the total observed signal. For a brief summary of the recent
21-cm foreground removal literature we ask the reader to refer to
section 2 of Chapman et al. (2012).

The majority of the literature involves parametric methods,
whereby at some point a certain form for the foregrounds is as-
sumed, for example polynomials (e.g. Santos et al. 2005; Bowman
et al. 2006; McQuinn et al. 2006; Wang et al. 2006; Gleser et al.
2008; Jelić et al. 2008; Liu et al. 2009a,b; Petrovic & Oh 2011).
In contrast, non-parametric methods do not assume a specific form

for the foregrounds, instead allowing the data to determine the
foregrounds using more free parameters. While advantageous for
poorly constrained data, results are often not as promising as para-
metric results, though recent methods have challenged this. Harker
et al. (2009, 2010) preferentially considered foreground models
with as few inflection points as possible, which when applied to
simulated LOFAR-EoR data compared very favourably with para-
metric methods. Similarly, FASTICA as presented in Chapman et al.
(2012) accurately recovered the 21-cm power spectra by consid-
ering the statistically independent components of the foregrounds.
GMCA (Bobin et al. 2007, 2008a,b, 2012) is another non-parametric
method which has a greater flexibility through wavelet choice with-
out the sacrifice of the blind nature of the approach. We will show
that GMCA not only recovers the power spectra to high accuracy but
also that, using wavelet decomposition, the simulated 21-cm sig-
nal maps can be recovered exceedingly well after the foreground
removal process.

2.1 The GMCA method

The non-parametric method of removing the foregrounds is effec-
tively a BSS problem. Chapman et al. (2012) utilized a statisti-
cal approach to source separation, namely FASTICA. This assumed
that the components of the foregrounds were statistically indepen-
dent and non-Gaussian in order to reconstruct the smooth spectral
form of the foregrounds and leave a residual signal from which we
could identify the 21-cm emission statistics. This statistical pursuit
of independence is only one form that BSS techniques take, the
other utilizing morphological diversity and sparsity to separate the
sources. Zibulevsky & Pearlmutter (2001) proposed a new method
of BSS, where one could find a basis set in which the sources to be
found would be sparsely represented, i.e. a basis set where only a
few of the coefficients would be non-zero. With the sources being
unlikely to have the same few non-zero coefficients one could then
use this sparsity to more easily separate the mixture. For example,
were the 21-cm signal strong enough to detect directly using this
method, we would expect it to be sparse on certain scales given the
characteristic size of the ionized bubbles, much in the same way the
Sunyaev–Zel’dovich (SZ) effect can be detected with this method
when analysing CMB data (Bobin et al. 2008a). These bubble sizes
change as a function of redshift so the sparse signal from these
would arise as a pattern as a function of wavelength. In comparison,
the smooth frequency structure of the foregrounds implies that the
few sparse non-zero coefficients describing the foregrounds at the
same scales as the 21-cm signal would be unchanging with fre-
quency. Given our noise realizations, the 21-cm signal is far too
small for this technique to pick it out as a source in its own right. In-
stead, it is how the foregrounds can be described as different sparse
components which enable us to obtain the 21-cm signal and noise
as a residual.

The idea of exploiting the sparseness of sources in different bases
has evolved into a full and diverse field of applications. The method
has evolved to allow sources to have different morphologies, exploit
multichannel data and consider different bases for different sources
in order to achieve the most sparse representations.

Consider an observation of m maps each constituting t pixels
across m channels of observation. The problem to be solved can be
stated in the following manner :

X = AS + N, (1)

where X is the m × t matrix representing the observed data, n is the
number of sources to be estimated, S is the signal n × t matrix to
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be determined, A is the m × n mixing matrix and N is the m × t
noise matrix.

As this is a BSS problem, we need to estimate both S and A.
We seek to find the 21-cm signal as a residual in the separation
process, therefore S represents the foreground signal and, due to
the extremely low signal-to-noise ratio of this problem, the 21-cm
signal is numerically ignored by the method and can be thought of
as an insignificant part of the noise.

