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Abstract—Spumiform basement membrane degeneration

(sbmd) is a specific kind of aberration present in the capillar-

ies of the midbrain periaqueductal gray (PAG) region of the

senescent hamster. These capillaries, separated by the

ependymal cell layer, are bordering the Sylvian cerebral

aqueduct. The aqueduct, connecting the 3rd and 4th ventri-

cle, may be crucial for local homeostatic as well as general

autonomic functions of the PAG. Local pressure effects of

the flowing and pulsating cerebrospinal fluid on the PAG-

vasculature are probably different for the rostral ‘entrance’

and the caudal ‘exit’ of the aqueduct. In view of the differ-

ent functions of the various divisions of the PAG, the fre-

quency and extent of the aberrations in the rostral,

intermediate and caudal dl/vlPAG-microvasculature could

shed some light on the causal factors involved in the regio-

nal distribution of the particular microvascular aberrations

found in the PAG during aging. In the present study we

investigated the ultrastructure of capillaries in dorsal and

ventral subdivisions of anterior and posterior regions of
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the PAG of young and old female Syrian hamsters. Sbmds

were classified into four stages of spumiform severity and

for each stage the frequency was determined in the rostral

PAG, at two levels in the intermediate PAG and in a dorsal

and a ventral part of the caudal PAG.

Results of our quantitative studies showed that in aged

hamster PAG various stages of sbmd were present in

91.6 ± 0.6% of all capillaries. No clear evidence was found

for regional differentiation between rostral, intermediate

and caudal parts of the PAG. Next to sbmd, capillary split

basement membrane (sbm) and vacuolization were common

features at all five PAG locations. 84.3 ± 2.3% of all

screened PAG capillaries displayed sbm. In agreement with

our previous findings, several other types of microvascular

aberrations were observed in addition to general aspects of

aging and some ependymal structural peculiarities. We

conclude that the presence of various forms of sbmds in

the PAG of senescent hamsters is a phenomenon that

appears to be specific to the PAG region, but causal factors

for this type of capillary degeneration remain unclear.

Sbmds in the PAG may have serious consequences not only

for blood–brain barrier functioning, but also for vascular

perfusion and blood supply with eventually serious conse-

quences for adequate regulation of the autonomic and

motor control functions of the PAG region.

� 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

Key words: aging, capillary, blood–brain barrier, basement

membrane, (micro)-vascular degeneration, spumiform base-

ment membrane degeneration.

INTRODUCTION

Studies on aging and degenerative diseases related to

compromised cognitive status mostly focused on

cerebral cortical and hippocampal regions (Shah and

Mooradian, 1997; De Jong et al., 1999; de la Torre,

2000, 2005, 2010a,b; Farkas and Luiten, 2001; Kalaria,

2003; Miller et al., 2007; Zlokovic, 2011). Despite the

crucial role of the midbrain periaqueductal gray matter

(PAG) as a key intermediary structure between higher

order cortical regions and brainstem effector systems in

the control of a myriad of autonomic and motor

functions, there are hardly data available of aging

effects on microvascular conditions in regions like the

PAG.

The PAG is located in the gray matter of the

mesencephalon surrounding the cerebral aqueduct and

this position provides unique opportunities for

connecting higher brain centers and brainstem effector
d.
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systems. Cytoarchitectonically, the PAG is not a

homogeneous structure and already in 1954, the human

PAG was divided into dorsal, medial and ventral

subregions (Olszewski and Baxter, 1954). More

recently, the cyto- and myeloarchitecture of the PAG

has been described and partitioned in more detail (Liu

and Hamilton 1980; Beitz, 1985; Beitz and Shepard,

1985; Veening et al., 1991; Gerrits et al., 1993) The

PAG has been included in the concept of the ‘greater

limbic system’ (Nieuwenhuys et al., 1988, 2008;

Nieuwenhuys, 1996).

