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Evaluation of adhesion forces of Staphylococcus
aureus along the length of Candida albicans
hyphae
Ekaterina S Ovchinnikova1, Bastiaan P Krom1,2, Henk J Busscher1 and Henny C van der Mei1*
Abstract

Background: Candida albicans is a human fungal pathogen, able to cause both superficial and serious, systemic
diseases and is able to switch from yeast cells to long, tube-like hyphae, depending on the prevailing
environmental conditions. Both morphological forms of C. albicans are found in infected tissue, often in
combination with Staphylococcus aureus. Although bacterial adhesion to the different morphologies of C. albicans
has been amply studied, possible differences in staphylococcal adhesion forces along the length of C. albicans
hyphae have never been determined. In this study, we aim to verify the hypothesis that the forces mediating S.
aureus NCTC8325-4GFP adhesion to hyphae vary along the length of C. albicans SC5314 and MB1 hyphae, as
compared with adhesion to yeast cells.

Results: C. albicans hyphae were virtually divided into a “tip” (the growing and therefore youngest part of the
hyphae), a “middle” and a so-called “head” region (the yeast cell from which germination started). Adhesion forces
between S. aureus NCTC8325-4GFP and the different regions of C. albicans SC5314 hyphae were measured using
atomic force microscopy. Strong adhesion forces were found at the tip and middle regions of C. albicans hyphae
(−4.1 nN and −4.0 nN, respectively), while much smaller adhesion forces were measured at the head region (−0.3
nN). Adhesion forces exerted by the head region were comparable with the forces arising from budding yeast cells
(−0.5 nN). A similar regional dependence of the staphylococcal adhesion forces was found for the clinical isolate
involved in this study, C. albicans MB1.

Conclusions: This is the first time that differences in adhesion forces between S. aureus and different regions of C.
albicans hyphae have been demonstrated on a quantitative basis, supporting the view that the head region is
different from the remainder of the hyphae. Notably it can be concluded that the properties of the hyphal head
region are similar to those of budding yeast cells. These novel findings provide new insights in the intricate
interkingdom interaction between C. albicans and S. aureus.

Keywords: Bacteria, Yeast, Interaction, Adhesion forces, AFM
Background
Candida albicans is an opportunistic human pathogen
and the leading cause of a wide range of human fungal
infections. C. albicans is a polymorphic fungus and
either grows as a unicellular budding yeast cell or
in a filamentous, (pseudo)hyphal form, depending on
environmental conditions, such as temperature, pH or
* Correspondence: h.c.van.der.mei@umcg.nl
1Department of Biomedical Engineering, University of Groningen and
University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, AV
9713, The Netherlands
Full list of author information is available at the end of the article

© 2012 Ovchinnikova et al.; licensee BioMed C
Creative Commons Attribution License (http:/
distribution, and reproduction in any medium
presence of chemical stimuli such as serum components
or N-acetylglucosamine [1-3]. The ability to switch be-
tween different morphologies is important for C. albi-
cans virulence [4,5]. It is presumed that yeast cells
facilitate dissemination to target organs, whereas hyphae
play a role in further tissue invasion due to the ability to
adhere to and pierce host epithelial and endothelial cells,
damaging them through the release of hydrolytic
enzymes and initiate candidiasis [5-7]. C. albicans mor-
phological plasticity also plays an important role in bio-
film formation and maturation. C. albicans mutants
unable to perform morphological switches can develop
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only rudimentary biofilms, that are structurally less
stable than wild type biofilms [8-10].
C. albicans co-exists with a highly diverse bacterial

flora in various sites of the human body, resulting in
mixed species biofilms [11,12]. For survival and repro-
ductive success, interacting microorganisms in polymi-
crobial communities are involved in antagonistic or
synergistic relationships. C. albicans is often co-isolated
with Pseudomonas aeruginosa during catheter-associated
infections or infections of patients suffering from cystic
fibrosis and burn wounds [13-16]. P. aeruginosa can spe-
cifically adhere to C. albicans hyphae but not to yeast
cells, which leads to rapid lysis and death of hyphae
through a currently unidentified mechanism [17,18]. C.
albicans and Streptococcus gordonii on the other hand,
form a synergistic partnership since these streptococci
enhance C. albicans filamentation, whereas C. albicans
can stimulate streptococcal biofilm formation on differ-
ent kind of surfaces [19].
Klotz et al. [20] showed that in approximately 11% of