We can expand the sources, S = ∑n
j=0 sj , in a wavelet basis

which can mathematically be thought of as a matrix of T wavelet
waveforms, � =[φ1, . . . , φT], such that ∀j ∈ {1, . . . , n}sj =∑T

k=1 αj [k]φk, sj is defined to be sparse if only a few of the αj[k]
are significantly non-zero.

The objective of GMCA is to seek an unmixing scheme, through the
estimation of A, which yields the sparsest sources S in the wavelet
domain. This is expressed by the following optimization problem
written in the augmented Lagrangian form:

min

⎛
⎝ 1

2
||X − Aα�||2F + λ

n∑
j=1

||αj ||p
⎞
⎠ , (2)

where typically ‖α‖p = (
∑

k|α[k]|p)1/p; sparsity is generally en-
forced for p = 0 which measures the number of non-zero en-
tries of α (or its relaxed convex version with p = 1) and ||X||F =(
trace(XTX)

)1/2
is the Frobenius norm. The problem in equation

(2) is solved in an iterative two-step algorithm such that at each
iteration q:

(i) Estimation of the S for A fixed to A(q − 1)

Solving the problem in equation (2) for p = 0 assuming A is fixed
to A(q − 1), the sources are estimated as follows:

S(q) = �λ

(
A(q−1)+X�T

)
�,

where �λ stands for the hard-thresholding operator with threshold
λ; this operator puts to zero all coefficients with amplitudes lower
than λ. In practice, the threshold λ is set to be equal to three times the
standard deviation of the noise level to exclude noise coefficients.
The term A(q − 1)+ denotes the Moore pseudo-inverse of the matrix
A(q − 1).

(ii) Estimation of the A for S fixed to S(q)

Updating the mixing matrix assuming that the sources are known
and fixed to S(q) is as follows:

A(q) = XS(q)+.

For more technical details about GMCA, we refer the interested
reader to Bobin et al. (2007, 2008a,b, 2012), where it is shown that
sparsity, as used in GMCA, allows for a more precise estimation of
the mixing matrix A and more robustness to noise than independent
component analysis (ICA)-based techniques.

GMCA provides an efficient method of separating the foreground
signal from the noise and 21-cm signal by locating the most sparse
components that the foreground signal could be made of in the
wavelet basis �. From a Bayesian point of view, using this sparsity
method is equivalent to having an in-built prior in the model that
the foregrounds are sparse over the basis chosen. While a Bayesian
evidence analysis could be possible in order to compare different
methods as well as different bases, and quantify the overfitting due
to more free parameters, we consider it outside the scope of this
project.

2.2 Wavelets

The set of basis functions, �, used by GMCA comprises wavelet
functions.

The Fourier transform is a well-known method of analysing data
at different scales with a single set of basis functions – sines and
cosines. In reality this confined basis set can obscure information,
and so we instead consider an infinite set of basis functions localized
in space – the wavelet functions. There are many types of wavelets
– with some more localized in space, some smoother and some with
fractal structures.

The most common form of wavelet used in astrophysics is the
isotropic undecimated wavelet transform (IUWT) which we de-
scribe briefly below in reference to the more complete descrip-
tions in literature (e.g. Starck, Murtagh & Bijaoui 1998; Starck &
Murtagh 2006). Consider an image with p × p pixels (where using
the previous section’s notation p × p = t and we will refer to the
pixel coordinates as [k, l]).

We can decompose an image at a particular frequency, c0, into a
coarse version of itself, cJ, along with a superposition of the original
image at different wavelet scales:

c0[k, l] = cJ [k, l] +
J∑

j=1

wj [k, l], (3)

where the wavelet coefficient wj represents the data at scale 2−j.
The decomposition is typically achieved using low-pass 1D fil-

ters, which we call h1D, implemented by the ‘à trous’ algorithm:

cj+1[k, l] =
∑

q

∑
p

h1D[p]h1D[q]cj [k + 2j q, l + 2jp], (4)

wj+1 = cj [k, l] − cj+1[k, l]. (5)

When c0 can be described by only a few significantly non-zero wj,
we say that c0 is sparse in that basis.