Functionally, the PAG is strongly involved in basic

functions like the survival of the individual and the

species, and plays a role in a variety of behavioral and

physiological functions like: aggressive and defensive

behaviors (Bandler and Depaulis, 1991; Bandler et al.,

1991; Bandler and Shipley, 1994; Bandler and Keay,

1996), pain and analgesia (Giesler and Liebeskind,

1976; Mayer and Price, 1976; Basbaum and Fields,

1978; Fardin et al., 1984a,b; Besson et al., 1991),

cardiovascular control mechanisms (Carrive, 1989;

Carrive et al., 1989; Bandler et al., 1991; Bandler and

Keay, 1996; Lovick, 1996), lordosis (Sakuma and Pfaff,

1979a,b, 1980, 1983) and estrous-cycle-related changes

in neuronal responsiveness (Lovick et al., 2005; Lovick,

2006, 2008), and the vocal expression of emotions

(Kanai and Wang, 1962; Jurgens and Pratt, 1979;

Larson, 1985; Bandler et al., 1991; Jurgens, 1994). This

wide-ranging functional involvement makes the PAG an

important object to study the occurrence and effects of

the vascular condition during aging, since all neural

activity is directly dependent on adequate and effective

blood supply.

The PAG is located around about the narrowest part

of the ventricular system, the cerebral aqueduct (of

Sylvius). Because of that special location around a

narrow channel, the PAG is subjected to appreciable

pressure changes induced by the pulsatile flow of the

cerebrospinal fluid (CSF) (Stoquart-ElSankari et al.,

2007; Klarica et al., 2009; Bulat and Klarica, 2011). For

that reason, we decided to focus our attention on the

effects of aging on microvascular integrity and condition

in the PAG. Apart from microvascular age-associated

changes we unexpectedly discovered capillaries with a

new kind of vascular aberration, hitherto not previously

reported (Gerrits et al., 2010, 2012b; Veening et al.,

2012). Because of the ‘foamy’ electron lucent character

of this particular aberration, we have termed these

structures as ‘spumiform basement membrane

degeneration’, (sbmd). In addition, we reported evidence

for similar processes in rat and man (Gerrits et al.,

2012b). Sbmd in the hamster PAG shares some

characteristics with the membranous inclusions

observed in the bm in the cerebral cortex (de Jong

et al., 1990), and in the dorsal lateral geniculate nucleus

of the aged rat brain (Alba et al., 2004), suggesting

inter-species similarities. These findings open new ways

for studies on capillary bm integrity in rat and mouse

and man.

In the present study we performed a quantitative

electron microscopical analysis comparing the sbmd
aberrations in the rostral, intermediate and caudal PAG-

microvasculature in young and aged hamster. We have

chosen for this species because of our extensive

previous findings on the relationship between the

anatomical characteristics of the PAG and its autonomic

functions in this mammalian species.
EXPERIMENTAL PROCEDURES

Animals

The experiments were performed on inbred animals obtained

from Harlan (strain HsdHan: Aura; Harlan, Boxmeer, The

Netherlands). Young (22 weeks, 120–122 g, cases H547, H548,

H552, H556) and aged (95 ± 0.5 weeks, 130–140 g, cases

H571, H574, H575, and H576) female golden hamsters

(Mesocricetus auratus) were used for the present study. All

protocols, concerning housing and handling of the animals and

efforts to minimize animal suffering were in accordance with

Dutch legalization and the ethical guidelines approved by the

University of Groningen/University Medical Center Groningen

(license number DEC 5142A).
Housing and handling

All hamsters were housed separately in clear plastic cages in a

14/10-h reversed light/dark cycle with food and water available

ad libitum. Room temperature was maintained at 22–24 �C and

humidity at 50–70%; wood shaving and straw were used as

bedding materials. The animals were under daily monitoring for

their general health condition and weighed once a week.