polymicrobial bloodstream infections, C. albicans was co-
Figure 1 Schematic illustration of the principle of atomic force micro
presentation of AFM set-up. A sample with attached C. albicans cells is pos
AFM cantilever is brought into contact with the hyphal surface. The deflect
between a bacterium and the hyphal surface and is detected by an optica
reflected onto a position sensitive detector from which the adhesion force
cantilever are known. (B) Schematic indication of the different hyphal regio
isolated in conjunction with Staphylococcus aureus. More-
over, C. albicans and S. aureus are able to form complex
polymicrobial biofilms on various mucosal surfaces, and
within a biofilm S. aureus is mostly associated with
hyphal cells and not with yeast cells [21,22]. Interestingly,
co-infection of mice with C. albicans and S. aureus demon-
strated a synergistic effect, resulting in increased mice
mortality [23,24]. Furthermore, recent in vitro and in vivo
studies demonstrated that S. aureus may use adhesion to
C. albicans hyphae to become invasive. Using an ex vivo
murine tongue model, it was shown that oral co-
colonization by C. albicans and S. aureus led to penetration
of tongue tissue by hyphae with adhering S. aureus [25].
Atomic Force Microscopy (AFM) is a state-of-the-art

technique that allows recording of the actual adhesion
force that occurs between a bacterium and C. albicans
(see Figure 1A). AFM has recently been applied to iden-
tify the nature of the adhesion forces between P. aerugi-
nosa and C. albicans [26]. Bacterial adhesion to hyphae
was always accompanied by strong adhesion forces, but
did not occur to yeast cells. Poisson analyses of adhesion
scopy and definition of different hyphal regions. (A) Schematic
itioned by a xyz piezo scanner, while a bacterium attached to a tipless
ion of the cantilever upon retract is a measure of the adhesion forces
l laser. The laser beam is focused on the very end of the cantilever and
s can be calculated, provided the mechanical properties of the
ns defined for bacterial-hyphal adhesion force measurements.
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forces indicated that the outermost mannoprotein-layer
on hyphal surfaces created favorable acid–base condi-
tions for adhesion, allowing close approach of P. aerugi-
nosa. Removal of these proteins caused unfavorable
acid–base conditions, preventing adhesion of P. aerugi-
nosa. Despite the notable importance of C. albicans
morphological plasticity for bacterial-fungal interaction,
possible differences in bacterial adhesion forces along
the length of C. albicans hyphae have never been deter-
mined. Hyphae grow in a linear mode, with the tip of
the hyphae representing the youngest part and the re-
gion closer to the original germinating yeast cell being
the oldest. Here we hypothesize, that these differences
along the length of a hypha may impact the adhesion
forces with bacteria. The aim of this paper is to verify
this hypothesis. To this end, we virtually divided (see
Figure 1B) C. albicans hyphae into a “tip” (the growing
end of the hyphae), a “middle” and a so-called head re-
gion (the yeast cell from which germination started) and
measured actual adhesion forces that occur between
these hyphal regions of two different C. albicans strains
and a S. aureus strain using AFM.

Methods
Strains, growth conditions and harvesting
C. albicans SC5314 (a commonly used, wild type
reference strain), C. albicans MB1 (a biofilm-associated,
clinical isolate [27]) and bacterial strain S. aureus
NCTC8325-4 (wild type) were used. To generate
green fluorescent protein (GFP)-expressing S. aureus
NCTC8325-4, pMV158GFP [28] was introduced into
competent bacterial cells by electroporation [29]. Selec-
tion of subsequent transformants was performed on
tryptone soya broth with 1.5% bactoagar (TSB, Oxoid,
Basingstoke, UK) plates containing 10 μg/mL tetracyc-
line. S. aureus NCTC8325-4 that received pMV158GFP
(S. aureus NCTC8325-4GFP) showed constitutive GFP
expression that could be visualized using fluorescence
microscopy.
Strains were grown on TSB agar plates, supplemented