In this paper we utilize wavelets twice. The first time is within the
GMCA algorithm, where we have a choice of different wavelet types
that can be used as the basis set. GMCA uses wavelet decomposition
to identify the sources, S, but then returns a data cube with all
scales present. In our analysis in Section 5 we wish to look at these
results on different scales and so we utilize wavelet decomposition
to do this. We will use the IUWT both within GMCA and later to
analyse the images at different scales, though we briefly consider
other wavelets when we question how much our results depend on
this choice of wavelet.

For our GMCA implementation we set the number of decomposi-
tion scales to be eight, the maximum allowed by the dimensions of
our data cube.

3 SI M U L AT E D E O R DATA

We simulate 170 frequency maps between 115 and 199.5 MHz with
spacings of 0.5 MHz. The maps consist of 5122 pixels representing
a comoving 1734 Mpc2 area. At z = 10.8 this is equivalent to a field
of view of 10◦ × 10◦ or a resolution of 1.17 arcmin pixel−1. Since
an interferometer like LOFAR is insensitive to the mean value of
the brightness temperature, we use mean-subtracted maps. We use
the same set of simulations as Chapman et al. (2012) and the reader
can refer there for more detailed information on the simulations.

The observable of the 21-cm radiation, the brightness tem-
perature δTb, is simulated using the seminumeric modelling tool
21CMFAST (Mesinger & Furlanetto 2007; Mesinger, Furlanetto
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& Cen 2011). The code was run using a standard cosmol-
ogy (	
, 	m, 	b, n, σ 8, h) = (0.72, 0.28, 0.046, 0.96, 0.82, 73) (Ko-
matsu et al. 2011) and initialized at z = 300 on a 18003 grid.
The velocity fields used to perturb the initial conditions as well
as the resulting 21-cm δTb boxes were formed on a cruder grid
of 4503 before being interpolated up to 5123. We define haloes
contributing ionizing photons as having a minimum virial mass
of 1 × 109 M�.

The foreground simulations are obtained using the foreground
models described in Jelić et al. (2008, 2010). We model Galac-
tic diffuse synchrotron emission (GDSE), Galactic localized syn-
chrotron emission, Galactic diffuse free–free emission and extra-
galactic foregrounds consisting of contributions from radio galax-
ies and radio clusters. While the Galactic foreground emission
is simulated using Gaussian random fields, the total foreground
signal is non-Gaussian. We do not consider the polarization of
the foregrounds. The foregrounds simulated here can be up to
five orders of magnitude larger than the signal we hope to de-
tect but since interferometers such as LOFAR measure only fluc-
tuations, foreground fluctuations dominate by ‘only’ three orders
of magnitude.

To simulate the noise at each frequency, a LOFAR measurement
set was filled with Gaussian noise in the uv plane. This was then
imaged to create a real-space image, the root-mean-square (rms) of
which can be normalized to the value as given by the prescription
detailed in Chapman et al. (2012). For example the noise sensitivity
at 150 MHz for an integration time of 600 h, a point spread function
(PSF) of width 4 arcmin and a frequency spacing of 0.5 MHz is
64 mK. The 170 noise maps were uncorrelated over frequency, i.e.
a different noise realization was used to fill the measurement set for
each frequency.

The success of an interferometer such as LOFAR is highly de-
pendent on how uv space is sampled. The particular pattern of uv

sampling forms a beam which affects how the components such as
the foregrounds are seen by the interferometer. Dirty foreground
and 21-cm images were simulated by convolving with the PSF
of the LOFAR set-up used to simulate the noise. The PSF used
for creating dirty images (and for creating the noise as described
in the previous section) was chosen to be the worst in the ob-
servation bandwidth, i.e. the PSF at 115 MHz. In observations
the synthesized beam decreases in size with increasing frequency,
causing point source signals to oscillate with the beam, produc-
ing a foreground signal with an oscillatory signal very much like
that of the 21-cm signal (Vedantham, Shankar & Subrahmanyan
2012). However, this mode-mixing contribution has been found
not to threaten the 21-cm recovery and have a power well be-
low the 21-cm level (Bowman et al. 2006; Liu et al. 2009; Trott
et al. 2012). As such we do not consider a frequency-dependent
PSF here.