Lifespan of hamsters varies considerably from 82–118 weeks

depending on sex, strain and housing conditions (Kamino et al.,

2001; Oklejewicz and Daan, 2002). Therefore, it was decided

to euthanize aging animals at the age of 95–96 weeks, actually

at the end of the female hamster lifespan.
Tissue processing
Perfusion. After an overdose of Nembutal (sodium

pentobarbital, 50 mg/kg, i.p.; Lundbeck Inc., Deerfield, IL,

USA), the animals were transcardially perfused with 20 mL of

heparinized phosphate buffer (0.1 M, pH 7.4), containing 0.4%

sodium nitrite and 2% polyvinylpyrrolidone (molecular weight

40,000) at 37 �C, followed by 350 mL of fixative containing

0.05% glutaraldehyde, 4% paraformaldehyde, 0.2% picric acid

and 2% polyvinyl-pyrrolidone in 0.1 M phosphate buffer, pH

7.4, at room temperature. Following perfusion, the brains

were removed and postfixed for one hour in the same fixative

at 4 �C.
Electron microscopy. PAG tissue was cut on a vibratome into

60-lm transverse sections and collected in 0.01 M phosphate-

buffered saline (PBS) at 4 �C. Every other section was

processed for a standard EM protocol: osmicated, dehydrated

in a graded series of ethanol and flat-embedded in Epon

between dimethyldichlorosilane-coated glass slides. Samples of

tissue containing the PAG and brainstem control regions were

glued on Epon stubs. After blocking, the tissue was trimmed

and cut into 1-lm semithin sections. Finally, 60-nm ultrathin

sections from the selected regions were cut with a diamond

knife for further electron microscopical analysis.
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Control tissue

PAG tissue obtained from the young adult female hamsters was

processed in the same way as the aged animals and served as

control.
Photomicrography

The rostro-caudal PAG locations (Fig. 1) were determined using

a Zeiss Axioplan light microscope (Carl Zeiss Benelux,

Trapezium 300, Sliedrecht, The Netherlands) at 10�
magnification. Representative PAG sections were

photographed by using a DC500 digital camera and a

DM4000B photomicroscope connected to a Q550IW computer

and QWIN software (Leica Microsystems, Rijswijk, The
periaqueductal gray
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Netherlands). Drawings of the sections and overlayers were

made using Adobe Illustrator 8.0 software (Adobe Systems,

Mountain View, CA, USA). Microvasculature and surrounding

profiles were photographed at 10,000–20,000� magnification

using a Philips CM 100 electron microscope (Philips,

Eindhoven, The Netherlands).
Quantitative analysis

Fig. 1 shows cross sections of the rostro-caudal PAG comprising

the selected PAG subdivisions. Sixty-nanometer ultrathin PAG

sections, taken at different depth intervals of 1 lm, were

screened for capillaries. Photomicrographs at 10,000–20,000�
of complete transverse sectioned capillaries were randomly

taken for further analysis. A total of 1200 capillaries were
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studied; 600 capillaries from four young hamsters were

compared with 600 capillaries from four aged hamsters. Per

PAG location 30 capillaries/animal were studied with emphasis

on basement membrane aberrations of the spumiform type.

Basement membrane degeneration per location was classified

(double blind). Basement membrane degeneration was

quantified into four stages ranging from vacuolization (split

basement membrane, or sbm, stages I and IA) to extensive

spumiform basement membrane degeneration (sbmd), outlining

almost the complete capillary bm (stage IV), see Fig. 2A–H.

Stage IA was added as a necessary intermediate step to fill the

gap between stages I and II as reported earlier (Gerrits et al.,

2012b). Differences between aged and young animals were

tested for five locations (rostral PAG, bregma �3.7;
intermediate PAG, bregma, �4.5 and �4.9; and caudal vl and

dlPAG, bregma �5.4) with a two-tailed two sample t-test
assuming unequal variance between groups. To control for an

inflated type I error resulting from 10 t-tests, we applied

Bonferroni correction, which is very conservative in the

scenario of ten comparisons. In aged animals, location effects

were tested with a single factor ANOVA.
N
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RESULTS