with tetracycline when appropriate. Single colonies were
inoculated in 5 mL TSB containing 10 μg/mL tetracyc-
line for bacterial pre-cultures or 5 mL yeast nitrogen
base acids (YNB; Difco, Sparks, USA) pH 7, containing
0.5% D-glucose for C. albicans pre-cultures. S. aureus
was routinely grown at 37°C while C. albicans was
grown at 30°C to prevent hyphal formation for 24 h with
rotation (150 rpm) and used to inoculate a main culture
(1:50 dilution of pre-culture). Main bacterial cultures
were grown for an additional 18 h under the same con-
ditions. C. albicans hyphae were induced by growing a
culture (1:50 dilution) for 4 h with rotation (150 rpm) at
37°C in 12 wells tissue culture polystyrene plates (Costar,
Corning Inc., NY, USA). Hyphal formation was obtained
at 90-95% efficiency under these conditions, as con-
firmed by phase contrast microscopy. Main cultures
were harvested by centrifugation for 5 min at 6,250 x g
and 14,800 x g for S. aureus and C. albicans, respect-
ively, followed by two washes with phosphate buffered
saline (PBS: 10 mM potassium phosphate, 0.15 M so-
dium chloride, pH 7) and resuspended in PBS.

Adhesion of staphylococci to hyphae and yeast using
fluorescence microscopy
Adhesion of S. aureus NCTC8325-4GFP to C. albicans in
its hyphal morphology was verified using fluorescence
microscopy (Leica DM4000B, Heidelberg, Germany).
After 4 h of hyphal formation, wells were washed once
with PBS. Bacteria were added to a final optical density
measured at 600 nm (OD600) of 0.1 in PBS. After 3.5 h
of co-incubation with staphylococci at 37°C under static
conditions, wells were gently washed two times with
PBS and C. albicans hyphae were counter-stained with
Calcofluor White (35 μg/mL, 15 min at room
temperature), known to bind to chitin-rich areas of the
fungal cell wall. Note that PBS was used in order to
avoid the influence of growth, while co-incubation was
done at 37°C in order to mimic the human body
temperature. Afterwards, images were taken at five ran-
domly chosen locations in the wells using a 40x water
immersion objective using filter sets for GFP and UV.
All experiments were performed in triplicate with separ-
ately grown cultures.

Staphylococcal adhesion forces along hyphae using
atomic force microscopy
Adhesion forces between S. aureus NCTC8325-4GFP and
hyphae were measured at room temperature in PBS
using an optical lever microscope (Nanoscope IV, Digital
Instruments, Woodbury, NY, USA) as described before
[26]. Briefly, C. albicans was immobilized on glass slides
(Menzel, GmbH, Germany), coated with positively
charged poly-L-lysine. A fungal suspension was depos-
ited onto the coated glass and left to settle at room
temperature for 20 min. Non-adhering cells were
removed by rinsing with demineralized water and the
slide was kept hydrated prior to AFM analysis in phos-
phate buffer. To create a bacterial probe, S. aureus was
immobilized onto poly-L-lysine treated tipless “V”-
shaped cantilevers (DNP-0, Veeco Instruments Inc.,
Woodbury, NY, USA). Bacterial probes were freshly pre-
pared for each experiment.
AFM experiments were performed at room

temperature due to the limitations of the equipment.
This is unlikely to have an effect on the outcome of
physico-chemical measurements such as of adhesion
forces, as here the absolute temperature scale, that is in
Kelvin units, is relevant. On a Kelvin scale the change



Ovchinnikova et al. BMC Microbiology 2012, 12:281 Page 4 of 7
http://www.biomedcentral.com/1471-2180/12/281
from 37°C to 22°C is very small, decreasing only from
293 Kelvin to 273 Kelvin.
For each bacterial probe, force curves were measured

after different bond-maturation times up to 60 s on the
same, randomly chosen spot on a hyphal or yeast cell
with a z-scan rate of less than 1 Hz. To ensure that no
bacteria detached from the cantilever during the experi-
ment, control force-distance curves were made with 0 s
contact time after each set of measurements. Whenever
the “0 s contact time” forces measured deviated more
than 0.5 nN from the initial measurement, a bacterial
probe was considered damaged and replaced. For each
combination of a bacterial strain and fungal–coated glass
surface, five different probes were employed on average
and the number of bacterial probes used depended on
the outcome of the control measurements. Calibration
of each cantilever was done using the thermal tuning
method (Nanoscope V6.13r1), yielding a range of spring
constants from 0.03 to 0.06 (N/m).