Once the foregrounds and 21-cm signal have been adjusted for
uv sampling, the three component cubes are added together. The
components of the total δTb along a random line of sight are shown
in Fig. 1.

4 R ESU LTS

In the following section, the word ‘reconstructed’ refers to a compo-
nent which has been estimated from the simulated data using GMCA.
The ‘residuals’ or (‘rest’ for short) are the difference between the
total mixed signal and the reconstructed foregrounds and should
therefore consist of the 21-cm signal, noise and any fitting errors.

Figure 1. The redshift evolution of the simulated cosmological signal (red;
dot), foregrounds (black; solid), noise (purple; dash) and total combined sig-
nal (blue; dash–dot). All components have undergone the PSF convolution.
Note the 21-cm signal has been amplified by 10 and displaced by −1K for
clarity.

4.1 Source number

GMCA requires the specification of the number of sparse sources that
the data can be defined by. We utilize this component separation
technique to define the foregrounds in order to subtract them, treat-
ing the 21-cm signal as noise. Therefore, the number of sources
refers to the number of foreground contributions which can be de-
scribed by unique sparse descriptions (not necessarily the number
of different foreground components such as Galactic free–free).

As each foreground model might be best described by a different
number of sources, we seek to define the number of sources by
minimizing the leakage of foregrounds into the 21-cm signal. Let
us introduce the statistics LY and RY :

LY = A(ATA)−1ATY, (6)

RY = Y − A(ATA)−1ATY, (7)

where A is the mixing matrix calculated by GMCA and Y is a data
cube, for example the foregrounds or the 21-cm signal. LY is the
amount of the dataY that contributes to the GMCA sources (in our case
the reconstructed foregrounds). Thus we can calculate the amount
of leakage of simulated noise and 21-cm signal, Lnocs into the recon-
structed foregrounds by allowing Y to equal the combined simulated
21-cm and noise data cube. Conversely, RY is the amount of data Y
which does not contribute to the GMCA source model. For example,
letting Y equal the simulated foreground cube, Rfg, will tell us how
much of the foregrounds leak into the residuals.

We take the power spectra of Lnocs and Rfg and compare them to
the power spectra of the 21-cm signal to see the number of sources
for which leakage is minimized (Fig. 2). Note that, prior to our
wavelet-type analysis in Section 4.2, we adopt the default setting of
GMCA for this source number analysis, the IUWT using the à trous
algorithm.

To be confident of our reconstructed 21-cm signal, we ideally
want both the power spectra of Rfg and Lnocs to lie below that
of the 21-cm signal and to be as small as possible. We see that,
while one source does not seem enough to accurately constrain the
foregrounds, there is very little difference between the leakages
resulting from a two or three source foreground model. Indeed, we
find this holds true for four and five sources also. As more and more
sources are added to the model, we might expect the 21-cm signal
itself to leak into the foreground model and be picked out as an
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Figure 2. The 2D power spectrum of Rfg (blue dash) and Lnocs (red dot) and
the 21-cm power spectrum (black, solid) at a frequency of 160.0 MHz for
GMCA with one, two and three sources (top, middle and bottom, respectively).

Figure 3. The 2D power spectrum of Rfg (solid) and Lnocs (dashed) at
160 MHz for IUWT (black), Mallat’s wavelet transform (red), Feauveau’s
wavelet transform without undersampling (blue) and Haar’s wavelet trans-
form (purple). Note that the dashed lines all lie on top of each other.

individual source. However the magnitude of this (seen as part of
Lnocs) will be small as the signal-to-noise ratio of the foregrounds
is much larger than that of the cosmological signal. When applying
to real data we will have to rely on models of the foregrounds as
observed by the data to estimate the level of leakage from the signal
on to the foregrounds.