The sbmds in the PAG showed unique and characteristic

‘foamy-like’ manifestations of electron lucent vacuoles

within the confines of capillary bm and pericytic bm

(Fig. 3A, B) and identified as one of four stages as

defined above (Fig. 2A–H). Our study suggested a

process of steadily increasing ‘spumiform’ aberrations

within the lamina densa of the capillary basement

membrane, and we hypothesized that this new form of

bm-degeneration most likely begins with local splitting/

vacuolization of the lamina rara densa, to develop over

time finally into a rim of spumiform degradation products

positioned as a cuff around the capillary (Gerrits et al.,

2012b). The mesencephalic PAG emerged as the most

affected site, compared to other caudal brainstem areas

like nucleus pararetroambiguus, commissural nucleus of

the solitary tract and the medial tegmental field. Outside
capillary
en

I
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5µm
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lumen

sbmd

m

µm 0.5 µm

bm

asement membrane degeneration (sbmd) in the PAG. (A) Extensive
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Detail of sbmd as presented in the boxed area in A. (C) Capillary with

lasmic lipofuscin (I). Sbmd and neuron are digitally contrasted with a
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the PAG, hardly any sbmd could be observed (Gerrits

et al., 2012b).

Split basement membrane/vacuolization and sbmd in
PAG

Fig. 3C, in a low-magnification electron photomicrograph,

shows a brain capillary in the vicinity of a PAG neuronal

cell body. The capillary located in close proximity to the

neuron shows an extensive form of sbmd (stages III–IV;

arrows), the neuron itself contains numerous

intracytoplasmic lipofuscin granules.

Split basement membrane (sbm) in PAG. Capillary bm

splitting and vacuolization (sbm) were common features

at all five locations in the aging PAG. In aged animals

sbm was observed in 84.3 ± 2.3% (mean ± 1SD) of all

screened PAG capillaries. Intermediate forms between

sbm (stage I) and sbmd (stage IIA), classified as stage

IA, were present in 15.0 ± 2.9% of all capillaries (see

Fig. 2C and 3A, Table 1).

The presence of sbm was much more prevalent in

aged animals compared to young animals: 84.3 ± 2.3

versus 19.5 ± 5.3% (Table 1, Fig. 4A).

Sbmd in PAG. The analysis of the PAG capillaries in

the old animals revealed that various forms of sbmd

were present in 91.6 ± 0.6% of all capillaries, whereas

in young animals this was only 4.0 ± 1.1% of capillaries

(Table 1). Severe sbmd stages III–IV were more

frequently observed in the intermediate PAG levels but

this proved to be non-significant [F(2,17) = 3.592;

p= 0.175)]. Likewise, sbmd stages IIA–C were more

prominently present (Table 1) in the rostral PAG level

around the inlet of the aqueduct and in the caudal PAG

around the outlet of the aqueduct but this was also non-

significant [F(2,17) = 1.151; p= 0.340].

Overall stages IIA–C of sbmd were most frequently

present (62%) followed by stages III and IV (Table 1). In
3.1% of the capillaries sbmd was observed covering the

abluminal side of the pericyte (Fig. 5A). About 8% of the

capillary cross-sections displayed no sbmd or only

minimal splits. In some rare cases (3/600 capillaries)

collagen type fibrils displaying its characteristic

periodicity were found intermingled with sbmd, similar to

what has been described previously in the rat brain (De

Jong et al., 1990; Farkas et al., 2001) (see Fig. 6A, B).

In the young control animals only 4.0 ± 1.1% of all PAG

capillaries displayed sbmd, mainly of category II

(Table 1, Fig. 4B). PAG capillaries showing sbmd

categories III and IV were not observed.