Statistics
Typically, measured bacterial adhesion forces contained
a large spread and were not normally distributed
(Shapiro–Wilk test, P < 0.01). Hence, data are presented
as median and interquartile range. Adhesion forces for
different fungus-bacterium pairs were compared using
non-parametric analyses (Mann–Whitney test). Differ-
ences were considered significant when the P-value was
< 0.05.

Results
Adhesion of staphylococci to hyphae and yeast cells
using fluorescence microscopy
In order to assess the adhesion of S. aureus NCTC8325-
4GFP along the length of C. albicans hyphae, we used
two different fungal strains: C. albicans SC5314 and C.
albicans MB1. Bacterial adhesion to hyphae was visua-
lized with fluorescent microscopy and quantitated by
enumeration of adhering bacteria per unit hyphal length
(Figure 2). Most bacteria adhered to the tip and middle
regions of the hyphae and adhered only scarcely to the
head region of the hyphae or to non-germinating yeast
cells (Figure 2C). Note that strictly speaking, a compari-
son of the number of staphylococci adhering per unit
hyphal length may not be directly compared with the
number of bacteria adhering to a non-germinating yeast
cell. Both C. albicans strains showed the same trend, al-
though bacteria adhered to C. albicans SC5314 in higher
numbers than to the clinical isolate MB1.

Adhesion force along the hyphae using atomic force
microscopy
Adhesion forces between S. aureus NCTC8325-4GFP and
both C. albicans strains along the hyphae were
determined using AFM (Figure 1). Figure 3 shows typical
examples of force-distance curves of the S. aureus probe
upon approach and retract from C. albicans hyphae and
yeast surfaces at initial contact and after 60 s surface
delay. Major differences existed in AFM force-distance
curves recorded immediately upon contact (0 s) and
after a 60 s surface delay between S. aureus NCTC8325-
4GFP and different hyphal regions and the yeast cell, as
summarized in Figure 4. In line with the higher number
of bacteria adhering to the tip and middle regions of C.
albicans hyphae (Figure 2C), stronger adhesion forces
(around 4 nN for SC5314 and around 2 nN for MB1)
were recorded after bond-maturation between these
regions than for the head regions (around 0.5 nN). How-
ever, adhesion forces measured between S. aureus
NCTC8325-4GFP and both yeast cells remained compar-
able to the adhesion forces measured to the head region
of the hyphae, irrespective of bond-maturation
(Figures 4A and 4B). Note that in general, adhesion
forces, especially after bond-maturation, were signifi-
cantly smaller between S. aureus and the hyphal regions
of C. albicans SC5314 than between S. aureus and C.
albicans MB1 hyphal middle and tip regions (compare
Figures 4A and 4B).

Discussion
In this study, we hypothesized that S. aureus adhesion
may vary along the length of C. albicans hyphae. To this
end, our study was designed to determine the actual
physical interaction between S. aureus and hyphae, con-
tingently divided into three regions, i.e. a head, middle
and tip region. S. aureus adhered in highest numbers to
the middle and tip regions of the hyphae and adhered
hardly to the head region and yeast cells. In order to give
new insights into this intriguing interaction, we mea-
sured staphylococcal adhesion forces directly and found
that adhesion forces experienced by S. aureus varied
along the length of C. albicans hyphae and were lowest
in the head region of hyphae. Importantly, staphylococ-
cal adhesion to the hyphal head region compared well
with adhesion to budding yeast cells, which means that
the properties of the cell wall, with respect to bacterial
adhesion, remain the same for the yeast cell and head re-
gion of hyphae upon morphological change. Interest-
ingly, electron microscopy showed that during
germination, the yeast cell wall changes its morphology
at the site of hyphae initiation and further formation of
the germ tube requires extensive cell wall modification
[30,31]. The germ-tube cell wall was not only almost
two times thinner than the cell wall of the parental yeast
[30,31], but also much more hydrophobic (water contact
angle 107 degrees) than yeast cells (water contact angle
25 degrees) [32]. Hydrophilicity of the yeast cells is
caused by the presence of mannoproteinaceous,



Figure 3 Representative examples of force-distance curves. Force-distance curves between different S. aureus NCTC8325-4GFP-fungus pairs
upon initial contact and after 60 s bond-maturation. (A) C. albicans SC5314 hyphal tip region; (B) C. albicans SC5314 hyphal middle region; (C) C.
albicans SC5314 hyphal head region; (D) C. albicans SC5314 yeast cell.