We choose to assume two foreground sources for the rest of this
paper, though the reader should be aware that different foreground
models may require different source numbers in order to optimize
the method.

4.2 Choice of wavelet

In Fig. 3 we consider how the leakages Rfg and Lnocs change depend-
ing on the choice of wavelet used by GMCA. There are many different

types of wavelets, but they can be broadly categorized by whether
they are decimated (i.e. provide a redundant signal representation),
isotropic and which filter they use for the separation of data at dif-
ferent scales. Here we consider the IUWT, a decimated wavelet
transform (referred to as Mallat), a non-dyadic and undecimated
wavelet transform (referred to as Feauveau) and an undecimated
wavelet transform using the Haar filter (referred to as Haar).

We can see that the choice of wavelet can affect how small the
foreground leakages are, and therefore the success of the method.
These differences are highly dependent on frequency as well, with
one wavelet type out-performing others at certain frequencies. For
our implementation we choose the IUWT as it consistently min-
imizes the leakages over the frequency range. We will show in
Section 4.3.2 that we can potentially correct for Lno, though not Lcs

and Rfg due to the blind nature of the problem.

4.3 Power spectra

EoR experiments aim to recover the power spectrum of the cosmo-
logical signal over a broad range of frequencies.

The power spectrum of a line-of-sight/map/cube at a single fre-
quency is calculated by 1D/2D/3D Fourier transforming that line-
of-sight/map/cube and binning the pixels according to Fourier scale,
k. The power at any particular k, 〈δ(k)δ∗(k)〉 is the average power
of all the uv cells in the bin centring on k. The error on the point for
a particular bin, ki, is calculated as σi = 〈δ(ki )δ∗(ki )〉√

nki
, where nki

is the

number of uv cells that reside in that k bin. The power spectrum of
the reconstructed 21-cm signal is calculated by subtraction of the
noise power spectrum from the GMCA residuals power spectrum. The
total error on the reconstructed 21-cm power spectrum is calculated
using the above error formula applied to the reconstructed 21-cm
power spectrum, added in quadrature with the formula applied to
the noise power spectrum, in order to take into account both sample
variance and the effect of any error in the noise estimate. Note that
we assume Gaussianity whereas the 21-cm signal is not Gaussian
and also we calculate the error bars from the power of a single
realization rather than over an ensemble of simulations. We ask the
reader to bear in mind that these error bars might be considered
incomplete because of this.

To explain a few graphical conventions: any points where the
power of the residuals is below the power of the noise are omitted,
as this leads to an unrealistic negative reconstructed 21-cm power;
any error bars extending to below the x-axis in linear space are
shown with a lower error bar of equal length to the upper error bar
in log space.

4.3.1 1D power spectra

The 1D power spectra are calculated over frequency wedges of
8 MHz to avoid evolution effects. Each line of sight produces a
1D power spectrum, one for each of the 512 × 512 pixels. These
power spectra are then averaged over all the pixels. The frequencies
mentioned correspond to the frequency in the middle of each 8-MHz
wedge and the quantity plotted in Fig. 4 is �2

1D(k) = Lk〈δ(k)δ∗(k)〉
π

,
where L is the comoving length of the wedge. The 1D power spectra
are recovered to high accuracy across the frequency range and across
the scales.
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Figure 4. The 1D power spectra of the simulated 21-cm (red, solid), the
residuals (black, dot), the reconstructed 21-cm (blue, points) and the noise
(orange, long dash). Three 8 MHz frequency wedges centred at 127, 151
and 175 MHz, respectively, are shown from top to bottom.

4.3.2 2D and 3D power spectra

For the 2D power spectra, the quantity plotted is �2
2D(k) =

Ak2〈δ(k)δ∗(k)〉
2π

, where A is the area of the simulation map. To cal-
culate the 3D power spectra we divide the cube into subbands of
8 MHz to avoid signal evolution effects. The quantity plotted is
�2

3D(k) = V k3〈δ(k)δ∗(k)〉
2π2 , where V is the volume of the subband.