The mild aberrations (stages IIA–C) were more

common in old animals compared to young at all rostro-

caudal levels (all t> 21, all p< 0.0002). The more

severe aberrations (stages III–IV) were also more

common in old animals at intermediate and caudal

levels (both t> 5.2, both p< 0.013) but this did not

apply to the rostral location (t= 3.052, p= 0.554).
Generalized aberrations in PAG

In addition to these characteristic sbmd, other diffuse

(peri)vascular and neurodegenerative changes were

observed as well. Concerning capillary aberrations,

these changes varied from endothelial malformations,

disrupted and/or widened tight junctions, bm thickening

(Fig. 5B), and pericyte degeneration to perivascular

edema (Fig. 5A) and gliosis. Subependymal edema was

frequently observed along the borders of the Sylvian

aqueduct (Fig. 5C). Increased levels of neuronal

intracytoplasmic lipofuscin (Fig. 3C), however, were less

frequently present in these cells. Abnormal (giant)

mitochondria, degenerated myelin accumulations, and

age-related bodies were present, in similar amounts as

reported previously (Gerrits et al., 2009, 2012a,b;

Gerrits and Veening, 2012).
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DISCUSSION

Brain microvasculature plays an essential role in the

regulation of homeostasis of neural tissues, in particular

in the direct supply of glucose and oxygen for the

maintenance of an optimal physiological environment.

The presence of degenerated parts of the blood–brain

barrier (BBB) in aging animals and humans may directly

or indirectly lead to less optimal neuronal functioning

and is increasingly associated with neurodegenerative

mechanisms (Mooradian, 1988; Nishizuka and Pfaff,

1989; Shah and Mooradian, 1997; Ballabh et al., 2004;

Zlokovic, 2008, 2011) but also with impaired brain

functioning during non pathological aging.

In our investigations of the microvascular integrity of

the PAG in the aging hamster, we recently observed a

new form of age-related basement membrane

degeneration (Gerrits et al., 2012b). Ultrastructural

evidence showed this microvascular bm pathology

appearing in the hamster PAG as a so far unreported
form of bm degeneration, which we termed ‘spumiform

basement membrane degeneration’ (sbmd). For the

sake of clarity, sbmd is not linked to a particular cell

type and should not be confused with the ‘foam cells’

appearing among the first cells during atherosclerotic

plaque formation in vessels. The latter type of cells is

monocyte-derived macrophages that accumulate

cholesterol in atherosclerotic lesions (Ball et al., 1995;

Ross, 1999; Kruth, 2001).

We identified a process of steadily increasing

‘spumiform’ degradation products within the vascular

lamina densa, leading to extreme capillary bm swelling

(Fig. 2). Sbmd is almost exclusively present in the PAG of

aged hamsters and virtually absent in PAG of young

animals, and as far as we know in other brain regions,

suggesting a progressive process of capillary

degeneration during aging of the hamster PAG. The

precise nature and origin of sbmd is still unknown but we

speculate that the membranous component of sbmd

originates from collagen IV fibrils of the lamina densa.
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During aging these collagen fibrils may develop in

compartments that become gradually filled with high

molecular translucent substances that do not pass the bm-

lamina rara externa. In that case, capturing of substances

in the spumiform spaces may be the result of a selective

permeability change in the different bm-components.

The finding that sbmd is region specific is in

agreement with reported region specificity of other

aberrations (Threatt et al., 1971; Nandy et al., 1975;

Goldman et al., 1992; Shah and Mooradian, 1997;

Zlokovic, 2008, 2011) and may be associated with

serious consequences for neural functioning.

The present study focused on the rostro-caudal extent

of this new microvascular basement membrane (bm)

aberrations within the mesencephalic PAG. Our

quantitative studies showed that in aged hamster PAG

various stages of sbmd were present in 91.6 ± 0.6% of

all capillaries. No clear evidence for regional

differentiation between rostral, intermediate and caudal
parts of the PAG was observed. Within the old animals,

the different levels of the PAG did not differ significantly

in terms of mild (stages IIA–C) and severe aberrations

(stages III and IV). Nonetheless, compared to young

animals, there were more aberrations in old animals in

all locations with the exception of the rostral PAG.

Apparently, capillaries in the rostral PAG are relatively

protected from the structurally damaging effects of

aging. This is not in agreement with the hypothesis that

pressure and pulsations induced by the formation and

flow of CSF play an important role in the etiology of

sbmd and other microvascular pathology in the brainstem.