Figure 2 Microscopic analysis of inter-species interaction. Examples of fluorescent microscopic images and quantitative enumeration of the
interaction between S. aureus NCTC8325-4GFP and C. albicans strains. (A) S. aureus with C. albicans SC5314 hyphae. (B) S. aureus with C. albicans
MB1 hyphae. Scale bar corresponds with 10 μm. (C) number of S. aureus NCTC8325-4GFP adhering per 10 μm length of different regions of C.
albicans hyphae and yeast cells. Error bars represent SD over three experiments with separately cultured organisms and involving 30 hyphae per
bacterium-fungus pair.
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Figure 4 AFM analysis of adhesion forces between C. albicans SC5314 and S. aureus NCTC8325-4GFP. Vertical scatter bars of adhesion
forces between S. aureus NCTC8325-4GFP and different C. albicans strains and morphologies. (A) Different hyphal regions and yeast cells of C.
albicans SC5314. (B) Different hyphal regions and yeast cells of C. albicans MB1. Each data point corresponds to a single force-distance curve
recorded between a bacterium and a hypha. Median force values are indicated with a line. Statistically significant differences in adhesion forces
(p < 0.05; Mann–Whitney test) of bacteria with the hyphal head region versus the middle or tip region are indicated by an asterisk.
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hydrophilic, surface fibrils. Such fibrils are long, evenly
spaced, radiating and mask hydrophobic proteins [33].
The biochemical composition of the cell wall of hy-

phae and yeast cells of C. albicans has been investigated
extensively [34,35]. The C. albicans cell wall consists of
two main layers: an outer layer of mannoproteins and an
inner one that is composed of skeletal polysaccharides,
such as chitin and β-1,3-glucans which confer strength
and shape [34-36]. Although the basic cell wall compo-
nents of C. albicans remain the same for hyphal and
yeast cells, the amount and exposure of polysaccharides,
as well as its surface proteome differ significantly
[35-37]. For example, the amount of chitin in the hyphal
cell wall is 3–5 times more than in the yeast cell wall,
which could be relevant for the interaction with the
host’s immune system [38]. Expression of a number of
hypha-specific cell wall proteins, like agglutinin-like se-
quence 3 (Als3) protein, is up-regulated during the
yeast-hyphae switch [37,39,40]. Als3 is specifically recog-
nized by Streptococcus gordonii and allowed bacteria to
adhere to the hyphae [41] and is also involved in adhe-
sion of S. aureus to C. albicans hyphae [25]. Interest-
ingly, Als3 protein was localized exclusively along
complete hyphae and was not observed in the head re-
gion of hyphae nor in yeast cell walls [42]. This is in line
with the current observation that there is no significant
difference in adhesion forces between S. aureus and the
relatively young tip region compared to older regions of
the hypha.
Staphylococcal adhesion forces varied within the two

C. albicans strains involved in this study. This effect can
possibly be explained by the differential expression of
cell wall associated proteins, e.g. proteins belonging to
the Als family. These proteins are recognized as amyloid
proteins and able to rearrange to form β-sheets, depend-
ing on environmental conditions and the strain of C.
albicans involved [39,40,43]. Agglutinin-like sequence 3
(Als3p) is known to play a major role in the adherence
process between C. albicans hyphae and S. aureus [25]
and we speculate that differences in the density of Als3p
along on hyphae between C. albicans SC5314 and MB1
account for the different adhesion forces measured with
S. aureus. This speculation is supported by the increases
in adhesion forces observed after 60 s surface delay, that
may correspond to unzipping and rearrangement of a β-
sheet-rich amyloid fibres [44].
Conclusion
The findings generated from this study quantified S. aur-
eus - C. albicans interactions and demonstrated that the
head region of the hyphae is different from other hyphal
regions. Therewith this study combines microbiology
and physical-chemistry to yield a better understanding
of the fast developing field of interkingdom interactions.
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