We now consider the recovered 2D and 3D 21-cm power spectra
and how best we can minimize the effects of leakage. The noise
leakage into the reconstructed foregrounds can be accurately quan-
tified by creating an independent realization of the noise (no2) (for
real data it is assumed we will know the statistics of the noise to
high precision and can therefore create a second realization from
the known noise power spectrum) and applying equation (6) to find
Lno2. We find that the power spectra of Lno and Lno2 are almost iden-
tical meaning that A is not a strong function of the original noise
realization. We can use this information to find a better estimate of
the 2D and 3D power spectra and compensate for the noise leakage
using the following calculation:

�̃2
csrec = �2

rest − �2
no + �2

Lno2
. (8)

To calculate a leakage ratio we would generally have to include

all the leakages, such that leakage ratio = �2
cs

�2
Rfg

+�2
Lnocs

+�2
cs

. However,

since we can correct for Lno we can instead calculate

leakage ratio = �2
cs

�2
Rfg

+ �2
Lcs

+ �2
cs

, (9)

which quantifies the amount of 21-cm leakage into the foregrounds
and vice versa. We can see the leakage ratio plotted for the 2D and
3D power spectra for multiple frequencies in Fig. 5. We see that we
can expect an accurate 21-cm power spectrum recovery at large k

Figure 5. Top: the leakage ratio for the 2D power spectra for frequencies of
130 MHz (black, solid), 150 MHz (red, dot) and 170 MHz (blue, dash). Bot-
tom: the leakage ratio for the 3D power spectra for frequencies of 135 MHz
(black, solid), 151 MHz (red, dot) and 167 MHz (blue, dash).

once the noise leakage is compensated for. The smaller k recovery
is still very dependent on the foreground magnitude and therefore
frequency of observation.

We can see the result of applying equation (8) in Figs 6 and 7.
Wherever Rfg and/or Lnocs exceeds the power of the simulated 21-
cm signal we see a degraded fit in Fig. 6. The 2D power spectra
are recovered to excellent accuracy and we see that once the noise
leakage is taken into account there is much less leakage at large k
scales, allowing a more complete power spectrum reconstruction.

For the 3D power spectra, a similarly accurate recovery is made
across the frequency range. The recovery in 3D is more precise due
to the larger amount of data in a box as opposed to a single slice.
Again, once the noise leakage is taken into account the recovered
spectra become much more complete on the larger k scales.

5 PH A S E C O N S E RVAT I O N A N D I M AG I N G

Recently it has been shown that imaging of the neutral hydrogen
in the late stages of reionization is possible with the current gener-
ation of radio telescopes when angular scales larger than 0.5◦ are
considered, independent of the type of reionization source (Zaroubi
et al. 2012). Here, we compare the output residual maps with the
simulated 21-cm maps and consider how well the phases of the 21-
cm signal are conserved through the foreground removal process.
The better the phases are conserved, the more correlation between
maps we will observe. We will also consider the maps at different
scales and as such we also decompose the output maps into eight
wavelet scales using the IUWT.

For a particular frequency, we calculate the phase of each uv point
in a Fourier transformed map, F, as Phase[u, v] = tan −1(Im(F(u,
v))/Re(F(u, v))).
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Figure 6. 2D power spectrum of the simulated 21-cm signal, reconstructed 21-cm signal, residuals and noise at 130 MHz, or z = 9.92, 150 MHz, or z = 8.47,
and 170 MHz, or z = 7.35, from top to bottom. The left-hand column is the fiducial data whereas the right-hand column plots the reconstructed 21-cm power
spectrum but with the leakage determined from the second noise realization added, as described in Section 4.3.2. Line styles are as described in Fig. 4 with the
additional dark green dashed line representing the total leakage power (�2