In addition to sbmd, capillary bm splitting and

vacuolization were common features at all five PAG

locations. In agreement with our preceding studies,

several other types of microvascular aberrations were

observed in addition to general aspects of aging and also

some ependymal structural peculiarities (Gerrits et al.,

2009, 2012a,b).The finding that considerable amounts of
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split basement membrane (19.5 ± 5.3%) and small

amounts of the early stages of sbmd (4 ± 1.1%) were

already present in young hamsters (22 weeks) suggests

that the onset of bm alterations of the spumiform type

starts in the hamster PAG already at the young adult age.

Possible mechanisms of the development of
perivascular cuffs

The PAG is localized around the Sylvian aqueduct, and

may be vulnerable to hydrodynamic processes as a

result of exposure to continuous passage of pulsating

CSF (Sakka et al., 2011). Recent insights into the

hydrodynamics of CSF provide evidence that water,

which constitutes 99% of CSF and interstitial fluid (ISF)

bulk, is rapidly absorbed into microvessels adjacent to

the CNS (Bulat et al., 2008; Klarica et al., 2009; Bulat

and Klarica, 2011). It appears that a process of water

filtration across the walls of microvessels in the central

nervous system is a key step in the production of ISF

and CSF. Plasma osmolytes are retained, however, for

generating capillary osmotic counter-pressure, which is

essential for maintenance of ISF/CSF balance of water

absorption into capillaries. The concentration of other

macromolecular substances in the periventricular

regions including PAG, depends on the rate of their

removal into microvessels (for review (Bulat and Klarica,

2011). Ultramicroscopic data provide evidence that a

decreased cerebral blood flow is associated with the

accumulation of fibrous collagen in the microvascular

walls (Farkas et al., 2000b). It can be argued that

structural capillary wall changes are adaptations to
altered perfusional and physiological conditions since

cerebral hypoperfusion has been found to have a

deleterious impact on neural tissue (Farkas et al.,

2000a,b). Human aging has been shown to lead to

reduced cerebral blood – and CSF – flows (Grubb et al.,

1977; Raichle, 1981; Buckner et al., 2000; Stoquart-

ElSankari et al., 2007; Yang et al., 2011).

Stoquart-ElSankari et al. (2007) demonstrated that the

CSF stroke volumes are significantly reduced in the

elderly, i.e. at aqueduct levels. Further, their results

show a decrease of total cerebral blood flow, a

proportional aqueductal and cervical CSF pulsations-

reduction as a result of arterial loss of pulsatility, and

preserved intracerebral compliance with aging

(Stoquart-ElSankari et al., 2007). Disturbances of CSF

dynamics play a role in CSF-mobility decline with aging

especially in cases of unknown origin (Onen et al.,

2005). Considering the above mentioned studies and

our recent findings, it is suggested that regional

differences in the occurrence of the characteristic sbmd

may be due to structural changes, related to

hydrodynamics of ISF/CSF during aging. Since PAG

capillaries are located close to the aqueduct, they may

be significantly more vulnerable for capillary changes

including sbmd than capillaries in more caudally located

brainstem structures.
CONCLUSION

In the present study we describe the rostro-caudal extent

of a new category of microvascular degenerative changes
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in the midbrain periaqueductal gray in aging hamster

which appeared to be highly region specific. From our

statistical analysis it can be concluded that the

occurrence of these spumiform basement membrane

degenerations in the PAG of senescent hamsters is a

general ‘PAG-phenomenon’. Pressure fluctuations

induced by the flowing CSF have been postulated as a

causal factor in the induction of the spumiform

aberrations (Jones et al., 1987; May et al., 1990; Kleine

et al., 1993; Reiber, 1994, 2003; Redzic et al., 2005) but

further evidence is needed to support this view, and

presently unknown pathogenic factors cannot be

excluded. Sbmds in the PAG may have serious

consequences for BBB function and may eventually

impair autonomic and motor control functions of the

PAG region.
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