Rfg
+ �2

Lnocs
) in the left-hand column and the leakage assuming noise leakage has

been corrected (�2
Rfg

+ �2
Lcs

) in the right-hand column.
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Figure 7. 3D power spectrum of the simulated 21-cm signal, reconstructed 21-cm signal, residuals and noise at 135 MHz, or z = 9.51, 151 MHz, or z =
8.40, and 167 MHz, or z = 7.50, over an 8-MHz subband (top to bottom). The left-hand column is the fiducial data whereas the right-hand column plots the
reconstructed 21-cm power spectrum but with the second noise realization leakage added. Line styles are as described in Fig. 6.
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Figure 8. Density maps of the phase of maps of the simulated 21-cm and
the residuals. From left to right are maps at frequencies 130, 145, 160
and 175 MHz. From top to bottom are maps of the complete cubes and
then of increasingly small-scale wavelet scales. A clear diagonal signifies
excellent phase recovery and therefore clearer images can be recovered.
We see that on scales above 108 Mpc, the phases are well preserved; on
smaller scales, however, the phases are highly uncorrelated. It is clear that
considering different wavelet scales can result in much better phase recovery
than considering the full cube.

In Fig. 8 we see the phase density relating to each wavelet scale
of the 21-cm and residual cubes. For each frequency we calculate
the phase of each pixel in the 21-cm and residual maps and use this
as a coordinate on a phase density map where the x-axis is the phase
of the residuals and the y-axis is the phase of the 21-cm map. The
more pixels with coordinates corresponding to a particular bin in the

phases, the higher the phase density we will observe. If GMCA per-
fectly preserves the phase of the 21-cm signal we should see a diag-
onal phase density plot. For clarity, only the phase bins with a pixel
count in the largest 67 per cent of the pixel count distribution are
plotted. We see that for the three crudest wavelet scales there is ex-
cellent phase recovery across the frequency range, while at 160 MHz
this excellent recovery can be seen on even smaller wavelet scales.
This is in line with expectations since the relative rms values (i.e.
ratio of the rms of the 21-cm and noise and ratio of the rms of
the 21-cm and foregrounds) for the 21-cm signal both peak at just
after 160 MHz.

In Fig. 9 we start with the crudest wavelet scale and then add
the next crudest scale one at a time to see the effect on phase
conservation, finding that this improves the recovery considerably.

In Fig. 10 we compare the reconstructed signal maps with the
simulated signal maps at the different wavelet scales. It is clear
that the foregrounds are reconstructed to a high accuracy at all
scales. The residuals show clear correlation with the 21-cm maps
– especially at scales 54–434 Mpc. By considering the data on
different scales we compensate for the small-scale noise leakage
and can retrieve convincing reconstructed images in comparison to
the map with all scale data included.

We plot the Pearson correlation coefficient between the simulated
21-cm maps and the residual maps at different individual scales in
Fig. 11. On an individual basis, we can clearly see that the finer
the scale of structure we correlate, the less of a correlation there is
between the residuals and simulated 21-cm maps. The finer wavelet
scale we look at, the more dominant noise leakage will be in the
residual maps and so a smaller correlation is observed. By only
comparing the crudest wavelet scales however, we risk losing a lot
of the small-scale 21-cm structure and being increasingly dominated
by the foreground signal.

We can add several of the wavelet scales together in order to
balance having enough useful information without including too
much noise leakage on the smaller wavelet scales. To compare with
Zaroubi et al. (2012), we also include images of the full data which
have been smoothed with a 20-arcmin Gaussian kernel. Wavelet
decomposition has the advantage of providing a selection of scales
on which one can analyse the images, as opposed to being restricted
by filters such as a Gaussian kernel which simply remove all modes
below a certain scale. However, the scales at which one can analyse
images with wavelet decomposition are determined by the method
itself – you cannot then ask what the data look like at a scale half
way in-between two wavelet scales.

In Fig. 12 we recover impressive images of the reionization sig-
nal at 165 MHz when the smallest scale information is discarded.
Comparing the residual and 21-cm maps on each row we find corre-
lation coefficients of 0.689, 0.687 and 0.588 for the top, middle and
bottom rows, respectively. We therefore conclude that the wavelet
decomposition more optimally removes the noise from the residuals
than the smoothing technique (bottom row) employed by Zaroubi
et al. (2012). In Fig. 10 we can see the wavelet decomposition has
the effect of clustering the noise around the edges of the image (this
effect is particularly pronounced in rows 3 and 4). To avoid this
edge effect we also correlate the maps in Fig. 12 again but this time
considering only the pixels in a central patch covering 50 per cent
of the total map area. We find correlation coefficients of 0.905,
0.788 and 0.605 for the top, middle and bottom rows respectively.
With real data, we can assume that this edge effect would not be a
problem as the fitting and decomposition can always be carried out
over a slightly larger cube with only the central region being used
for data analysis.
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Figure 9. Density maps of the phase of maps of the simulated 21-cm and the residuals. From left to right are maps at frequencies 130, 145, 160 and 175 MHz.
From top to bottom are maps of cubes with only the crudest scale present and then of only the 2, 3, 4, 5, 6 and 7 crudest wavelet scales. The minimum distance
scale information included is labelled for each wavelet scale, the maximum is always 1734 Mpc. A clear diagonal signifies excellent phase recovery and
therefore clearer images can be recovered. The addition of several scales together results in clearer diagonals than considering scales individually in Fig. 8.
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Figure 10. The decomposition of the 21-cm signal, residuals, simulated noise + 21-cm signal, noise, foregrounds, reconstructed foregrounds and noise (left to
right). From top to bottom, the rows are the original image at 165 MHz, and then the wavelet decomposition of this image at the eight wavelet scales. We can
see that the simulated and reconstructed foregrounds have a high correlation at all scales and even in the full cube. Similarly, the noise + 21-cm and residuals
also share this strong correlation. As we cannot remove the noise directly we must look for a correlation between the residuals and simulated 21-cm, which
will come as a result of little or no correlation between the noise and residuals at certain scales. The noise dominates too much in the full cube and on the large
k scales, however, we can clearly see a correlation by eye on distance scales between 108 and 434 Mpc. At the largest scale, the 21-cm signal is so small that
the residuals are dominated by noise.
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Figure 11. The Pearson correlation coefficient between 21-cm and residual
maps. There is very little correlation when all scales are present or on the
smallest scales, however, we reach correlation coefficients of over 0.6 for
distance scales 54–434 Mpc. The correlations are always much weaker at
the lower end of the frequency range because the noise and foregrounds are
at their highest and at the higher end of the frequency range because the
21-cm signal is negligible.

6 C O N C L U S I O N S

In this paper we have assessed the sparsity-based blind source sep-
aration technique GMCA as a possible way of removing the fore-
grounds on a 21-cm EoR signal. We recover the 1D, 2D and 3D
power spectra to high accuracy across the frequency range. Since
the mixing matrix calculated by GMCA was shown not to be a strong
function of the noise realization, we were able to compensate for
leakage of noise power into the reconstructed foregrounds using an
independent noise realization, leading to more complete 2D and 3D
power spectra.

We also considered if images of reionization could be recovered
from the LOFAR-EoR data once foreground removal with GMCA

has been carried out. Using wavelet decomposition, we considered
the phase correlation between the GMCA residuals and the simu-
lated 21-cm at different scales. We find strong correlations at the
cruder wavelet scales and add several scales together to balance the
amount of information in an image with the accuracy of the phase
recovery. We find that when distance scales of below 54 Mpc are
discounted, the GMCA residuals images are highly correlated with
the 21-cm images, with correlation coefficients of just less than 0.7.
In comparison, smoothing the images did not produce as strong a
correlation.

GMCA is a highly adaptable method and there remains the pos-
sibility that with careful tuning, the 21-cm signal could be picked
out as a separate source as opposed to being present as a residual
of the process. We intend to explore this further and consider using
different mixing matrices for each scale.
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